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Preface

Since early in the 20th century tomography has been of major interest for it provides means to
do non-invasive visualisation of the interior of objects such as the human body. Tomography
methods concentrate on reconstructing objects from multiple projections that are obtained by
sending, for example, X-rays through the object. Applications of these methods are, among oth-
ers, radiology (CT-, MRI- and PET scans), geophysics and material science. The tomographic
problems can be formulated as a system of linear equations. Unfortunately, these systems are
not square and thus not symmetric or positive (semi)definite and in general rank deficient.

In material science one is often presented with very small objects (like crystals or nano-structures)
that consist of one or a small number of different materials, each with its own density. Scanning
these small objects can cause damage to the structure and thus one can only take a very limited
amount of projections. Fortunately, one can use the prior knowledge about the object to arrive
at a reconstruction of the original object. How to arrive at this reconstruction is studied by the
field of discrete tomography (DT).

With every kind of tomography, and thus also with DT, one is faced with noisy data. Because of
this noise the reconstruction process becomes more difficult since the system of linear equations
becomes inconsistent. The DART (Discrete Algebraic Reconstruction Method) algorithm was
developed by the All Scale Tomographic Reconstruction Antwerp (ASTRA) group from the
university of Antwerp to solve DT problems. This algorithm deals with noise in a very heuristic
method. The goal of this project is to investigate how the problem can be regularized such that
it deals with the noise in a more efficient and robust manner.

The following document consists of five chapters. The first chapter is a general introduction in
tomography which describes the history of the field and various kinds of tomography. Chapter
2 describes the analytical reconstruction method. This is an approach of reconstructing the
original object from its projections using the Fourier transform. This technique is the method of
choice in medical tomography for it provides reasonably accurate reconstructions in very short
times. The downside of this approach is that the reconstructions of data acquired from a few
number of projection angles is usually poor. The algebraic reconstruction methods (ARMs)
discussed in Chapter 3 perform better in these kind of conditions. Four different ARMs will
be described and investigated: ART, SIRT, SART and CGLS. Chapter 4 describes the DT
problem formally and proposes four different methods of solving this problem. One approach
is of particular interest since this is the approach DART uses. The DART algorithm will be
explained in detail and the performance will be investigated by experiments. Finally, Chapter 5
presents the research questions that the upcoming research will hopefully answer. Test problems
are presented which should aid with the validation of the answers.

i



This work is a report of the studied literature as part of the master thesis in Applied Math-
ematics, Delft University of Technology. The literature study forms the basis from which the
subsequent research will be carried out. The project is commissioned by the Centrum Wiskunde
& Informatica (CWI), a scientific research institute specialized in mathematics and computer
science. The daily supervisor from Delft University of Technology of this master thesis is Martin
van Gijzen and Kees-Joost Batenburg is the supervisor at the CWI. Both supervisors are greatly
acknowledged for their involvement in this project.

ii



Contents

Preface i

1 Tomography 1

2 Analytical Reconstruction Method 3

2.1 Radon Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fourier Slice Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Filtered Backprojection for Parallel Beams . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Filtered Backprojection for Non-Parallel Beams . . . . . . . . . . . . . . . . . . . 12

2.4.1 Adapted FBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Rebinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Feldkamp Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Algebraic Reconstruction Methods 15

3.1 Kaczmarz’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Ill-conditioned Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Least Squares Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Matrix Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Normal Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Ambiguous Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Basic Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Jacobi and Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 SIRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 SART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.5 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Advanced Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Krylov Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 CGLS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 Singular Values and Data Errors . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.3 Semi-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



CONTENTS

4 Discrete Tomography 41

4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Combinatorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Statistical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Continuous Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Continuous with Discretisation Step . . . . . . . . . . . . . . . . . . . . . 43

4.3 DART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 The DART algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Research Goals 53

5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



Chapter 1

Tomography

The study of reconstructing (slices of an) object from its projections is called tomography. The
projections are obtained from various angles via penetrating waves, e.g. X-rays. The word
tomography has it origins in the two Greek words τ óµoσ (tomos), meaning slice or part, and
γράφǫιν (graphein), meaning to write. Tomography was first considered after the invention
of X-rays by Wilhelm Röntgen in 1895 although it began flourishing in the period before the
second world war [26, p. 6]. Since reconstructions are usually done by computers the term
Computerised Tomography (CT) is used.

Tomography is probably most famous for its applications in medicine for it provides non-invasive
ways to see the internal structure of a (mostly human) body. Though the field of application
is very broad, from nanoscopic scale where it is used to determine structure of certain nano-
particles, to galactic-scale where it is used to reconstruct the X-ray structure of supernova
remnants. Tomography is, among many other fields, studied in medicine, materials science,
geo- and astrophysics. This motivates the need for developing better and faster reconstruction
techniques.

There are many types of tomography. Transmission tomography for example is based on sending
penetrating waves through an object and measuring the waves on the other end of the object
with a detector. X-ray computed tomography (CT/CATScan) uses this principle. Emission

Figure 1.1: ‘Hand mit Ringen’, the first medical X-ray picture taken on December 22 1895. It shows
the hand of Wilhelm Röntgen’s wife.
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CHAPTER 1. TOMOGRAPHY
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Figure 1.2: Left: Parallel data acquisition geometry. Right: Fanbeam (non-parallel) data acquisition
geometry.

tomography on the other hand is based having the source inside the object, this source is usually
a radioactive tracer which is injected into the blood stream. Two types of emission tomography
can be distinguished, Single Particle Emission Computed Tomography (SPECT) which measures
emitted particles along a half-line, and Positron Emission Tomography (PET) which is based
on the conversion of a proton into a neutron. During this conversion a positron and neutrino
are released, this positron will interact with an electron almost instantly creating two photons
which travel in approximately opposite direction. These photons are measured and from the
measurement one can determine the location where the annihilation took place, and hence
the source was located. Another type of tomography is reflection tomography, typically sound
waves are emitted towards an object, the sound is reflected and from that the object can be
reconstructed.

All types of tomography reconstruct an object or function from its projections, or in mathemat-
ical sense, line (or hyperplane) integrals. The object has a certain internal distribution which
one wants to reconstruct. In X-ray tomography for example the density of tissue attenuates the
radiation. By measuring to which extent the rays are attenuated the internal distribution of the
object, and thus the distribution of the tissue, can be reconstructed.

In what follows rays will be referred to as the lines a certain penetrating wave follows when
travelling from the source to the detector. In X-ray CT this is simply the path from an X-ray
tube (vacuum tube that produces X-rays) to the detector. There are many ways in which one
can emit these rays, referred to as data acquisition technique. The rays can be emitted parallel to
each other for each projection angle. This yields the most natural understanding of tomography.
In practice, however, it is very hard to carry out such a parallel acquisition. Instead fan (in case
of one-dimensional projections) or cone (two-dimensional projections) acquisition techniques are
used in practice. Luckily, some correspondence exist between the various types of techniques
which enables one to use results for parallel rays for non-parallel rays. Figure 1.2 shows two
different data acquisition techniques for two-dimensional reconstruction.

For an extensive detailed report on the history of tomography and an account on the all various
aspects associated with tomography one is referred to the book of Webb [26].
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Chapter 2

Analytical Reconstruction Method

The problem of reconstructing an object from its projections can be solved using various meth-
ods. One of these methods is based on the Fourier transform of the object and its projections.
This section will briefly discuss how this reconstruction is carried out and results will be shown
using images. First the Radon transform is introduced which defines the relationship between
the object and its projection. Then the Fourier slice theorem will be presented and proven,
this theorem is fundamental to the Filtered Backprojection (FBP) method. This method recon-
structs the object from its projections and will be considered for parallel-beams. Although in
practice mostly fan- and cone-beam geometries are used, it is easier to consider and solve the
problem for parallel beams. Data resulting from these other acquisition techniques can also be
reconstructed, as will be show in Section 2.4.

2.1 Radon Transform

As was shown in Chapter 1 there are many kinds of tomography. All these methods are based
upon the fact that a physical object alters the rays that are sent through that object. With
X-rays for example the intensity will gradually drop as it moves through the object. This
attenuation can be caused by tissue which absorbs energy of the X-ray as it passes through.
The attenuation of an (two-dimensional) object will be represented by the function f(x, y)
which is assumed to be integrable. Since the attenuation of an object is assumed to be related
to its shape and density, one can reconstruct the object if one knows f(x, y). Hence f(x, y) will
often be referred to as the object or image.

Suppose parallel beams are used and that a ray passes through the object like in Figure 2.1, i.e.
it makes an angle of θ with the y-axis and the distance from the ray to the origin is t1. Note that
the dashed line makes an angle of θ with the x-axis and is perpendicular to the ray, the source
will move parallel to this line such that all the rays are parallel (hence parallel projections). The
ray can be parametrized as x cos(θ) + y sin(θ) = t1 and hence, in general, the projection Pθ(t)
of a ray can be regarded as the line integral of f(x, y) over the parametrization of the ray:

Pθ(t) =

∫

x cos(θ)+y sin(θ)=t

f(x, y)ds. (2.1)
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Figure 2.1: A ray which passes through the object with attenuation f(x, y), the t-axis represents the
projection values of the object with projection angle θ.

Definition 2.1. The Dirac-delta function δ(s) is defined by

δ(s) =

{

+∞ s = 0

0 s 6= 0
(2.2)

∞
∫

−∞

δ(s)ds = 1. (2.3)

Using this definition one can rewrite (2.1) as

Pθ(t) =

∞
∫

−∞

∞
∫

−∞

f(x, y)δ(x cos(θ) + y sin(θ)− t)dxdy. (2.4)

Definition 2.2. The function Pθ(t), as given in (2.4), is the Radon transform of f(x, y).

The Radon transform is named after Johann Radon, an Austrian mathematician who proposed
the formula in 1917. The transform is often denoted as (Rf)(θ, t).

For the moment only parallel projections of two-dimensional objects will be considered. Using
this form of acquisition, the parallel rays for some fixed angle θ are collected for various t so that

4
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Figure 2.2: Left: The original image. Right: The Radon transform of the
image.

one ends up with Pθ(t), the projection data corresponding to one angle (Figure 2.1 and the left
figure of Figure 2.4). This is repeated for multiple angles to obtain a large set of projection data.
The Radon transform defines the relation between the measured data and the object f(x, y).
Note that only angles θ ∈ [0, π) have to be considered since Pθ(t) = Pθ+π(−t) and hence does
not introduce any new information.

To get a feeling of what the Radon transform is, the transform is applied to an example image.
Figure 2.2 shows the Radon transform in case the image is a single dot. The right figure is
called the sinogram of the original image. Note that the relation Pθ(t) = Pθ+π(−t) indeed holds.
Furthermore since a Radon transform is a superposition of sinusoids, the Radon transform of
a point is a sinusoid. Figure 2.3 shows the sinogram of the Shepp-Logan head phantom, this
phantom will be used throughout for examples.

The goal of tomography is to reconstruct the original object or image from its projections (such
as the Radon transform). When the original object is reconstructed exactly from the Radon
transform one speaks of the inverse Radon transform. The FBP method, introduced later on,
approximates the original solution and can thus be viewed as an approximation of the inverse
Radon transform.

2.2 Fourier Slice Theorem

The filtered backprojection method is based on the result of the Fourier slice theorem. This
theorem, informally, states that the two-dimensional Fourier transform of a parallel projection is
equal to a slice of the two-dimension Fourier transform of the object. Thus using this result one
can construct the two-dimensional Fourier transform of the object with the parallel projection
data. Applying a two-dimensional inverse Fourier transform would then yield the original object.

First some definitions on Fourier theory are recalled.

Definition 2.3. Let P : R→ C be a continuous integrable function. Then the Fourier transform
of P (t) is defined as

5
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Figure 2.3: Left: The original image. Right: The Radon transform of the
image.

P̂ (ω) =

∞
∫

−∞

P (t)e−2πωtidt (2.5)

for every real value of ω. The inverse Fourier transform of P̂ (ω) is defined as

P (t) =

∞
∫

−∞

P̂ (ω)e2πωtidt. (2.6)

The variable ω of the Fourier transform is often referred to as the frequency, P̂ (ω) is said to
be defined in the frequency domain while P (t) is defined in the spatial domain. Similarly the
two-dimensional Fourier transform can be defined as:

Definition 2.4. Let f : R2 → C be a continuous integrable function. Then the Fourier transform
of f(x, y) is defined as

f̂(u, v) =

∞
∫

−∞

∞
∫

−∞

f(x, y)e−2π(ux+vy)idxdy (2.7)

for every real value of u and v. The inverse Fourier transform of f̂(u, v) is defined as

f(x, y) =

∞
∫

−∞

∞
∫

−∞

f̂(u, v)e2π(ux+vy)idudv. (2.8)

6
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Figure 2.4: The Fourier transform of the Projection Pθ(t) left corresponds to the line (f̂(u, v) slice) in
the right figure.

