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Summary

The Helmholtz equation combined with suitable boundary conditions results
in the Helmholtz problem (HP). The efficient solving of this problem on very
large grids is very important for companies like Shell. The Helmholtz problem
is used for seismic investigations of the earth’s crust. The results can be used
to determine the position of various layers. Thereafter, possible locations of oil
or gas reservoirs can be predicted.

Direct solvers are relatively expensive in practical 3-dimensional Helmholtz
problems, whereas iterative methods with suitable preconditioners are attrac-
tive. However, until now there does not exist efficient preconditioners which
can deal with this Helmholtz problem.

In this research project we consider two preconditioners, based on separation
of variables (SoV) and complex shifted Laplace (CSL) methods, in more detail.
We examine their iterative behaviour in test problems and also their spectral
and convergence properties. To restrict the computational time in our test runs,
we consider only small 2-dimensional problems.

We pay special attention to the preconditioner based on separation of vari-
ables. The whole method and the underlying linear algebra ideas are described.
Moreover, some ideas improving this preconditioner are worked out and tested
in more detail.

Investigating the properties of the preconditioners CSL and SoV is impor-
tant to understand why the methods fail. In this thesis, this is carried out
by comparing the eigenvalues and the corresponding eigenvectors of the origi-
nal and the preconditioned systems. After that, several attempts are taken to
combine these precondtioners into a new preconditioner, which are expected
to get rid of the bad eigenvalues of the original system and in that way would
lead to fast convergence for the Helmholtz problem. Unfortunately, considering
the results of our test runs, the combined preconditioners do not improve the
convergence rate, comparing to the SoV and CSL preconditioners.
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Samenvatting

De Helmholtz vergelijking gecombineerd met geschikte randvoorwaarden leidt
tot het Helmholtz probleem (HP). Het efficiënt oplossen van dit probleem op
zeer omvangrijke roosters is van cruciaal belang voor bedrijven als Shell. Het
Helmholtz probleem speelt een rol bij het seismisch onderzoek van de aardkorst.
Het wordt gebruikt om de verschillende aardlagen in beeld te brengen, waarna
geschikte locaties voor het vinden van olie en gas bepaald kunnen worden.

Vanwege de omvang van het Helmholtz probleem zijn exacte oplosmethoden
relatief duur, terwijl iteratieve methodes met geschikte preconditioneringen in
dit soort situaties aantrekkelijk zijn. Tot op heden is er echter nog geen goede
preconditioner gevonden die de praktische Helmholtz problemen efficiënt kan
oplossen.

In dit onderzoek zullen we twee preconditioners, gebaseerd op ‘separatie der
variabelen’ (SoV) en op ‘complex verschoven Laplace’ (CSL) methoden, nader
onder de loep nemen. We onderzoeken hun iteratief gedrag in testproblemen
en we bekijken hun spectraal en convergentie eigenschappen. Om rekentijd te
besparen beperken we ons tot relatief kleine 2-dimensionale problemen.

Speciale aandacht verdient de SoV preconditioner. De gehele methode en
achterliggende linear algebra gedachten worden in detail beschreven en enkele
ideeën om deze te verbeteren worden nader uitgewerkt en getest.

Het onderzoeken van de eigenschappen van de hierboven genoemde precon-
ditioneringen is van groot belang om te kunnen begrijpen waarom de methoden
niet voldoende efficiënt in gebruik zijn. In deze scriptie wordt dat uitgevoerd
door de eigenwaarden en de corresponderende eigenvectors van de originele en de
gepreconditioneerde systemen te vergelijken. Vervolgens worden diverse pogin-
gen ondernomen om de twee preconditioneringen te combineren tot een nieuwe
preconditioner, die in staat geacht wordt om grip te krijgen op de slechte eigen-
waarden van het originele systeem en waarvan we derhalve verwachten dat het
een goed convergentiegedrag zal vertonen ten aanzien van het Helmholtz prob-
leem. Echter, het blijkt uit onze testruns dat de gecombineerde preconditioners
niet efficienter presteren dan de oorspronkelijke CSL en SoV preconditioners.
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Â modified A where k̃ = 0 is taken
B modified Â
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Chapter 1

Introduction

Wave propagation through an inhomogeneous acoustic medium with a constant
density is described in the frequency domain by the Helmholtz equation:

−∆p(x)− k(x)2p(x) = f(x), (1.1)

where p is the wave field and f a (point) source term. The wavenumber k = ω/c
is a function of the spatial coordinates x = (x, y) in the 2-dimensional case and
x = (x, y, z) in the 3-dimensional case, because the velocity c depends on the
spatial coordinates in an inhomogeneous medium.

Background

Equation (1.1) is used for instance for seismic investigations of the earth’s crust.
The results can be applied to determine the position of various layers. There-
after, potential locations of oil or gas reservoirs can be predicted.

The Helmholtz equation arises in many physical applications, not only in
scattering problems of acoustics but also in scattering problems of electromag-
netics, see e.g. Abrahamsson & Kreiss [1]. In Figure 1.1 one can find an
application of our interest, where seismic reflections can be modelled with the
Helmholtz equation. A pressure wave propagates from the source and is re-
flected or refracted at discontinuities in the subsurface. The pressure field is
recorded at the receiver locations. In general, the modeling requires the com-
putation of the wave propagation in a highly inhomogeneous medium.

Helmholtz Problem

In practice, when modeling a seismic survey, the wavenumber is such that the
operator has positive and negative eigenvalues. To mimic an infinite space
by a finite computational domain, absorbing boundary conditions are added.
These boundary conditions make the system invertible, although it remains
ill-conditioned, see Mulder & Plessix [37].

In this thesis we consider only the seismic survey, where p in Equation (1.1) is
the pressure field and absorbing boundary conditions are used. The Helmholtz
equation with these boundary conditions leads to the Helmholtz boundary val-
ued problem, or briefly the Helmholtz problem (HP). When a second-order

1



2 Chapter 1. Introduction

Figure 1.1: Seismic reflection line is a set of seismographs usually lined up along the
earth’s surface to record seismic waves generated by an explosion for the purpose of
recording reflections of these waves from velocity discontinuities within the earth.
The data collected can be used to infer the internal structure of the earth. [Source:
http://earthquake.usgs.gov/image glossary]

finite-difference discretization is applied to the HP, we obtain the linear system

Ap = f, (1.2)

where A is a large but sparse matrix. The solution p is represented on a
grid between 500 and 2000 points per coordinate direction in typical seismic
applications.

Solvers

For our discretization of the 2-dimensional version of Equation (1.1), it is nec-
essary that the number of grid points grows faster than quadratically in the
wavenumber in order to maintain a given accurary, see Bayliss, Goldstein &
Turkel [7]. Thus, for sufficiently high wavenumber, the discretized Helmholtz
equation ‘leads to a huge linear system of equations’, see Abrahamsson & Kreiss
[1]. This huge system (1.2) can be solved by a direct method based on LU-
factorization. With the nested dissection reordering method using n points in
each coordinate direction, the complexity of the LU-factorization is O(n3) and
the computation of the solution has a cost of O(n2 log n), which is the optimal
complexity for direct methods in general, see George & Liu [19].

In the 3-dimensional case, a direct solver is generally too expensive. For
instance, the complexity of the LU-factorization with the nested dissection
method is O(n6), see Mulder & Plessix [37].

Multigrid methods for the solution of linear systems as in (1.2) are known
in the literature, see e.g. Goldstein [22]. A common disadvantage of these
methods is that the coarsest level must be fine enough to capture the wave
character of the problem. Due to that reason, the iterations in our system (1.2)
diverge, which is also a direct consequence of the indefiniteness of matrix A.
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Moreover, since we focus on the modeling of a seismic survey, the velocity is
either a smooth model or a model consisting of a large number of inhomogeneous
layers, which is unfavourable for the use of a domain decomposition approach,
see also Mulder & Plessix [37].

To fully take into account the sparseness of A, an iterative method should be
applied instead of direct, domain decomposition or multigrid methods. In the
literature, the linear system (1.2) is often solved by an iterative preconditioned
method based on Krylov spaces due to their relative robustness, for instance
by the GMRES method (Saad & Schultz [40]) or by the Bi-CGSTAB method
(Van der Vorst [49]).

Moreover, Bayliss, Goldstein & Turkel [6] used a preconditioned conjugate
gradient method applied to the normal equations (also known as CGNR). Due
to the ill-conditioning of the normal equations, the unpreconditioned algorithm
suffered from extremely slow convergence. The convergence rate was substan-
tially improved through preconditioners based on SSOR (also in [6]) or a multi-
grid V-cycle (Bayliss, Goldstein & Turkel [8]) or only for the Laplacian part of
the Helmholtz operator (Goldstein [21]).

As is well known, the convergence rate depends on the spectral properties of
the (preconditioned) matrix (see e.g. Golub & Van Loan [23] and Saad [39]). In
the case of interest to us, matrices involved are complex-symmetric, indefinite
and hard to solve as the frequency, or equivalently, the acoustic wavenumber
increases. In such a case, the eigenvalues tend to be scattered between both the
right and the left half-plane, see e.g. Ernst & Golub [16]. In order to avoid the
convergence of the Krylov methods to dramatically deteriorate, it is of essential
importance to use a powerful preconditioner.

Preconditioners

Besides the above called preconditioners, there are several preconditioners pro-
posed by e.g. Erlangga, Vuik & Oosterlee [15, 52], Gander & Nataf [18], Laird
[29], Made [31] and Plessix & Mulder [37].

Laird [29] constructed the preconditioner based on the Laplace operator
perturbed by a real-valued linear term, also known as the shifted Laplace (SL)
preconditioner. This suprisingly straightforward idea leads to very satisfactory
convergence, where the preconditioning matrix allows the use of SSOR, ILU or
multigrid to approximate the inversion within an iteration. Erlangga [15, 52]
introduced a complex perturbation to the Laplace operator, which in general
results in a better preconditioner than using a real-valued perturbation. We
call this the complex shifted Laplace (CSL) preconditioner or briefly ‘CSL’.
This class of preconditioners is simple to construct and is easily extend to
inhomogeneous media.

Gander & Nataf [18] proposed AILU which is a preconditioner based on the
analytic factorization of an elliptic operator. An incomplete factorization-based
preconditioner is introduced by Made [31]. Numerical experiments in [18, 31]
illustrate the effectiveness of these approaches.

Plessix & Mulder [37] have created a preconditioned iterative method based
on separation of variables (SoV preconditioner or briefly ‘SoV’). For smooth
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models and low wavenumbers, the convergence rate with this preconditioner is
satisfactory. Unfortunately, it rapidly deteriorates when the roughness of the
model or the wavenumber increases.

1.1 Objective of the Thesis

In this thesis we concentrate on the preconditioners of Mulder & Plessix (SoV
preconditioner) and Erlangga, Oosterlee & Vuik (CSL preconditioner). CSL
gives bad convergence in cases when matrix A in (1.2) has many eigenvalues
near zero. It appears that these ‘bad’ eigenvalues do not disappear in the CSL
preconditioned system, leading to the failure of the preconditioner, see also
[15, 52].

The SoV preconditioner works well for smooth models and low wavenum-
bers, thus in situations when the model is ‘almost’ separable. First we inves-
tigate the eigenvalue distribution of the SoV preconditioned system since it is
rather unknown in literature. In the most favourable scenario the ‘bad’ eigen-
values in matrix A of (1.2) do not correspond with the eigenvalues near zero
of the SoV preconditioner. In this ideal case, a combination of CSL and SoV
can be very attractive, since CSL gets rid of eigenvalues relatively far from zero
and SoV gets rid of bad eigenvalues near zero.

1.2 Outline of the Thesis

First of all, the problem formulation is made concrete. The 2-dimensional
Helmholtz Problem (HP) and the resulting linear system as in (1.2) are de-
scribed in more detail in Chapter 2. Furthermore, test problems with different
models for choosing k are considered.

A few theoretical results related to the linear algebra, which are essential
in our research project, are given in Chapter 3. They give insight in the prop-
erties of preconditioners and in the eigenvalue distribution and corresponding
eigenvectors of (preconditioned) sytems used in this thesis.

Subsequently, in Chapter 4 the iterative methods and the preconditioners,
which we apply in this research, are briefly considered.

In Erlangga, Vuik & Oosterlee [15, 52], Dirichlet instead of absorbing bound-
ary conditions have been used in the eigenvalue analysis of the CSL preconditio-
ner. In the case that CSL is chosen real-valued, the matrix A as well the eigen-
values of the (preconditioned) system are also real-valued, while the number of
iterations of the iterative methods are more or less equal. In Chapter 5, it can
be seen that this observation does not hold for the SoV preconditioned system,
since the eigenvalues in this case are still complex, in general.

In Chapter 6, a comparison is made between applying SoV and CSL in iter-
ative methods, by examining their convergence behavior in small test problems
using various models for the wavenumber.

Chapter 7 deals with all aspects of the SoV preconditioner using small test
problems. This preconditioner is compared with other preconditioner in simple
models to emphasize the power of the preconditioner. Mathematical reasons
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are given for the failure of the SoV preconditioner in rough models or models
with high wavenumbers. Moreover, several attempts are made to improve SoV.

Before starting with the combination of the CSL and SoV preconditioners,
we investigate whether there are possibilities for creating such a combination
using eigenvalue and eigenvector analysis. This is done in Chapter 8.

Chapter 9 deals, finally, with the combinations based on the CSL and SoV.
Several variants are treated and the performance of these combined precondi-
tioners (CP) are compared with the original CSL and SoV preconditioners.

We end with Chapters 10 and 11, where the conclusions and some recom-
mendations for further research are drawn.
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Chapter 2

Problem Formulation

In this chapter, the problem, which is treated in this thesis, is stated in more
detail. The wave equation and the related Helmholtz equation are introduced.
This Helmholtz equation with absorbing boundary conditions leads to the Helm-
holtz Problem (HP). We discretize the HP which results in a linear system.

Furthermore, various layer models are given which we use in the test prob-
lems. The other parameters of the test problems are also given at the end of
this chapter.

2.1 Wave Equation

The wave equation is an important partial differential equation which generally
describes all kinds of waves, such as sound waves, light waves and water waves.
It arises in many different fields, such as acoustics, electromagnetics and fluid
dynamics, see e.g. Achenbach [3] and Colton & Kress [12], where also the
derivation of the wave equation can be found.

The general form of the wave equation in two dimensions is

∂2p

∂t2
(x, t) = c(x)2∆p(x, t), (2.1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 (Laplace operator), x = (x, y) (coordinates/location in
two directions in domain Ω) and t > 0 (time). Moreover, the speed of the wave
propagation c is a function of the location. In seismic applications, which is
of our interest, c is in fact the background velocity in the layers of the surface
and varies typically between 1500 m/s and 4000 m/s. The amplitude (and in
the seismic applications: the pressure wave) is denoted by p(x, t), which is a
measure of the intensity of the wave at a particular location x and time t.

2.2 Helmholtz Equation

We consider time-harmonic (standing) waves with time-independent pressure
p̃. Then p̃ satisfies

p(x, t) = γ cos(ωt)p̃(x), (2.2)

7
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where ω > 0 is the wave frequency and γ > 0 is the maximum wave amplitude.
Since the wavelength λ is equal to λ = 2π

ω and also equal to λ = 1
f , one obtains

ω = 2πf , where f is the frequency of the waves which typically varies between
10 Hz and 50 Hz in seismic applications.

Equation (2.2) may also be written as

p(x, t) = <γe−iωtp̃(x), (2.3)

where i2 = −1 and < indicates that the real part of the right-hand-side of (2.3)
should be taken. We shall omit this symbol < in further analysis for brevity and
keep in mind that we are mainly interested in the real part of complex solutions.
However, it appears that in some cases the complex part of the solutions do
give some relevant information, so these are not fully neglected in the following
of this thesis.

Using Equation (2.3), the wave equation (2.1) reduces to the Helmholtz
equation:

−∆p̃(x)− k(x)2p̃(x) = 0, (2.4)

where the wave number k is defined by

k(x) =
ω

c(x)
. (2.5)

Equation (2.4) carries the name of Von Helmholtz for his contributions to
mathematical acoustics and electromagnetics. Furthermore, the minus-signs at
the left-hand-side of (2.4) have been added due to numerical reasons 1.

Figure 2.1: A German stamp of Hermann Ludwig Ferdinand von Helmholtz (1821-
1894), one of the greatest physicists and mathematicians.

If there is no ambiguity in the context, we denote the quantity p̃(x) by p(x)
in this thesis.

1Note that −∆ is a positive operator, which means that it has positive eigenvalues. Adding
an extra term −k(x)2 gives us the operator −∆ − k(x)2 which is used in (2.4).
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Moreover, if we assume an harmonic source in the neighbourhood of Ω, i.e.,
an harmonic disturbance g(x) = e−iωtf(x), which is producing the waves, then
the source appears on the right-hand-side of (2.4). As a consequence, we obtain
the inhomogeneous Helmholtz equation

−∆p(x)− k(x)2p(x) = f(x). (2.6)

This equation is the central equation of this thesis.

2.3 Absorbing Boundary Conditions

In applications, the pressure waves propagate in an infinite domain. For numer-
ical reasons, the computations are performed in a bounded domain Ω, which
is a rectangular box with sizes (xmin, xmax) × (ymin, ymax), see also Section 2
of Plessix & Mulder [37]. With the help of a translation operator, we can
easily rewrite the problem to a domain with sizes (0, x̂max) × (0, ŷmax) where
x̂max = xmax − xmin and ŷmax = ymax − ymin.

Appropriate boundary conditions have to be chosen such that the solution at
the finite Ω represents the ‘real’ solution at an infinite domain as well as possible.
Several approaches of this problem have been proposed and good summaries
of much of the work that has been done on this problem are described by e.g.
Givoli [20] and Moore et al. [33]. Radiation boundary conditions designed for
use on a circular artificial boundary have been introduced by Bayliss & Turkel
[9, 10]. On the basis of these is the Sommerfeld radiation condition which is
defined in spherical coordinates (r, φ):

lim
r→∞

√
r

(
∂

∂r
− ik(r, φ)

)
p(r, φ) = 0, (2.7)

as proposed by Sommerfeld [46]. The Sommerfeld radiation condition is also
known as:

lim
r→∞

r

(
∂

∂r
+ ik(r, φ)

)
p(r, φ) = 0, (2.8)

see for instance Ochmann & Mechel [36] and Sladek, Tanaka & Sladek [42].
In both (2.7) and (2.8), r denotes the radius in spherical coordinates (r, φ).
This condition ensures that the scattered field corresponds to a purely outgoing
wave at infinity, i.e., it basically ensures that sources radiate waves instead of
absorbing or reflecting them.

Now, since we have a numerical finite domain, the radius r is also finite.
Assume r = R to be the maximum radius with R > 0. In this case, possible
boundary conditions to impose are:

∂p(r, φ)
∂r

− ik(r, φ)p(r, φ) = 0, r = R, (2.9)

and
∂p(r, φ)

∂r
+ ik(r, φ)p(r, φ) = 0, r = R. (2.10)



10 Chapter 2. Problem Formulation

In Cartesian coordinates, these conditions can be approximated by

(S-ABC)
∂p(x)
∂n

− ik(x)p(x) = 0, x ∈ ∂Ω, (2.11)

and
(CS-ABC)

∂p(x)
∂n

+ ik(x)p(x) = 0, x ∈ ∂Ω, (2.12)

where n is the unit outward normal to the boundaries. We call these conditions
first-order Sommerfeld respectively conjugate Sommerfeld absorbing boundary
conditions or briefly: S-ABC and CS-ABC. Although these first-order condi-
tions are regular inaccurate in practice (see e.g. Kim [27, 28]), we do take
CS-ABC (2.12) as the standard boundary conditions in our problems in this
thesis. In future research, we may use other more appropriate boundary condi-
tions to reduce reflections at the boundaries as well as possible.

2.4 Helmholtz Problem

Wave propagation in an inhomogeneous medium is considered, which means
that the medium consists of several layers. In this thesis we assume that the
background velocity c, and therefore also the wavenumber k, is constant in
each layer. In other words: an inhomogeneous medium Ω is considered with
homogeneous layers.

Let n denote the unit outward normal to ∂Ω where ∂Ω is the boundaries
of Ω. Then, the continuous Helmholtz’s boundary value problem or briefly the
Helmholtz’s problem (HP) for wave propagation in an inhomogeneous medium
can be defined as follows:

Helmholtz Problem (HP)
Find the total pressure field p(x) in an inhomogeneous medium Ω such
that (

−∆− k(x)2
)
p(x) = f(x), x ∈ Ω, (2.13)

with absorbing boundary conditions(
∂

∂n
+ ik(x)

)
p(x) = 0, x ∈ ∂Ω, (2.14)

where f is a given source term and

k(x) =
w

c(x)
, (2.15)

with wave frequency ω > 0 and background velocity c > 0.

The HP can be solved by an integral equation method by transformation
into a Fredholm integral equation, see for instance Colton & Kress [12]. In the
discretized form, the Fredholm integral equation results in a large full matrix
which requires the inversion for resolving the solution. This is considered too
expensive in many practical problems.

In this thesis, we aim at numerical solutions of HP by applying a finite
difference approach, see the next section.
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2.5 Finite Differences

With respect to the finite domain Ω with sizes (0, x̂max) × (0, ŷmax), one can
discretize Ω vertex-centered on a equidistant grid with M + 2 points in x-
direction and N + 2 points in y-direction, using:

{
xm = x0 + m∆x, for m = 0, 1, . . . ,M + 1;
yn = y0 + n∆y, for n = 0, 1, . . . , N + 1;

(2.16)

with constant parameters ∆x,∆y > 0 and where (x0, y0) = (0, 0) and (xM+1,
yN+1) = (x̂max, ŷmax). Now, the discretization based on second-order finite
differences 2 leads to

−pm−1,n − 2pm,n + pm+1,n

∆x2
− pm,n−1 − 2pm,n + pm,n+1

∆y2
− k2

m,npm,n = fm,n,

(2.17)
for m = 1, . . . ,M and n = 1, . . . , N , with M,N ∈ N. The notations pm,n ≡
p(xm, yn) and fm,n ≡ f(xm, yn) are used in (2.17) for simplicity.