Now the actual Fourier slice theorem will be stated [17, p. 58].

Theorem 2.5. The Fourier transform of a parallel projection of an image f(x, y) taken at angle
θ gives the values of the two-dimensional transform f̂(u, v) along a line subtending an angle θ
with the u-axis in the frequency domain, i.e.

P̂θ(ω) = f̂(ω cos(θ), ω sin(θ)). (2.9)

In Figure 2.4 the theorem is illustrated. It is clear that if one has projections from many angles
in [0, π) that then the two-dimensional Fourier transform of the object can be approximated.
The proof of Theorem 2.5 will now be given and closely follows the proof given in [17, p. 58].

Proof. Assume an arbitrary angle θ ∈ [0, π) from which the projection is taken. The original
Cartesian coordinate system (x, y) is rotated to a coordinate system (t, s) in such a way that
the projections taken are along lines of constant t. The mapping from (x, y) to (t, s) is given by

(

t
s

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

x
y

)

(2.10)

The projections in the new coordinate system are given by

Pθ(t) =

∞
∫

−∞

f(t, s)ds. (2.11)

Taking the Fourier transform of these projections gives

7



CHAPTER 2. ANALYTICAL RECONSTRUCTION METHOD

P̂θ(ω) =

∞
∫

−∞

Pθ(t)e
−2πωtidt, (2.12)

which, according to the theorem should equal a slice of the two dimensional Fourier transform
of the object. To see this, substitute (2.11) into the equation above so one obtains

P̂θ(ω) =

∞
∫

−∞

∞
∫

−∞

f(t, s)e−2πωtidsdt. (2.13)

Now transform the coordinate system back to (x, y). From (2.10) one has t = x cos(θ)+ y sin(θ)
and s = −x sin(θ) + y cos(θ). The Jacobian is given by | cos2(θ) + sin2(θ)| = 1 and thus dsdt =
dydx. Interchanging the integrals is allowed due to Fubini’s theorem [20, p. 84], note that
f(x, y) is assumed to be integrable. Doing these substitutions yields

P̂θ(ω) =

∞
∫

−∞

∞
∫

−∞

f(x, y)e−2πω(x cos(θ)+y sin(θ))idxdy. (2.14)

Now note that the right-hand side equals the two-dimensional Fourier transform f̂(u, v) for
u = ω cos(θ) and v = ω sin(θ). Hence one is forced to conclude that the desired result is reached
since P̂θ(ω) = f̂(ω cos(θ), ω sin(θ)) = f̂(ω, θ).

As noted before, the reconstruction can be acquired by approximating f̂(u, v) in the frequency
domain and then taking the inverse Fourier transform of this approximation. In Figure 2.5 one
can see the slices of known frequency if projections are taken every π/12 radians or 15 degrees.
Note that the higher frequency components, these are (u, v) points further from the origin, are
less well known than the low frequency components. Therefore some interpolation is required.
One should note that in practice the function f(x, y) is only defined on a finite domain and the
discrete inverse Fourier transform should be used, hence the discrete Fourier coefficients f̂(u, v)
should be known. Some of these coefficients might be known due to the slice theorem, others
have to be approximated (interpolated) with those. How to tackle this discrete case is explained
in more detail in [17, p. 58–59].

2.3 Filtered Backprojection for Parallel Beams

The filtered backprojection method (FBP) is based on the Fourier slice theorem and is a de-
scretised version of the inverse Radon transform. As noted at the end of the previous section,
the data in the frequency domain need to be transformed back to the spatial domain to obtain
a reconstruction of the object. Since only a finite number of projections can be acquired, in-
formation is always missing and interpolation needs to be carried out. Rather than doing this
interpolation in the frequency domain, as suggested in the previous section, the FBP method
does the interpolation in the spatial domain, i.e., for each projection angle the Fourier trans-
forms of the projections Pθ(t) are taken, these transformations are then multiplied by a weighting

8



2.3. FILTERED BACKPROJECTION FOR PARALLEL BEAMS

u

v

Figure 2.5: The known frequency data from the Fourier transformed projections.

function. The results for each angle, thus the slices in the frequency domain, are transformed
back to the spatial domain and summed up. This approach has two advantages. First of all,
the computations can be started as soon as the first projection data are available. Secondly, the
interpolation of the missing information is now carried out in the spatial domain. Simple linear
interpolation in the spatial domain often leads to reasonably accurate results while more compli-
cated approaches are needed for the frequency domain [24]. One could also expect this since the
unknown points in the frequency domain are not uniformly distributed and correspond mainly
to the high frequency components. Close to the origin the slices are close together and nearest
neighbours might lead to reasonable results, farther away, however, the nearest neighbour is
actually quite distant (see Figure 2.5).

The FBP method naturally follows from a change of coordinates as will be shown. Until now
the two-dimensional Fourier transform of the object was expressed in Cartesian coordinates,
but since the transformed projections form a line through the origin subtending an angle θ in
this domain it would be more natural to use polar coordinates instead of Cartesian. Recall the
two-dimensional inverse Fourier transform (cf. (2.8)):

f(x, y) =

∞
∫

−∞

∞
∫

−∞

f̂(u, v)e2π(ux+vy)idudv. (2.15)

Let u = ω cos(θ) and v = ω sin(θ). For the Jacobian J of this coordinate change one finds

J = det

(

∂(u, v)

∂(ω, θ)

)

=

∣

∣

∣

∣

cos(θ) sin(θ)
−ω sin(θ) ω cos(θ)

∣

∣

∣

∣

= ω
(

cos2(θ) + sin2(θ)
)

= ω. (2.16)

Hence the differentials dudv are replaced by ωdωdθ so that (2.15) becomes

f(x, y) =

2π
∫

0

∞
∫

0

f̂(ω, θ)ωe2πω(x cos(θ)+y sin(θ))idωdθ. (2.17)

9



CHAPTER 2. ANALYTICAL RECONSTRUCTION METHOD

This integral can be split into two parts by considering θ ∈ [0, π) and θ ∈ [π, 2π). Doing the
change of variables θ = θ + π in the second integral yields

f(x, y) =

π
∫

0

∞
∫

0

f̂(ω, θ)ωe2πω(x cos(θ)+y sin(θ))idωdθ

+

π
∫

0

∞
∫

0

f̂(ω, θ + π)ωe2πω(x cos(θ+π)+y sin(θ+π))idωdθ. (2.18)

By symmetry of the Fourier transform ones has f̂(ω, θ+π) = f̂(−ω, θ) [5, p. 181]. Furthermore
one has cos(θ + π) = − cos(θ) and likewise sin(θ + π) = − sin(θ). Applying this information
gives

f(x, y) =

π
∫

0

∞
∫

0

f̂(ω, θ)ωe2πω(x cos(θ)+y sin(θ))idωdθ

+

π
∫

0

∞
∫

0

f̂(−ω, θ)ωe−2πω(x cos(θ)+y sin(θ))idωdθ. (2.19)

Substituting ω = −ω in the second integral results in

f(x, y) =

π
∫

0

∞
∫

0

f̂(ω, θ)ωe2πω(x cos(θ)+y sin(θ))idωdθ

+

π
∫

0

0
∫

−∞

f̂(ω, θ)ωe2πω(x cos(θ)+y sin(θ))idωdθ (2.20)

=

π
∫

0

∞
∫

−∞

f̂(ω, θ)|ω|e2πω(x cos(θ)+y sin(θ))idωdθ. (2.21)

Write t = x cos(θ) + y sin(θ) and recall that due to the Fourier slice Theorem f̂(ω, θ) = P̂θ(ω)
to obtain the expression

f(x, y) =

π
∫

0

∞
∫

−∞

P̂θ(ω)|ω|e
2πωtidωdθ. (2.22)

This expression shows the workings of the FBP method. Note that the transformed projection
is multiplied by the weight function |ω| which followed from the change of coordinates. This

10
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u

v

θ

ω

Figure 2.6: The pie-shaped wedges represent the area of f̂(ω, θ) that is approximated by |ω|P̂θ(ω). Note
that the weight increases as |ω| increases.

weight function can be justified by the distribution of the unknowns in the frequency domain.
As noted the slices are further apart for high frequency components, i.e. for P̂θ(ω) with large |ω|.
Therefore these values are multiplied by |ω| as to make up for the missing information. In Figure
2.6 this is sketched. The middle line represents a slice, the two other lines are neighbouring slices.
The grey area represents the area of the frequency domain that is approximated by |ω|P̂θ(ω).

Usually (2.22) is written as

Qθ(t) =

∞
∫

−∞

P̂θ(ω)|ω|e
2πωtidω, (2.23)

f(x, y) =

π
∫

0

Qθ(x cos(θ) + y sin(θ))dωdθ. (2.24)

This decouples the the original expression into two parts: (2.23) is the filtered backprojection of
one slice, thus one projection angle, (2.24) is the summation of the backprojections over angles.

Filters are used to suppress or amplify certain frequencies. This is achieved by multiplying
components of certain frequencies by a weight function. The foregoing reasoning then leads to
the conclusion that the term Qθ(t) represents a filtering operation. These filtered projections
Qθ(t) are then back projected, hence the name filtered backprojection. Often one also includes
a window function in (2.23), this is a type of filter which typically suppresses high frequency
components. One example of such a window is the Hamming window. Figure 2.7 shows the
benefits of using a Hamming window.

One should note that for each angle this backprojection is carried out separately and the results

11
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FBP without a Hamming window FBP with a Hamming window

Figure 2.7: The Shepp-Logaon head phantom re-
constructed using the FBP without and with a Ham-
ming window.

are added in the spatial domain. For a certain projection angle θ all the points on the line
x cos(θ)+y sin(θ) = t get the same contribution from the backprojected data. The results of the
backprojection are smeared back to the spatial domain. Figure 2.8 shows the results of the FBP
method after a various number of projections. In this figure the smearing is clearly visible when
a small number of projections is used. The results of 64 and 128 projections are very accurate.
The original image is 128 × 128 pixels, the inner square is 43 × 43 pixels. The experiment was
carried out with the radon and iradon functions in MATLAB. The latter function corresponds
to the filtered backprojection and was used with nearest neighbour interpolation and a Hamming
window.

When dealing with the implementation of this method one typically assumes that frequencies
higher than a certain limit W are not present in the data. In that case the integral in (2.23) can
be determined from −W to W . Also the continuous Fourier transforms are replaced by discrete
ones. For more details about how to implement the FBP the reader is referred to [17, p. 65–75].

2.4 Filtered Backprojection for Non-Parallel Beams

In practice mostly non-parallel acquisition techniques are used since the mechanics for parallel
beams are complex and result in high data acquisition time which is unacceptable in most
applications, such as medical CT. Therefore one would like to be able to use non-parallel beams.
This section will list three different methods that allows one to use the FBP method when
non-parallel acquisition techniques are used. Only the ideas behind the methods will be given.

2.4.1 Adapted FBP

When using non-parallel beams, such as a fan-beam, one can also deduce the FBP method for
these beams. This requires that one parametrizes every ray for every projection angle separately.
This parametrization was rather simple for the parallel case, every beam could be identified by t
and θ as t = x cos(θ)+y sin(θ). For non-parallel beams however this parametrization forms quite
a challenge and results into far less elegant formulas. Moreover, for every type of data acquisition
this adaptation is different, for example one can use fan-beams with a curved detector such that
all the rays have even length or a linear detector (see Figure 2.9). This method is discussed in
detail in [17, Ch. 3.4], [15, p. 177–181] and [5, Ch. 7.7.3–7.7.4].

12
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Original 1 projection 2 projections

4 projections 8 projections 16 projections

32 projections 64 projections 128 projections

Figure 2.8: The FBP method for a various number of projections.

x

y
Detector

Source

x

y

Detector

Source

Figure 2.9: Two types of fan-beams. Left: a curved detector. Right: a linear detector.
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x

y
Detector

Parallel Source

Figure 2.10: Rebinning: the black rays are parallel and thus belong to the same bin.