The system of linear equations of (2.17) can be written as the linear system

Ap = f, (2.18)

where p and f both are vectors with MN elements satisfying

p(m + (n− 1)N) = pm,n;
f(m + (n− 1)N) = fm,n,

(2.19)

for m = 1, 2, . . . ,M and n = 1, 2, . . . , N . Moreover, A is a matrix with dimen-
sions MN × MN and with 5 non-zero diagonals. These diagonals are given
by 

A(d, d) =
2

∆x2
+

2
∆y2

− k2
m,n + γm,n;

A(d, d + 1) = A(d, d− 1) = − 1
∆x2

;

A(d, d + M) = A(d, d−M) = − 1
∆y2

,

(2.20)

for d = 1, 2, . . . ,MN . In (2.20) we have

γm,n = 0, for m = 2, 3, . . . ,M − 1 and n = 2, 3, . . . , N − 1, (2.21)

2More information about finite difference methods can be found in for instance Mitchell &
Griffiths [32].
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and at the boundaries:

γm,n =



γmin
x (n) =

1
∆x2(1 + ik0,n∆x)

if m = 1;

γmax
x (n) =

1
∆x2(1 + ikM+1,n∆x)

if m = M ;

γmin
y (m) =

1
∆y2(1 + ikm,0∆y)

if n = 1;

γmax
y (m) =

1
∆y2(1 + ikm,N+1∆y)

if n = N.

(2.22)

Note that we have used a first-order scheme to discretize these boundaries,
whereas a second-order scheme is used for the interior points of the domain.
Now, the Helmholtz problem can be written in the following way.

Discretized Helmholtz Problem (DHP)
Let f be a given vector of size MN . Find the vector p such that

Ap = f, (2.23)

where A is a MN ×MN matrix satisfying Expressions (2.20)–(2.22).

One can verify that matrix A has the following properties:

• A consists of 5 non-zero diagonals, so A is sparse;

• A is real-valued except the main-diagonal, which is in general complex;

• A is complex-symmetric;

• A is (strongly) indefinite in general, i.e., A consists of both (large) positive
and negative eigenvalues.

2.6 Relation between Wavenumber and Domainsize

It appears that the HP and the DHP can be modified such that it is spectrally
equivalent to problems on the unit domain Ω̃ (= (0, 1)×(0, 1) or briefly (0, 1)2),
by adapting the wavenumber properly. This can be seen in the following way.

The Helmholtz equation can be written as

− ∂2

∂x2
p(x)− ∂2

∂y2
p(x)− k(x)2p(x) = f(x), (2.24)

where x = (x, y) ∈ Ω. We take Ω = (0, L)2, L ∈ R for simplicity.
Next, we introduce the following new variables:

x̃ =
x

L
,

ỹ =
y

L
.

(2.25)
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Since dx̃/dx = dỹ/dy = 1/L, Equation (2.24) can be written as

− ∂2

∂x̃2
p(x̃)− ∂2

∂ỹ2
p(x̃)− k2L2p(x̃) = L2f(x̃), (2.26)

with x̃ = (x̃, ỹ) and (x̃, ỹ) ∈ Ω̃. Then it yields

− ∂2

∂x̃2
p(x̃)− ∂2

∂ỹ2
p(x̃)− k̂2p(x̃) = f̂(x̃), (2.27)

where {
k̂(x̃) = Lk(x),
f̂(x̃) = L2f(x).

(2.28)

In the above procedure we have made the domain Ω ‘dimensionless’. If one
compares (2.24) with (2.27), it can be noticed that the domain is changed from
[0, L]2 to [0, 1]2, but the solution is the same due to the new variables k̂2 and
f̂ .

Moreover, since the eigenvalues of (2.24) are independent of the source term
f(x), the change of the original domain to the unit domain influences in fact only
wavenumber k in spectral analysis. Indeed, the (D)HP is spectral equivalent to
the same problem at unit domain up to k.

Example

Assume we use the following variables:

(I) =


k2

1 = 1;
k2

2 = 3;
Ω = (0, 20)2 (i.e., L = 20),

(2.29)

in test problems. Using the theory above, this problem is spectrally equivalent
to

(II) =


k̂2

1 = (k1L)2 = 400;
k̂2

2 = (k2L)2 = 1200;
Ω = (0, 1)2.

(2.30)

2.7 Layer Models

There are many (realistic) layer models available which model the wavenumber
k in Ω. In this thesis we consider a few simple models: the constant, rectangular,
wedge, sinus, random and min-max models, which are described briefly below
and which can also be seen in Figure 2.2. The central one in our test problems
is the wedge model where special attention is given below, also to its numerical
implementation.

Constant Model

In the constant model, the wavenumber k is chosen to be fully constant in the
whole domain.
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(a) constant model (b) rectangular model (c) wedge model

(d) sinus model (e) random model (f) min-max model

Figure 2.2: Plots of the numerical implementation of all layer models which are
used in test problems of this thesis. In these plots the wavenumber is depicted on
the unit domain after discretization.

Rectangular Model

The domain consists of two ‘rectangular’ layers with wavenumber k1 and k2, re-
spectively, where the (common) interface is horizontally located. Furthermore,
we assume that k2 = k2

1+k2
2

2 holds at this interface.

Wedge Model

The wedge model 3 is almost the same as the layer model, but now the layers
have the form of a trapezium instead of a rectangle, i.e., the layers are separated
by a diagonal interface. Assume that this diagonal interface starts (in x = 0)
at αY and ends (in x = X) at βY , where 0 < α ≤ β < 1. The geometry can
be found in Figure 2.3.

The direction coefficient of this diagonal interface is exactly

∆y

∆x
=

(β − α)Y
X

, (2.31)

3The wedge model is actually a model with three layers as in Plessix & Mulder [37], but
for simplicity we take only two layers in this thesis.
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Figure 2.3: Geometry of the wedge model.

which results in the following equation of the diagonal interface:

y =
(β − α)Y

X
x + αY, x ∈ [0, X]. (2.32)

Now, we can say that if

y <
(β − α)Y

X
x + αY, x ∈ [0, X], (2.33)

then we deal with the first layer where k = k1. In the case of

y >
(β − α)Y

X
x + αY, x ∈ [0, X], (2.34)

then we have k = k2, since this is in the region of the second layer. Finally, if
we obtain exactly

y =
(β − α)Y

X
x + αY, x ∈ [0, X], (2.35)

then we are in the middle of the layers and the corresponding wavenumber is
assumed to be equal to k2

1+k2
2

2 .
Next, the numerical implementation of the wedge model, using gridelements,

can be done in the following way. Divide Ω into elements (m,n) such that
horizontally and vertically we obtain exactly M and N pieces, respectively,
thus: m = 1, 2, . . . M and n = 1, 2, . . . , N . Now, we need to find a relation
between M,N on the one hand and x, y on the other hand, before we are able
to discretize our problem.

First, we find a linear relation of y at n. Two couples of (n, y) are for instance(
1, 0 + Y

N+1

)
and

(
N,Y − Y

N+1

)
, which gives us immediately the relation:

y =
Y

N + 1
n, n ∈ [0, N ]. (2.36)
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In the same way, we obtain

x =
X

M + 1
m, m ∈ [0,M ], (2.37)

where we have used the fact that
(
1, 0 + X

M+1

)
and

(
M,X − X

M+1

)
are two

couples of the set (m,x).
Now we substitute the relations (2.36) and (2.37) into Equation (2.32),

resulting in:

n = (N + 1)
(

(β − α)m
M + 1

+ α

)
. (2.38)

Hence, we can distinguish three cases:

k2 =



k2
1, if n < (N + 1)

(
(β − α)m

M + 1
+ α

)
;

k2
1 + k2

2

2
, if n = (N + 1)

(
(β − α)m

M + 1
+ α

)
;

k2
2, if n > (N + 1)

(
(β − α)m

M + 1
+ α

)
.

(2.39)

Notice that if we take α = β = 1
2 , we obtain exactly the rectangular model.

Sinus Model

The sinus model considers a wavenumber k such that

k2(x, y) = A + B sin(2π(x + y)), (2.40)

where

A =
k2

1 + k2
2

2
, B =

|k2
2 − k2

1|
2

, (2.41)

with k1 and k2 to be constants. In other words, the wavenumber k2 is modelled
as a sinusoide with equilibrium position A and amplitude B. As a consequence,
k varies between k1 and k2.

Random Model

The random model is defined in the following way:

k2(x, y) = k2
1 + χ(x, y) · |k2

1 − k2
2|, (2.42)

where χ(x, y) is a random non-differentiable real function in the range of [0, 1].
In this case k varies exactly between k1 and k2.
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Min-Max Model

The so-called min-max model takes only two possible wavenumbers in the do-
main, i.e., the min-max model is defined in the following way:

k2(x, y) =
{

k2
1, if χ(x, y) > 1

2 ,
k2

2, if χ(x, y) ≤ 1
2 ,

(2.43)

where χ(x, y) is again a random non-differentiable real function in the range of
[0, 1].

2.8 Parameters

The continuous and discretized HP have been formulated in the previous sec-
tions. In our test problems, we have to define also the source term f(x), the
wavenumber k, the domain lengths x̂max and ŷmax of the computational box of
Ω and the number of gridpoints M and N .

2.8.1 Source Term and Boundary Conditions

In seismic applications of our interest, the pressure field is modelled in the case
when there is a kind of explosion somewhere (at location x0) at the surface. In
this case, f(x) is a weighted delta function:

f(x) = γ · δ(x− x0), γ ∈ R. (2.44)

In fact, f(x) is a point source term. As a consequence, the vector f consists of
zeros except for one element, which is equal to γ.

Furthermore, we have seen earlier in Section 2.3 that the finite domain Ω is
taken as a rectangular box [0, x̂max]× [0, ŷmax]. In this thesis we use

x̂max = ŷmax = L, L > 0. (2.45)

Absorbing conditions hold at the boundaries, except for the boundary at
the surface which is considered to be a Dirichlet boundary.

However, in each test problem of this thesis we take for simplicity the explo-
sion in the middle of the rectangular box and moreover we take uniform bound-
aries, i.e., x0 is centrally located in the box and the boundaries are considered
to be all absorbing boundaries. Only in Chapter 5, we take test problems with
Dirichlet conditions. The aim of that chapter is to give a comparison between
several methods and eigenvalue distribution with different choices of boundary
conditions.

2.8.2 Gridsizes

In MATLAB, we implement the test problems with at most 45 gridpoints in
each direction, leading to a matrix A with maximum dimensions 3025× 3025.
Our computer (ATHLON 2000+, 128 MB) was often unable to compute with
more gridpoints in numerical experiments, due to the computational time and
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the lack of memory. Thus, we choose M and N such that M,N ≤ 45. In future
research we can apply larger gridsizes with the aid of available workstations or
using other more efficient computer packages like FORTRAN or C++ instead
of MATLAB.

2.8.3 Wavenumber

As earlier mentioned, the background velocity c typically varies between 1500
m/s and 4000 m/s and the frequency f(x) between 10 Hz and 50 Hz in realistic
situations . This means that the wavenumber k(x) varies between 0.016 and
0.21 m−1, see also Plessix & Mulder [37]. In this situation the waves propagate
in an infinite domain. If we restrict this domain into Ω = (0, 1000)2 m (thus
L = 1000 m), then we can represent this problem to a unit domain Ω = (0, 1)2

in the following way:{
k̂2

min = (kminL)2 = (0.016× 1000)2 = 162 = 256 m−1;
k̂2

max = (kmaxL)2 = (0.021× 1000)2 = 212 = 441 m−1.
(2.46)

where Expressions (2.28) have been used.
For simplicity, we choose equal gridsizes in each direction, i.e., M = N and

moreover we require at least 15 gridpoints per wavelength λ to keep an accurate
numerical solution. Below, we compute the maximum wavenumber, where the
units of the quantities are omitted.

The maximum number of waves Wmax turns out to be

Wmax =
M

G
=

N

G
=

45
15

= 3, (2.47)

where G is the minimum number of gridpoints per wavelength which we have
chosen to be 15 gridpoints.

Subsequently, the minimum wavelength λmin reads

λmin =
L

Wmax
=

1
3
, (2.48)

resulting in the maximum wavenumber:

kmax =
2π

λmin
= 6π. (2.49)

In other words, k2 can be at most

k2
max < 36π2 = 355.3. (2.50)

Thus, assuming M,N ≤ 45, we have to choose k such that 256 ≤ k ≤ 355.3
to maintain an accurate and realistic solution at unit domain.

However, it appears in numerical experiments that test problems with k ≤
355.3 m−1 are too easy for further analysis. Fortunately, in spectral analysis one
can choose k larger (k > 355.3), where the gridsizes is kept to be maximum 45
(thus M,N ≤ 45). While the solution is not accurate anymore, it appears that
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the spectral analysis still does make sense. 4 The latter statement is further
motivated in Chapter 6.

2.9 Test Problems

After defining various layer models and choosing suitable parameters for the
HP, test problems are constructed, which are used in this thesis.

The test problems are carried out on unit domain, i.e., Ω = (0, 1)2. Fur-
thermore, the most layer models apply the parameters k1 and k2. These are
the main parameters which are varied in an arbitrary layer model of the test
problems, see Table 2.1.

Name Abbreviation k2
1 k2

2

constant (C) 300 300
unrealistic constant (C+) 400 400

very unrealistic constant (C++) 1200 1200
realistic (R) 260 350

less realistic (R+) 100 350
virtual (V) 400 1200

more virtual (V+) 1200 1600
much more virtual (V++) 1200 2400

extra (E) 400 4000

Table 2.1: Test problems with different values of the wavenumber k which can be
chosen in each layer model.

Only in the cases (C) and (R), the resulting test problems are realistic and
give accurate solutions when sufficient large gridsizes are used (M,N ≈ 45 or
larger). However, as earlier mentioned, it appears that the other test problems
defined in Table 2.1 and also (C) and (R) with relatively small gridsizes 5 do also
give some relevant information, considering for instance the iterative behavior
and eigenvalue distributions.

4In practice, we can see that the iterative methods converge better when the stepsize is
small enough for good accuracy. However, when we investigate combined preconditioners, this
is not a drawback.

5In this thesis we make mainly use of the gridsizes M, N = 15, 25, 35, 45 in the defined test
problems of Table 2.1.
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Chapter 3

Some Theoretical Results

Before treating methods to solve the Helmholtz problem, we deal with some
theoretical aspects. These are mainly related to the linear algebra and they
play a crucial role in the theory of the SoV preconditioner and in the analysis
of the eigenvalue distribution of preconditioners.

We start with the Kronecker product, which is used to simplify the nota-
tion of matrices with a special structure. Thereafter, we deal with definitions
and relations of right and left eigenvectors. Properties about these eigenvec-
tors and their corresponding eigenvalues are given for symmetric, Hermitian
and complex-symmetric matrices. These properties are important, since in the
Helmholtz problem we deal with a complex-symmetric matrix. In the case of
Dirichlet instead of absorbing conditions, we deal with symmetric matrices.

Eigenvalue and eigenvector properties of some special systems are considered
at the end of this chapter, which are useful in the spectral analysis of combined
preconditioners.

3.1 Kronecker Product

The Kronecker product is a binary matrix operator that maps two arbitrarily
dimensioned matrices into a larger matrix with special block structure. Let the
m× n matrix A and the p× q matrix B be given as follows:

A =

 a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 , B =

 b1,1 · · · b1,n
...

. . .
...

bm,1 · · · bm,n

 . (3.1)

Then, their Kronecker product, denoted A⊗B, is the mp×nq matrix with the
block structure

A⊗B =

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 . (3.2)

21
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Example

Let A and B be a 2× 2 respectively 3× 3 matrix such that

A =
[

1 2
0 −1

]
, B =

[
1 2 3
4 5 6

]
. (3.3)

Then, the Kronecker product A⊗B is

A⊗B =


1 2 3 2 4 6
4 5 6 8 10 12
0 0 0 −1 −2 −3
0 0 0 −4 −5 −6

 . (3.4)

�

3.1.1 Properties

Below, some properties about the Kronecker product are given, where A,B, C
and D are matrices with size n× n.

• The Kronecker product is a bi-linear operator. Given α ∈ R,

A⊗ (αB) = α(A⊗B);
(αA)⊗B = α(A⊗B).

(3.5)

• The Kronecker product distributes over addition:

(A + B)⊗C = (A + C)⊗ (B + C);
A⊗ (B + C) = (A + B)⊗ (A + C).

(3.6)

• The Kronecker product is associative, meaning

(A⊗B)⊗C = A⊗ (B⊗C). (3.7)

• The Kronecker product is not commutative in general, i.e., usually

A⊗B 6= B⊗A. (3.8)

• Transpose distributes over the Kronecker product, i.e.,

(A⊗B)T = AT ⊗BT . (3.9)

Note that we can not inverse the orders of (3.9) due to (3.8).

• Matrix multiplication with the Kronecker product can be done in the
following way:

(A⊗B)(C⊗D) = AC⊗BD. (3.10)

• When A and B are full rank, it yields

(A⊗B)−1 = A−1 ⊗B−1. (3.11)

The proof of these properties and a deeper treatment of the Kronecker product
can be found in Graham [24].



3.2. Left and Right Eigenvectors for Real Matrices 23

3.2 Left and Right Eigenvectors for Real Matrices

In the SoV preconditioner, the left and right eigenvectors are essential compo-
nents. Therefore, these are worked out in more detail. We assume first A to be
a real and square matrix in this section. In the next section the complex and
square matrix A, which is of our main interest, is considered.

3.2.1 Right Eigenvectors

Let A be a real n× n matrix. A vector vR of length n satisfying

AvR = λRvR, (3.12)

is called a right eigenvector for A corresponding to the right eigenvalue λR ∈ C.
Note that if vR is a right eigenvector, then c · vR, c ∈ C\{0} is also a right
eigenvector. If all eigenvalues are also distinct, then the corresponding right
eigenvector to any right eigenvalue λR is, except for a scaling factor c, uniquely
determined. Furthermore, when λR and A are both real, then it is known that
vR can also be chosen real (see e.g. Lay [30]).

If (λR)1, (λR)2, . . . , (λR)r are all eigenvalues and (vR)1, (vR)2, . . . , (vR)r are
the corresponding right eigenvectors, then it is easy to see that the set of right
eigenvectors forms a basis of a vector space. If this vector space is of dimension
n, i.e., r = n, then we can construct an n × n matrix WR whose columns are
the right eigenvectors, which has the property that

AWR = WRΛR, (3.13)

where ΛR is the n × n diagonal matrix with the elements (λR)1, (λR)1, . . . ,
(λR)n. Observe that we can scale each column of WR, since each eigenvector
is determined up to a scaling factor.

3.2.2 Left Eigenvectors

A vector vL of length n with the property

vT
LA = λLvT

L, (3.14)

is called a left eigenvector for A corresponding to the left eigenvalue λL ∈ C.
Similar to the right eigenvectors, if (λL)1, (λL)2, . . . , (λL)r are all eigenvalues
and (vL)1, (vL)2, . . . , (vL)r are the corresponding left eigenvectors of A, then
again the set of left eigenvectors forms a basis of a vector space. If this vector
space is of dimension n, then we can construct an n × n matrix WT

L whose
columns are the components of the left eigenvectors, which has the property
that

WT
LA = ΛLWT

L, (3.15)

where ΛL is the n× n diagonal matrix with (λL)1, (λL)1, . . . , (λL)n.
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3.2.3 Relation Left and Right Eigenvectors

It is easy to choose the left eigenvectors (vL)1, (vL)2, . . . , (vL)n and right eigen-
vectors (vR)1, (vR)2, . . . , (vR)n so that

(vT
L)i · (vR)j =

{
1 if i = j;
0 otherwise,

(3.16)

or in other words:
WT

L ·WR = I, (3.17)

where I is the n×n identity matrix. This latter statement is proved in Theorem
3.1. In this theorem, we use the term (right) diagonalizable: A is (right)
diagonalizable, if there exists an invertible n×n matrix P such that P−1AP is
equal to a diagonal matrix D.

Theorem 3.1 Let A be a real-valued diagonalizable matrix. Then WL and
WR can be constructed such that WT

L ·WR = I.

Proof. Since the set of right eigenvectors can be chosen such that this set forms
a basis of a vector space with the same dimensions of A (see Lemma 3.1), the
inverse of matrix WR exists.

Choose now WT
L = W−1

R , then we obtain immediately WT
L ·WR = I. The

remaining part to show is that W−1
R consists of left eigenvectors of A.

By definition,
AWR = WRΛR. (3.18)

Multiplying both sides on the left by W−1
R , it yields

W−1
R AWR = ΛR, (3.19)

after which multiplying on the right by W−1
R , we have

W−1
R A = ΛRW−1

R , (3.20)

which implies that any row of W−1
R satisfies the properties of a left eigenvector.

�

Theorem 3.1 has used part (i) of the following lemma.

Lemma 3.1 Let A be an n× n matrix.

(i) A is diagonalizable if and only if it has n linearly independent right eigen-
vectors.

(ii) If A is diagonalizable with P−1AP = D, then the columns of P are the
right eigenvectors of A and the diagonal entries of D are the corresponding
eigenvalues.

Proof. The proof is straightforward and can be found in, for instance, Nakos &
Joyner [34].

�

In the proof of Theorem 3.1 we have seen that choosing WT
L = W−1

R results
in WT

L ·WR = I. Note that this is independent of the structure of A. More-
over, if A has special properties like symmetry, then WT

L can be more easily
computed, see the next subsection.
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3.2.4 Properties of Symmetric Matrix

In this subsection, we assume A to be symmetric, i.e., AT = A. First a few
simple lemma’s are considered, follows by some theorems about WR and WL.

Lemma 3.2 Let A be a symmetric and invertible matrix. Then A−1 is also
symmetric.

Proof. We have (
A−1

)T =
(
AT

)−1
= A−1, (3.21)

where we have used Theorem 9 of Nakos & Joyner [34] in the first equality and
A = AT in the second equality. This implies A−1 to be symmetric.

�

Lemma 3.3 Let A be a real-valued symmetric matrix. Then:

(a) the eigenvalues of A are real;

(b) the eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

Proof of (a). Let λ denote one of the eigenvalues of A, with corresponding
right eigenvector v. If λ is complex, then the components of v will be complex
as well. Since A is real and symmetric, we obtain A = A = AT , where A
denotes the conjugate of A. 1

Given that λ is an eigenvalue and v is a corresponding right eigenvector of
A, it yields:

vTAv = vT λv = λvHv = λ||v||2. (3.22)

Taking the Hermitian of the left-hand-side of the above equation, we obtain(
vTAv

)H
=

(
vTAv

)T = (vTAv) = vTAv. (3.23)

Now doing the same with the right-hand side of (3.22) results in(
λ||v||2

)H =
(
λ||v||2

)T
= λ||v||2. (3.24)

Thus, combining (3.22), (3.23) and (3.24) we see that

vTAv = λ||v||2 = λ||v||2, (3.25)

leading to
(λ− λ)||v||2 = 0. (3.26)

1For example: let

A =

»
2 − i 2

3 1 + 3i

–
,

then the conjugate of A is equal to

A =

»
2 + i 2

3 1 − 3i

–
.



26 Chapter 3. Some Theoretical Results

Since v is an eigenvector, we know that ||v||2 6= 0. Thus, Equation (3.26) can
only be satisfied is when λ− λ = 0, which results in

λ = λ. (3.27)

We conclude that λ is real.