2.4.2 Rebinning

Another approach on reconstruction from non-parallel beams is based upon the idea that rays
from different positions of the source can be parallel and thus can be thought of as rays from
a parallel acquisition technique, see Figure 2.10. All parallel rays are binned together and the
problem is then solved as if the data originated from parallel beams. Details of this method can
be found in [5, Ch. 7.7.1–7.7.2] and [14, p. 172–174].

2.4.3 Feldkamp Algorithm

Until now only 2-dimensional acquisition techniques, such as parallel and fanbeam, have been
discussed. In practice however cone-beams are used intensively. The Feldkamp algorithm, or also
refereed to as the FDK cone-beam reconstruction algorithm after Feldkamp, Davis and Kress who
proposed the algorithm in 1984, is an algorithm which approximates the exact reconstruction
problem. The cone-beam projections are assumed to be 2-dimensional fan-beams in slices of the
object which can then be reconstructed by using an adapted FBP. The resulting slices are back
projected using a 3-dimensional cone-beam back projection to form the original 3-dimensional
object. More details about this algorithm can be found in [7] and [5, Ch. 8.6.2–8.6.4].

14



Chapter 3

Algebraic Reconstruction Methods

This chapter will present a different approach to solving the reconstruction problem from Chap-
ter 2. The analytical reconstruction methods assumed that the image or object is described
by a certain function and Fourier analysis was used to derive this function from projections.
Algebraic reconstructions methods (ARMs) employ the idea that the projections of an image or
object can be written as a system of linear equations. Subsequently, the solution to this system
is approximated by some iterative method. While the computational time of the algebraic meth-
ods is significantly higher than for the analytical methods, the results are also better when one
uses a small number of projections. This is beneficial, for it is not always possible or desirable
to take many projections. ARMs are also less prone to noise than the analytical methods [16].

Consider Figure 3.1. Suppose an image f(x, y) is scanned using a total of M rays. A (square)
grid is superimposed on f(x, y) which divides the image in n × n = N square cells, which will
also be referred to as pixels. Rays pi, i ∈ {1, . . . ,M}, are modelled as stripes with width τ that
run through f(x, y). Each cell fj, j ∈ {1, . . . , N} has area δ × δ, it is assumed that in each cell
f(x, y) is constant. The reconstruction problem is written as

pi

Ray i with width τ

f1 fn

fn+1

fn2

fj

δ

δ

Figure 3.1: The superimposed grid on f(x, y).
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W f = p. (3.1)

Here p is a vector containing all the (measured) projection values, hence the length of the vector
is M . The vector f contains the (approximated) values of f(x, y) per cell and thus is N long.
The matrix W will be referred to as the weight matrix, this matrix contains per entry wij the
weight cell j has corresponding to ray i, it is assumed that wij ≥ 0. Each of the N cells will have
M weights, hence W ∈ R

M×N . In tomography W is often too big to construct completely due to
memory limitations. It is, however, possible to construct the wij on the fly during computations.

In practice M 6= N and thus (3.1) is an under- or overdetermined system. In the case of an
underdetermined system there are more unknowns than equations, hence if a solution exists, it
is not unique. Overdetermined systems are systems with more equations than variables. An
overdetermined system, if consistent and of full rank (see Section 3.2.1), yields a unique solution.
It might even happen that an overdetermined system has infinitely many solutions. Note that
the concepts of over- and underdetermination do not provide any information about the linear
(in)dependency of the equations. Sometimes overdetermined systems are, erroneously, identified
as inconsistent.

3.1 Kaczmarz’s Method

Stefan Kaczmarz was a Polish mathematician who proposed a method for solving linear systems
in 1937. This method, from now the Kaczmarz’s method, was rediscovered and first introduced
in the open literature by Gordon, Bender, and Herman in 1970 who used it to solve (3.1) [14,
p. 204]. The method is based on viewing the solution f as a point in a N dimensional space
which is the intersection of M hyperplanes. The hyperplanes are described by the equations of
the linear system (3.1):

w11f1 + w12f2 + · · ·+ w1NfN = p1

w21f1 + w22f2 + · · ·+ w2NfN = p2

...

wM1f1 + wM2f2 + · · ·+ wMNfN = pM .

(3.2)

Note that if M < N one is faced with an underdetermined problem. Then the intersection of
these planes, if it exists, is not a point but a higher dimensional object, and thus infinitely many
solutions are possible. Kaczmarz’s method is iterative, thus a sequence of approximate solution
vectors (f0, f1, . . . , fk) is generated such that limk→∞ fk = f assuming f is the unique solution
to (3.1). Starting from an initial guess f0 the next approximation f1 is obtained by projecting
f0 orthogonal onto the hyperplane described by the first equality in (3.2). This constitutes one
iteration of the method. Subsequently f2 is obtained by projecting the vector f1 orthogonal onto
the hyperplane given by the second equation in (3.2). After one has projected the subsequent
approximate solutions onto all the hyperplanes the result fM is again projected onto the first
hyperplane of the system. The process is repeated until some stopping criterion is met, e.g. the
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x
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Figure 3.2: The workings of the Kaczmarz’s method in two dimensions.

residual r = p−W fk is smaller than some predetermined threshold. Figure 3.2 shows how the
method works for a linear system with 2 unknowns and 2 equations.

Let wi,: = (wi1 wi2 . . . wiN )T be the i-th row of W such that W =











wT
1,:

wT
2,:
...

wT
M,:











. The i-th

iteration, i ∈ {1, . . . ,M}, of the Kaczmarz’s method can be expressed as:

f i = f i−1 +
pi −

〈

f i−1,wi,:

〉

〈wi,:,wi,:〉
wi,:. (3.3)

Note that this expression is composed of two vectors. The vector wi,: is orthogonal to the
hyperplane wi,:f = pi given by the i-th equation of (3.2). Hence the vectors described by f i−1+

αwi,: lie on a line which is orthogonal to that hyperplane. The quantity α =
pi −

〈

f i−1,wi,:

〉

〈wi,:,wi,:〉
ensures that the sum of both vectors coincides with the hyperplane, thus (3.3) projects f i−1

orthogonal onto the hyperplane wi,:f = pi. For a full geometric description of how this quantity
α comes about one is referred to [17, p. 278–280]. Note that i = 1, 2, . . . ,M and fk is N long,
hence, it is possible that one update alters multiple entries of fk. The interpretation is that the
update is computed according to the projection data, thus for every ray. All the cells j which
affect this ray i have some weight wij 6= 0 and thus all those entries j in fk are altered.

Note that in (3.3) i ∈ {1, . . . ,M} for clarity, one can easily adapt the expression to allow for
iterations with iteration number i > M . Set ĩ = (i− 1) mod (M) + 1, then

f i = f i−1 +
pĩ −

〈

f i−1,wĩ,:

〉

〈

wĩ,:,wĩ,:

〉 wĩ,:. (3.4)

The denominator of (3.3) (and consequently (3.4)) can be assumed to be unequal to zero. Indeed,
if 〈wi,:,wi,:〉 =

∑N
j=1w

2
ij = 0 this would mean that wij = 0 for every j and thus equation j in

(3.2) would be 0f = pj, with 0 the zero-vector. But this in turn represents a ray hitting no cells,
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consequently one can thus safely conclude that pj = 0. And hence removing this equation from
(3.2) would not result in any loss of information.

This method only converges to a solution of W f = p if the system has an exact solution [25, p.
59]. Unfortunately the projections obtained in tomography often contain noise which causes p

not to lie in the range of W and thus no solution exists. In this case the sequence of approximate
solutions will keep fluctuating. And even if convergence is guaranteed, it does not mean that
a solution is found quickly. Consider for example a system with two unknowns (cf. Figure
3.2) where the two hyperplanes (lines) differ by a very small angle. The Kaczmarz’s method
would then convergence very slowly to the solution. If the two lines were perpendicular then
convergence would be reached within two iterations. One can imagine that hyperplanes arising
from two adjacent rays will most likely be nearly parallel because of high correlation between
information, hence it would be better to project onto the hyperplanes in a different order, for
example random, than in ascending order.

3.2 Ill-conditioned Systems

As noted, problems originating from tomography result in the system W f = p, W ∈ R
M×N

and generally M 6= N . The problems that will be considered in this work will mostly be
underdetermined, i.e. M < N . Thus the number of rays is smaller than the number of cells.
Moreover, since the matrix W will be such that there usually is no unique solution to the
problem, the challenge is then find the best approximate solution. To analyse and motivate the
methods that will be presented in this chapter some linear algebra is revised.

3.2.1 Linear Algebra

This section will list some useful definitions and properties from the linear algebra that will
be used to analyse the given problems. Throughout this section let W ∈ R

M×N , f ∈ R
N and

p ∈ R
M with M < N as before.

Definition 3.1. The row rank of a matrix W is the number of linearly independent row vectors
in W . The column rank of W is the number of linearly independent column vectors in W .

One fundamental property of linear algebra is that the row rank and the column rank are equal.

It is assumed that one is familiar with the definitions of a inner product and a norm. For
completeness, the inner product of two vectors x and y is denoted 〈x,y〉 = xTy. The Euclidean

norm of x is denoted ‖x‖2 =
√

∑

i x
2
i =

√

〈x, x〉.

Definition 3.2. Two vectors x and y are orthogonal if 〈x,y〉 = 0. This is sometimes denoted
as x ⊥ y.

Definition 3.3. The subspace of all vectors p ∈ R
M with W f = p, f ∈ R

N is called the range
of W and denoted R(W ).

The dimension of the range of a matrix is the row rank of the matrix. One often uses the term
rank for the row rank.
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Definition 3.4. The subspace of all vectors f ∈ R
N with W f = 0 is called the nullspace of W

and denoted N (W ).

The two concepts of range and nullspace are related by the following theorem.

Theorem 3.5. Let W ∈ R
M×N , then the following relationship holds

M = dimR(W ) + dimN (W ) (3.5)

where dim denotes the dimension of the corresponding subspace.

3.2.2 Least Squares Solutions

The range of W are all the projections arising from scanning an object with the operator W .
One can easily imagine that it is possible that multiple objects result in the same projection
when scanned. Imagine R(W ) as a plane in some three-dimensional space. The operator W ,
arising from the discretization of projection process, can only construct the projections in R(W ).
The measured projection p, however, might not be an element of this range. In that case one
cannot find an object f for which W f = p, i.e. the problem has no exact solution. One then
often resorts to finding a least squares solution. This solution is a vector for which the residual
has minimal norm, i.e. ‖p−W f‖2 is minimal, see Figure 3.3. In the problems considered in this
work one generally also has that W is not of full column rank, in that case the least squares
solution is not unique. There is, however, a unique minimal norm least squares solution. This
particular vector is the solution one is interested in.

Now some properties of the least squares solution will be given assuming that W is not of full
rank. From Figure 3.3 it is clear that the vector W f ′−p is orthogonal to R(W ) and, indeed, if
f is a least squares solution of (3.1) then W f − p ⊥ R(W ). From this one can see that W f is
the same for all least squares solutions f . The expression W f − p ⊥ R(W ) can be rewritten as

W f − p ⊥ R(W )⇔ 〈W f − p,Wq〉 = 0 ∀q ∈ R
N

⇔
〈

W T (W f − p),q
〉

= 0 ∀q ∈ R
N

⇔W T (W f − p) = 0

⇔W TW f = W Tp. (3.6)

The third line is due to the fact that an inner product is positive definite. From (3.6) it follows
that f is a least squares solution if and only if W TW f = W Tp. This system of equations is
known as the normal equations and will be properly introduced in Section 3.2.4.

R(W )

W f ′

p

Figure 3.3: The vector f ′ is a least squares solution for the problem W f = p.
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Note that if f is a least squares solution of W f = p that then all other least squares solutions
can be written as f + q with q ∈ N (W ) since W (f + q) = W f +Wq = W f . From this one can
conclude that f is the minimum norm least squares solution of (3.1) if and only if f ⊥ N (W )
which is equivalent to f ∈ R(W T ).

3.2.3 Matrix Properties

This section will list some useful matrix properties. Knowledge about eigenvalues and eigenvec-
tors is assumed.

Definition 3.6. A matrix A ∈ R
n×n is said to be positive definite if 〈Ax,x〉 > 0 for all x ∈ R

n

and x 6= 0.

Note that if x is an eigenvector of A with corresponding eigenvalue λ then Ax = λx and thus
xTAx = λ‖x‖22 > 0. From this it follows that λ > 0 and thus all eigenvalues of A are positive.

Definition 3.7. A matrix A ∈ R
n×n is said to be positive semidefinite if 〈Ax,x〉 ≥ 0 for all

x ∈ R
n and x 6= 0.

By similar reasoning concerning the eigenvalues of positive definite matrices one can conclude
that the eigenvalues λ of A are non-negative.

Definition 3.8. The spectral radius of A ∈ R
n×n, denoted ρ(A), is defined as

ρ(A) = max
λi,i=1,...,n

|λi| (3.7)

where λi are the eigenvalues of A.

For the spectral radius one has the property ρ(A) ≤ ‖A‖, where ‖ · ‖ is any operator norm. For
the proof of this claim see [6, p. 279].

3.2.4 Normal Equations

In tomography one generally faces the linear system W f = p where the matrix W is not square,
let alone symmetric. To be able to solve this system one can consider a transformation of the
original system.

Definition 3.9. Let the linear system W f = p, W ∈ R
M×N , f ∈ R

N and p ∈ R
M be given,

then the least squares solution to this system is the solution to the system

W TW f = W Tb. (3.8)

The linear system (3.8) is referred to as the system of normal equations associated with the
least-squares problem

min
f∈RN

‖p−W f‖2. (3.9)
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Note that the matrix W TW is symmetric. If W is of full rank then W TW is also positive definite
since

〈

W TW f , f
〉

= 〈W f ,W f〉 > 0 for all f 6= 0. For rank deficient W the normal equations
yield a symmetric positive semidefinite system. The matrix W TW is thus symmetric positive
definite (SPD) or symmetric positive semidefinite (SPSD) which are very attractive properties
for solving linear systems. The system (3.8) is typically used to solve problem (3.9) for an
overdetermined system W [22, p. 245]. An alternative to the normal equations, from now on
the alternative normal equations is obtained by setting f = W Tu. Solving the system

WW Tu = p (3.10)

for u then yields the solution f = W Tu to the original system. This method only works if
system 3.10 is consistent. This alternative is used to solve underdetermined systems [22, p.
246]. Unlike the normal equations, which solve (3.9) and hence minimizes the residual, this
alternative minimizes the error ek = f −W Tuk = f − fk of the system, where f is the exact
solution to the system. Note that this exact solution is only unique if the matrix W is of full
rank. Hence, given W is of full rank, it solves

min
u∈Rm

‖f −W Tu‖2. (3.11)

Methods derived from (3.8) are often labelled NR since they employ the “Normal” equations to
minimize the “Residual”. On the other hand a method derived from (3.10) is labelled NE since
it uses the “Normal” equations to minimize the “Error”. Note that (3.11) only holds in case W
is of full rank, something one in tomography generally does not have.

3.2.5 Singular Value Decomposition

Lastly, the concept of singular value decompositions (SVD) is introduced. Again it is assumed
that the reader is familiar with eigenvalues and eigenvectors. The SVD of a matrix decomposes
the matrix operation in three simpler matrices (operators). The singular value decomposition
of W is given as

W = UΣV T , (3.12)

with U ∈ R
M×M an orthogonal matrix, V ∈ R

N×N an orthogonal matrix and Σ ∈ R
M×N a

diagonal matrix with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σM . Note that it is assumed that
M < N . Schematically the SVD of W is given as

[

W
]

=
[

U
] [

Σ
]



 V T



 . (3.13)

The columns of U respectively V are the left and right singular vectors, respectively, of W ,
moreover they are the eigenvectors of WW T and W TW , respectively. The σj are the singular
values of W and the systems WW T and W TW have eigenvalues σ2

j .
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Definition 3.10. The condition number of a matrix W , denoted κ(W ), is defined as the ratio
between the largest singular value σ1 and the smallest σM , i.e.

κ(W ) =
σ1
σM

. (3.14)

A system W f = p is said to be ill-conditioned if κ(W ) is large and well-conditioned if κ(W ) is
small. The condition number can be thought of as giving a measure for the linear dependency
of the equations in the corresponding system. A large condition number implies that some (or
all) equations of the system are almost linearly dependent.

One has that the rank of W is equal to n ≤ M if and only if σn 6= 0 and σj = 0 for all
n + 1 ≤ j ≤ M . When σn+1, . . . , σM are very small with respect to σ1, . . . , σn one says that
W is effectively of rank n since W is hardly distinguishable from an operator of rank n for
computational purposes [25, p. 53]. If W is (effectively) of rank n < M then κ(W ) would most
likely be large (since σM is either zero or very small compared to σ1) and thus the corresponding
system is ill-conditioned.

The SVD of a matrix is a powerful tool which can be used to solve both theoretical and practical
problems. Later on the SVD of W will be used to analyse the effects of noise and motivate the
use of regularization.

3.3 Ambiguous Terminology

The ARMs ART, SIRT and SART that will be considered in what follows originate from various
research fields that are involved with tomography. As a result the methods are not unambigu-
ously defined. Some methods which are clearly different are referred to with the same name
which can cause a lot of confusion. When dealing with these methods one should always keep
this in mind.

Another thing one should be aware of is that in the literature ARMs are often called algebraic
reconstruction techniques. This can be confusing since ART is an abbreviation of Algebraic
Reconstruction Technique. To avoid ambiguity the class of methods is denoted ARMs while
ART, SIRT and SART are actual methods.

The ART method is nearly always defined as Kaczmarz’s method. This is also the definition
which will be used in this work. For details one is referred to [17, p. 283–284].

The SIRT method is a method for which one can find numerous definitions. One always has to
check which definition is used since convergence proofs of one method may (and in general will)
not hold for another method. Van der Sluis and van der Vorst introduced SIRT as a family of
methods and proved the convergence for this family [25]. Another definition of a SIRT family
is from Hansen [13]. Both definitions have some similarities but are not the same. Gregor and
Benson [10] present SIRT as an instance which is in both the Hansen as the van der Vorst family
this work will use that definition.

The final method, SART, was first defined in 1984 by Andersen and Kak. Jiang and Wang
claimed to be the first to have proven the convergence of SART in 2003 [16]. Their definition of
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SART, however, is equivalent to Gregor’s SIRT in [10] and in turn equivalent to van der Vorst’s
SIRT with α = 1, [25, p. 59] and for that family convergence was already established in 1987.
The definition of SART given later on is different, SART is then viewed as a hybrid between
ART and SIRT. This definition coincides with the definition that Andersen and Kak proposed
in [1, p. 87].

3.4 Basic Iterative Methods

This section will present three iterative methods which exploit Kaczmarz’s method. The Alge-
braic Reconstruction Technique (ART) is the same as Kaczmarz’s method. The Simultaneous
Iterative Reconstruction Technique (SIRT) is a method for which convergence will be proven.
The Simultaneous Algebraic Reconstruction Technique (SART) combines ART and SIRT. Be-
fore these ARMs are introduced the Jacobi and Gauss-Seidel methods are revised since they are
closely related to ART, SIRT and SART.

3.4.1 Jacobi and Gauss-Seidel method

The Jacobi and Gauss-Seidel method are iterative methods which can be used to solve the
system Ax = b for A ∈ R

n×n and x,b ∈ R
n. Every square matrix A can be decomposed as

A = D − E − F where D is a diagonal matrix formed with the diagonal elements of A, it is
assumed that these elements are all nonzero. −E is the strict lower part of A and −F is the
strict upper part of A. Thus:

A =









. . . −F
D

−E
. . .









. (3.15)

The Jacobi method chooses the i-th component of the next approximation xki , k ≥ 1, such that
the i-th component of the next residual vector is equal to zero, thus (rk)i = (b − Axk)i = 0.
This can be written as

aiix
k
i = −

n
∑

j=1, j 6=i

aijx
k−1
i + bi ⇒ xki =

1

aii



−
n
∑

j=1, j 6=i

aijx
k−1
i + bi



 , (3.16)

where aij is the element in the i-th row and j-th column of A. Or equivalently, in matrix
notation:

xk = D−1(E + F )xk−1 +D−1b. (3.17)

The Gauss-Seidel method is similar to the Jacobi method but uses the newly obtained values of
xk whereas Jacobi only uses values of xk−1. Assuming the updates are carried out in ascending
order of i this results into the following expression

23



CHAPTER 3. ALGEBRAIC RECONSTRUCTION METHODS

xki =
1

aii



−
i−1
∑

j=1

aijx
k
i −

n
∑

j=i+1

aijx
k−1
i + bi



 , (3.18)

or in matrix notation:

xk = (D + E)−1Fxk−1 + (D +E)−1b. (3.19)

If the updates were performed in descending order this method is referred to as backward Gauss-
Seidel. The symmetric Gauss-Seidel method consists of executing a forward sweep followed by
a backward sweep.

In general one can write this class of iterative methods as

Mxk = Nxk−1 + b⇒ xk = M−1Nxk−1 +M−1b, (3.20)

with splitting A = M −N .

Shortly it will be shown that ART and SIRT are actually a Gauss-Seidel and Jacobi method,
respectively, applied to the system of the alternative normal equations.

3.4.2 ART

As stated earlier: ART is the same as Kaczmarz’s method. Here the ART algorithm will be
derived from another point of view and it will be shown that ART is actually the Gauss-Seidel
method applied to system (3.10) of the alternative normal equations. This derivation is due to
[22, p.247–248] and will closely follow the reasoning in said source. Intuitively one can see that
ART is similar to Gauss-Seidel in that it uses all the newly obtained information for the update
of the i-th component.

Solving (3.10) with Gauss-Seidel yields for i-th update uk = uk−1 + δiei, where ei is the i-th
unit vector and i = (k − 1) mod (M) + 1 (cf. ĩ in (3.4)). The scaler δi is chosen such that the
i-th component of the residual vector rk = p−WW Tuk = 0, or equivalently

(

p−WW T (uk−1 + δiei)
)

i
= 0 ⇒

〈

p−WW T (uk−1 + δiei), ei

〉

= 0 ⇒

〈

WW T δiei, ei
〉

=
〈

rk−1, ei

〉

⇒

δi
〈

W Tei,W
Tei

〉

=
〈

rk−1, ei

〉

⇒

δi =

〈

rk−1, ei
〉

‖W Tei‖22

To analyse this re-substitute the definition of rk−1, this gives
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δi =
pi −

〈

W Tuk−1,W Tei
〉

‖W Tei‖22
. (3.21)

Since f = W Tu one finds fk = fk−1 + δiW
Tei:

fk = fk−1 +
pi −

〈

fk−1,W Tei
〉

‖W Tei‖22
W Tei. (3.22)

Note that the updates are performed in ascending order i = 1, 2, . . . ,M and are immediately
stored in the new vector fk = W Tuk, hence this yields a Gauss-Seidel method which is applied to
the system WW Tu = p. Inspection of (3.22) confirms that this expression is actually equivalent
to (3.3). Simply observe that W Tei = wi,:,

〈

fk−1,W Tei
〉

=
〈

fk−1,wi,:

〉

and ‖W Tei‖
2
2 =

〈wi,:,wi,:〉. The ART algorithm, in pseudo code, is listed below.

ART

Choose f0

k ← 1
while termination criterion is not met do
for i = 1, 2, . . . ,M do

δi =
(

pi −
〈

fk−1,wi,:

〉)

/〈wi,:,wi,:〉
fk ← fk−1 + δiwi,:

k ← k + 1
end for

end while

Note that it is unclear what one iteration of the ART algorithm constitutes, from now on one
iteration of the ART algorithm will be regarded as executing the while-loop once (thus updating
all the components). Recall from the discussion at the end of Section 3.1 that updating the
components in random order order rather than ascending order, as in the algorithm above, will
yield faster convergence. This adaptation is easily implemented, one only has to change to order
in which the for-loop traverses the various rays.

As noted in Section 3.1 Kaczmarz’s method, and thus ART, only converges if the system W f = p

has a unique solution. This is only the case when one has a consistent system of full rank. In
this case, due to that fact one uses the alternative normal equations (cf. Section 3.2.4), problem
(3.11) is solved and hence the error is minimized. In the case the system is not of full rank
convergence is not guaranteed.