�

Proof of (b). Let λ1 and λ2 be two arbitrary distinct eigenvalues of a real
symmetric matrix A, with corresponding eigenvectors v1 and v2, respectively.
Hence,

vT
1 Av2 = λ2vT

1 v2, vT
2 Av1 = λ1vT

2 v1. (3.28)

Now, taking the transpose of the second equation:(
vT

2 Av1

)T
=

(
λ1vT

2 v1

)T → vT
1 Av2 = λ1vT

1 v2. (3.29)

Comparing this with the Equation (3.28) leads to

vT
1 Av2 = λ1vT

1 v2 = λ2vT
1 v2. (3.30)

But since λ1 and λ2 are distinct, we know that λ1 − λ2 6= 0. Hence, vT
1 v2 = 0,

which means that v1 and v2 are orthogonal.

�

The following theorem shows how the left eigenvectors can be computed
easily, when the right eigenvectors are known. It appears that we are always
able to choose WL = WR, if WR exists. Moreover, we prove also that the
property WH

L WR = I is preserved by this choice (after a possible scaling of
eigenvectors).

Theorem 3.2 Let A be a real-valued symmetric matrix.

(a) Let WR be a corresponding right eigenvector matrix. Then a possible left
eigenvector matrix is WL = WR;

(b) Let A to have distinct eigenvalues. Then there exists a right eigenvector
matrix WR and a left eigenvector matrix WL = WR such that these
satisfy WT

LWR = I.

Proof of (a). The following expressions are equivalent

AWR = WRΛR;

(AWR)T = (WRΛR)T ;

WT
RAT = ΛT

RWT
R;

WT
RA = ΛRWT

R.

(3.31)

Comparing the first and last step, we obtain WT
L = WT

R implying WL = WR.
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�

Proof of (b). Below we show that WT
RWR = I can be constructed. Then the

statement WT
LWR = I holds, because WL = WR.

If WT
RWR = I, then WR has to be an orthogonal matrix. This orthogonal

WR can indeed be constructed, which can be shown in the following way.
Denote WR = [v1v2 · · ·vn] where vi with i = 1, 2, . . . , n are independent

eigenvectors of A and forming the columns of WR. We know that each column
of WR can be chosen fully real-valued, since A and all eigenvalues are also real
(using Lemma 3.3). In this case, the elements of WT

RWR are:

vT
i vj =

{
ci, i = j;
0, i 6= j,

(3.32)

where ci > 0 ∀i and where we have used Lemma 3.3 to obtain the orthogonality
of vi and vj if i 6= j. In the case of i = j, we have ||vi||2 = ci (with corresponding
eigenvalue λi), which can also be written as∣∣∣∣∣∣∣∣ vi√

ci

∣∣∣∣∣∣∣∣2 = 1. (3.33)

Note that vi√
ci

is again an eigenvector of the corresponding eigenvalue λi. In
other words: each vi can be made such that this vector has unit length. As a
consequence, WR is an orthogonal matrix in this case.

�

Theorem 3.2 can even be generalized for the case that A does not have
distinct eigenvalues, which is a consequence of Lemma 3.4. In this lemma we use
the term ‘orthogonally diagonalizable’: P is an orthogonal matrix if P−1 = PT

holds and furthermore, a square matrix A is orthogonally diagonalizable, if there
exists an orthogonal matrix P such that P−1AP is a diagonal matrix.

Lemma 3.4 An n × n matrix A is orthogonally diagonalizable if and only if
A is a symmetric matrix.

The proof is difficult and is omitted. The interested reader is referred to O’Nan
& Enderton [35] (pp. 405–410). The ‘only if’–statement of Lemma 3.4 has also
been proved in Golub & Van Loan [23] (Theorem 8.1.1).



28 Chapter 3. Some Theoretical Results

3.3 Left and Right Eigenvectors for Complex Matri-
ces

In this section, we assume matrix A to be complex-valued. This is of our
interest, since matrix A in the linear system Ap = f of the DHP is also complex,
due to absorbing boundary conditions, see Section 2.5.

3.3.1 Right Eigenvectors

The same theory, as for real-valued A, can be used in the complex case. Hence,
we can again construct

AWR = WRΛR. (3.34)

3.3.2 Left Eigenvectors

In the complex case, a left eigenvector for A satisfies

vH
L A = λLvH

L , (3.35)

where vH
L is called the Hermitian of vL and is defined by xH ≡ xT for arbitrary

vector or matrix x. In other words, xH is equal to the transpose of the conjugate
of x.

Similar to the right eigenvectors, if (λL)1, (λL)2, . . . , (λL)r are all eigenvalues
and (vL)1, (vL)2, . . . , (vL)r are the corresponding left eigenvectors of A, then
again the set of left eigenvectors forms a basis of a vector space. If this vector
space is of dimension n, then we can construct an n × n matrix WH

L whose
columns are the components of the left eigenvectors, which has the property
that

WH
L A = ΛLWH

L , (3.36)

where ΛL is again the diagonal matrix with (λL)1, (λL)2, . . . , (λL)n.

3.3.3 Relation Left and Right Eigenvectors

In the same way as in the real-valued case, we can easily show that the left and
right eigenvectors can be chosen such that WH

L WR = I, see Theorem 3.3.

Theorem 3.3 Let A be a complex diagonalizable matrix. Then WH
L and WR

can be constructed such that WH
L ·WR = I.

Proof. We choose WH
L = W−1

R , which is possible since A is diagonalizable.
The further proof is analogous to the proof of Theorem 3.1, by using AH instead
of AT .

�

Observe again that if both WR and WL exist, then WH
L ·WR = I can always be

formed, independent of the structure of A. The simplest choice is WH
L = W−1

R .
If A has special properties, then WH

L can be easier computed. In the next
subsections, we deal with the situation when A is Hermitian and when A is
complex-symmetric.
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3.3.4 Properties of Hermitian Matrix

The properties of symmetric matrices in subsection 3.2.4 can be generalized to
Hermitian matrices.

Lemma 3.5 Let A be a Hermitian matrix. Then

(a) the eigenvalues of A are real;

(b) the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. The proofs are almost identical to the proofs of Lemma 3.3. In these
proofs, AH has to be used instead of AT .

�

The following theorem shows how the left eigenvectors can be computed easily,
when the right eigenvectors are known.

Theorem 3.4 Let A be a Hermitian matrix, i.e., AH = A.

(a) Assume WR to be the right eigenvector matrix. Then, the left eigenvector
matrix can always be chosen such that WL = WR.

(b) Let A have distinct eigenvalues. Then, there exists a right eigenvector
matrix WR and a left eigenvector matrix WL = WR such that these
satisfy WH

L WR = I.

Proof of (a). Since AH = A holds, the following expressions are equivalent:

AWR = WRΛR;

(AWR)H = (WRΛR)H ;

WH
RAH = ΛH

RWH
R ;

WH
RA = ΛRWH

R ;

(3.37)

where we have used the fact that diagonal matrix ΛR consists of only real values
(Lemma 3.5). We have derived that WH

L = WH
R , implying WL = WR.

�

Proof of (b). The proof is analogous to the proof of Theorem 3.2.

�

Again, it is possible to generalize this theorem to the case, when the Hermi-
tian matrix does not have distinct eigenvalues, which follows from Lemma 3.6.

Note first that P is an unitary matrix if P−1 = PH (thus also PHP = I)
and furthermore, a square matrix A is unitary diagonalizable if there exists an
unitary matrix P such that P−1AP is a diagonal matrix.

Lemma 3.6 Let A be a Hermitian matrix, then A is unitarily diagonalizable.

The proof is almost the same as the proof of Lemma 3.4, see also O’Nan &
Enderton [35].
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3.3.5 Properties of Complex-Symmetric Matrix

Let A be a complex-symmetric matrix, i.e.,

AT = A, AH 6= A. (3.38)

In general, this is not an useful symmetry. However, it can be shown that, in
this case, we are able to choose WL which satisfies WL = WR.

Theorem 3.5 Let A be a complex-symmetric matrix and let WR be a right
eigenvector matrix corresponding to A. The left eigenvector matrix WL can be
chosen such that WL = WR.

Proof. Since AT = A holds, the following expressions are equivalent:

AWR = WRΛR;

(AWR)T = (WRΛR)T ;

WT
RAT = ΛT

RWT
R;

WT
RA = ΛRWT

R,

(3.39)

leading to WH
L = WT

R and therefore WL = WR.

�

Next, by definition, A is normal if AAH = AHA. Lemma 3.7 can now be
proved.

Lemma 3.7 A square matrix A is unitarily diagonalizable if and only if A is
normal.

The proof (using the Schur decomposition) is omitted here. The reader is
referred to Theorem 7.1.3 & Corollary 7.1.4 of Golub & Van Loan [23].

Note that the complex-symmetric matrix A is not unitarily diagonalizable
in general, since we usually have AAH 6= AHA and hence, Lemma 3.7 does not
hold. However, the eigenvectors of A are orthogonal to each other, assuming
that A has distinct eigenvalues, see the next lemma.

Lemma 3.8 The eigenvectors corresponding to distinct eigenvalues of a complex-
symmetric matrix are orthogonal.

Proof. The proof is exactly identical to the proof of Lemma 3.3.

Theorem 3.6 Let A be a complex-symmetric matrix with distinct eigenvalues.
Then there exists a WR and a WL = WR such that these satisfy WH

L WR = I.

Proof. We have to prove that WT
RWR = I. This can be done almost identical

to the proof of Theorem 3.2. Instead of ci > 0 ∀i we use ci ∈ C\{0} ∀i.

�

In contrast to the real-symmetric and Hermitian case, it is not clear whether
or not Theorem 3.6 can be generalized to the case of matrix A with non-distinct
eigenvalues. This is left for further research.
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3.4 Summary of Left and Right Eigenvectors

In this section we summarize the results of the previous two sections about WL

and WR.

Case I Assume A to be a real and diagonalizable matrix.

• The decomposition WT
LWR = I can always be made by choosing

WT
L = W−1

R .

• In the case of a real-symmetric A, we can even choose WL = WR

such that WT
LWR = I still holds.

Case II Assume that A to be complex and diagonalizable.

• The decomposition WH
L WR = I can always be made by choosing

WH
L = W−1

R .

• In the case of a Hermitian A, we can even choose WL = WR such
that WH

L WR = I still holds.

• In the case of a complex-symmetric, A with distinct eigenvalues we
can choose WL = WR such that WH

L WR = I still holds.

In the DHP, we have seen that matrix A is complex-symmetric (Section 2.5),
so the properties given in Section 3.3.5 can be applied. If we use Dirichlet
instead of absorbing conditions, matrix A turns out to be symmetric. In this
case the properties of Section 3.2.4 are valid.

Remark

We end with a final remark that sometimes in applications one applies Gram-
Schmidt (or other orthogonalization procedures) to modify WR or WL. There
are three reasons to do this:

1. scaling WR or WL such that WH
L WR = I;

2. forcing vi⊥vj if λi = λj ;

3. ensuring that WH
L WR = I holds, when an approximation of WR or WL

is used.
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3.5 Conjugate Inner Product

The inner product 〈·, ·〉 is defined in the following sense.

Definition 3.1 Let u, v and w be vectors in Cn and let c be a scalar in C.
Then 〈·, ·〉 is an inner product if it satisfies the following properties:

i. 〈u, v〉 = 〈v,u〉;

ii. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉;

iii. 〈cu, v〉 = c 〈u, v〉;

iv. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 if and only if u = 0.

The standard complex inner product 〈·, ·〉 is defined by

〈x,y〉 =
n∑

i=1

xi · yi, (3.40)

where x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T are complex-valued vec-
tors. It can be shown that, therefore, this inner product satisfies all conditions
of Definition 3.1. However, in this thesis we use the ‘conjugate inner product ’:

〈x,y〉conj =
n∑

i=1

xi · yi. (3.41)

Observe that (3.41) is not an inner product, but a so-called semi inner product
since, for some complex vector x, it does not satisfy 〈x,x〉 ≥ 0 (fourth condition
of Definition 3.1). For example, taking x = (i, i)T , we obtain 〈x,x〉 = −2.

In this thesis we write 〈·, ·〉 instead of 〈·, ·〉conj for simplicity and we call this
the ‘conjugate inner product’. Furthermore, in some iterative methods, where
we consider the ‘real’ complex inner products as in (3.40), we denote these with
(·, ·).

Moreover, in the following if we talk about ’orthogonality’ then it means
conjugate orthogonality on this conjugate inner product, i.e.,

〈·, ·〉 = 〈·, ·〉conj = 0. (3.42)

3.6 Solution as Linear Combination of Eigenvectors

In iterative methods, the analysis of eigenvectors often gives a lot of information
about the solution. A main theorem, which forms the basis of this analysis, is
given in Theorem 3.7.

Theorem 3.7 Let Ap = f be a linear system where f is a given vector of length
n and A a non-singular complex-symmetric n × n matrix with distinct eigen-
values. Then, p can be written as the linear combination of the eigenvectors vi,
i.e.,

p = c1v1 + . . . + cnvn, (3.43)
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where the coefficients ci are equal to

ci =
〈p, vi〉
〈vi, vi〉

, (3.44)

assuming that 〈vi, vi〉 6= 0 ∀i = 1, . . . , n.

Proof. Using Lemma 3.3, one finds that the eigenvectors corresponding to
distinct eigenvalues are orthogonal. Since there are in this case exactly n eigen-
vectors vi which are linear independent by definition, they span the vectorspace
Cn. The solution p is also an element of Cn. Therefore, we can construct

p = c1v1 + . . . + cnvn, (3.45)

with ci ∈ C for all i = 1, . . . , n.
Moreover, for a fixed i = 1, . . . , n, we take the inner product of each side of

(3.45) with vi:

〈p,vi〉 = 〈c1v1 + . . . + cnvn,vi〉
= c1 〈v1,vi〉+ . . . + cn 〈vn,vi〉
= ci 〈vi,vi〉 ,

(3.46)

since 〈vi,vj〉 = 0 for i 6= j by orthogonality of the eigenvectors. Hence,

ci =
〈p,vi〉
〈vi,vi〉

, (3.47)

as claimed.

�

Note that 〈vi,vi〉 = ||vi||2 6= 0 does not always hold: let for instance v =
(1 + i, 1− i)T , then ||vi||2 = 0.

The consequence of this theorem is that if k < n, then pk defined by

pk = c1v1 + . . . + ckvk, (3.48)

is an approximation of p. Note that in the case of k = n, then it yields p = pn.
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3.7 Eigenvalue Properties of Special Systems

The theorems, given in this section, will be very useful in our further analysis
of eigenvalues in preconditioned systems in Chapters 5 and 8.

We start with Theorem 3.8, which says that the spectrum of AB and BA
are exactly the same.

Theorem 3.8 Let A and B be two arbitrary invertible matrices. Then, the
systems AB and BA have the same eigenvalue distribution.

Proof. Let λ be an arbitrary eigenvalue of A with corresponding eigenvector v.
Then, the following expressions are equivalent:

ABv = λv;
BABv = λBv;
BAw = λw,

(3.49)

where w = Bv is an eigenvector of BA corresponding to λ. Considering (3.49),
λ is indeed an eigenvalue of AB if and only if λ is also an eigenvalue of BA.

�

Note that the definition of ‘invertible matrix’ forces A and B in Theorem 3.8
to be square.

In Lemma 3.3, it has been proved that a symmetric matrix has real eigenval-
ues. We note that if A and B are symmetric, then in general AB and BA are
not symmetric 2. Therefore, AB and BA can also have complex eigenvalues.
However, if we also assume A to be positive semi definite (or briefly: PSD),
then we can prove that all eigenvalues of AB and BA are real, see Theorem
3.9. In preparation of this theorem, we need the definition and some properties
of A

1
2 .

By definition, an n× n matrix A with real entries is PSD if xTAx ≥ 0, for
all nonzero vectors x with also real entries.

Assume that matrix Λ consists of the eigenvalues of A and WR is the
corresponding right eigenvector matrix such that A = WRΛW−1

R , i.e., A is
diagonalizable with matrices WR and Λ. Then A

1
2 is defined by

A
1
2 = WRΛ

1
2 W−1

R , (3.52)

if all diagonal elements of Λ are non-negative.

Lemma 3.9 Let A be an invertible matrix which is PSD. Then
2For example, assume we have symmetric matrices:

A =

»
2 −1
−1 2

–
, B =

»
1 0
0 2

–
. (3.50)

Then, matrix AB turns out to be non-symmetric:

AB =

»
2 −2
−1 4

–
. (3.51)



3.7. Eigenvalue Properties of Special Systems 35

(a) A
1
2 and A− 1

2 exist;

(b) A
1
2 is symmetric, if A is also symmetric.

Proof of (a). Observe that A is even positive definite (PD), since A is invertible
(Theorem 5 of Lay [30]). In this case, all eigenvalues are positive (see Corollary
4.2.3 of Golub & Van Loan). Therefore, matrix Λ consists of positive elements
and, by definition, A

1
2 and A− 1

2 exist.

�

Proof of (b). Matrix A
1
2 is symmetric, since(

A
1
2

)T
=

(
WRΛ

1
2 W−1

R

)T
= W−T

R Λ
1
2
TWT

R

=
(
WT

R

)T Λ
1
2 W−1

R = WRΛ
1
2 W−1

R = A
1
2 ,

(3.53)

using the fact that WT
RWR = I (Lemma 3.4).

�

Now, the following theorem can be proved.

Theorem 3.9 Let A and B be invertible matrices. Moreover, let A be also
PSD. Then

(a) BA has eigenvalues which are all real;

(b) AB has also only real-valued eigenvalues.

Proof of (a). Since A is PSD, matrix A
1
2 exists and is also symmetric

(Lemma 3.9). Now, each arbitrary eigenvalue λ with corresponding eigenvec-
tor v of BA satisfies

BAv = λv. (3.54)

The above expression is equivalent with

A
1
2 BAv = λA

1
2 v;

A
1
2 BAA− 1

2 A
1
2 v = λA

1
2 v;

A
1
2 BAA− 1

2 w = λw;

A
1
2 BA

1
2 w = λw,

(3.55)

where w = A
1
2 v is an eigenvector of A

1
2 BA

1
2 . Observe now that A

1
2 BA

1
2 is

symmetric, since (
A

1
2 BA

1
2

)T
= A

1
2
TBTA

1
2
T = A

1
2 BA

1
2 . (3.56)

The consequence is that each eigenvalue λ is real-valued (Lemma 3.3). There-
fore, matrix BA has indeed real eigenvalues.
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�

Proof of (b). The proof is almost identical to the proof of (a).
Observe first that, since A is PSD, matrix A− 1

2 exists and is also symmetric
(Lemma 3.9). Next, each eigenvalue λ with corresponding eigenvector v of the
system AB has to satisfy

ABv = λv. (3.57)

Multiplying both sides with A− 1
2 leads to

A
1
2 Bv = λA− 1

2 v, (3.58)

which can be rewritten in
A

1
2 BA

1
2 w = λw, (3.59)

where w = A− 1
2 v. Now, the matrix A

1
2 BA

1
2 is symmetric (see Eq. (3.56)) and

therefore all eigenvalues λ have to be real -valued.

�

The last lemma of this chapter deals with eigenvalues of A and its conjugate
A.

Lemma 3.10 Let A be an complex diagonizable matrix. If λ is an eigenvalue
of A, then its conjugate λ is an eigenvalue of A.

Proof. Let λ being an eigenvalue and v an corresponding eigenvector of A.
Then the following statements are equivalent:

Av = λv;
Av = λv;
Aw = λw,

(3.60)

where w = v is the corresponding eigenvector of λ.

�



Chapter 4

Iterative Methods and
Preconditioners

In Chapter 2, we have seen that the 2-dimensional (discrete) Helmholtz problem
(HP) leads to the following linear system:

Ap = f, A ∈ Cn×n, (4.1)

where A is an n × n matrix and p and f are both complex vectors with n
elements. Moreover, matrix A is sparse and complex-symmetric. We intend to
solve (4.1) where p is the unknown vector.

In general, this linear system (4.1) can be solved by direct numerical meth-
ods, like Gauss-elimination or nested dissection method. A case with 1000 ×
1000 gridpoints has been tested on a workstation and the nested dissection
method can indeed be applied to solve the linear system efficiently, see Plessix
& Mulder [37]. In 3-dimensional cases, direct methods are in general inefficient
to use. For instance, the nested dissection method gives problems because the
amount of fill-in is too large, see Erlangga [14].

However, solution methods with an acceptable efficiency can still be pur-
sued by implementing iterative numerical methods for the linear system (4.1).
Recently, several iterative methods have been developed. These methods are
based on Krylov subspaces, see e.g. Saad [39]. In Section 4.1 of this chapter,
we first describe these Krylov subspaces shortly.

The conjugate gradient (CG) method is a so-called ‘Krylov’ method which
is the most popular one. Moreover, the algorithm of the CG method is of
importance as a basis for deriving several related Krylov iterative methods. For
a full treatment of CG, one is referred to Saad [39], Vuik [53] or Shewchuk [41].
However, the CG method is not applicable to solve the HP, because the linear
system has to be real and positive-definite to obtain an accurate solution, see
e.g. section 6.7 of [39].

In Section 4.2 of this chapter, we describe some Krylov methods relevant
to the HP. Since we aim at the numerical solution of a complex-symmetric and
(strongly) indefinite linear system, we consider only iterative methods feasible
for this kind of linear systems. Bi-CGSTAB, GMRES and GCR are the Krylov
iterative methods, which are treated in this chapter.

37
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In practice, standard iterative methods are not sufficiently efficient for solv-
ing a sparse and large linear system without modifications. It is known (see e.g.
[39, 53]) that in order to obtain a very efficient algorithm, the linear system
should be transformed into a formulation which is identical and therefore gives
the same solution, but which is much faster to solve. This process is called pre-
conditioning. Without this process, Krylov iterative methods are inattractive.
Therefore, we treat some preconditioners in Section 4.3.

4.1 Krylov Subspaces

In standard iterative methods, the iterant in the (j + 1)-th step can be deter-
mined from the j-th step in the following way:

pj+1 = pj + M−1rj , (4.2)

where the preconditioner M is an n × n matrix and the j-th residual rj is
defined as

rj = f−Apj , (4.3)

which is a measure of the difference of the iterative and the exact solution of
the problem. If we work out the first iterations of (4.2), one obtains

p0

p1 = p0 + M−1r0

p2 = p1 + M−1(f−Ap0 −AM−1r0)
= p0 + 2M−1r0 −M−1AM−1r0

p3 = . . .
...