3.4.3 SIRT

SIRT is differs from ART in that it updates fk−1 to fk only after all the N new components
have been computed, this suggests a Jacobi method. Indeed, SIRT actually stems from Jacobi
applied to the alternative normal equations (3.10) WW Tu = p.

In the previous section it was established that in ART the update for the j-th component was
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δi =

〈

rk−1, ei
〉

‖W Tei‖22
. (3.23)

Instead of the Euclidean norm in the denominator, the 1-norm (or also taxicab norm) is used
for SIRT, i.e. ‖x‖1 =

∑

i |xi|. This yields:

δi =

〈

rk−1, ei
〉

‖W Tei‖21
. (3.24)

Since one deals with a Jacobi iteration the actual update is performed after all the other updates
have been computed, thus for every update the same residual is used. After the updates have
been computed for i = 1, . . . ,M one finds the new approximation as

d =
M
∑

i=1

〈

rk−1, ei
〉

∑N
h=1 |wih|

wi,: (3.25)

fk+1 = fk + Cd (3.26)

Recall that wij ≥ 0 was assumed. Note that in this case every component (pixel) j, will receive
updates from multiple rays i, these are precisely the rays which are affected by that pixel. At
the end of the cycle SIRT avarages over these updates proportional to total weight the cell has,
thus proportional to the j-th column sum of W , i.e. C in 3.26 is a diagonal matrix containing
the inverse of these sums on its diagonal: cjj = 1/

∑M
i=1. Clearly, if such a column sum is equal

to zero one would have that no ray passes through cell j and thus it would make no sense to
have this variable in the system since the cell is not part of the scanned image. And indeed,
if one were to incorporate this cell (and thus the zero column) into the system then one would
never find a unique solution, for if the system without this variable has a unique solution, the
system with this variable has infinitely many solutions, namely the unique solution found earlier
where one can freely choose the extra variable. The new averaged update for component j is
given by

fk
j = fk−1

j +
1

∑M
i=1 wij

M
∑

i=1

wijr
k−1
i

∑N
h=1wih

. (3.27)

Although this expression looks messy, it is actually quite elegant. Moreover, one SIRT iteration,
i.e. computing the increments for all the components and obtaining the new approximation
fk, can be conveniently written in matrix-vector notation. Let R ∈ R

M , C ∈ R
N be a diagonal

matrices with rii = 1/
∑N

j=1wij and cjj = 1/
∑M

i=1 wij. Note that
∑M

i=1 wij > 0 and
∑N

j=1wij >
0. With these matrices one SIRT iteration can be written as

fk = fk−1 + CW TRrk−1. (3.28)

And hence the algorithm can be formulated as
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SIRT

Choose f0

r0 ← p−W f0

k ← 1
while termination criterion is not met do
fk ← fk−1 + CW TRrk−1

k ← k + 1
end while

Now the convergence of SIRT will investigated, the following reasoning follows the lines of the
prove given in [10]. One can rewrite SIRT as

fk = fk−1 + CW TRrk−1

= fk−1 + CW TR
(

p−W fk−1
)

= (I − CW TRW )fk−1 + CW TRp. (3.29)

Recall (3.20) to observe that in (3.29) SIRT is written as an iterative method with M = I and
N = (I −CW TRW ) . The matrix (I −CW TRW ) is called the iteration matrix. This iterative
procedure converges for any p and f0 if ρ

(

I − CW TRW
)

< 1 [22, p. 112].

Let Λ be the set of all the eigenvalues of CW TRW . Suppose µ is an eigenvalue of (I−CW TRW )
then

(I − CW TRW )f = µf ⇔

−CW TRW f = µf − If ⇔

CW TRW f = (1− µ)f

and hence (1− µ) ∈ Λ. Thus for the spectral radius of the iteration matrix one finds

ρ
(

I − CW TRW
)

= max
λ∈Λ
|1− λ|. (3.30)

So if one were to show that −1 < |1− λ| < 1⇒ 0 < λ < 2 then one has proven the convergence
of (3.29) and thus SIRT. To that extent bounds for λ are deduced. First it is shown that λ ≥ 0.

In the case the spectral radius of the iteration matrix is equal to 1 the iteration process may
stagnate, i.e. subsequent errors do not change. This is a result of the fact that W is not of full
rank. One has that of this W TW is SPSD and so is W TRW . Fix λ ∈ Λ, one then finds
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CW TRW f = λf ⇔

C1/2W TRW f = λC−1/2f ⇔

C1/2W TRWC1/2h = λh.

This matrix C1/2W TRWC1/2 is positive semidefinite since

〈

C1/2W TRWC1/2h,h
〉

=
〈

R1/2WC1/2h, R1/2WC1/2h
〉

≥ 0. (3.31)

And hence one finds λ ≥ 0 for all λ ∈ Λ.

Now it will be shown that λ ≤ 1. The spectral radius of a matrix is less than or equal to any
operator norm (cf. Section 3.2.3), this yields

ρ(CW TRW ) ≤ ‖CW TRW‖∞ ≤ ‖CW T ‖∞‖RW‖∞. (3.32)

The ∞-norm is given by ‖A‖∞ = maxj
∑

j |aij |. In this case, since all entries of the matrices
are positive, it is simply the largest row sum. Recall that C is the diagonal matrix with inverse
column sums of W , or equivalently the inverse row sums of W T and thus ‖CW T ‖∞ = 1. By
similar reasoning one finds ‖RW‖∞ = 1 and thus λ ≤ 1.

Since 0 ≤ λ ≤ 1 is shown 0 ≤ λ < 2 follows. Thus it is proven that ρ(I − CW TRW ) ≤ 1. Note
that convergence is not guaranteed since one can still have stagnation of the iterative process.

3.4.4 SART

The Simultaneous Algebraic Reconstruction Technique is combination of ART and SIRT. In
ART the update of fk was determined by only looking at the contribution of the i-th ray for
i = 1, 2, . . . ,M . SIRT computed the average contribution of all the rays i, i = 1, 2, . . . ,M , first,
using the previous approximation fk−1, and then did an update to fk. SART is a combination of
ART and SIRT in that the update of fk is carried out per projection angle. Suppose the object
is scanned using the angles P = {θ1, θ2, . . . , θp} with R rays per angle such that p ·R = M . Then
the update for fk is computed for all rays per projection angle, thus the updates are performed
per block of R projections. Hence this method is also referred to as a block iterative method.
For the l-th block this results into the following expression for the j-th component of the next
approximation update:

fk
j = fk−1

j +
1

∑R·l
i=R·(l−1)+1 wij

R·l
∑

i=R·(l−1)+1

rk−1
i wij

∑N
h=1 wih

. (3.33)

Let C be a diagonal matrix with diagonal elements cjj = 1/
∑R·l

i=R·(l−1)+1 wij . The following
algorithm results
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SART

Choose f0

r0 ← p−W f0

k ← 1
while termination criterion is not met do
for l = 1, 2, . . . , p do

for i = R · (l − 1) + 1, R · (l − 1) + 2, . . . , R · l do

fk ← fk−1 + C
rk−1
i

∑N
h=1 wih

wi,:

end for

k ← k + 1
end for

end while

Note that as in with the ART algorithm it is unclear what constitutes one iteration. Also in
this case one iteration is defined as executing the while-loop once, thus after all p blocks have
been used.

3.4.5 Relaxation

Iterative methods may convergence faster when some relaxation parameter ω is introduced. The
method is then given by

fk = fk−1 + ωbk, (3.34)

where bk is the update for the k-th approximation. Typically one has ω ∈ (0, 2). Faster
convergence is not guaranteed, it may occur that some ω will lead to worse convergence and in
general there is no easy way to determine the optimal ω.

3.5 Advanced Iterative Methods

In this section Krylov subspaces will be introduced. These subspaces are used by various iterative
methods to solve sparse linear systems. One of those methods is the conjugate gradient (CG)
method which is arguably one of the best known iterative techniques for solving sparse SPD
linear systems. The system matrix W of the considered tomography problem is not SPD, but
the normal equations W TW f = W Tp do yield an SPD linear system. Therefore it is reasonable
to attempt to solve the problem using the CG method applied to the normal equations.

3.5.1 Krylov Subspaces

Kaczmarz’s method, considered in Section 3.4, employed subsequent projections onto subspaces
to approximate the solution to (3.1). Krylov subspace methods are essentially the same but one
projects onto a so called Krylov subspace:

Definition 3.11. Let A ∈ R
n×n and v ∈ R

n. The Krylov subspace Kr(A,v) of order r is given
by
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Kr(A,v) = span{v, Av, A2v, . . . , Ar−1v}. (3.35)

The subspaces are named after the Russian naval engineer and mathematician Aleksey Krylov
who published about this concept and used it to determine the characteristic polynomial of A
in 1931.

When no confusion is possibleKr(A,v) is written as Kr for brevity. Note that Km is the subspace
of Rn in which every vector x ∈ Kr can be written as x = p(A)v where p(A) is some polynomial
of degree at most r − 1, from this one can easily see that Kr ⊆ Kp for r ≤ p.

3.5.2 CGLS method

The conjugate gradient method is widely used to solve sparse SPD linear systems. In essence
CG uses the (shifted) Krylov subspace x0 +Kr(A, r

0) to construct subsequent approximations,
with A ∈ R

n×n SPD. Here r0 = b−Ax0, the residual corresponding to the initial guess x0. The
method was first proposed by M. R. Hestenes and E. Stiefel in 1952 to solve SPD systems. The
CG algorithm will now be presented without any further introduction or derivation. For more
details about the algorithm the reader is referred to [22, Ch. 6.7].

CG

Choose x0

r0 ← b−Ax0

d0 ← r0

for j = 1, 2, . . . until convergence do

αj−1 ←
〈

rj−1, rj−1
〉

/
〈

Adj−1,dj−1
〉

xj ← xj−1 + αj−1d
j−1

rj ← rj−1 − αj−1Ad
j−1

βj−1 ←
〈

rj, rj
〉

/
〈

rj−1, rj−1
〉

dj ← rj + βj−1d
j

end for

CG chooses αj and βj in such a way the the subsequent residuals r0, r1, . . . are mutually orthog-
onal and hence the CG method is guaranteed to produce the exact solution to the system after at
most n iterations (where n is the size of the problem). Unfortunately, due to round-off errors this
may, and often will, fail in practice. Fortunately, however, it can be shown that the approximate
solution xj minimizes the so called energy norm ‖x∗−xj‖A =

√

〈A(x∗ − xj),x∗ − xj〉 where x∗

is the exact solution [22, Ch. 6.11.3]. CG thus produces a sequence of monotonically improving
solutions. In practice n is very big and it is very costly to perform that many iterations, but,
luckily, the results after k << n are often accurate enough.

As mentioned, the normal equations applied to ill-conditioned system W f = p yield W TW f =
W Tp, which is an SPD system and hence the CG method can be used to find a, possibly
approximate, solution to the problem. This means that the approximate solution minimizes
‖
(

f∗ − f j
)

‖WTW where f∗ is an exact solution. This term might seem puzzling since one can
have multiple exact (i.e. least square) solutions to the original system. However, for each of
these f∗ one has the same energy norm ‖f∗‖WTW and thus the term yields the same value for
all the exact solutions. Analysis of this term results in
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‖f∗ − f j‖2WTW =
〈

W TW
(

f∗ − f j
)

, f∗ − f j
〉

=
〈

W
(

f∗ − f j
)

,W f∗ − f j
〉

=
〈

p−W fj ,p−W fj
〉

= ‖p−W fj‖22.

Thus CG applied to the normal equations of (3.1) minimizes the least squares residual of the
original problem.

The corresponding algorithm is virtually the same but the residual is replaced by zj = W T rj .
This yields:

CGNR

Choose x0

r0 ← p−W f0

z0 ←W T r0

d0 ← z0

for j = 1, . . . until convergence do

αj−1 ←
〈

zj−1, zj−1
〉

/
〈

W TWdj−1,dj−1
〉

f j ← f j−1 + αj−1d
j−1

rj ← rj−1 − αj−1Wdj−1

zj ←W T rj−1

βj−1 ←
〈

zj , zj
〉

/
〈

zj−1, zj−1
〉

dj ← zj + βj−1d
j

end for

Note that in the first line of the for-loop one has to do two matrix-vector multiplications which

are costly procedures, it is better to compute this line as

〈

zj−1, zj−1
〉

〈Wdj−1,Wdj−1〉
. This scheme also

leads to more numerically stable results according to Björk and Elfving [25, p. 72]. The CGNR
algorithm will from now on be referred to as CGLS for it finds the least squares (LS) solution
to (3.9).