(4.4)

Using (4.4), we get the following expression for (4.2):

pj+1 ∈ p0 + span
{
M−1rj ,M−1A(M−1rj), . . . , (M−1A)j−1(M−1rj)

}
. (4.5)

Subspaces of the form

Kj(A, r0) = span
{
r0,Ar0,A2r0, . . . ,Aj−1r0

}
, (4.6)

are called Krylov subspaces with dimension j, belonging to A and r0. Using
(4.6), we get the following expression for standard iterative methods:

pj+1 ∈ p0 +Kj(M−1A,M−1r0). (4.7)

Expression (4.7) is in fact equivalent to (4.2) and (4.5).
From (4.7), we can observe that Krylov subspace methods rely on finding a

matrix M and a basis for Kj , such that the iterative method converges fast with
reasonable accuracy and efficiency with respect to memory and computational
time.

Standard iterative methods like Gauss-Jacobi and Gauss-Seidel are de-
scribed in [39, 53]. If we denote A = D − L − LT with D the matrix with
the main diagonal of A and L the (strict) lower triagonal part of A, then we
get the following expressions for matrix M:
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• Gauss-Jacobi (GJ): MGJ = D;

• Gauss-Seidel (GS): MGS = D− L.

It is well-known that these methods converge very slowly in (3-dimensional)
practical problems. However, the residuals during the GS process decrease fast
in the first iterations. Due to this nice property, the GS method is used in our
successive refinement methods, see Chapter 11 and Appendix K.

4.2 Krylov Iterative Methods

As earlier mentioned, the CG method is the most prominent Krylov iterative
method for solving a sparse system Ap = f, where A has to be Hermitian
and positive definite. However, matrix A in the HP is neither Hermitian nor
positive definite, in general.

The biconjugate gradient method (Bi-CG) takes another approach which
is applicable for non-Hermitian and indefinite systems, see Fletcher [17]. This
method replaces the orthogonal sequence of residuals by two mutually orthogo-
nal sequences, at the price of no longer providing a minimization, but with the
advantage that it can be used for non-Hermitian systems with short recurrences.

The conjugate gradient squared (CGS) method was developed in 1984 by
Sonneveld [47], where a ‘contraction’ operator in Bi-CG is applied twice. Often,
one observes a speed of convergence for CGS that is about twice as fast as for
the Bi-CG method, which is in agreement with the observation that the same
contraction operator is applied twice. Moreover, CGS requires about the same
number of operations per iteration as the Bi-CG method, but it does not involve
computations with AH . Hence, in circumstances where computation with AH

is impractical, CGS may be attractive.
In this section, we describe shortly other Krylov iterative methods (respec-

tively Bi-CGSTAB, GMRES and GCR) which are used to solve the HP in this
thesis. Bi-CGSTAB and GMRES are as subroutines available in MATLAB,
while we have to implement GCR in MATLAB before we are able to use it.

4.2.1 Bi-CGSTAB Method

The CGS algorithm is based on squaring the residual polynomial and therefore,
it shows often irregular convergence patterns which may lead to substantial
build-up of rouding errors, see Van der Vorst [49]. The biconjugate gradient
stabilized (Bi-CGSTAB) algorithm is a variation of CGS, which was developed
by Van der Vorst [49] to remedy this difficulty. Instead of computing the residual
vector r̃j = R2

j (A)r̃0 (where Rj(A)is the j-th degree polynomial in A) in CGS,
Bi-CGSTAB computes

r̃j = Qj(A)Rj(A)r0, (4.8)

with Qj(A) a new polynomial which is defined recursively at each step, with
the goal of ‘stabilizing ’ or ‘smoothing ’ the convergence behavior of the original
algorithm. Specifically, Qj is defined by the simple recurrence

Qj+1(t) = (1− ωjt)Qj . (4.9)
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This is equivalent with

Qj+1(t) = (1− ω0t)(1− ω1t) · · · (1− ωjt), (4.10)

in which the scalars ωk for all k = 0, 1, . . . , j are to be determined. This is done
by minimizing r̃j as in (4.8) with respect to the scalars ωk.

The complete derivation of Bi-CGSTAB can be found in [39, 49]. The sketch
of the resulting algorithm is given below.

Algorithm 4.1: Biconjugate Gradient Stabilized (Bi-CGSTAB)

1. Compute r0 := f−Ap0

2. Set z0 := r0, α0 := z̃0
(Az0,r̃0) and s0 := r0 − α0Az0

3. Choose r̃0 arbitrary

4. For j := 0, 1, . . . , until convergence Do :
5. wj := Azj

6. vj := Asj

7. αj := z̃j

(wj ,r̃0)
8. sj := rj − αjwj

9. ωj := (vj ,sj)
(vj ,vj)

10. pj+1 := pj + αjzj + ωjsj

11. rj+1 := sj − ωjvj

12. βj := αj

ωj

ρj+1

ρj

13. zj+1 := rj + βj(zj − ωjwj)
14. EndFor

The exact definition of the quantities z̃j and ρj are omitted here, but they can
be found in Saad [39].

The advantage of the method is that it uses short recurrences, but, unfor-
tunately, it is based on a semi-optimality property. As a result, more matrix-
vector products are needed and no convergence properties have been proved.
One observes in the algorithm that Bi-CGSTAB requires two matrix-vector
products and four inner products, i.e., two inner products more than the bicon-
jugate gradient method or the conjugate gradient squared method.

Investigation of the Bi-CGSTAB algorithm has been reported in Van der
Vorst [49] for various applications and compared to Bi-CG and CGS. In general,
Bi-CGSTAB converges more smoothly than CGS of Bi-CG. However, the con-
vergence rate is typically the same. In some non-Hermitian cases, it is revealed
that when CGS fails to converge and shows spurious irregularity, Bi-CGSTAB
still converges. The convergence rate is also faster than CGS and Bi-CG.

Though Bi-CGSTAB is an attractive alternative to CGS, further investiga-
tion reveal a weakness of this algorithm, as mentioned in Erlangga [14]. If the
parameters ωk becomes very close to zero during the recursion, the algorithm
may stagnate or break down. Numerical experiments confirm that this is likely
to happen if A is real and has complex eigenvalues with imaginary part larger
than the real part. To overcome this, improvements to Bi-CGSTAB have been
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proposed, resulting in Bi-CGSTAB(l) with l ∈ N, see Sleijpen and Fokkema
[43]. This is a modification by forming a general l -order minimum-residual
polynomial, instead of using l = 1 in the original Bi-CGSTAB.

Finally, after convergence reached with the original Bi-CGSTAB, it is always
necessary to compare the norm of the updated residual to the exact residual
||f − Apk||2, see Vuik [53]. If ’near’ break down had occurred, then these
quantities may be different by several orders of magnitude. In such a case,
methods as Bi-CGSTAB(l) should be applied.

4.2.2 GMRES Method

In Bi-CGSTAB, we have seen that it is based on short recurrences and on
only a semi-optimality property. Another kind of Krylov methods is the (full)
generalized minimal residual (GMRES) method (Saad & Schultz [40]), which
minimizes the residual norm over the Krylov subspace. In order to reach this,
it generates a sequence of orthogonal vectors with long recurrences, due to the
non-Hermitian matrix A.

The method applies a variant of the Arnoldi’s procedure (Arnoldi [4]) to
find a set of orthonormalized vectors. This procedure and some properties are
given in Appendix A.

The complete derivation of GMRES can be found in [39, 40]. The sketch of
the resulting GMRES-algorithm is given below.

Algorithm 4.2: (Full) Generalized Minimum Residual (GMRES)

1. Choose x0 and compute r0 := f−Ap0, β := ||r0||2 and v1 := r0/β

2. Define the (m+1)×m matrix Hm := {hi,j}1≤i≤m+1,1≤j≤m. Set Hm := 0

3. For j := 1, 2, . . . , until convergence Do :
4. wj := Avj

5. For i := 1, 2, . . . , j Do :
6. hi,j := (wj ,vi)
7. wj := wj − hijvi

8. EndFor

9. hj+1,j := ||wj ||2
10. vj+1 := wj

hj+1,j

11. EndFor
12. Compute ym := arg miny ||βe1 − H̄my||2
13. Compute pm := p0 + Vmym

Line 2 to 10 represent the Arnoldi’s algorithm for orthogonalization. More-
over, the quantities Hm,Vm and e1 are defined as in Proposition A.1.

The GMRES algorithm may break down if hj+1,j = 0 at iteration step j
(see line 9). However, this situation implies that the residual vector is zero and
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therefore, the algorithm gives the exact solution at this step. Hence, examina-
tion of value hj+1,j becomes important.

For GMRES, we see in many cases a super-linear convergence behavior
comparable to CG. Recently, some of these results are proved for GMRES by
Van der Vorst & Vuik [50].

If we denote the dimension of the square matrix A with n, then the GM-
RES method (like any orthogonalizing Krylov subspace method) will converge
in no more than n steps, where we consider exact arithmetics. In practical
situation and thus also in the HP, iteration number n is large and therefore the
GMRES algorithm becomes impractical, as a consequence of a lack of memory
and increasing computational requirements. This is understandable from the
fact that, during the Arnoldi steps (lines 2-10), the number of vectors requiring
storage increases. There are several ways to remedy this problem, like restarting
and truncating, see Saad [39] or Vuik [53].

The restarted GMRES method is denoted by GMRES(m), where one stops
the full GMRES after m iterations to form the approximated solution and,
thereafter, one applies this as starting vector for a following application of
GMRES. However, restarting leads to the break of many of the nice properties
of the full GMRES. For instance, the optimality property is only valid inside a
GMRES(m) step and the super-linear convergence behavior is lost, which are
severe drawbacks of the GMRES(m) method.

4.2.3 GCR Method

Slightly earlier than the GMRES method, Eisenstat, Elman & Schultz [13]
proposed the generalized conjugate residual (GCR) method. This method gen-
erates also a sequence of orthogonal vectors with long recurrences and it is
based on an optimal property.

For the full derivation and other properties like convergence results of the
GCR method, we refer to [13]. The GCR-algorithm is given as follows:

Algorithm 4.3: Generalized Conjugate Residual (GCR)

1. Choose p0 and compute r0 = f−Ap0

2. For j := 1, 2, . . . , until convergence Do :
3. sj := rj−1

4. vj := Asj

5. For i := 1, 2, . . . , j − 1 Do :
6. α := (vj ,vi)
7. vj := vj − αvi, sj := sj − αsi

8. EndFor

9. vj := vj

||vj ||2 , sj := sj

||vj ||2
10. pj := pj−1 + (rj−1,vj) sj



4.2. Krylov Iterative Methods 43

11. rj := rj−1 + (rj−1,vj)vj

12. EndFor

The vectors sj and vj cost two times as much memory as for GMRES, while
the rate of convergence of GCR and GMRES are comparable, i.e., the number
of iterations using full GCR and GMRES are approximately the same, which is
in fact the result of optimizing the same norm and choosing the same search di-
rections. However, there are examples where GCR breaks down, while GMRES
still converges.

When the required memory is not available, the GCR method can be restar-
ted or truncated as in GMRES. In general, we see that truncated GCR methods
have a better convergence behavior, especially if super-linear convergence plays
an important role. Therefore, if restarting or truncation is necessary, truncated
GCR is generally better than restarted GMRES (see Vuik [53]).

4.2.4 Starting Vector and Termination Criterium

In Algorithms 4.1–4.3, the starting vector p0 and the termination criterium are
still undefined. In this subsection we specify these quantities.

Starting Vector

We note first that the choice of the startvector p0 can be crucial in results. For
instance, if one chooses a starting vector relatively close to the solution, the
iterative method converges fast in general. There are several methods available
to choose a starting vector suitable, see [39, 53].

We do not pay attention to starting vectors, since in this thesis we are mainly
interested in properties of preconditioners which are in general independent of
starting vectors. In all testruns of this thesis, if the starting vector is not
defined, we start with

p0 = 0, (4.11)

in other words: the zero vector is used as starting vector in all algorithms.

Termination Criterium

In Algorithms 4.1–4.3 of the Krylov iterative methods, no criteria have been
given to stop the iterative process. In general, the iterative method should be
stopped if the approximate solution is accurate enough. A good termination
criterion is very important for an iterative method. If the criterion is too weak,
the approximate solution is useless, whereas a too severe criterion gives an
iterative solution method which never stops or costs too much work. Several
termination criteria can be found in [39, 53].

In this thesis we apply the following termination criterium:

ϑ(pi, ε) :=
||f−Api||2

||f||2
< ε (4.12)
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where we call ϑ(pi, ε) the relative residual (RR) criterium and moreover, ε > 0
is called the tolerance of the method. For an accurate solution of the HP, we
choose

ε = 10−6. (4.13)

Now, in each algorithm of 4.1–4.3, we replace the line

For j := 1, 2, . . . , until convergence Do , (4.14)

by the new line
For j := 1, 2, . . . , until ϑ(pi, ε) Do . (4.15)
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4.3 Preconditioners

Lack of robustness and efficiency are widely recognized weaknesses of iterative
solvers, compared to direct solvers. This is mainly the consequence of the fact
that the convergence behavior of Krylov subspace methods depends strongly
on the eigenvalue distribution of the coefficient matrix A.

Both robustness and efficiency can be improved by using preconditioning.
Preconditioning is simply a means of transforming the original linear system
into one which has the same solution, but which is likely to be faster to solve
with an iterative solver.

If we solve Ap = f with a preconditioner M, then we could solve the fol-
lowing preconditioned system:

M−1Ap = M−1f, (4.16)

where we assume M and A being matrices with sizes n×n. This preconditioned
system (4.16) is known as a left preconditioned system. Another preconditioned
systems 1 can be found in Saad [39].

In Appendix B one can find the preconditioned Bi-CGSTAB, GMRES and
GCR, which are slightly different compared to Algorithms 4.1–4.3.

We are looking for a preconditioner M such that (4.16) is faster to solve,
relative to the original system. The ideal choice is M = A, which is obviously
impractical, since in general the inverse of A is expensive to compute. A good
preconditioner has to satisfy the following requirements:

(i) The system Mx = b, with b a known vector and x an unknown vector
of length n, should be solvable at low cost;

(ii) the eigenvalues of M−1A should be clustered (around 1).

The second requirement can be explained as follows. A linear system ob-
tained from discretizations of a PDE can have a strongly distributed spectrum
and can result in an indefinite system, i.e., the spectrum consists of both pos-
itive and negative real eigenvalues. For such problems, the iterative methods
show slow convergence or even breakdown. A good preconditioner, which leads
to fast convergence, can transform the original linear system into a system with
a clustered spectrum, i.e., the spectrum consists of eigenvalues which are con-
centrated in a close region. It is also important that a preconditioned system
does not have eigenvalues close to zero, which causes also slow convergence
generally.

We can distinguish two approaches for constructing preconditioners:

• Matrix -based approach. Within this class we have for instance:
1In general, we aim to find ML and MR such that

M−1
L AM−1

R y = M−1
L f, p = M−1

R y. (4.17)

is easier to solve. In this thesis, the diagonal (D) and incomplete cholesky (IC) preconditioners
apply (4.17) to force a symmetric preconditioned system, which can be favorable in iterative
methods.
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– (D): diagonal preconditioner (Van der Sluis [44]),
– (IC): incomplete Choleski preconditioners (e.g. Made [31]);
– (ILU(p)): several variants of preconditioners based on incomplete

LU-factorization (see Saad [39]).

• Operator -based approach. Examples of this kind of preconditioners are:

– (CSL): complex shifted Laplace preconditioner (Erlangga, Vuik &
Oosterlee [15, 52]);

– (AILU): analytic ILU preconditioner (Gander & Nataf [18]);
– (SoV): preconditioner based on separation of variables (Plessix &

Mulder [37]).

In general, the reliability of iterative techniques, when dealing with various
applications, depends much more on the quality of the preconditioner than on
the particular Krylov subspace accelerators used.

As earlier mentioned in Chapter 1, we consider mainly the SoV and CSL
preconditioners in this thesis. In the next subsections, we give a short descrip-
tion of these operator-based preconditioners. Moreover, in Appendix C the D
and IC preconditioners are described, which are used in this thesis to compare
some results with SoV and CSL in Chapter 6.

4.3.1 CSL Preconditioner

In Chapter 2, we have seen that the linear system Ap = f is derived from:
−∆p(x)− k2(x)p(x) = f(x), x = (x, y) ∈ Ω;

∂
∂np(x) + ikp(x) = 0, x ∈ ∂Ω,

(4.18)

where we have taken domain Ω as a computational box, i.e., Ω = (0, L)2, L > 0.
Now, the Helmholtz operator in (4.18) can be written as:

LH = −∆− k2(x), (4.19)

and in fact, we can say that A is based on LH . More concretely, matrix A can
be splitted into two parts: the Laplace matrix −B and the additional diagonal
matrix k2(x)I such that

A = −B− k2(x)I. (4.20)

Next, we introduce a complex coefficient of the form α + iβ and we define the
following so-called Shifted Laplace (SL) operator:

LSL = −∆ + (α + βi)k2(x), (4.21)

where α, β ∈ R are parameters with α ≥ 0. Then the SL-preconditioner MSL

is based on LSL and we can write:

MSL = −B + (α + βi)k2(x)I. (4.22)

Note that the condition α ≥ 0 is required to ensure MSL being positive semi-
definite (PSD), such that for instance multigrid can be applied to solve Mx = b.

Well-known choices for parameters α, β are
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• α = 0 and β = 0 (Bayliss, Goldstein & Turkel [6]);

• α = 1 and β = 0 (Laird [29]);

However, Erlangga, Vuik & Oosterlee [15, 52] have shown for the problem with
Dirichlet boundaries that the choices

α = 0 and β = 1, (4.23)

leading to the Complex Shifted Laplace (CSL) preconditioner MCSL:

MCSL = −B + ik2(x)I, (4.24)

shows better results than the earlier mentioned choices of Laird and Bayliss
et.al. More strongly: The choices α = 0 and β = 1 are the optimal choices of the
parameters 2, analyzing the eigenvalue distribution of M−1

CSLA with Dirichlet
boundary conditions, see [15, 52].

More details about the CSL preconditioner can be found in [15, 52], includ-
ing some properties about the spectra and condition numbers.

4.3.2 SoV Preconditioner

Plessix & Mulder [37] have proposed a preconditioner based on separation of
variables (SoV).

In (4.19), we have seen that the Helmholtz operator can be viewed as a
Laplace operator −∆ with an additional term −k2(x). For the Laplace equa-
tion (with or without an additional constant term), an analytic solution can be
obtained using the separation–of–variables method, see for instance Heikkola,
Kuznetsov & Lipnikov [25] and Rossi & Toivanen [38]. One may consider the
same solution procedure, which could work nicely for the Helmholtz equation.
However, the presence of the inhomogeneous wavenumber k(x) actually pre-
vents application of the same method on the latter problem.

Fortunately, we can decompose k(x) into a formulation suitable for a separation–
of–variables method, which can be applied as a preconditioner for solving the
Helmholtz equation. Wavenumber k(x) is decomposed in the following way:

k2(x) = k2
x(x) + k2

y(y) + k̃2(x, y), (4.25)

where k̃(x, y) satisfies the conditions:
∫
x k̃2(x, y) dx = 0 ∀y,∫
y k̃2(x, y) dy = 0 ∀x.

(4.26)

The uniqueness of this decomposition is proved in [37].

2Actually, this is shown for normal equations and with Dirichlet conditions, but in numer-
ical experiments this result appears to hold also for Bi-CGSTAB and GMRES as iterative
methods and using Sommerfeld absorbing conditions (S-ABC).
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Now, the SoV preconditioner can be written as

MSoV = −B− k̂2(x)I, (4.27)

where k̂2(x) = k2
x(x) + k2

y(y) is the ‘SoV wavenumber ’, i.e., k̃(x, y) = 0 is
assumed in the preconditioner. Moreover, the SoV preconditioner applies av-
eraged values of each absorbing boundary resulting in Dirichlet conditions. In
other words, instead of absorbing boundary conditions, as in (4.18), we use the
following condition for each boundary in the SoV preconditioner:

1
L

∫ L

m=0

(
∂

∂n
p(x) + ikp(x)

)
dm = 0, (4.28)

where m is the positive right-angle direction with respect to the outward nor-
mal n.

In simple smooth models with relatively low wavenumbers, the convergence
rate of Bi-CGSTAB in combination with the SoV preconditioner is satisfactory.
However, for complex models, the method is not good enough by increasing the
wavenumbers, see [37].

In Chapter 6, we consider the SoV preconditioner in more detail and we
investigate some properties of this preconditioner. Furthermore, we show how
MSoV x = b can be solved at low cost.



Chapter 5

Boundary Conditions

As known in the literature (see e.g. Boyce & DiPrima [11]), the solution of
each boundary value problem depends on the choice of boundary conditions.
Moreover, varying these conditions leads also to different eigenvalues and iter-
ative behavior, in general. From this point of view, we have to pay attention
to boundary conditions. In this chapter, three different aspects are considered
which are related to boundary conditions.

In Chapter 2, we have seen that absorbing boundary conditions (ABC) are
used in the HP. However, in research, one applies Dirichlet boundary conditions
(DBC) for simplicity, leading to a real-valued problem. If there are no imaginary
components in the main problem and in the preconditioner, then the eigenvalues
of both the original and the preconditioned system are usually real-valued. We
deal with this aspect in the first section of this chapter, where the wedge model
is taken as test model.

Erlangga, Vuik & Oosterlee [15, 52] have shown the good results of the CSL
preconditioner in the case of Dirichlet and Sommerfeld absorbing conditions
(DBC respectively S-ABC). In Section 5.2, the HP, which applies conjugate
Sommerfeld absorbing conditions (CS-ABC)), are considered and the perfor-
mance of the CSL preconditioner is investigated in this problem.

Section 5.3 deals with the SoV preconditioner. In SoV, we have taken
averaged values at the boundaries (see Subsection 4.3.2), but it could be more
favorable to take other variants like maximum or minimum values instead of
averaged values.

5.1 Comparison of Eigenvalues in the HP with CS-
ABC and DBC

The spectra of both the SoV and CSL preconditioned system are examined in
the following subsections.

5.1.1 SoV Preconditioned System

In this subsection, we investigate the spectra of both the original and the SoV
preconditioned system in the HP with absorbing boundary conditions (CS-

49
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ABC) and Dirichlet boundary conditions (DBC).
First, we start with giving and comparing convergence results of the iter-

ative method for a few test problems and with varying gridsizes. Thereafter,
the eigenvalue distribution of the HP is considered, using test problems (R)
with respect to the wedge model. To restrict the computational work, we take
M,N = 25 as gridsizes in this case.

Comparison Results using CS-ABC and DBC

In Table 5.1, the results of the convergence of the iterative method, using the
SoV preconditioner with first CS-ABC and second DBC, can be found.

Test Problem M = N CS-ABC DBC
25 6 6

(R) 35 6 6
45 7 6
25 35 57

(V) 35 32 57
45 34 46

Table 5.1: Number of iterations of Bi-CGSTAB with SoV preconditioner in test
problems with absorbing conditions (second column) and with Dirichlet conditions
(third column) in the wedge model.

In the case of test problem (R), the results between CS-ABC and DBC
are almost the same, whereas considerable differences can be observed in test
problem (V). The number of points in (V) is not sufficiently large, as earlier
mentioned in Section 2.9. Therefore, conclusions can not be made considering
the results of (V) in Table 5.1. We expect that, if sufficient gridpoints are taken,
the results applying both CS-ABC and DBC will be approximately the same.

Eigenvalues of the HP with CS-ABC

The plots of the eigenvalues of the original system A and of the preconditioned
system M−1

SoV A in test problem (R) can be found in Figure 5.1.
In both subplots of in Figure 5.1, we obtain complex eigenvalues. More-

over, it can be noticed that the range of the eigenvalues in the original system
are much larger than in the preconditioned system and moreover, the eigen-
values of the preconditioned system are clustered around the coordinates (1,0).
Therefore, comparing to the method without preconditioner, the preconditioned
system usually leads to a better convergence performance.

Eigenvalues of the HP with DBC

Now, instead of taking absorbing conditions, we take Dirichlet conditions of the
form:

p(x) = 0, x ∈ ∂D, (5.1)
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Figure 5.1: Eigenvalue distribution of the original system (left subplot) and of the
SoV preconditioned system (right subplot) in test problem (R) with the wedge model
and CS-ABC using M, N = 25.

in the HP. In this case, there are no imaginary components in the problem.
Therefore, we expect the eigenvalues of both original and preconditioned system
are real-valued. The results of the spectral plots can be seen in Figure 5.2.

Suprisingly, we observe in Figure 5.2 that the eigenvalues of the SoV pre-
conditioned system are complex, while real-valued eigenvalues are obtained in
the original system A. A possible explanation can be found below.

Explanation of Complex Eigenvalues

One expects in advance that the Dirichlet problem, as defined above, gives real-
valued eigenvalues of M−1

SoV A. However, we have found eigenvalues which are
complex-valued. This can be explained in the following way.

First, we make the observation that A and MSoV are symmetric and real,
due to the fact that Dirichlet instead of absorbing conditions have been used.
Therefore, M−1

SoV is also symmetric due to Lemma 3.2.
Unfortunately, M−1

SoV A is not symmetric, in general. However, if we assume
A to be positive semi definite (PSD), then we do have a matrix M−1

SoV A with
real-valued eigenvalues, see Theorem 5.1.

Theorem 5.1 Let A and M to be both invertible matrices. Moreover, let A to
be also PSD. Then M−1A consists of eigenvalues which are all real.

Proof. This is an immediate consequence of Theorem 3.9.

�
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Figure 5.2: Eigenvalue distribution of the original system (left subplot) and of
the SoV preconditioned system (right subplot) in test problem (R) with Dirichlet
boundary conditions and the wedge model using M, N = 25.

Apparently, matrix A is not PSD in our problem, which is the result of the
choices of

(a) the number of grid elements M ×N ;

(b) the wavenumbers k1 and k2.

In our numerical experiments, we see that the system A becomes strongly indef-
inite (i.e., the range of eigenvalues becomes larger) when we increase (a) and/or
(b). If we assume that the HP’s with CS-ABC and DBC give approximately
the same eigenvalues, then this can be motivated by using (1-dimensional) an
analytical analysis, see Appendix D.

We conclude that only for sufficient small wavenumbers or sufficient small
sizes of the domain, matrix A will be PSD.

Remark

If we assume a constant wavenumber in the HP, i.e., if we assume k1 = k2, then
the SoV preconditioner is almost exact, since the equality k̃(x, y) = 0 holds. In
other words:

M−1
SoV A ≈ A−1A = I. (5.2)

As a consequence, M−1
SoV A is almost symmetric and has all eigenvalues near 1.

Note that the averaged boundary conditions in SoV causes sligthly differences
between A and MSoV and, therefore, we use ‘≈’ in (5.2) instead of equality
(‘=’).
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Conclusion

We have seen that for sufficient small wavenumber and/or sufficient small sizes
of the domain, A is PSD or M−1

SoV is approximately exact. Therefore, only in
these cases M−1

SoV A has real-valued eigenvalues.
We conclude that it does not make sense to use the Dirichlet problem in

further research, since the eigenvalues of the preconditioned system are not all
real-valued, which is favorable in spectral analysis.

5.1.2 CSL Preconditioned System

It is obvious that the CSL preconditioned system in the Dirichlet problem has
complex eigenvalues, since MCSL is complex due to

LCSL = −∆ + (α + βi)k2, (5.3)

where α = 0 and β = 1 are taken.
If we choose the Shifted Laplace (SL) preconditioner to be real -valued and

PSD, i.e., if we assume that α ≥ 0 and β = 0, it can be interesting to investigate
the resulting SL-system M−1

SLA and look whether it has real-valued or complex
eigenvalues. We find the following result. Since M−1

SL is PSD, Theorem 5.1 is
applicable. An immediate consequence is that all eigenvalues are real -valued
in the SL preconditioned system M−1

SLA with α ≥ 0, in contrast to the SoV
preconditioned system M−1

SoV A!

5.2 Optimal CSL Preconditioner in HP

In Section 4.3.1, we have mentioned that the CSL preconditioner shows better
performance than the SL preconditioners of Laird [29] and Bayliss et al. [6].

Define Mα,β as follows:

Mα,β := MSL = −B + (α + βi)k2(x), (5.4)

where α ≥ 0. Then, Erlangga, Vuik & Oosterlee [15, 52] have shown that
M0,1 is the best preconditioner considering the HP with Dirichlet boundary
conditions (DBC) using normal equations. Numerical experiments show also a
good performance in the HP with Sommerfeld absorbing conditions (S-ABC).

However, in this thesis, we consider the HP with conjugate Sommerfeld
absorbing conditions (CS-ABC). The question is whether the preconditioner
M0,1 is also optimal in this problem.

Intuitively, we expect that M0,−1 is a better preconditioner than M0,1 (both
applying CS-ABC). Some numerical experiments are done to confirm our expec-
tation, see Table 5.2. Test problems (C++) and (V) are unrealistic problems,
due to the low number of grid points, but the aim of these problems is to
emphasize clearly the differences between the preconditioners M0,1 and M0,−1.

In Table 5.2, it can be observed that columns 4 and 7 and also columns 5
and 8 are the same. To understand this, we need the following theorem.
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S-ABC CS-ABC
Test Problem M,N MSoV M0,1 M0,−1 MSoV M0,1 M0,−1

15 1 62 106 1 106 62
(C++) 25 1 60 114 1 114 60

35 1 60 103 1 103 60
15 73 242 > 1000 73 > 1000 242

(V) 25 35 159 > 1000 35 > 1000 159
35 33 234 > 1000 33 > 1000 234

Table 5.2: Number of iterations applying Bi-CGSTAB with both SoV and CSL
preconditioners in the constant and wedge model using Sommerfeld and conjugate
Sommerfeld boundary conditions in both the original and preconditioner system.

Theorem 5.2 Denote the matrix A obtained with S-ABC by ASo and CS-
ABC by ACS. Then the real parts of the eigenvalues of the systems M−1

0,1AS

and M−1
0,−1ACS are the same, where S-ABC is used in M−1

0,1 and CS-ABC is
used in M−1

0,−1.

Proof. Notice first that
ACS = AS , (5.5)

and
M−1

0,1 = M−1
0,−1. (5.6)

Then
M−1

0,1AS = M−1
0,−1 ·ACS = M−1

0,−1ACS . (5.7)

Using Lemma 3.10, we obtain that the real parts of the eigenvalues of M−1
0,1AS

and M−1
0,−1ACS are the same.

�

We know that since the Helmholtz’s equation is real-valued, only the boundary
conditions leads to the imaginary components in the problem, resulting in a
complex-valued matrix A.

Consider now the preconditioned system using M0,1 in the HP with S-ABC.
Applying Theorem 5.2, we derive that this system leads to the conjugate (and
thus to the same real parts) of the eigenvalues as the preconditioned system
using M0,−1 in the HP with CS-ABC. Next, we obtain the same results in
columns 4 and 7 and also in columns 5 and 8 of Table 5.2 due to Conjecture 5.1.

Conjecture 5.1 Let A1p = f and A2p = f be two linear systems where A1 =
A2 and f an arbitrary vector. Then both systems requires (approximately) the
same number of iterations using Bi-CGSTAB to solve p.

The results in Table 5.2 confirm Conjecture 5.1.
Thus, since M−1

0,1 is the best preconditioner in the case of AS , we obtain
that M−1

0,−1 is the best preconditioner in the case of ACS . Therefore, in the
remaining of this thesis we apply M0,−1 instead of M0,1 in CSL, since the HP
deals with CS-ABC, after all.
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5.3 Approximated Boundary Conditions in SoV

We have seen that the preconditioner MSoV can be constructed in the following
chronological way:

(i) the wavenumber k(x, y) is decomposed into three parts, where the third
part is the matrix k̃(x, y);

(ii) averaged values of γ at the boundaries are computed. In practice, these
are computed by summing the values along each boundary and dividing
by the number of points;

(iii) the eigenvalues Λ and eigenfunctions WR and WL are computed.

Our point of concern in this section is the second step. The SoV-preconditioner
takes averaged values at the boundaries, but the question is whether this the
best choice. In the next subsection, we choose other values at the boundaries
and investigate the performance of the preconditioner with these alternatives.

5.3.1 Approximations for the Boundaries in SoV

In the original SoV preconditioner [37], averaged values are applied at the
boundaries. We try two other choices: SoV+ and SoV–. In SoV–, we take
the minimum instead of the averaged value at each boundary and analogously,
we apply the maximum value of each boundary in the SoV+. 1

Now, some results of the variants of SoV are given in Table 5.3.

Test Problem M,N SoV SoV+ SoV–
(R) 25 6 6 6

35 6 6 6
25 35 35 34

(V) 35 32 32 32
45 34 34 34

(V++) 45 71 71 74

Table 5.3: Number of iterations of Bi-CGSTAB for three variants of SoV.

Considering Table 5.3, we conclude that the three variants of SoV show
approximately the same iterative behavior. Hence, there is no preference to
apply one of these variants in the preconditioner. In the following of this thesis,
we use simply the original SoV with averaged values at the boundaries.

1For instance, in the layer model k1 and k2 are taken at the lower and upper boundary,
respectively. Moreover, k1+k2

2
, max(k1, k2), min(k1, k2) are taken at both the right and left

boundary in SoV, SoV+ and SoV–, respectively.
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Chapter 6

Results of Test Problems

In the previous chapter, we have defined the preconditioners MSoV and MCSL.
Now, we are able to do some test runs in MATLAB to investigate the per-
formance of these preconditioners. In Section 2.9, we have defined some test
problems, which are used in our test runs.

The models for the wavenumber, as defined in Section 2.7, are applied in
the test runs, where we pay extra attention to the wedge model.

6.1 Constant Model

We start with the constant model. Some results of the test runs can be found
in Table 6.1. 1

Considering Table 6.1, the following observations can be made:

• the SoV preconditioner is exact, since k is constant in the whole domain.
Therefore, the iterative methods converge in one iteration using SoV;

• the CSL preconditioner shows good results, comparing to the case with-
out preconditioner (column 3). However, differences in iterative behavior
between SoV and CSL can be seen;

• results of GCR are omitted Table 6.1, because GCR and GMRES show
approximately the same convergence behavior. This is the consequence
of the reasons mentioned in Subsection 4.2.3. The difference between
GMRES and GCR in number of iterations is equal or less than 2, in our
test runs;

• In the original system without preconditioning, Bi-CGSTAB needs more
iterations than GMRES, while GMRES and Bi-CGSTAB require approx-
imately the same computational time, in general. This is not suprising,
since GMRES applies long recurrences (see lines 5–8 in Algorithm 4.2) in
contrast to Bi-CGSTAB, where short recurrences are used;

1Note that the standard IC preconditioner is only defined for real-valued matrices (see
Appendix C). Therefore, we have taken the real part of the complex A in this preconditioner.
Moreover, the IC preconditioner does not work in test problem (C++), because matrix A lost
its positive definiteness during the Cholesky factorization in this case.
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Bi-CGSTAB
Test Problem M,N - D IC CSL SoV

25 88 94 77 16 1
(C) 35 120 112 92 16 1

45 189 182 162 16 1
25 170 197 - 59 1

(C++) 35 199 200 - 57 1
45 198 196 - 60 1

GMRES
Test Problem M,N - D IC CSL SoV

25 54 54 47 19 1
(C) 35 76 76 59 20 1

45 97 97 73 20 1
25 81 83 - 54 1

(C++) 35 112 112 - 53 1
45 144 144 - 54 1

Table 6.1: Number of required iterations solving Ap = f using iterative methods
(GMRES, GCR and Bi-CGSTAB) without preconditioner (-), with the diagonal
preconditioner (D), with the incomplete Cholesky preconditioner (IC), respectively,
comparing to preconditioner based on complex shifted Laplace operator (CSL) and
based on the separation–of–variables preconditioner (SoV).

• the effect of the diagonal preconditioner is minimal. This can be explained
by looking at the eigenvalues. If we denote K1 by the range of the eigen-
values (i.e., |λmax − λmin|) of A or D−1AD−1 where D is the diagonal
preconditioner, then we obtain the following results for M,N = 45:

K1(A) = 1.57× 104, K1(D−1AD−1) = 2.16. (6.1)

Moreover:
K2(A) = 802.9, K2(D−1AD−1) = 805.1, (6.2)

where K2 denotes |λmax|/|λmin|. Thus, K1 is in the preconditioned system
much better, while the condition number K2 is in both situation the same.
Therefore, it leads to almost the same convergence rate in both methods.

In Appendix C we have seen that the diagonal preconditioner makes
sense if A is real-symmetric. Apparently, the diagonal preconditioner is
not attractive for complex-symmetric matrices;

• note that, generally, increasing M,N leads to more iterations of Bi-
CGSTAB and GMRES without preconditioner, which is the result of the
stronger indefiniteness of matrix A, i.e., increasing the gridsizes leads to
a larger range of the eigenvalues of A, and which is also the result of the
increasing small eigenvalues near zero.
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Due to the disappointing results for the D and IC preconditioners, we do not
use these in further research. Thus, in the following sections, only SoV and
CSL preconditioners are considered and analyzed.

Moreover, in the following sections we consider only the results obtained
with Bi-CGSTAB and omit the results obtained with GMRES and GCR to
restrict the computational work. Furthermore, Bi-CGSTAB does not have stor-
age problems in practical applications due to the short recurrences, in contrast
to the (non-restarted) GMRES. Therefore, we prefer Bi-CGSTAB rather than
GMRES, as iterative method.

6.2 Rectangular Model

Some results of the test runs for the rectangular model can be found in Table 6.2.

Bi-CGSTAB
Test Problem M,N CSL SoV

25 50 3
(R) 35 50 3

45 52 3
25 138 4

(V) 35 155 4
45 154 3

Table 6.2: Number of required iterations solving the HP with the lrectangular model
using Bi-CGSTAB in combination with the SoV and CSL preconditioners.

The SoV preconditioner is almost exact in this case. The few iterations,
which are required in the iterative method, is caused by the averaged values at
the boundaries in SoV. Apparently, it takes 3 or 4 iterations to get rid of these
averaged values.

Moreover, it can be seen that SoV is again better than CSL in this rectan-
gular model.

6.3 Wedge Model

In this section, we consider the wedge model. Some results of the test runs can
be found in Table 6.3.

Below, some numerical analysis are done with respect to the solution, eigen-
values and convergence behavior.

Solution

For test problem (R), the solutions have been plotted from two points of view
in Figure 6.1.
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Bi-CGSTAB
Test Problem M,N CSL SoV

25 88 6
(R) 35 90 6

45 88 7
25 55 11

(R+) 35 60 10
45 57 10
25 160 35

(V) 35 237 32
45 271 34

Table 6.3: Number of required iterations solving the HP including the wedge model
using Bi-CGSTAB in combination with the SoV and CSL preconditioners.

Eigenvalues

Moreover, the eigenvalue distribution of M−1
SoV A in test problem (R) can be

found in Figure 6.2 for gridsizes M,N = 25, 35, 45. In this figure, we observe
that most eigenvalues lie around 1, resulting in fast convergence of the iterative
method.

In Figure 6.2, it can be seen that the global structure of the eigenvalue dis-
tribution is more or less the same for varying M,N . In other words: increasing
M and N leads to extra eigenvalues which lies in the cluster around 1. The
number of eigenvalues outside this cluster looks to be more or less independent
of the gridsizes.

Next, the eigenvalue distribution of M−1
SoV A in test problem (V) can be

found in Figure 6.3. We note that, in fact, only a few eigenvalues near zero
cause the relatively slow convergence for solving (V) iteratively. In the case with
M,N = 25 (Figure 6.3(a)) there are two relatively large negative eigenvalues
which results in the ‘slow’ convergence of 35 iterations. In the case of M,N = 35
(Figure 6.3(b)), one has exactly one ‘bad’ negative eigenvalues and, in total,
three bad eigenvalues near zero. The best case is the case with M,N = 45
(Figure 6.3(c)), where all eigenvalues are positive, but, even in this case, it still
requires 34 iterations to converge.

Residuals

We give the plots of the convergence behavior of test problem (R), see Figure
6.4. In each subplot, we have drawn the logarithm of the relative residual as in
the RR criterium (see Subsection 4.2.4):

||f−Apj ||
||f||

. (6.3)

The erratic convergence behavior of the plots can be observed in Figure 6.4.
Moreover, in all three cases the plots show superlinear behavior. These are
known properties of the Bi-CGSTAB method.
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(a) original view

(b) top view

Figure 6.1: Solution p of the wedge model with k2
1 = 260, k2

2 = 350 on an unit domain
for M, N = 45. The real and imaginary parts of p are given in the left and the right
subplots, respectively.

Varying the Diagonal Interface

Next, the same problem with the wedge model is considered, but now with
varying the diagonal interface between the layers. In Section 2.7, we have
defined α and β to be real numbers satisfying 0 < α < β < 1, where it is
assumed that the interface starts at x = 0 with αY and ends at x = X with
βY .

The choices α = 1/3 and β = 2/3 are taken in the ‘standard’ wedge model.
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(a) M, N = 25 (b) M, N = 35

(c) M, N = 45

Figure 6.2: Eigenvalues of the system M−1
SoV A with k2

1 = 260, k2
2 = 350 (test problem

(R)) in the wedge model.

We give the results for several other choices α and β, see Table 6.4, where we
have applied M,N = 25 to reduce the computational time.

The first observation, which can be made, is that SoV is in all cases the
better preconditioner relative to CSL. Moreover, we observe that the ‘steeper’
the diagonal interface the more SoV iterations are required, wheras CSL appears
to be less dependent on the choice of the interface. This can be motivated by
the fact that the problem becomes less separable, i.e., the term k̃(x, y) becomes
more important by steeping the diagonal boundary and hence, SoV requires
more iterations to converge.

6.4 Other Models

We have seen the good performance of SoV in the previous models. Now, we
consider the sinus, random and min-max model. We hope that, in these cases,
CSL performs better than SoV, so that these models could be used for a ‘better’
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(a) M, N = 25 (b) M, N = 35

(c) M, N = 45

Figure 6.3: Eigenvalues of the system M−1
SoV A with k2

1 = 400, k2
2 = 1200 (test problem

(V)) in the wedge model.

further analysis of the combined preconditioners in Chapters 8 and 9.
The results of test problem (R) can be found in Table 6.5. We observe that

all models, using the SoV preconditioner, give fast convergence. Furthermore,
SoV performs better than CSL in all cases, considering Table 6.5.

6.5 Conclusion

We conclude that the SoV preconditioner is always (much) better than the CSL
preconditioner, in all test runs we have carried out in this chapter. Apparently,
we have taken only relative small test problems. This observation becomes also
clear, when we compare these to test problems and results of Mulder & Plessix
[37]. For a good spectral analysis with respect to the failure of SoV in complex
models and for an effective examination of the possibilities for combined pre-
conditioners, larger test problems are needed with gridsizes M,N > 45. This
is left for further research.
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α β CSL SoV
25/50 26/50 144 4
5/10 6/10 163 11
2/5 3/5 166 19
1/3 2/3 160 35
1/5 4/5 178 56
1/10 9/10 169 61
1/50 49/50 162 61

Table 6.4: Number of iterations of Bi-CGSTAB with SoV and CSL preconditioning
in test problem (R) with the wedge model and different choices of α, β in the case
M, N = 25.

Sinus Random Min–Max
Test Problem M,N SoV CSL SoV CSL SoV CSL

(R) 25 7 80 20 128 7 80
(R) 35 7 84 4 85 6 83

Table 6.5: Iterative results of Bi-CGSTAB in test problem (R) with the sinus,
random and min-max models, respectively.



6.5. Conclusion 65

(a) M, N = 25

(b) M, N = 35

(c) M, N = 45

Figure 6.4: Relative residuals of the system M−1
SoV A with k2

1 = 400, k2
2 = 1200 (test

problem (V)) in the wedge model.
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Chapter 7

Improving the SoV
Preconditioner

In Chapter 4, we have seen that the preconditioner MSoV based on separation
of variables (Plessix & Mulder [37]), or briefly SoV(-preconditioner), can be
used for Krylov iterative methods which solve the HP.

Since the wavenumber k depends on the spatial coordinates, it prevents us
from using separation of the HP. However, k can be decomposed such that it
is ‘almost’ separable and hence, this decomposition can be used as a precondi-
tioner.

However, we have mentioned earlier in Subsection 4.3.2 that this SoV pre-
conditioner fails in complex models or in models with high wavenumbers. In
this chapter, we try to improve the SoV preconditioner such that it is also
applicable in these models. Therefore, we have to consider the original SoV
technique in more detail. This is done in Section 7.1.

In Section 7.2, we give a mathematical motivation why the SoV precondi-
tioner fails in some situations by considering the decomposition of k.

We end with several attempts to construct an improved SoV preconditioner,
in Section 7.3.

7.1 SoV Technique

In this section, we first give the decomposition of the wavenumber into k2
x(x),

k2
y(y) and a remaining term k̃2(x, y). Thereafter, matrix A is also decomposed

into three terms, such that the separation–of–variables technique makes sense.
Then we show how MSoV x = b can be computed efficiently with the decom-
posed A and k.

7.1.1 Decomposition of the Wavenumber

In the SoV preconditioner, we have to decompose the wavenumber k(x, y) into
three parts: a first part which only depends on x, a second part which only
depends on y, and, finally, a remaining part which satisfies specific conditions

67
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as given in (4.25). In fact, k(x, y) is divided in a separable and a non-separable
part.