Similarly as with the normal equations one can apply CG to the system of the alternative normal
equations WW Tu = p. This results into a error-minimizing method known as Craig’s Method.
A major disadvantage of error-minimizing methods is that they are particularly susceptible to
noise in the right-hand-side, which problems originating from tomography generally have.

3.6 Noise

As mentioned throughout, problems originating from tomography often contain noise. It is
assumed that the source emits a uniform continuous ray. In practice, however, sources as
for example a X-ray tube emit photons not uniformly but rather according to some Poisson
distribution. From a mathematical point of view one can model the noise as some perturbation
ǫ in the measured projection data p, thus if the ideal projection is p̃ then p = p̃ + ǫ. Due to
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this noise it is possible that the system W f = p has no solution and thus one wants to find the
minimum norm least squares solution (see Section 3.2.1).

3.6.1 Singular Values and Data Errors

First the effects of the noise, data errors, will be investigated. The following reasoning is due to
[25, p. 53–54]. Let W be of rank p with p < M , hence W is not of full rank, then from Section
3.2.5 it is known that σp+1 = · · · = σM = 0. Let the SVD of W be W = UΣV T , write p = Ug

and f = V z, thus p is expressed as a linear combination of the columns of U and similarly
with f and V . Note that for an orthogonal matrix U one has U−1 = UT and hence g = UT f .
Substituting this into the original equations yields:

W f = p ⇒

UΣV TV z = Ug ⇒

Σz = g ⇒

z = Σ−1g. (3.36)

Thus one finds that f is a least squares solution if and only if

zj =
gj
σj

= gjφ(σj) (3.37)

for j ≤ p. The function φ(t) = 1/t is the response function for the system, it describes how the
various components of p(= Ug) affect the solution f = (V z). This solution is also of minimal
norm if zp+1 = · · · = zM = 0.

Suppose the data in the measured vector p is perturbed from the ideal projection data p̃, thus
p = p̃+ ǫ. This perturbation vector ǫ represents the noise in the system and it is assumed that
its components have expectation 0, variance σ2 and are uncorrelated. It needs to be noted that
this σ is not related to the σj of the singular values, these two variables are unfortunately just
the standard notations for these notions. Let f̃ be such that W f̃ = p̃. The error ∆f is then
given by f − f̃ . One can show that the variance of this error is given by:

var(‖∆f‖2) = σ2
M
∑

j=1

1

σ2
j

(3.38)

(see [25, p. 54]). This suggests that small singular values will result into large errors in the
approximated solution f . Thus a perturbation (noise) in p, however small, can have disastrous
results. This is precisely why systems with a small condition number, and thus most likely small
singular values, are called ill-conditioned.

3.6.2 Regularization

Small singular values of the system can cause the components of the approximate solution to
have large errors as can be seen in (3.38). Regularization is a concept to circumvent this. There
are many types of regularization and none of these methods are superior to all the other methods.
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Rather, each method has its advantages, depending on the properties of the system it is applied
to [12, p. 2]. The main idea of regularization is to incorporate additional information about the
solution in order to arrive at a better approximation (and thus a smaller error).

In Section 3.2.5 the concept of ill-conditioned matrices was introduced. Ill-conditioned problems
can roughly be categorized into two classes [12, p. 2]: rank-deficient problems and discrete
ill-posed problems. The former class is characterized by a system matrix W which has a cluster
of small singular values and there is a well-determined gap between the larger and small singular
values (recall the concept of effectively of rank n, Section 3.2.5). The latter has singular values
which, on average, decay gradually to zero. Both classes require other types of regularization.
Tomographic problems typically are rank-deficient.

Now two methods of regularization will be introduced. Both methods employ the idea to reduce
the influence of the small singular values on the solution. The first method is called Tikhonov
regularization and was independently proposed by Phillips (1962) and Tikhonov (1963). Instead
of solving the system W f = p the system

(

W
λI

)

f =

(

p

0

)

(3.39)

is solved for a certain λ. Recall from Section 3.2.2 that f∗ is a least squares solution to (3.39) if
and only if

(

W λI
)

(

W
λI

)

f∗ =
(

W λI
)

(

p

0

)

⇒ f∗ =
(

W TW + λ2I
)−1

W Tp. (3.40)

Let W = UΣV T be the SVD of W , let f∗ = V z∗ and p = Ug. Then the conclusion of (3.40)
reduces to

z∗ =
(

ΣTΣ+ λ2I
)−1

ΣTg (3.41)

and thus

z∗j =
gjσj

σ2
j + λ2

= gjφ
∗(σj). (3.42)

Recall that for the non-regularized case the response function φ(t) = 1/t was found. Figure 3.4
shows both response functions. One should note that the response φ(t) for small t (singular
values) is much higher (and tends to infinity as t ↓ 0) than for the regularized response function
φ∗(t) and hence the effects of noise in p are much smaller so that ultimately the approximate
solution f is more accurate.

The second method of regularization is less sophisticated than Tikhonov regularization and will
be referred to as truncated SVD. The idea is to determine the singular values of W , e.g. from
SVD, and setting σj = 0 when the value is below some threshold η. This regularization method

results in the response function φ̂(σj) = 1/σj if σj ≥ η and φ̂(σj) = 0 otherwise. The major
problem with this method is that one has to compute the SVD of W and this is a costly process
which one generally cannot afford.
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Figure 3.4: The response functions φ(t) and φ∗(t).

For more information about these two and other regularization methods one is referred to [12,
Ch 5,6].

3.6.3 Semi-Convergence

When solving an ill-conditioned linear system of equations one is interested in finding the best
approximate solution. Perturbations, such as noise, in the right-hand side might cause the
error of the approximation to explode (cf. (3.38)). By means of regularization this can be
circumvented, but one still obtains an approximate solution f of W f = p. Suppose f̃ is the
solution to the unperturbed system W f̃ = p̃ and ǫ is the perturbation such that p = p̃ + ǫ.
Assume that every component of the noise vector ǫ has expectation 0, variance σ2 and are
uncorrelated. The error can then be decomposed as follows:

∆f = ∆fappr +∆fpert. (3.43)

The first term ∆fappr represents the approximation error and is ever-present, even if there is no
perturbation in the data. This error depends on how the solution is obtained and thus also on
the regularization method that is used. The second term ∆fpert is the perturbation error and is
a result of the noise that was present in the system.

Typically, when solving a perturbed ill-posed problem with an iterative method, the approxima-
tion error dominates during the initial iterations and thus the perturbation error is negligible.
But eventually the approximation becomes more accurate, thus the approximation error de-
creases and the perturbation error will dominate and even increases [13]. The norm of the
error ‖∆f‖2 will thus decrease for the initial iterations but will increase after a certain number
of iterations. In Figure 3.5 one can see a sketch of the development of the error norm. This
phenomenon is coined semi-convergence by Natterer in 1986.

For a more thorough analysis one is referred to [25, Ch 2.7].
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→ Iterations

‖∆
f
‖ 2

Figure 3.5: The development of the error norm for
an increasing number of iterations.

3.7 Experiments

This section compares the four proposed methods: ART, SIRT, SART and CGLS to each other
as well as to FBP with a Hamming window. The performance will be investigated with and
without noise. The Shepp-Logan head phantom is used for the experiments. The image of 128
by 128 pixels was scanned using 32 angles and the number of rays per angle is 192 yielding
a total number 6144 rays. The IBBT-Visionlab, Dept. of Physics, University of Antwerp,
implementeded all the discussed algorithms as part of the All Scale Tomographic Reconstruction
Antwerp toolbox or ASTRA-toolbox. The noise is added to the sinogram of the image. Firstly,
the performance of the methods is investigated without noise.

In Figure 3.6 ART reconstructions of the Shepp-Logan phantom are shown. From the figure
one can see that the reconstruction after 1 iteration is quite good and more iterations only
show minor improvements, if any. Figure 3.7 shows the reconstruction of the phantom using
SIRT after a different number of iterations. The first couple of SIRT iterations seem to produce
inferior results to ART with the same number of iterations, thus the convergence of SIRT seems
to be slower than that of ART, if convergence is to be expected, that is. In Figure 3.8 the SART
reconstructions of the head phantom after a different number of iterations are shown. Figure
3.9 shows the reconstruction using CGLS. Since the image was scanned using a total of 6144
rays CGLS should yield convergence after 6144 iterations, but from the figure one can conclude
that the quality of the reconstruction does not improve significantly after (only) 25 iterations,
this motivates the earlier claim that one only needs k << n iterations.

Figure 3.10 shows the relative error
‖∆f‖2
‖f∗‖2

, where f∗ was the original image. The constant

dotted line represents the relative error of FBP, which is obviously not an iterative method. The
asterisk on the lines represent the number of iterations for which the relative errors is minimal.
It seems that ART, SART and CGLS converge very fast, but after about 10-15 iterations the
relative error stays more or less constant. SIRT seems to converge much slower. The minimal
relative error for all the methods except ART is after 200 iterations, ART has a reconstruction
with minimal error after 5 iterations. Both SIRT and SART have monotonically decreasing
errors, i.e. the error of the next iteration is less or the same as the current iteration. CGLS and
ART do not have this property. For SIRT this was to be expected since the convergence (or,
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ART: 1 iteration ART: 2 iterations ART: 5 iterations

ART: 25 iterations ART: 100 iterations ART: 200 iterations

Figure 3.6: The reconstructed images after a dif-
ferent number of ART iterations.

SIRT: 1 iteration SIRT: 2 iterations SIRT: 5 iterations

SIRT: 25 iterations SIRT: 100 iterations SIRT: 200 iterations

Figure 3.7: The reconstructed images after a dif-
ferent number of SIRT iterations.
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SART: 1 iteration SART: 2 iterations SART: 5 iterations

SART: 25 iterations SART: 100 iterations SART: 200 iterations

Figure 3.8: The reconstructed images after a dif-
ferent number of SART iterations.

CGLS: 1 iteration CGLS: 2 iterations CGLS: 5 iterations

CGLS: 25 iterations CGLS: 100 iterations CGLS: 200 iterations

Figure 3.9: The reconstructed images after a dif-
ferent number of CGLS iterations.
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→ Iterations
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Figure 3.10: The relative error of the various ARM’s when no noise is
present.

ART:
5 iter.

SIRT:
200 iter.

SART:
200 iter.

CGLS:
200 iter. FBP

Figure 3.11: The reconstruction without noise of the ARM’s when the relative
error is minimal.

better, non-divergence) was proven in Section 3.4.3. For SART this may and will not be true
in general. Figure 3.11 shows the results of the reconstruction of the ARMs when the relative
error is minimal and the reconstruction obtained using FBP. None of the ARMs seem to produce
significantly superior results but all perform slightly better than FBP. The following table shows
the execution times of the various algorithms.

Algorithm ART SIRT SART CGLS FBP

Executiontime 2.38s 2.80s 24.34s 2.66s 0.02s

ART, SIRT and CGLS seem to take about the same time for 200 iterations while SART takes
significantly longer. FBP is the fastest algorithm, as expected, but note that this is not an
iterative method.

Now some noise is added to the sinogram and the performance is investigated. The relative error
as a function of the number of iterations can be found in Figure 3.12. This figure clearly shows
semi-convergence of ART. Also SART and CGLS seem to suffer from this phenomenon, albeit
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→ Iterations
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Figure 3.12: The relative error of the various ARM’s when noise is present.

to a far lesser degree than ART. Again SIRT has a monotonically decreasing error. Figure 3.13
shows the reconstruction of the ARMs when the relative error is minimal and after 200 iterations.
The reconstruction of ART after 3 iterations was the ‘best’ (as in minimal relative error), but
still it suffers from the noise, after 200 iterations the original image is barely recognisable. The
best reconstructions of the other three ARMs are similar but one should note that SART and
CGLS arrive at this stage a lot sooner (iteration wise) than SIRT. FPB seems to produce a very
noisy result, but the original image can still be recognized, the reconstruction is, however, far
inferior to that of SIRT, SART and CGLS.
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ART:
3 iter.

SIRT:
200 iter.

SART:
20 iter.

CGLS:
11 iter. FBP

ART:
200 iter.

SIRT:
200 iter.

SART:
200 iter.

CGLS:
200 iter. FBP

Figure 3.13: The reconstruction without noise of the ARM’s when the relative
error is minimal and after 200 iterations.
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Chapter 4

Discrete Tomography

This chapter focusses on the discrete tomography (DT) problem. Unlike the previously con-
sidered problems, discrete tomography assumes certain properties about the image or object.
Furthermore, the number of projections used in DT is far fewer than in classical (continuous)
tomography. The resulting problem is far more complex than for the continuous case. Four
different solution strategies will be briefly discussed, one of these strategies will be of particular
interest.

4.1 Description

The term discrete tomography was first coined by Larry Shepp who organised the first meeting
devoted to this topic in 1994. Similar problems and a range of results were already known from
earlier research. For a more detailed account on the history of this field one is referred to [18,
Ch. 1].

In the foregoing chapters various methods were investigated to reconstruct a certain two-
dimensional image f ∈ R

N from its projections. This image could be viewed as a function
f : R2 → R. Thus every point in the image has a corresponding function value, or grey value.
Discrete tomography solves a similar problem with some extra constraints.

Roughly two kinds of discrete tomography can be identified. The first one assumes that the
scanned image is defined on a lattice, i.e. the object or image is physically made up out of
‘pixels’. All these pixels are assumed to have some uniform density and the density can only be
one of a finite set of allowed densities. One can for example imagine that this model is suitable
for scanning a diamond on nanoscopic scale. All the atoms (pixels) lie in a neat lattice and have
uniform density. Hence a pixel can either represent an atom, in this case the corresponding grey
value would be 1 (for simplicity) or the pixel is just void, in which case the grey value is 0. In
this variant of DT one has a function with discrete domain and the range is a finite set, thus
f : L → {ρ1, ρ2, . . . , ρl} with L a lattice. A lattice L in some d-dimensional domain is isomorphic
to the integer lattice Z

d, hence one can assume that L = Z
d. The grey values of each of these

lattice points must be one of {ρ1, ρ2, . . . , ρl}. Usually these assumed densities follow from prior
knowledge about the image or object. In many cases there are only two allowed densities, then,
without loss of generality, the set is denoted as {0, 1} and one speaks of a binary image.
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In the second kind of discrete tomography the assumption that the image is only defined on a
lattice is dropped. Hence one has f : R2 → {ρ1, ρ2, . . . , ρl}, a function with continuous domain
and a finite set as range. Also for these problems it is common to only have two density values.
The upcoming work will mainly focus on this second kind of DT.

One should note that the former DT variant is actually a special case of the latter variant. Both
problems can be written, like in the continuous case, as W f = p. The weight matrix of the
DT lattice problem will be a (0, 1)-matrix. For the latter variant the weights usually represent
the length of the intersection of a ray with a cell. In continuous tomography the number of
projections is often quite large compared to that in DT. On top of that, the few projections
obtained in DT can originate from a small angular range. All previously proposed methods
fail in solving this problem. This calls for better reconstruction techniques that incorporate the
extra information known about the image.

4.2 Solution Strategies

This section will present four different strategies on how to solve the DT problem. The first
approach will be to rewrite the problem as a combinatorial problem. The second strategy is
statistical in nature. The two remaining techniques both solve the continuous problem. One
of these approaches obtains a reconstruction using optimisation techniques, this reconstructed
image may have different values than the allowed densities but this is penalised. The other
method uses a discretisation step on the initial reconstruction, that was obtained via a contin-
uous reconstruction method. This is also the strategy the Discrete Algebraic Reconstruction
Technique (DART) algorithm uses. This algorithm will be studied extensively in this work.

4.2.1 Combinatorial

Consider the problem of reconstructing a (0, 1)-matrix from its row and column sums. One can
easily see that this is equivalent to the reconstruction of a binary lattice image or object from
two orthogonal projections. The (0, 1)-reconstruction was studied by Ryser in 1957 who also
proposed an algorithm for solving the corresponding problem [21]. Unfortunately, one does not
have an unique solution for this problem in general. Consider for example the following two
(0, 1)-matrices:

1 0 1 0 2
0 0 1 1 2
1 1 1 0 3
1 0 1 1 3

3 1 4 2

0 1 1 0 2
1 0 1 0 2
1 0 1 1 3
1 0 1 1 3

3 1 4 2

(4.1)

Both matrices have the same column and row sums but are fairly different. Hence one cannot
expect to find the correct solution in this case. More information about the reconstruction of
(0, 1)-matrices can be found in [18, Ch. 1.2.2]. Gale modelled this reconstruction problem, also in
1957, as a network flow problem [8]. The Ford-Fulkerson algorithm for maximum flows can then
be used to find the reconstruction (if a unique solution exists). The solution strategies for this
problem proposed by Ryser and Gale are particularly computationally efficient. If one wants
to solve the problem for more than 2 projection angles, however, the corresponding problem
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becomes NP-hard [9]. Batenburg employed the idea of Gale to propose an algorithm which is
able to reconstruct a continuous image (not defined on a lattice) [2]. The idea behind Batenburg’s
algorithm is to iteratively reconstruct the next image by using the previous reconstruction and
two projection angles.

Another combinatorial approach for solving the DT lattice problem is from Gritzmann et al. [11].
They propose to solve two complementary problems: Best-Inner-Fit [BIF] and Best-Outer-Fit
[BOF]. The reconstruction is found using optimisation techniques.

4.2.2 Statistical

The statistical reconstruction method uses a maximum a posteriori probability estimate (MAP
estimate) to approximate an optimal reconstruction based on the measured projection data. The
admitted grey values are assumed to be distributed among the various pixels/cells according to
some probability distribution. In 2005 Liao and Herman proposed to reconstruct discrete images
using a Gibbs distribution [19].

4.2.3 Continuous Optimisation

The DT problem can also be solved using continuous optimisation. In this approach the standard
continuous formulation of the problem is actually solved, i.e. the problem is relaxed so that f can
take any real value, but function values outside the set of admitted grey values are penalised.
Schüle et al. proposed a convex-concave regularization approach for the binary problem in 2003
[23]. The idea behind this approach is to use primal-dual optimisation to arrive at a solution
which is steered towards a binary solution.

4.2.4 Continuous with Discretisation Step

Perhaps this is the most natural approaches to solve the DT problem. The problem is first solved
as if it were a continuous tomographic problem, thus the values of the image can attain any
real value. Subsequently the reconstructed values are discretised, i.e. set to one of the admitted
densities. The DART algorithm uses this approach. The algorithm itself is explained in detail
in Section 4.3.

4.3 DART

The Discrete Algebraic Reconstruction Technique (DART) was first proposed by Batenburg et
al. in 2007 [3]. In 2011 Batenburg and Sijbers presented a more elaborate paper [4] giving
a description of the DART algorithm along with experiments which validate the results of
the algorithm. For this section the proceedings in said paper are used to describe the DART
algorithm. The performance of DART will also be investigated.

4.3.1 The DART algorithm

DART is an iterative method of the type described in Section 4.2.4. It consists of reconstructing
the image using a continuous update step followed by a discretisation step. The continuous
step is just the reconstruction of the image using some ARM, the discretisation uses the prior
knowledge, i.e. the allowed grey values {ρ1, ρ2, . . . , ρl}. The number of allowed grey values should
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not be too large, according to Batenburg et al. [4] the algorithm in general performs well for five
or fewer grey values.

Initially a continuous reconstruction is computed by performing a fixed number of ARM itera-
tions, this serves as a starting point for the DART algorithm. The reconstructed image is then
segmented to obtain an image that consists of only the admitted grey values. The segmentation
can be obtained by simply rounding the pixel values to the nearest allowed grey values. Or
formally, define the threshold τi by

τi =
ρi + ρi+1

2
, (4.2)

for i = 1, 2, . . . , l − 1. Then the threshold function r : R→ {ρ1, ρ2, . . . , ρl} is given by

r(v) =



















ρ1, (v < τ1)
ρ2, (τ1 ≤ v < τ2)
...
ρl, (τl−1 ≤ v)

. (4.3)

Other more intricate segmentation methods can be used that may lead to better convergence or
more accurate reconstructions.

Next this segmented image is subdivided into two groups of pixels, the free pixels U and the fixed
pixels F . The set U are all pixels that are adjacent to at least one pixel with a different grey
value. Here one can choose the adjacent pixels of pixel j as the pixels North, East, South and
West of the considered pixel, i.e. the 4-connected neighbourhood of pixel j. DART uses the 8-
connected neighbourhood of pixel j which is simply the 4-connected neighbourhood augmented
with the diagonally neighbouring pixels. The set F are all the pixels that are not free, hence
fixed. Note that U ∩ F = ∅ and U ∪ F are all the pixels of the image. The set of free pixels
represents the edges of the object, where an edge is the transition of one density into another.
It may happen that there are edges which are not covered by the free pixels, holes in the image
may for example be overlooked. The set U is therefore supplemented with some random pixels
from F . Define 0 < p ≤ 1 as the fix probability. Each fixed pixel from F is freed with probability
1− p, independently of neighbouring pixels.

Subsequently DART performs some fixed number of ARM iterations on the free pixels while,
obviously, keeping the fixed pixels at their respective grey values from the set {ρ1, ρ2, ..., ρl}.
The initial guess for the ARM iterations are the grey values of the free pixels from before the
segmentation. Fixing some pixels results into a system with less variables but the same number
of equations as initially, as will be shown later on. This, in combination with noise, causes heavy
fluctuations in the values of the free pixels after the ARM iterations. Therefore, a smoothing
operation is carried out. Smoothing evens out the function values and thus reduces the influence
of the noise. The smoothing in DART is carried out by applying a Gaussian smoothing filter
with radius 1 to the free pixels.

The process of segmenting the image, dividing it into free and fixed pixels and applying some
ARM iterations to the free pixels constitute one DART iteration. DART can either terminate
after the total projection error is below some threshold ε, i.e.
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Initial ARM reconstruction

Segment
the recon-
struction

Identify
fixed pixels
F and free
pixels U

Apply
ARM
to free
pixels U

Smooth
recon-

struction

Stop
criterion
met?

Final reconstruction yes

no

Figure 4.1: Flowchart of the DART algorithm

‖W f − p‖2 ≤ ε, (4.4)

or simply after a fixed number of iterations. After the last iteration the reconstruction is again
segmented to obtain the final reconstruction which only contains pixels with admitted grey
values. Figure 4.1 shows a flowchart of the DART algorithm. Traversing the purple boxes once
constitutes one DART iteration.

Now the process of fixing pixels is investigated more thoroughly. Initially one is presented with
the system:





| |
w:,1 . . . w:,N

| |











f1
...
fN






=







p1
...

pM






. (4.5)

By fixing pixel j the value of variable fj is known. This means that w:,jfj ∈ R
M can be

computed beforehand and thus one may remove the variable fj from f and column w:,j from W
and subtract w:,jfj from the right-hand-side. This results in the system





| | | |
w:,1 . . . w:,j−1 w:,j+1 . . . w:,N

| | | |

























f1
...

fj−1

fj+1
...
fN





















=







p1
...

pM






−w:,jfj. (4.6)
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This system consists of the same number of equations as the initial system 4.5 but the number
of variables is reduced by one. Eventually some number of ARM iterations are applied to the
system

W̃ f̃ = p−
∑

j∈F

w:,ffj (4.7)

which only has the free pixels as variables. The effects of noise, which is ever-present, acts
therefore only on the free pixels. This causes the heavy fluctuations in the values of these pixels
and thus the need of the smoothing operation is justified.

Below the DART algorithm is given in pseudo code. Let q be the number of initial ARM itera-
tions that will be performed and r the number of ARM iterations during one DART iteration.
If f is obtained by performing i ARM iterations with initial guess x on system W with right
hand side p then this is denoted as f = ARM(x,W,p, i).

DART

f0 ← ARM(0,W,p, q)
x0 ← f0

k ← 1
while termination criterion is not met do

Segment image: sk ← r(xk−1)
Identify boundary pixels Uk from sk

Let F k = {1, 2, . . . , N}\Uk represent the set of fixed pixels
Free pixels in F k with probability 1− p
Let Ŵ k be the matrix with the columns corresponding to fixed variables removed
p̂k ← p−

∑

i∈F k skiw:,i

Let yk be a vector containing the non-segmented values xk−1 of the free pixels Uk

fk ← ARM(yk, Ŵ k, p̂k, r)
Smooth all the free pixels Uk to obtain xk

k ← k + 1
end while

One should note that the initial guess yk for the ARM iterations during a DART iteration
consist of all the free variables that have their non-segmented values xk−1 rather than sk. Also
observe that the smoothing is only applied to the free pixels Uk.