We assume in this section that (x, y) ∈ Ω where (x, y) = [xa, xb] × [ya, yb]
with 0 < xa < xb and 0 < ya < yb. Then, we take{

xa = ya = 0;
xb = yb = L,

(7.1)

with L = 1 since we deal with an unit domain in our HP.
Next, it appears to be always possible to decompose an arbitrary function

k(x, y) into three terms, where the third term satisfies the following conditions:

k2(x, y) = k2
x(x) + k2

y(y) + k̃2(x, y),∫ xb

xa
k̃2(x, y) dx = 0, ∀y,∫ yb

ya
k̃2(x, y) dy = 0, ∀x,

(7.2)

Then, a possible decomposition is

k2
x(x) = 1

Y

∫ yb

ya
k2(x, y) dy,

k2
y(y) = 1

X

∫ xb

xa
k2(x, y)− k2

x(x) dx,

k̃2(x, y) = k2(x, y)− k2
x(x)− k2

y(y),

(7.3)

with 
X =

∫ xb

xa
1 dx = xb − xa,

Y =
∫ yb

ya
1 dy = yb − ya,

(7.4)

where we have assumed that all integrals are finite. The above statement is
proved in Theorem 7.1.

Theorem 7.1 Let k(x, y) be an arbitrary function. Define k2
x(x), k2

y(y) and
k̃2(x, y) as in (7.3), where k̃2(x, y) is assumed to satisfy∫ xb

xa

k̃2(x, y) dx < ∞,

∫ yb

ya

k̃2(x, y) dy < ∞. (7.5)

Then k(x, y), kx(x), ky(y) and k̃2(x, y) satisfy

k2(x, y) = k2
x(x) + k2

y(y) + k̃2(x, y),∫ xb

xa
k̃2(x, y) dx = 0, ∀y,∫ yb

ya
k̃2(x, y) dy = 0, ∀x.

(7.6)
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Proof. We define first

k2
0 =

1
XY

∫ yb

ya

∫ xb

xa

k2(x, y) dx dy. (7.7)

The first expression of (7.6) is satisfied by construction of (7.3).
The second expression of (7.6) is true, since∫ xb

xa
k̃2(x, y) dx =

∫ xb

xa
k2(x, y)− k2

x(x)− k2
y(y) dx

=
∫ xb

xa
k2(x, y)− k2

x(x) dx−
∫ xb

xa
k2

y(y) dx

= Xk2
y(y)− k2

y(y)
∫ xb

xa
1 dx

= Xk2
y(y)−Xk2

y(y)

= 0.

Next, we proof the third expression of (7.6). It yields∫ yb

ya
k̃2(x, y) dy =

∫ yb

ya
k2(x, y)− k2

x(x)− k2
y(y) dy

=
∫ yb

ya
k2(x, y) dy −

∫ yb

ya
k2

x(x) dy −
∫ yb

ya
k2

y(y) dy

= Y k2
x(x)− k2

x(x)
∫ yb

ya
1 dy −

∫ yb

ya

k2
y(y) dy︸ ︷︷ ︸

=0

= Y k2
x(x)− Y k2

x(x)

= 0,

where we have used the fact that∫ yb

ya
k2

y(y) dy =
∫ yb

ya

(
1
X

∫ xb

xa
k2(x, y)− k2

x(x) dx
)

dy

= 1
X

∫ xb

xa

∫ yb

ya
k2(x, y) dx dy − 1

X

∫ xb

xa

∫ yb

ya
k2

x(x) dx dy

= Y k2
0 − 1

X

∫ xb

xa

∫ yb

ya

(
1
Y

∫ yb

ya
k2(x, y) dy

)
dx dy

= Y k2
0 − 1

XY

∫ xb

xa

∫ yb

ya

∫ yb

ya
k2(x, y) dx dy2

= Y k2
0 −

∫ yb

ya
k2

0 dy

= Y k2
0 − k2

0

∫ yb

ya
1 dy

= Y k2
0 − Y k2

0

= 0.
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In Example E.1 of Appendix E, we give an application of Theorem 7.1.

Numerical Implementation

Assume that K is given with elements

Ki+(j−1)N, i+(j−1)N = k2(xi, yj), (7.8)

for all i = 1, 2, . . . ,M and j = 1, 2, . . . , N . Since both kx and ky are only
dependent in one direction, we can represent the MN ×MN diagonal matrix
K as follows:

K = Iy ⊗Kx + Ky ⊗ Ix + K̃, (7.9)

where the Kronecker symbol ⊗, as defined in Section 3.1, is used. Next, denote

∆x =
xM − x1

M − 1
, ∆y =

yM − y1

N − 1
. (7.10)

Then, using the rectangular rule (see e.g. Smith [45]) 1, the non-zero elements
of diagonal matrices Kx and Ky can be determined as follows:

(Kx)p,p = 1
yN−y1

∑N−1
n=1 ∆yKp+(n−1)N, p+(n−1)N ,

(Ky)q,q = 1
xM−x1

∑M−1
m=1 ∆x

(
Km+(q−1)N, m+(q−1)N − (Kx)m,m

)
,

(7.11)
for all p = 1, . . . ,M and q = 1, . . . , N . Using (7.10), we can rewrite Expres-
sion (7.11) as

(Kx)p,p = 1
N−1

∑N−1
n=1 Kp+(n−1)N, p+(n−1)N ,

(Ky)q,q = 1
M−1

∑M−1
m=1

(
Km+(q−1)N, m+(q−1)N − (Kx)m,m

)
.

(7.12)

Subsequently, matrix K̃ has the following form:

K̃ = K− Iy ⊗Kx −Ky ⊗ Ix. (7.13)

Note that K̃ is also a diagonal matrix.
In Appendix F, the resulting plots, using the numerical implementation

of k, are drawn for various models of the original and the SoV wavenumber.

1There are more accurate ways to approximate integrals, like the trapezoidal and Simpson’s
rule (see e.g. [2]), but they are not taken into account in this thesis.
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7.1.2 Averaged Values at the Boundaries

In Section 2.5, we have seen that discretizing the HP gives us the linear system
Ap = f. Matrix A has dimensions MN × MN , where the main diagonal
consists of the elements

A(d, d) =
2

∆x2
+

2
∆y2

− k2
m,n + γm,n, (7.14)

for d = 1, 2, . . . ,MN . The coefficients γm,n have been given by

γm,n = 0, for m = 2, 3, . . . ,M − 1 and n = 2, 3, . . . , N − 1, (7.15)

and

γm,n =



γmin
x (n) =

1
∆x2(1 + ik0,n∆x)

if m = 1;

γmax
x (n) =

1
∆x2(1 + ikM+1,n∆x)

if m = M ;

γmin
y (m) =

1
∆y2(1 + ikm,0∆y)

if n = 1;

γmax
y (m) =

1
∆y2(1 + ikm,N+1∆y)

if n = N.

(7.16)

In the SoV preconditioner, we use constant averaged approximations for the
absorbing conditions (7.16) of the form

γmin
x (n) = γ̃min

x ;

γmax
x (n) = γ̃max

x ;

γmin
y (m) = γ̃min

y ;

γmax
y (m) = γ̃max

y ,

(7.17)

where γ̃min
x , γ̃max

x , γ̃min
y , γ̃max

y ∈ C. Therefore, constant values of k are chosen at
each boundary, which are the avaraged value along that boundary. In fact, the
expressions, given in (7.17), are the discrete forms of the integral in Expres-
sion (4.28).

Constant values at the boundaries are needed in the SoV preconditioner, to
ensure the decomposition of matrix A, which are derived in the next section.

7.1.3 Approximation of A

The following decomposition of matrix A can be made:

A = X + Y−K, (7.18)
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where X,Y are complex matrices due to γ̃ and furthermore, K is a real matrix
with the same sizes as A, see below. However, we have to use an approximation
of A, denoted by Â, due to the SoV technique:

Â = X + Y− K̂, (7.19)

where K̂ is also a real matrix. Below we describe these matrices in more detail.

Matrix X

Using Section 2.5, matrix X can be constructed by
X(d, d) =

2
∆x2

+ γm,n;

X(d, d + 1) = X1(d, d− 1) = − 1
∆x2

,

(7.20)

with d = 1, 2, . . . ,MN and

γm,n =


γ̃min

x if m = 1;
γ̃max

x if m = M ;
0 otherwise.

(7.21)

Therefore, X is a MN ×MN block-diagonal matrix with M ×M blocks, which
are equal to each other. Using again the definition of the Kronecker product,
we can write

X = Iy ⊗Ax, (7.22)

where Iy is the N × N identity matrix and Ax is an M ×M matrix with the
following non-zero elements:

Ax(m,m) =
2

∆x2
+


γ̃min

x if m = 1;
γ̃max

x if m = M ;
0 otherwise,

Ax(m + 1,m) = Ax(m,m + 1) = − 1
∆x2

,

(7.23)

for m = 1, . . . ,M . Note that Expression (7.22) can be represented by

Iy ⊗Ax =

 Ax 0 · · ·
0 Ax · · ·
...

...
. . .

 = X, (7.24)

which consists of N blocks of Ax.

Matrix Y

Matrix Y can be constructed by
Y(d, d) =

2
∆y2

+ γm,n;

Y(d, d + M) = A1(d, d−M) = − 1
∆y2

,

(7.25)
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with d = 1, 2, . . . ,MN and

γm,n =


γ̃min

y if n = 1;
γ̃max

y if n = N ;
0 otherwise.

(7.26)

This is an MN ×MN tri-block-diagonal matrix of the form

Y =


D1 L
L D2 L

. . . . . . . . .
L D2 L

L D3

 , (7.27)

where D1,D2,D3,L are diagonal submatrices with dimensions M ×M . Note
that the non-zero elements at the diagonal of each of these submatrices are the
same. Now, we can write matrix Y as

Y = Ay ⊗ Ix, (7.28)

where Ix is the M ×M identity matrix and Ay is an N × N matrix with the
following non-zero elements:

Ay(n, n) =
2

∆y2
+


γ̃min

y if n = 1;
γ̃max

y if n = N ;
0 otherwise,

Ay(n + 1, n) = Ay(n, n + 1) = − 1
∆y2

,

(7.29)

for n = 1, . . . , N . Note that expression (7.28) can be written as

Y = Ay ⊗ Ix =

 (ay)11Ix (ay)12Ix

(ay)21Ix (ay)22Ix (ay)23Ix

. . . . . . . . .



=

 D1 L
L D2 L

. . . . . . . . .

 ,

(7.30)

where (ay)ij , for all i, j = 1, 2, . . . , N , are the elements of Ay.

Matrix K̂

Diagonal matrix K of size MN ×MN can be represented by

diag(K(m + (n− 1)N) = k2
m,n, (7.31)

with m = 1, 2, . . . ,M and n = 1, 2, . . . , N .
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If Ω is taken as in a rectangular model, then the wavenumber k(x, y) is con-
stant in x-direction and variable in y-direction. In this model, we can construct
easily the decomposition

k2(x, y) = k2
y(y). (7.32)

In general, we have a more complicated model, like the wedge of sinus model
(see Section 2.7). In this case, matrix K prevents us from using separation of
variables. However, Theorem 7.1 shows that the square of the wavenumber can
be uniquely decomposed into

k2(x, y) = k2
x(x) + k2

y(y) + k̃2(x, y), (7.33)

which results in the diagonal matrix K. In the SoV preconditioner, we neglect
k̃(x, y) in (7.33), leading to a modified wavenumber k̂, i.e.,

k̂2(x, y) = k2
x(x) + k2

y(y). (7.34)

The quantity k̂ is called the SoV wavenumber. In discretized form we can
express (7.34) as

(k̂2)m,n = (k2
x)m + (k2

y)n, (7.35)

for all m = 1, 2, . . . ,M and n = 1, 2, . . . , N . Then, matrix K̂ becomes

K̂ = XK̂ + YK̂, (7.36)

where the definitions of XK̂ and YK̂ can be found below.

Matrices XK̂ and YK̂

Diagonal matrices XK̂ and YK̂ can be represented by

XK̂ = Iy ⊗Kx, (7.37)

and
YK̂ = Ky ⊗ Ix, (7.38)

where Kx and Ky are defined as in (7.12).

Matrix Â

Using (7.22) and (7.28), matrix A turns out to be

Â = Iy ⊗Ax + Ay ⊗ Ix − K̂, (7.39)

where we put a ‘hat’ at A to emphasize the fact that this is an approximation
of the real A, if k is non-separable. Moreover, matrix K̂ becomes

K̂ = Iy ⊗Kx + Ky ⊗ Ix, (7.40)

using Expressions (7.37) and (7.38). This leads to

Â = Iy ⊗ (Ax −Kx) + (Ay −Ky)⊗ Ix. (7.41)

Observe that matrices Â,Ax−Kx and Ay −Ky all have symmetric real parts,
which will be used later.
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7.1.4 Transformation of Â into D

The SoV technique consists of replacing a problem of size MN by M 1-D
problems of size N . Therefore, we need M subblocks of Dm. In this subsection,
we derive these subblocks.

Eigenvalue and Eigenvector Decomposition

The eigenvector and eigenvalue decomposition is required of Ax −Kx:

WH
L (Ax −Kx)WR = Λ, (7.42)

with Λ a diagonal eigenvalue matrix, WR a corresponding matrix of the right
eigenvectors and WL a corresponding matrix of the left eigenvectors of Ax−Kx.
2 Then, matrices WL and WR satisfy WH

L WR = I, where I is the MN ×MN
identity matrix, see Theorem 3.1.

Matrix B

Matrix Iy ⊗WH
L can be written as

Iy ⊗WH
L =


WH

L

WH
L

. . .
WH

L

 , (7.43)

and, in analogous way, we can write Iy ⊗ WR. Multiplying left and right of
matrix Â with this two terms (Iy ⊗WH

L and Iy ⊗WR, respectively), gives us
matrix B:

B = (Iy ⊗WH
L ) Â (Iy ⊗WR)

= (Iy ⊗WH
L ) [Iy ⊗ (Ax −Kx) + (Ay −Ky)⊗ Ix] (Iy ⊗WR)

= Iy ⊗
[
WH

L (Ax −Kx)WR

]
+

(Iy ⊗WH
L ) [(Ay −Ky)⊗ Ix] (Iy ⊗WR)

= Iy ⊗ Λ +
[
Iy ⊗ (WHW)

]
[(Ay −Ky)⊗ Ix]

= Iy ⊗ Λ + (Iy ⊗ Ix)((Ay −Ky)⊗ Ix),

(7.44)

leading to
B = Iy ⊗ Λ + (Ay −Ky)⊗ Ix, (7.45)

which is a matrix consisting of three diagonals. In the previous Expressions
(7.44) and (7.45), some properties of the Kronecker product, as given in Section

2In (7.42), we have assumed that Ax−Kx is not defect, i.e., all eigenvalues of Ax−Kx have
the same algebraic and geometric multiplicity. However, since Ax −Kx is complex-symmetric
in our case, the latter statement is always satisfied, see Lay [30].
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3.1, have been used. Matrix B can be expressed as follows:

B =


B1 U1

L1 B2
. . .

. . . . . . Un−1

Ln−1 Bn

 , (7.46)

where all Bi,Li and Ui are diagonal submatrices.

Permutation Matrix P

Let us define a permutation matrix P such that the non-zero terms of P are

P(m + (n− 1)M,n + (m− 1)N) = 1, (7.47)

for m = 1, 2, . . . ,M and n = 1, 2, . . . , N . Then, by definition, we have P−1P =
PTP = I and moreover, P is symmetric if M = N . 3

For example, a 9×9 matrix P of size has exactly 9 non-zeros at the positions:

P(1, 1) P(1 + M, 2) P(1 + 2M, 3)
P(2, 1 + N) P(2 + M, 2 + N) P(2 + 2M, 3 + N)
P(3, 1 + 2N) P(3 + M, 2 + 2N) P(3 + 2M, 3 + 2N)

(7.48)

Observe that each row or column of P consists of exactly one non-zero element.

Matrix D

Using the permutation matrix P, we obtain a block diagonal matrix D of the
form

D = PTBP, (7.49)

which is equivalent to
D = PBP, (7.50)

if M = N . This is illustrated in Example E.2 of Appendix E. Matrix D, as
defined in (7.49), consists of M blocks Dm of the form:

D1

D2

. . .
Dm

 , (7.51)

where Di are submatrices with sizes N ×N . Now, each block m is equal to:

Dm = λmIy + Ay −Ky, (7.52)

which can be easily checked, using (7.45) and (7.49).

3since P(m + (n− 1)M, n + (m− 1)N) = P(m + (n− 1)N, n + (m− 1)M) = PT (n + (m−
1)M, m + (n − 1)N), we obtain P = PT if M = N .
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7.1.5 Block-Diagonal Linear System Dv = g

Consider again the linear system

Âp = f, (7.53)

with Â as in (7.39). Then, this can be written as follows:

(Iy ⊗WH
L ) Â (Iy ⊗WR)[Iy ⊗WR)−1p] = (Iy ⊗WH

L )f;
B [(Iy ⊗WR)−1p] = (Iy ⊗WH

L )f;
B [(Iy ⊗WH

L )p] = (Iy ⊗WH
L )f.

(7.54)

Using permutation matrix P, we can rewrite (7.54) in

PT B P [P−1(Iy ⊗WH
L )p] = PT (Iy ⊗WH

L )f;
D [PT (Iy ⊗WH

L )p] = PT (Iy ⊗WH
L )f.

(7.55)

Expressions (7.55) are equivalent to the block diagonal system

Dv = g, (7.56)

with v = PT (Iy ⊗WH
L )p and g = PT (Iy ⊗WH

L )f. As a consequence,

p = (Iy ⊗WR)Pv. (7.57)

In Example E.3, we give an illustration of the transformation of the solution
of Âp = f into the solution of Dv = g.

Subblocks Dm

Now, we are able to decompose v and g in M blocks vm and gm of size N . The
solution can then be obtained by solving the M independent systems

Dmvm = gm, (7.58)

using Dm = λmIy + Ay − Ky of Expression (7.52). These systems have one
dimension less than the original system Âp = f. In this way, the solution of
the 2-D problem of size MN is obtained by solving M 1-D problems of size N ,
which is very favorable, especially when M or N is relatively large.

In Example E.4 of Appendix E we show how a full block-diagonal system
D can be divided into a few subsystems Dm.

When k is separable and Dirichlet conditions hold at the boundaries, we
can always replace the original system Ap = f in system (7.56), which is more
efficient to solve, since it is separable in linear subsystems. However, in practical
applications k is non-separable and also absorbing boundary conditions hold,
thus the SoV technique, described in this subsection, is not exact but can be
used as a preconditioner, see the next subsection. 4

4In fact, the SoV method is only exact if the wavenumber k(x, y) is constant in Ω. This is
the result of the assumption k̃ = 0 and the approximations for γ̃ in (7.17).
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7.1.6 Preconditioned System

The SoV technique as defined in the previous section leads to the SoV precondi-
tioner. The fact that this technique can not be used to decompose the original
system Ap = f exactly, follows from the following causes:

• the wavenumber k(x, y) has been decomposed into three parts (see expres-
sion (7.33)), where the third part (i.e., k̃(x, y)) has been neglected. Then
we have obtained k̂(x, y). If k is non-separable, it yields k̂(x, y) 6= k(x, y);

• we have computed averaged values at the boundaries, see the expressions
in (7.17). In general, we have γ 6= γ̃; 5

Instead of solving the original sytem Ap = f, we solve the preconditioned
system

M−1
SoV Ap = M−1

SoV f (7.59)

where MSoV is a matrix, which resembles A after the approximations mentioned
above. In fact,

MSoV = Â, (7.60)

where matrix Â is the same as in (7.39).
In the preconditioned iterative methods, as given in Appendix B, the linear

system MSoV x = b has to be solved. In previous subsections we have shown
how to do this efficiently by dividing it in subsystems as seen in (7.58).

7.1.7 Remarks

Note that combining (7.44) and (7.49) leads to

B = P−TDP−1 = PDPT

= (Iy ⊗WH
L ) A (Iy ⊗WR),

(7.61)

using the earlier mentioned property P−1P = PTP = I. Now, from (7.61) the
approximate version of A, denoted by Ã, can be given:

Â = (Iy ⊗WH
L )−1PDPT (Iy ⊗WR)−1

= (Iy ⊗WR)PDPT (Iy ⊗WH
L ).

(7.62)

Now the preconditioner MSoV = Ã is applied in the preconditioned system
(7.59). Moreover, note that the inverse of M−1

SoV can be computed due to

M−1
SoV = Â

−1
= (Iy ⊗WH

L )−1P−TD−1P−1(Iy ⊗WR)−1

= (Iy ⊗WR)PD−1PT (Iy ⊗WH
L ),

(7.63)

where matrix D−1 can be derived by taking D−1
m for each subblock. However,

in practical situations this can be expensive.
5Moreover, another cause is the eigenvalues and eigenfunctions (see (7.42)), which are often

approximated in (3-dimensional) practical situations, to restrict the computational work and
time.
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7.1.8 Conclusions in Paper [37]

In Plessix & Mulder [37], the HP is iteratively solved by using Bi-CGSTAB in
combination with the SoV preconditioner (7.59). The final conclusions in that
article are the following:

• the convergence rate of the iterative methods depends on the frequency
and on the roughness of the velocity model;

• when the wavenumber varies only in one dimension (i.e., with one-dimensio-
nal models), this preconditioner is efficient;

• for smooth models and low frequencies, the convergence rate is satisfac-
tory;

• for complex models (for instance wedge and Marmousi models, as given
in [37]) the method is not good enough when the frequency increases;

• it is not possible to find a better decomposition of the wavenumber that
would improve the convergence rate of the approach, using numerical
examples and a mathematical explanation.

7.2 Comparison of the norms of Kx,Ky and K̃

We have seen that K̃ = 0 has been assumed in the SoV preconditioner. This
preconditioner works very well if K̃ is relatively small, i.e., if ||K̃||2 � ||Kx||2
and ||K̃||2 � ||Ky||2. 6 We expect that SoV fails when K̃ in norm becomes too
large. Therefore, we investigate the norms between these matrices Kx,Ky and
K̃ in this section. In Table 7.1, one can find some results of the comparisons of
the norms in our test problems.

In the last column of Table 7.1, we have computed the ratio ρ between K̃
and the other matrices using:

ρ =
||K̃||2

||Kx||2 + ||Ky||2 + ||K̃||2
× 100%. (7.64)

In Table 7.1, one may observe the relation between the number of required
iterations of using SoV and the value of the ratio ρ. Indeed, if ρ becomes smaller
and, therefore, the relative contribution of K̃ becomes smaller, the iterative
method with SoV requires less iterations.

To enhance the SoV preconditioner, we work out the following ideas in the
next section:

• In each problem, the quantities kx(x) and ky(y) are uniquely determined
by construction of (7.2), see also [37]. However, we investigate other
choices kx(x) and ky(y), such that it may not satisfy the integrals in (7.2)

6The standard norm of a matrix A, i.e., ||A||2, returns the largest singular value of A.
More information about the singular value (decomposition) can be found in e.g. Nakos &
Joyner [34].
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Test Problem M,N Iter. ||K||2 ||Kx||2 ||Ky||2 ||K̃||2 ρ

15 6 4.62 1.17 0.15 0.07 5.0 %
(R) 25 6 7.71 1.52 0.20 0.07 3.7 %

35 6 10.79 1.80 0.24 0.07 3.4 %
45 7 13.87 2.04 0.27 0.07 3.1 %
15 78 13.4 3.01 1.38 0.62 12.4 %

(V) 25 35 22.4 3.95 1.78 0.59 9.4 %
35 32 31.3 4.69 2.09 0.63 8.5 %
45 34 40.3 5.34 2.38 0.65 7.8 %

Table 7.1: Comparison of the norms (×103) between the matrices obtained by the
decomposition of the wavenumber using test problems (R) and (V) in combination
with the wedge model.

anymore, but which may lead to a smaller ||K̃||2 and hence, to a faster
convergence;

• another way is to search for a block-diagonal K̃ 6= 0, denoted by K̃block,
such that the norm of the difference ||K̃block − K̃orig||2 is minimal, where
we have denoted the original K̃ with K̃orig. This block-diagonal structure
is required to ensure the system Dv = g to be block-diagonal, such that it
can still be solved with linear subsystems Dmvm = gm. Plessix & Mulder

[37] have claimed that this ˜̃K 6= 0 is difficult to find, but nevertheless we
will investigate this item further.

7.3 Enhancing SoV Preconditioner

In this section, we work out the two ideas mentioned in the previous section.

7.3.1 Alternative Choices for kx(x) and ky(y) in SoV

We investigate several alternatives for kx(x) and ky(y) in the SoV precondi-
tioner.

In the standard SoV method, we have applied the construction of the
wavenumber k(x, y), as seen in (7.3), where xa = ya = 0 and xb = yb = 1
are taken. This construction satisfies

k2(x, y) = k2
x(x) + k2

y(y) + k̃2(x, y),∫ 1
0 k̃2(x, y) dx = 0, ∀y,∫ 1
0 k̃2(x, y) dy = 0, ∀x,

(7.65)

see also (7.2).
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M,N Standard (C1) (C2)
25 35 34 41
35 32 30 36
45 34 34 38

Table 7.2: Number of iterations of Bi-CGSTAB with original SoV (second column),
with Choice 1 (third column) and with Choice 2 (fourth column) in test problem (V)
in combination with the wedge model.

Consider now the following two alternative choices of kx(x) and ky(y):

(C1) =



k2
x(x) = 1

Y 2

(∫ 1
0 k(x, y) dy

)2
,

k2
y(y) = 1

X

∫ 1
0 k2(x, y)− k2

x(x) dx,

k̃2(x, y) = k2(x, y)− k2
x(x)− k2

y(y),

(7.66)

and

(C2) =


k2

x(x) = 0,

k2
y(y) = 1

X

∫ 1
0 k2(x, y) dx,

k̃2(x, y) = k2(x, y)− k2
x(x)− k2

y(y).

(7.67)

In the first expression of (7.3), we have squared the integrand, whereas the whole
integral is squared in the first expression of (C1). In (C2), we have taken the
integral in the first expression to be zero, resulting in a SoV wavenumber which
only depends on the y-direction. Note that the second and third expression of
all (7.3), (7.66) and (7.67) are the same. Morever, note also that, in general,
these constructions (C1) and (C2) do not satisfy the second and third equations
of (7.65) anymore.

The corresponding subplots of the original and the alternative SoV wavenum-
bers in the domain can be found in Figures 7.1.

Some results of the test runs using (C1) and (C2) can be found in Table 7.2.
In this table, we observe the slightly better results of (C1) and the somewhat
disappointed results of (C2). In general, the choices we have made do not lead
to impressive acceleration of the convergence. Hence, we pay no more attention
to this aspect in further research.

Next, the spectra of preconditioned systems in test problems using both
(C1) and (C2), which are applied in Table 7.2, can be found in Appendix G.

7.3.2 Improved K̃ in SoV

Recall that
Â = Iy ⊗ (Ax −Kx) + (Ay −Ky)⊗ Ix, (7.68)
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as in (7.41). However, if we do not assume k̃(x, y) = 0, then we can replace this
expression by

A = Iy ⊗ (Ax −Kx) + (Ay −Ky)⊗ Ix − K̃. (7.69)

Now, matrix B in (7.44) turns out to be

B = Iy ⊗ Λ + (Ay −Ky)⊗ Ix − (Iy ⊗WH
L ) K̃ (Iy ⊗WR). (7.70)

Then, instead of (7.49), we obtain

D = PTBP + ˜̃K, (7.71)

where ˜̃K = PT K̃
′
P, (7.72)

with K̃
′
defined by

K̃
′
= (Iy ⊗WH

L ) K̃ (Iy ⊗WR). (7.73)

Note that, in general, the matrix ˜̃K has no diagonal or block-diagonal structure,
see also Example E.5 in Appendix E.

In this subsection we investigate possibilities for a block-diagonal matrix˜̃K 6= 0 in such a way that this leads to better convergence results for the HP.

Diagonal ˜̃K
First, we investigate a diagonal ˜̃K. The most simple choice in this case is

˜̃Kdiag = diag( ˜̃K). (7.74)

Due to the structure of ˜̃K, we obtain exactly the same matrix if we take

˜̃Kblock = block( ˜̃K), (7.75)

where block( ˜̃K) denotes the diagonal blocks of ˜̃K. Thus ˜̃Kblock = ˜̃Kdiag. We
illustrate this with Example E.6, see Appendix E.

Next, we obtain

K̃mod = (Iy ⊗WR)P ˜̃Kdiag PT (Iy ⊗WH
L ). (7.76)

Now, we replace K̃ = 0 by K̃ = K̃mod in the SoV preconditioner .
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Results & Discussion

Before we give the results of our test runs using K̃mod, we note that if we know
WR, then WH

L can be computed / approximated in two ways:

1. W̃
H

L = WH
R ;

2. WH
L = WT

R.

These two choices are used in the test runs.
The first choice is the naive approach. W̃

H

L is only exact if A is Hermitian,
see Theorem 3.4. However, our matrix A is not Hermitian due to the imaginary
components. Therefore, W̃

H

L is only an approximation of WH
L .

The exact approach is to choose WH
L = W−1

R , see Theorem 3.3. W−1
R

is expensive to compute in practice. Fortunately, we deal with a complex-
symmetric A and, hence, we can apply Theorem 3.5. We obtain WR = WL,
where WR denotes the conjugate of WR. This leads to the second choice
WH

L = WT
R.

We denote K̃mod obtained with the first and second choice, by K̃mod(1) and
K̃mod(2), respectively. The new SoV preconditioners are in these cases:

Mmod(i) = MSoV + K̃mod(i), i = 1, 2. (7.77)

where MSoV is the original SoV preconditioner with K̃ = 0. Note further
that the computational work to obtain K̃mod(i) is relatively cheap compared to
solving Mmod(i)x = b.

In Table 7.3, one can find the results applying this new SoV preconditioner.

M,N MSoV Mmod(1) Mmod(2)

15 78 68 58
25 35 35 35
35 33 29 30
45 35 33 33

Table 7.3: Number of iterations of Bi-CGSTAB using MSoV , Mmod(1) and Mmod(2),
respectively. Test problem (V) is applied with the wedge model.

In Table 7.3, we can see the decrease of the number of iterations using
Mmod(i) compared to MSoV . However, the differences between MSoV and both
Mmod(i) are relatively small, especially for sufficiently large M and N which is
of our interest.

Moreover, one observes in Table 7.3 that the methods applying K̃mod(1)

and K̃mod(2) give approximately the same number of iterations, which is rather
remarkable, see Appendix H.

In further analysis, we apply only K̃ = K̃mod(2), which is denoted by K̃mod

for simplicity.
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Structure of K̃
′
and ˜̃K

A reason of the small advantage of using K̃ = K̃mod, which can be seen Table

7.3, becomes clear when we look at the structure of K̃
′
and ˜̃K. The plots of K̃

′

and ˜̃K of our problem with different gridsizes (M,N = 5, 15, 25) can be found
in Figures 7.2–7.4.

Considering Figures 7.2–7.4, one can make the following observations:

Observation 1 increasing the number of elements M and N , leads to a block-
diagonal matrix K̃

′
which has relatively small diagonal elements;

Observation 2 however, considering the full matrix ˜̃K the diagonal elements
are obviously significant.

Note that, in fact, Observation 2 is in contradictory to the observation made
in Plessix & Mulder [37], since they have concluded that K̃

′
is not diagonal

dominant and moreover, the terms on the diagonal are almost zero. Apparently,
our test problems are too small to find comparable results with those of [37].

7.3.3 Ideas for Future Research

We have investigated various choices of kx(x) and ky(y), but the differences
between them were relatively small.

Examining modified forms of K̃, instead of taking K = 0 in the original SoV
preconditioner, leads to the following first result: taking K̃mod = K̃diag gives a
somewhat better convergence. More research in K̃mod is needed to improve the
convergence behaviour. In Appendix I, we show that it should be possible
to find such a K̃mod. We have done some small experiments using so-called
mass lumping techniques (see e.g. Van Kan & Segal [26]), which do not make
sense, since they do not improve the convergence rate of iterative methods.
Mass lumping of a matrix means that for each row all non-diagonal elements
are summed and added to the diagonal element in a ‘sensible’ way.
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(a) Choice 1 (C1)

(b) Choice 2 (C2)

Figure 7.1: Wavenumber k for Choice 1 (C1) and Choice 2 (C2). Left subplots:
original wavenumber. Right subplots: wavenumber in the preconditioned case (i.e.,
SoV wavenumber). Gridsizes M × N = 35 × 35 are applied in these subplots.
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Figure 7.2: On the top: matrices eK′
(left) and

eeK (right) with M, N = 5. On the
bottom: the enlargements of the plots above. Moreover, the axes are labelled by the
number of elements (= [1, 2, . . . , MN ]).
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Figure 7.3: On the top: matrices eK′
(left) and

eeK (right) with M, N = 15. On the
bottom: the enlargements of the plots above. Moreover, the axes are labelled by the
number of elements (= [1, 2, . . . , MN ]).
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Figure 7.4: On the top: matrices eK′
(left) and

eeK (right) with M, N = 25. On the
bottom: the enlargements of the plots above. Moreover, the axes are labelled by the
number of elements (= [1, 2, . . . , MN ]).



Chapter 8

Eigenvalue and Eigenvector
Analysis

As a preparation for the next chapter, where some combined preconditioners
will be introduced, we investigate the possibilities for combining the SoV and
the CSL preconditioners by using eigenvalue and eigenvector analysis.

We start with analyzing the smallest eigenvalues and their corresponding
eigenvectors of the systems A, M−1

CSLA and M−1
SoV A in Section 8.1. The aim

of this analysis is to examine whether the ‘bad’ eigenvalues of the SoV precon-
ditioned system correspond with the ‘bad’ eigenvalues of the original system,
where ‘bad’ eigenvalues means small eigenvalues in absolute sense. As men-
tioned in Chapter 5, we know that the bad eigenvalues of both the CSL pre-
conditioned and the original systems are related to each other. If we can show
that the ‘bad’ eigenvalues of the SoV preconditioned system are corresponding
to other eigenvalues of the original system, then a combined preconditioned can
make sense.

In Sections 8.2 and 8.3, we show the importance of the ‘bad’ eigenvalues
for the solution by considering their eigenvectors. In fact, it is shown that a
successful combined preconditioner has to get rid of the these ‘bad’ eigenvalues,
since the corresponding eigenvectors of them determine mainly the solution.

8.1 Smallest Eigenvalues and their Eigenvectors

In this section, we consider the smallest absolute values of the (complex) eigen-
values and their corresponding eigenvectors for the systems A, M−1

SoV A and
M−1

CSLA. We have written the MATLAB program mineig(X,p) which com-
putes the p smallest eigenvalues in absolute sense and their eigenvectors for an
arbitrary matrix X.

8.1.1 Example 1

In the subplots of Figures 8.2, one can find the results for the case of p = 4
and M,N = 15 in test problem (V) in combination with the wedge model.
Therefore, the eigenvectors in absolute sense corresponding to the four smallest

89
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eigenvalues (also in absolute sense) are plotted in these figures. The eigenvector
belonging to the smallest eigenvalue is plotted on the top, the eigenvector be-
longing to the second smallest eigenvalue is plotted in the second subplot and
so on. Since we consider the 2-D HP we have also 2-D eigenvectors, but they
are represented as vectors in 1-D (analogous to Expression (2.19)) in all figures,
for simplicity.

(a) Original system

(b) SoV preconditioned system (c) CSL preconditioned system

Figure 8.1: Eigenvalues of the systems A, M−1
SoV A, M−1

CSLA with M, N = 15 in test
problem (V) with the wedge model.

In Figure 8.1, one can observe that it is rather difficult to analyze the
four smallest eigenvalues with their eigenvectors, since there are relative many
eigenvalues near zero in the original system A. If one does try to investigate
this and, therefore, to compare the three subplots of Figures 8.2, the following
results can be found. There are no common eigenvectors for the original and
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(a) Original system

(b) SoV preconditioned system (c) CSL preconditioned system

Figure 8.2: Eigenvectors corresponding to the four smallest absolute eigenvalues
with M, N = 15 in test problem (V) with the wedge model.

SoV preconditioned system, while the original and CSL-preconditioned system
show a few common eigenvectors. For example, the fourth eigenvector of both
Figure 8.2(a) and 8.2(c) seem to be approximately the same. Moreover, the
third eigenvector of Figure 8.2(a) looks to be equal to the first eigenvector of
Figure 8.2(c).

8.1.2 Example 2

We take the same example as in the previous subsection, but now with a coarser
grid (M,N = 7). In this case, there are fewer eigenvalues around zeros, which
may lead to a easier analysis of the smallest eigenvalues and their eigenvectors.
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Analogous to Figure 8.1, the eigenvalues are given in Figure 8.3. Thereafter,
the results of the eigenvectors can be found in the subplots of Figure 8.4.

(a) Original system

(b) SoV preconditioned system (c) CSL preconditioned system

Figure 8.3: Eigenvalues of the systems A, M−1
SoV A, M−1

CSLA with M, N = 7 in test
problem (V) with the wedge model.

We can see again that the original and SoV preconditioned system do not
have common eigenvectors, while the original and CSL do have these common
eigenvectors, which is more clear than in the previous example. All four eigen-
vectors of Figure 8.4(c) are approximately identical to those of Figure 8.4(a)
and even in the same order!
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(a) Original system

(b) SoV preconditioned system (c) CSL preconditioned system

Figure 8.4: Eigenvectors corresponding to the four smallest absolute eigenvalues
with M, N = 7 in test problem (V) with the wedge model.

8.1.3 Conclusion

In problems with large M and N , it is difficult to analyze the smallest eigen-
values and their eigenvectors. Considering the eigenvectors in examples with
relative small M and N , we conclude that indeed the bad eigenvalues of A are
related to the bad eigenvalues of the CSL preconditioned system. Furthermore,
there seems to be no relation between the bad eigenvalues of A and those of
the SoV preconditioned system.

There are possibilities with prospects for finding a combination of both
preconditioners treating the HP, because the ‘bad’ eigenvalues of A are also
the bad eigenvalues of the CSL preconditioned system, whereas they are not
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the bad eigenvalues of the SoV preconditioned system. We know that CSL gets
rid of the relatively large eigenvalues and, hopefully, SoV will get rid of the
smaller eigenvalues of matrix A. Only in this case, a combined preconditioner
will succeed.
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8.2 Approximated Solution using Eigenvectors

In Theorem 3.7, we have proved that solution p of the linear system Ap =
f, where A is a complex-symmetric matrix with distinct eigenvalues, can be
written as the linear combination of the eigenvectors vi, i.e.,

p = c1v1 + . . . + cnvn, (8.1)

where the coefficients ci are equal to

ci =
〈p,vi〉
〈vi,vi〉

, (8.2)

assuming that 〈vi,vi〉 6= 0 ∀i = 1, . . . , n and taking the conjugate inner product
as our standard inner product.

The consequence of this theorem is that if k < n then pk defined by

pk = c1v1 + . . . + ckvk, (8.3)

is an approximation of p. Note that if k = n then p = pn.
Now we turn back to Examples 1 and 2 of the previous section and consider

again the figures drawn in these examples, where the eigenvectors corresponding
to the four smallest eigenvalues of the various preconditioned systems have been
depicted. In the extensions of the examples, we compare the vector p4 with p for
both the systems M−1

CSLA and M−1
SoV A, as can be seen in the next subsections.

We can apply Theorem 3.7 for the complex-symmetric matrix A (where we
assume the eigenvalues to be distinct). However, it is not applicable to matrices
M−1

CSLA and M−1
SoV A, since these are, in general, not complex-symmetric, i.e.,

the corresponding eigenvectors are not orthogonal, generally! In the case of
M−1

CSLA, the coefficients of Theorem 3.7 can still be computed if M and N are
sufficient small, because the ‘bad’ eigenvectors are the same for M−1

CSLA and
A, see e.g. Figure 8.4. For relatively large M and N , it is useless to compute
coefficients ci for matrices M−1

SoV A and M−1
CSLA, as given in Theorem 3.7. It

gives at most a poor approximation of the real p4.

8.2.1 Extension of Example 1

The results of the comparison of p4 and p for the original and the precondi-
tioned systems can be found in Figure 8.5. The approximation of p, using the
eigenvectors corresponding to the smallest eigenvalues of A, is given with a
straight narrow line (approximated solution A).

Note first that the approximated solution corresponding to A differs from
those of M−1

CSLA and M−1
SoV A. Although it seems that the eigenvectors of

M−1
CSLA resemble the numerical solution well, it can be observed that the local

maxima of the plots are situated at different locations. Hence, the results of
M−1

CSLA and M−1
SoV A give a bad approximation of the solution and, therefore,

they are indeed useless.
Since there are in total 15×15 = 225 eigenvectors, it is obvious that only four

eigenvectors (even corresponding to the smallest eigenvalues) are not sufficient
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Figure 8.5: Approximated solution using the eigenvectors corresponding to the four
smallest absolute eigenvalues of M−1

CSLA in the case of M, N = 15.

to represent the solution well. Moreover, there are a lot of eigenvalues around
zero in the original system A (see also Figure 8.1(a)), whereas we have only
taken four eigenvalues to approximate the solution. The expectation is that, in
the case of M,N = 7, the results will be better, see the next subsection.

If we take 20 (of the possible 225) instead of four ‘bad’ eigenvectors, then
one can find the results in Figure 8.6. In this case, we observe that the 20
eigenvectors resemble the numerical solution rather well.
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Figure 8.6: Approximated solution using the eigenvectors corresponding to 20 small-
est absolute eigenvalues of A in the case of M, N = 15.
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8.2.2 Extension of Example 2

The results, analogous to Example 1 of the previous subsection, can be found
in Figure 8.7.

Figure 8.7: Approximated solution using the eigenvectors corresponding to the four
smallest absolute eigenvalues of matrices M−1A and A in the case of M, N = 7.

Note that the approximation of solution p based on the bad eigenvectors
of the SoV preconditioned system is poor, while the approximation based on
the four (of a total of 7 × 7 = 49) eigenvectors of the SoV preconditioned and
the original system are the same! This can also be seen in Figure 8.8, which is
almost the same as Figure 8.7 and only the case M−1

SoV A is omitted to make
the other plots more clear.

8.2.3 Conclusion

Taking about 10% of the number of the bad eigenvectors of A gives a good ap-
proximation of the numerical solution. This holds also for CSL preconditioned
system M−1

CSLA, for sufficiently small M and N .
Therefore, in future research of combining preconditioners, one has to look

for a variant which is able to deal with the ’bad’ eigenvalues and eigenvectors. A
succesfully combined preconditioner should be robust for these bad eigenvalues.
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Figure 8.8: Approximated solution using the eigenvectors corresponding to the four
smallest absolute eigenvalues of M−1

CSLA and A in the case of M, N = 7.
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8.3 Eigenvalues and their Corresponding Coefficients

We have seen in Theorem 3.7 that

p = c1v1 + . . . + cnvn, (8.4)

for a complex-symmetric matrix with distinct eigenvalues. The coefficients can
be computed as follows:

ci =
〈p,vi〉
〈vi,vi〉

∈ C. (8.5)

In fact, each vi corresponds to a specific ci. Since vi is related to the eigen-
value λi, we can also say that λi corresponds with the coefficient ci. Now, we
investigate whether there is a relation between λi and ci for each i. There-
fore, we reconsider and extend again Examples 1 and 2 and plot the following
parameters against the coefficients ci:

• real parts of the eigenvalues;

• imaginary parts of the eigenvalues;

• absolute values of the eigenvalues.

Before we give the results, one has to note that all vi can be scaled by an
αi ∈ C\{0}. We choose to normalize all vi, i.e., all vi are forced to have length
1. This is important because of the following fact. If vi is an eigenvector, then
αivi, αi ∈ C\{0} is also an eigenvector. Then we obtain:

〈p, αivi〉
〈αivi, αivi〉

=
αi 〈p,vi〉
α2

i 〈vi,vi〉
=

1
αi

〈p,vi〉
〈vi,vi〉

=
1
αi

ci, (8.6)

using Expression (8.5). In other words: the coefficients ci are dependent on the
choices of αi. For a fair comparison, we choose the coefficients ci such that each
αivi has unit length, i.e.,

αi =
1√

〈vi,vi〉
, ∀i = 1, 2, . . . , n. (8.7)

Now, the results of the two examples can be given, where Example 2 can be
seen in Appendix J.

8.3.1 Second Extension to Example 1

In Figure 8.9, one can find the results where the eigenvalues are plotted against
the coefficients ci.

Considering the subplots of Figure 8.9, one concludes immediately that the
absolute and the real parts of eigenvalues around zero correspond with relatively
large coefficients. In other words: the eigenvectors corresponding to these ‘bad’
eigenvalues are the main components of the solution.

Note that the smallest real parts (in absolute sense) do not have large co-
efficients. In Figure 8.9(a), one can see that the large coefficients corresponds
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(a) Real parts of the eigenvalues

(b) imaginary parts of the eigenvalues (c) Absolute values of the eigenvalues

Figure 8.9: Real parts of the coefficients corresponding to the real, imaginary and
absolute parts of the eigenvalues of A in the case of M, N = 15.

with real parts around zero, but there are also real parts around zero which
have small coefficients. That means that the method described in the previous
section can be improved by taking the (four) eigenvectors corresponding to the
large coefficients instead of taking the eigenvectors corresponding to the ’bad’
eigenvalues. However, in practice this is difficult to perform.

Observe further that the plot of the imaginary parts of the eigenvalues has
a different structure. The imaginary parts near zero do not have the largest
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coefficients and hence, it is not used in further research.