4.3.2 Experiments

In this section the performance of DART will be investigated. The algorithm has several pa-
rameters: the ARM that will be used, the fix probability p, the smoothing filter, the threshold
function, the number of grey values, the number of initial ARM iterations and the number of
ARM iterations during one DART iteration. Since it will be impractical to consider the effect
of each parameter some of them will be fixed:

• Smoothing filter: Gaussian filter with radius 1;

• Threshold function: Function r(v) (4.3);
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Blob Shapes Phantom

Figure 4.2: The three test images for the DART experiments.

• Initial ARM iterations: 50;

• ARM iterations: 20.

Hence only the used ARM, the number of grey values and p will be varied. Three ARMs will
be considered: ART, SIRT and SART. The number of grey values are varied by the use of three
different test images of 128 by 128 pixels, see Figure 4.2. Blob is a simple binary image with
no holes. Shapes consists of three different grey values, the cross and the disk with holes have
grey value 1, the big disk and diamond have grey value 0.5. Finally, the phantom is an image
with six different grey values. Recall that the number of grey values for DART to perform
efficiently should not be too large. For the following results the fix probability was 0.85 and
reconstructions were made using 5, 10 and 15 equally spaced projection angles. Figures 4.3 – 4.5
show the reconstruction of the DART algorithm after 100 iterations using various ARMs and
projection angles. The quality of the reconstruction is measured using the pixel error K, defined
as the number of misclassified pixels by the DART algorithm. The pixel error is considered rather
than the relative error, which was used in Section 3.7, since it is a more intuitive notion. Note
that the the total number of pixels for each image is 128 × 128 = 16384. The reconstruction
of the blob is practically perfect for all methods and angles, the shapes are only reconstructed
accurately when data is available from 10 or more projection angles. The reconstruction of the
head phantom shows the restriction of DART which possibly due to the high number of grey
levels.

The various ARMs seem to produce comparable results. However, sometimes ART seems to
produce divergent results as can be seen in Figure 4.6. Although this phenomenon was only
observed for p close to 1 it opts for the conclusion that ART is not a good choice as ARM since
SIRT and SART seem to produce similar results. SIRT iterations can be efficiently carried out
in parallel, whereas SART is sequential by nature since the updates are done per angle. This
suggests that SIRT is the algebraic reconstruction method of choice for DART.

To illustrate the need of the fix probability DART is applied to the blob with a small hole. If
p = 1 this means that the set of free pixels U is not supplemented with a random subset of
pixels, and hence, if the hole was not found in the initial reconstruction it will most likely never
be found. Figure 4.7 shows the reconstructions of this image with a hole for the three ARMs,
various projection angles and p = 1. Again ART exhibits divergent behaviour. Neither SIRT nor
SART are able to reconstruct the image with the hole. Note that the ART reconstruction with
15 projection angles was able to find the hole and after 100 DART iterations the reconstruction
is exact. Figure 4.8 shows the results with the same experiment, only now with p = 0.99. This
small difference makes that all the reconstruction find the hole and are virtually perfect.
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ART

K = 10

5 angles

SIRT

K = 13

SART

K = 11

K = 1

10 angles

K = 0 K = 0

K = 0

15 angles

K = 0 K = 0

Figure 4.3: DART reconstructions of the blob after
100 iterations using various ARM’s and projection
angels

ART

K = 1733

5 angles

SIRT

K = 1541

SART

K = 1601

K = 195

10 angles

K = 211 K = 194

K = 88

15 angles

K = 152 K = 98

Figure 4.4: DART reconstructions of the shapes
after 100 iterations using various ARM’s and pro-
jection angels
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ART

K = 5017

5 angles

SIRT

K = 4948

SART

K = 5003

K = 3743

10 angles

K = 3619 K = 3773

K = 3193

15 angles

K = 3132 K = 3142

Figure 4.5: DART reconstructions of the phantom
after 100 iterations using various ARM’s and projec-
tion angels

Figure 4.6: The divergence of ART. Left: Recon-
struction of the blob with p = 1 and 10 angles. Right:
Reconstruction of shapes with p = 0.99 and 10 an-
gles.
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Original

ART
K = 242

5 angles

SIRT
K = 82

SART
K = 90

K = 6641

10 angles

K = 38 K = 69

K = 0

15 angles

K = 12 K = 20

Figure 4.7: DART reconstructions of the blob with
an hole after 100 iterations using various ARM’s and
projection angels
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SIRT
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K = 10

K = 0
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K = 0 K = 0

K = 0

15 angles

K = 0 K = 0

Figure 4.8: DART reconstructions of the blob with
a hole after 100 iterations using various ARM’s and
projection angels, fix probability p = 0.99
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Figure 4.9: The pixel error corresponding to four different noise levels for various p.

For the experiments with noise only one ARM will be considered for the sake of clarity. SIRT is
chosen as the ARM since the foregoing experiments and reasoning suggested that this is the best
choice. The sinograms of the images are polluted with Poisson distributed noise. The number of
counts per detector element give a measure of the magnitude of the noise. A higher number of
counts corresponds to less noise. Four noise levels are considered: 103, 104, 105 and 106. Figure
4.9 shows the pixel error K after 100 DART iterations corresponding to the four different noise
levels for various fix probabilities p.

From Figure 4.3 it was deduced that the blob was reconstructed virtually exact for all considered
angles, this is still true for the high number of counts 105 and 106. For 103 the blob can still be
seen, but the reconstruction suffers greatly, see Figure 4.10(a). Note that lower fix probabilities
give better results for low number of counts.

Earlier it was seen that the shapes could not be properly reconstructed from only 5 projection
angles. It is therefore not to be expected that the reconstruction with noise would be any better.
Indeed, Figure 4.9 shows that the pixel errors for the concerning reconstructions are very high.
For 10 and 15 projection angles the reconstructions are much better if the number of counts
are high. Again, for the low number of counts the pixel error is significant resulting in poor,
but somewhat usable, reconstructions (Figure 4.10(b)). Also for this image low fix probabilities
seem to produce better images in the case of low number of counts.
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(a) (b) (c)

Figure 4.10: DART reconstruction with noisy data (103) of (a) the blob with 5 angles and p = 0.99, (b)
shapes with 10 angles and p = 0.5, (c) head phantom with 15 angles and p = 0.85.

The reconstructions of the head phantom have very large pixel errors, this was to be expected
since even without noise the reconstructions were particularly poor. Figure 4.10(c) shows the
reconstruction of the head phantom using very noisy data originating from 15 angles with fix
probability 0.85.

From Figure 4.9 one could deduce that low fix probabilities, such as p = 0.5, produce the best
results if the projection data is very noisy. If the level of noise in the sinograms is relatively low
then one would be wise to choose a higher fix probability, such as p = 0.85, since this might
yield better results (see the pixel error of the shapes) and fewer computations have to be carried
out. Choosing the fix probability too high might lead to reconstructions that overlooked holes
in the object, as seen before.
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Research Goals

This chapter will formulate the research questions and goals that will form the basis for the
upcoming research. Some test cases will be described that will be involved in answering the
posed questions.

5.1 Research Questions

Chapter 4 described the DART algorithm in detail. Although the performance of DART is
reasonable, its approach is very heuristic. The random subset construct, for example, is needed
to find any holes in the object. The reduced system (4.7) contains only the free pixels as
variables, which are the boundary pixels supplemented with the random subset. The effects of
the noise, which is present in the projection data p, is distributed over these free variables only.
This causes heavy fluctuations in their values. Smoothing with the Gaussian filter counters this
effect, but there is no theoretical motivation which justifies the use of this blurring operator. In
Chapter 3 the concept of regularization was introduced as a tool to reduce the effects of noise
on the reconstructions. DART might benefit from the use of regularization on the set of free
pixels U . Although the experiments carried out in Section 4.3.2 suggested that SIRT was the
ARM of choice for DART, it was not really motivated by sound arguments.

The main goal of the upcoming research will be to investigate if the DART algorithm can be
improved. Hence the general research question will be:

Can the DART algorithm be improved?

More specific questions can be asked in the context of this general research question:

• Which algorithm should be used as ARM in DART and does it matter?

• Can better results be obtained by introducing regularization directly onto the set of free
pixels U?

• Are there alternatives for the random subset construct?

53



CHAPTER 5. RESEARCH GOALS

5.2 Methodology

This section will describe what approach will be used to answer each of the research questions.

Which algorithm should be used as ARM in DART and does it matter?

To answer this question further experiments have to be carried out. Analysis of the results of
these experiments will most likely yield what the best ARM is.

Can better results be obtained by introducing regularization directly onto the set of free pixels U?

Regularization can be interpreted in many different ways. One approach would be to use
Tikhonov regularization, see (3.39), on the free pixels. One would in that case solve to fol-
lowing problem:

(

W
λI

)

fU =

(

p−
∑

j∈F w:,jfj
0

)

, (5.1)

with fU the vector containing the free pixels.

Are there alternatives for the random subset construct?

DART typically attempts to solve the discrete minimization problem

min
f∈{ρ1,...,ρl}N

‖W f− p‖. (5.2)

The problem with DART is that the fixing of pixels might cause holes in the object to be
overlooked. One can alternatively consider the following problem:

(

W
D

)

f =

(

p

Dv

)

, (5.3)

with D a diagonal matrix and v a vector containing the presumed values of the corresponding
pixels. This system will steer the solution towards the presumed values in v but the pixels are
allowed to deviate from these values. The entries di, i = 1, 2, . . . , N , of the matrix D represent
the degree to which the pixels of the solution should be steered towards the values in v. Solving
5.3 is equivalent to the minimization problem

min
f∈RN

‖W f− p‖+ ‖Df−Dv‖. (5.4)

Note that deviation of the proposed values vi is penalised proportional to di. Very high values of
di will mostly likely result into a system where pixel i has grey values vi. A smaller di indicate
some uncertainty associated with the value vi, the grey value of these pixels are more likely to
deviate from the presumed values.

This approach gives rise to the following sub questions:

• Can this approach lead to similar behaviour as the original DART?

• How should the di be chosen?
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Test problems (a) Hexagon (b) The blob (c) Two circles with holes (d) Bone (e) Shapes (f)
Phantom

5.3 Test Problems

The research questions posed in the previous section call for modifications of the DART imple-
mentation. Naturally these new implementations have to be validated, the results of experiments
have to be verified and compared to the results of the original algorithm. To do this validation
some test problems will be presented. The test problems have some hierarchical structure rang-
ing from simple objects to more intricate shapes. At first only binary images will be investigated.
When the results of the binary images are satisfying DART is used to tackle images with more
than two grey values. The problems are motivated by a range of features:

• The shape of the object;

• The ratio of edges to the total number of pixels;

• The number of grey values.

The shape of the object is a very broad notion. Objects can be very simple, e.g. symmetric,
homogeneous and convex, or more complex, the image might even consist of multiple objects.
Edges in the image are very important in DART since these are the only pixels that are subject
to change. Images with a low ratio of edges require less computation time since a great number
of pixels are fixed and thus a smaller system is considered. It is obvious why the number of
different grey values is an important feature. Figure 5.1 shows the six test problems that will
be used to answer the research questions.

The main interest of this research is the performance of the improved implementation when one
deals with noisy projection data. Therefore, the sinograms of the images will be polluted with
Poisson distributed noise. Four different number of counts will be used: 103, 104, 105 and 106.
Recall that low number of counts correspond to more noise.

The experiments will reconstruct the objects from data acquired from a varying number of
angles. Naturally, simple objects such as 5.1(a) will require fewer angles to obtain a perfect
reconstruction than the more complex problems such as 5.1(d). Also the range from which
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the angles are acquired will be investigated, smaller angular ranges will most likely result in
poorer reconstructions. Also the size, mainly the ratio of edges to total number of pixels, is an
important feature which needs to be taken into account.

In all cases the performance of the improved algorithm will be measured by looking at the pixel
error of the reconstructions, similarly as was done in Section 4.3.2.
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