Comparison of Real and Imaginary Parts and Absolute Values of the
Coefficients

We take a look at the real and imaginary parts of the coefficients ci, instead
of at the absolute values. The results of the comparison for Example 1 can be
found in Figure 8.10.

Figure 8.10: Real parts, imaginary parts and the absolute values of the coefficients
corresponding to the real parts of the eigenvalues of A in the case of M, N = 15.

One can see in all subplots of Figure 8.10 that the eigenvalues around zero
are the most important eigenvalues, since large coefficients in both real, imagi-
nary and absolute sense are located in that region.

Number of Significant Coefficients

Next, we investigate the number k of significant coefficients with the help of
the following definition:

P =
∑k

i=1 ĉi∑n
i=1 ĉi

, (8.8)

where 〈ĉi〉ni=1 is the sorted monotonically decreasing sequence of the absolute
values of the coefficients of all ci. Therefore: ĉ1 ≥ ĉ2 ≥ . . . ≥ ĉn.

Let m be a specific number such that 0 < m < 1 (for instance: m =
0.5, 0.75 or 0.9). The question is: what is the minimum number k such that
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P > m? In other words:

find the minimum number k such that P =
∑k

i=1 ĉi∑n
i=1 ĉi

> m. (8.9)

Using MATLAB, the results are given in Table 8.1.

m k P

0.5 20 0.504
0.75 55 0.755
0.9 103 0.900

Table 8.1: Number of significant coefficients in absolute sense for matrix A in the
case of M, N = 15.

Considering Table 8.1, one concludes that approximately 55 ‘bad’ eigen-
vectors are needed to represent 75% of the solution or only 103 ’bad’ eigen-
vectors are needed to represent 90% of the solution. Since there are in total
15× 15 = 225 eigenvectors, these numbers are relatively low. However, in large
practical problems, this number remains to be too large and hence, these ‘bad’
eigenvectors are too expensive to compute.

Conclusion

By reconsidering the examples, we conclude that the eigenvectors corresponding
to the ‘bad’ eigenvalues determine mainly the approximation of the solution.
This means that in future research, if we are looking for new preconditioners,
we have to find one which can deal with these bad eigenvalues.

8.3.2 Coefficients after Adapting the Source Term

We vary the location and the weight of the point source in the source term f and
look again at the coefficients corresponding to the (real part of the) eigenvalues,
see Figure 8.11(a). This figure is analogous to Figure 8.10.

Different Location of the Source Term

In the next test runs, we move the point source vertically and horizontally
with a quarter of the length of a specific direction of the domain and compute
again the real/imaginary parts and the absolute values of the coefficients ci

corrsponding to the real part of the eigenvalues, see Figure 8.11.
One can see that there are obvious differences between the results of the

subplots of Figure 8.11. However, in all figures one observes that the large
values of ci corresponds with the real parts around zero. Thus, considering this
latter observation, the structure of the figures are all the same.
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Scaling of the Source Term

If one takes α · f, α > 0 instead of the original f, then the coefficients in
Figure 8.11(a) are scaled with the same α. This can easily be seen: since
p = A−1f and therefore A−1 (αf) = αA−1f = αp holds, we obtain immediately:

αci =
〈αp,vi〉
〈vi,vi〉

=

〈
A−1 (αf) ,vi

〉
〈vi,vi〉

. (8.10)

An example of scaling the source term can be found in Figure 8.12, where
α = 50 is taken.

Conclusions

If one scales the source term, then the coefficients are also scaled by the same
parameter. In this case, the plots have the same form.

Furthermore, if one moves the point source, the plots of the coefficients
are somewhat different, but the main property holds,: the large coefficients
correspond to the small real parts and also to the small absolute values of the
eigenvalues.
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(a) Point source in the middle of domain

(b) Horizontal shift with − 1
4
L (c) Horizontal shift with 1

4
L

(d) Vertical shift with 1
4
L (e) Vertical shift with − 1

4
L

Figure 8.11: Real parts, imaginary parts and the absolute values of the coefficients
corresponding to the real parts of the eigenvalues of A in the case of M, N = 15 and
point source in the middle, left, right, top and bottom of the domain, respectively.
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Figure 8.12: Real parts, imaginary parts and the absolute values of the coefficients
corresponding to the real parts of the eigenvalues of A in the case of M, N = 15 and
source term 50 · f.



Chapter 9

Combined Preconditioners
using SoV and CSL

In the previous chapter, we have noted that the ‘bad’ eigenvalues of the CSL
preconditioned system corresponds to the ‘bad’ eigenvalues of A, where ‘bad’
eigenvalues mean eigenvalues relatively close to zero. Now, when the few ‘bad’
eigenvalues of SoV correspond to other eigenvalues of A, one could simply
combine SoV and CSL to get rid of all bad eigenvalues of both preconditioners,
which hopefully leads to fast convergence of the iterative method.

In this chapter, we try some combinations of SoV and CSL preconditioners,
such that this leads to a new and ‘powerful’ preconditioner. Test problems are
applied using the standard wedge model.

9.1 Modified SoV Preconditioner (SoV–σ)

In the test runs of Chapter 6, we have seen that an iterative method using
the SoV preconditioner is faster in convergence than the CSL preconditioner.
Furthermore, there are possibilities to combine CSL and SoV, because of the
results of Chapter 8. Intuitively, it is easy to do a few iterations with CSL
followed by the remaining iterations applying SoV. This is a first alternative
for a combination of both preconditioners.

We denote this new preconditioner by SoV–σ where σ ∈ N is the number of
starting iterations with the CSL preconditioner.

Results

The results of using SoV–σ with varying σ can be found in Table 9.1.
In this table, one can clearly see that SoV–σ leads to better results than SoV

for some test problems and for appropriate choices of σ. But when SoV requires
only a few (< 20) iterations, then SoV–σ does not improve the convergence
speed.

It can also be observed that there is a kind of optimum of σ for the ‘best’
convergence. The optimal σ varies in each case of Table 9.1. Actually, the
few starting iterations with CSL influences slightly the starting vector for SoV

107
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Test Problem M,N SoV SoV–1 SoV–2 SoV–3 SoV–4 SoV–5 SoV–10
15 78 79 75 71 72 72 68

(V) 25 35 35 34 33 33 37 45
35 32 29 32 32 33 35 41
15 18 19 20 19 21 22 26

(V+) 25 12 12 13 14 15 16 21
35 10 11 13 13 16 15 19
15 69 68 69 70 74 69 81

(V++) 25 65 66 66 60 60 61 64
35 37 38 39 37 39 41 45

Table 9.1: Number of iterations using Bi-CGSTAB in test problems in combination
with the wedge model using the modified SoV-preconditioner (SoV–σ).

preconditioner. Therefore, the differences between the original SoV and the
new SoV–σ are relatively small.

We end with the plots of the convergence behaviour of test problem (V) and
M,N = 15, see Figure 9.1.

Figure 9.1: Convergence behaviour of Bi-CGSTAB with both the original SoV pre-
conditioner (78 iterations) and the modified SoV–10 preconditioner (68 iterations)
in test problem (V) with M, N = 15. Top subplot: the standard relative residuals
during the iterations. Bottom subplot: the logarithms of these relative residuals.
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Considering Figure 9.1, we conclude that the logarithmical residuals of the
SoV–σ preconditioner have a stronger superlinear behavior compared to those
of the standard SoV-preconditioner, but the differences are small.

Conclusion

We have seen that the SoV–σ preconditioner with particular σ leads to slightly
better results than the SoV preconditioner.

However, the results of SoV–σ are not very promising, since the relative
improvement with respect to SoV is less than 10% in most test runs. Problems
with larger M and N may result in better performance. Furthermore, this
combined preconditioner gives at least some perspective for other combinations
of CSL and SoV, which may lead to new preconditioners with better convergence
results, see the next sections where the additive, multiplication and alternated
preconditioners are introduced.
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9.2 Multiplication Preconditioner (MP)

An idea to combine the CSL and SoV preconditioners into one preconditioner
is to define the following new preconditioners

MMP1 = MSoV A−1MCSL, (9.1)

and
MMP2 = MCSLA−1MSoV , (9.2)

where MP is an abbreviation of ‘multiplication preconditioner ’. We apply these
preconditioners in our iterative method Bi-CGSTAB. Note that approximately
the same work is required for each iterate with MMP1 or MMP2 and two iterates
with the original preconditioner SoV or CSL. This means that the MP is only
efficient if it is at least twice as fast as CSL or SoV.

Results

The results of the test runs, using MMP1 and MMP2, can be found in Table
9.2.

Test Problem M,N CSL MP1 MP2
15 62 64 63

(C++) 25 59 62 63
35 60 57 57
15 242 > 500 > 500

(V) 25 160 > 500 > 500
35 237 > 500 > 500

Table 9.2: Number of iterations of Bi-CGSTAB with both variants of the MP pre-
conditioner.

Unfortunately, the results of both variants of MP are not satisfactory. MP1
and MP2 are slower than CSL in all runs, as can be seen in Table 9.2. This can
also be illustrated by considering the eigenvalues of M−1

MP1A and M−1
MP2A and

comparing these with M−1
CSLA, see Figure 9.2.

The eigenvalues of M−1
MP1A or M−1

MP2A approach the eigenvalues of M−1
CSLA,

see Figure 9.2. They lie on the same kind of ellipse, except for a few eigenvalues
which are scattered to the left and right of and above this ellipse. These scat-
tered eigenvalues, especially the negative eigenvalues, cause the bad convergence
of Bi-CGSTAB in combination with both MP1 and MP2.

Furthermore, considering the subplots of Figure 9.2 and the results of Ta-
ble 9.2, we see that the eigenvalues of M−1

MP1A and M−1
MP2A and therefore, the

number of iterations are more or less the same. This observation can even be
proved, see below.

Theorem 9.1 Let MMP1 = MSoV A−1MCSL and MMP2 = MCSLA
−1MSoV

where A,MSoV and MCSL are arbitrary invertible matrices. Then the spectra
of M−1

MP1A and M−1
MP2A are exactly the same.
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Figure 9.2: Eigenvalues of the systems M−1
SoV A, M−1

CSLA, M−1
MP1A, M−1

MP2A in test
problem (V) with the wedge model using M, N = 15.

Proof. Applying Theorem 3.8, we obtain that M−1
SoV AM−1

CSLA has the same
eigenvalue distribution as M−1

CSLAM−1
SoV A. Hence, the eigenvalues of M−1

MP1A
and M−1

MP2A are the same.

�
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9.3 Additive Preconditioner (SP)

In the previous section, we have seen the disappointing results of the MP.
Another approach instead of using the MP is to take a new preconditioner of
the form

MSP = αMSoV + (1− α)MCSL, (9.3)

where 0 < α < 1. We call (9.3) the ‘sum preconditioner’ or the ‘additive
preconditioner ’ (SP).

Results

Some results using MSP can be found in Table 9.3.

Additive Preconditioner
Test Problem M,N SoV CSL α = 0.5 α = 0.75 α = 0.95 α = 0.99

15 78 240 144 98 65 72
(V) 25 35 160 102 61 34 34

35 32 237 128 78 36 34

Table 9.3: Number of iterations of Bi-CGSTAB with the SP preconditioner using
various α.

The results of this new additive preconditioner SP are better than the mul-
tiplication preconditioner MP. However, also SP makes only sense if it is at
least twice as fast as SoV or CSL, since SP requires computations with two
preconditioners in each iterate. Therefore, the results found in Table 9.3 are
still not satisfactory.

Note that the best results of the SP is obtained with a relatively large α,
i.e., 0 � α < 1. This is the consequence of the fact that in all runs the original
SoV performs a lot better than the original CSL, see columns 3 and 4 of Table
9.3.

The eigenvalues of SP with α = 0.5 and α = 0.95 can be found in Figure 9.3.
It can be seen in this figure that the number of ‘bad’ eigenvalues in the SoV
preconditioned system do not decrease in the SP preconditioned system.

There is another possibility to combine SoV and CSL preconditioner: Bi-
CGSTAB using alternately the SoV and CSL preconditioner in each iterate.
Unfortunately, due to the construction of Bi-CGSTAB, this does not give fast
convergence as mentioned in Appendix B. However, methods like GCR are
able to handle a so-called ‘alternated’ preconditioner, see the next sections. In
fact, GCR applies (9.3) and chooses automatically the ‘best’ α in (9.3).
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Figure 9.3: Eigenvalues of the systems M−1
SoV A, M−1

CSLA, M−1
SP A, respectively, (with

α = 0.5 and α = 0.9) in test problem (V) with the wedge model using M, N = 15.
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9.4 Alternated Preconditioner (AP)

In this section, GCR is used as iterative method in combination with SoV,
CSL and a new ‘alternated preconditioner’ (AP). In this AP preconditioner, we
apply alternately SoV and CSL in each iterate. The results of some test runs
can be found in Table 9.4.

Test Problem M,N SoV CSL AP
15 62 214 82

(V) 25 34 166 58
35 32 166 62
15 91 84 108

(E) 25 180 491 266
35 164 436 225

Table 9.4: Number of iterations with GCR using the SoV, CSL and the alternated
preconditioner (AP), respectively, in test problem (V) in combination with the wedge
model.

Considering Table 9.4, it can be noted that GCR in combination with the
SoV preconditioner leads to the best results in most runs. More importantly,
the AP shows better convergence than CSL in most cases and at the same
time it is worse than SoV. A comparison between the number of iterations
using the SP (Table 9.3) and the AP (Table 9.4) gives as a result that the SP
seems to be a better preconditioner comparing to AP. However, each iterate of
the SP requires computations with two preconditioners, whereas the AP needs
one preconditioner in each iterate. From this point of view, both combined
preconditioners are comparable to each other.
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9.5 Alternated Preconditioner using full K̃ (AP-K)

In the AP, we have applied alternately SoV and CSL, but there are more al-
ternatives available such as the AP with alternately SoV and a preconditioner
based on k̃. This can be motivated as follows. In Section 7.1, we have seen that
the Helmholtz equation can be written as:

∆p− (k2
x + k2

y)p− k̃2p = f, (9.4)

resulting in the linear system

ASoV p− K̃p = f, (9.5)

where K̃ and ASoV = Â as given in Expressions (7.13) and (7.60), respectively.
One assumes K̃ = 0 in the SoV preconditioner. Now, the idea of AP-K is
to apply also K̃ in the preconditioner. Therefore, we take M1 = ASoV and
M2 = K̃ as preconditioners and apply them alternately in GCR. Note that K̃
is a diagonal matrix and thus, M2 is a preconditioner which is easy to use.

Results

In Table 9.5 one can find the results of some test runs using AP-K.

Test Problem M,N AP AP-K
15 82 103

(V) 25 58 69
35 62 67
15 108 171

(E) 25 266 357
35 225 331

Table 9.5: Number of iterations with GCR using the alternated preconditioners AP
and AP-K, respectively, in test problem (V) with the wedge model.

In Table 9.5, it can be seen that the AP-K does not work well. The AP-
K is even less efficient than the AP preconditioner. However, considering the
computational work, both combined preconditioners are comparable to each
other, since the iterates with K̃ as preconditioner are relatively cheap.

9.6 Conclusions

We have tried some combined preconditioners in Bi-CGSTAB and GCR. These
preconditioners fail in our test runs, comparing to the original SoV precondi-
tioner, while the first combined preconditioner (SoV-σ) has given some perspec-
tive for finding better combined preconditioners.

The preconditioners SP, MP, AP and AP-K may work better, if the test
problems are more complex by taking much more gridpoints. In these situations
SoV and CSL show difficulties (see [15, 37, 52]) with as consequence that these
combined preconditioners can be attractive. This is left for further research.



116 Chapter 9. Combined Preconditioners using SoV and CSL



Chapter 10

Conclusions

As a result of the research, which has been described in the previous chapters,
we can draw the following conclusions.

Theoretical Results using Linear Algebra

Assume WR to be a right eigenvector matrix. Then, for an arbitrary complex
diagonalizable matrix A, we can choose a left eigenvector matrix WL = W−1

R

such that WH
L WR = I holds, where I is the unit matrix. If the matrix is

even complex-symmetric and it has distinct eigenvalues, the choice WL = WR

ensures the decomposition WH
L WR = I.

Complex-symmetric matrices have orthogonal eigenvectors with respect to
the conjugate inner product. However, the eigenvalues are not real, in contrast
to Hermitian and real-symmetric matrices.

Let matrix A and the preconditioner M be symmetric and indefinite. Then,
the eigenvalues of the system M−1A are, in general, complex. If A is positive
semi-definite (PSD) instead of indefinite, then the eigenvalues of M−1A are
real -valued.

The separation–of–variables (SoV) preconditioned matrix M−1
SoV A, obtained

with the discretized Helmholtz problem in combination with Dirichlet boundary
conditions, has in general complex eigenvalues, while the real shifted Laplace
preconditioned matrix M−1

CSLA, obtained in the same way, has always real
eigenvalues, which are easier to use in spectral analysis.

Properties of CSL and SoV

The complex shifted Laplace (CSL) preconditioner with α = 0 and β = 1 is not
efficient for all Helmholtz problems. For instance, in the case of the HP with
conjugate Sommerfeld absorbing conditions, the conjugate CSL preconditioner
with parameters α = 0 and β = −1 is the most efficient choice.

Taking the maximum or minimum values, instead of averaging values, at
the boundaries in the SoV preconditioner, results in approximately the same
iterative behavior of Bi-CGSTAB.
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Results of the Test Runs

In the test runs, we have that, by varying the gridsizes M and N , the number
of iterations is approximately constant using the SoV preconditioner. Without
preconditioner, the number of iterations increases by enlarging the gridsizes.

The SoV preconditioner works better than the CSL preconditioner in more
or less all test runs.

Our small test problems are defined in such a way that the SoV precondi-
tioner is very efficient. However, Plessix & Mulder [37] have shown that, for
larger k and, therefore, for larger gridsizes, SoV is no longer efficient. It is
unknown whether the results, obtained with our test problems, also hold for
larger problems.

The failure of the SoV preconditioner is related to the contribution of K̃.
It appears that if the number of iterations using SoV increases, then also the
relative contribution of K̃ becomes larger.

Since we deal with complex vectors, the order of inner products in the
algorithms of iterative methods (Bi-CGSTAB, GMRES and GCR) is important.

Improving the SoV preconditioner

Each wavenumber k(x, y) can be decomposed into k2(x, y) = k2
x(x) + k2

y(y) +
k̃2(x, y). It appears that the kx(x) and the ky(y) in the SoV, proposed by
Plessix & Mulder [37], are nearly optimal. Several attempts to choose other
kx(x) and ky(y) in the SoV preconditioner do not lead to better performance
of the iterative methods.

If we take ˜̃Kdiag (resulting in a k̃(x, y) 6= 0) in the SoV preconditioner leads
to somewhat better results, for relatively small gridsizes M and N .

Eigenvalue and Eigenvector Analysis

The eigenvectors belonging to the eigenvalues of A close to zero (i.e., the ‘bad’
eigenvalues) are the main components of the approximation of the solution p of
Ap = f. Therefore, a ‘good’ preconditioner has to get rid of the bad eigenvalues
of A.

Bad eigenvalues of the CSL preconditioned system are related to the bad
eigenvalues of the original matrix A, while there is no implication that these
correspond also to the bad eigenvalues of the SoV preconditioned system.

Construction of Combined Preconditioners

The combined preconditioner SoV–σ leads to somewhat better results than the
CSL and SoV preconditioners

The other combined preconditioners (SP, MP, AP and AP-K) can be faster
than CSL, but they are slower than SoV.
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Recommendations for Further
Research

With regard to the conclusions in the previous chapter, we recommend the fol-
lowing actions to be taken or considered in future research.

We know that if we have an complex diagonalizable and complex-symmetric
matrix with distinct eigenvalues, then the choice WL = WR ensures the de-
composition WH

L WR = I. Does the above statement also hold for the matrix
without distinct eigenvalues.

In our test runs, we have restricted ourselves to small gridsizes (M,N ≤ 45),
while much larger gridsizes are required in practice. In Plessix & Mulder [37],
it has been concluded that the SoV preconditioner is not efficient in complex
models with these gridsizes and hence, the CSL preconditioner is more attrac-
tive in these models. One has to implement these larger problems and compare
the behavior of the preconditioners once again.

More research is needed in choosing appropriate kx(x) and ky(y), which may
improve the SoV preconditioner.

Several attempts failed to create a block-diagonal ˜̃K, which can be taken
into account in the SoV preconditioner. We expect that it has to be possible

to choose such an appropriate ˜̃K, which improves the SoV preconditioner a lot.
In this kind of examinations, we need also test problems with larger gridsizes.

We know that eigenvectors, belonging to the small eigenvalues of the discretized
HP, are the main components of the solution. One can try to prove and gener-
alize this observation.

We have to find a preconditioner, which gets rid of the small eigenvalues of
the original matrix A, since we have shown that these are the most important
eigenvalues of the system. 1

1From this point of view, CSL is not a good preconditioner, since this preconditioner has
the property that it does not get rid of the small eigenvalues of A.
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More research is needed to investigate the small eigenvalues of A and also
of the CSL and SoV preconditioned systems. Considering the results, found
with the combined preconditioners, it seems that the small eigenvalues of A
are not all ‘covered’ by both CSL and SoV.

The defined combined preconditioners (SoV–σ, SP, MP, AP and AP-K) may
show better performance in problems with larger gridsizes, since SoV is not
always more efficient than CSL in these cases.

Other combined preconditioners applying existing preconditioners, like SoV,
CSL, AILU, IC or multigrid preconditioners, may lead to better results.

In the results of the test problems we have seen that, by varying the gridsizes
M and N , the number of iterations is approximately constant, using the SoV
preconditioner. Therefore, the number of small eigenvalues does not increase by
enlarging the gridsizes, which can also be seen in the spectral plots of Chapter 6.

From this point of view, ‘successive refinement ’ techniques can make sense.
The idea behind these techniques is to solve the system Ap = f exact on a
coarse grid and prolongate this solution on the ‘original’ grid, such that this
can be used as starting vector for the iterative method. The expectation is that
this starting vector approaches the real solution very well, since it does not
consist the influences of the small eigenvalues anymore. Therefore, we expect a
fast convergence of the iterative method.

A start with these investigations is made. First results and more details
about successive refinement can be found in Appendix K.
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Appendix A

Arnoldi’s method

Arnoldi’s procedure is an algorithm for building an orthonormal basis of the
Krylov subspace Km. One variant of the algorithm is given below.

Arnoldi’s algorithm

1. Choose a vector v1 of norm 1

2. For j := 1, 2, . . . ,m Do :

3. hi,j := (Avj ,vi) for i = 1, 2, . . . , j

4. wj := Avj −
∑j

i=1 hijvi

5. hj+1,j := ||wj ||2

6. vj+1 :=
wj

hj+1,j

7. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector vj by A and
then orthonormalizes the resulting vector wj against all previous vectors vi, by
a standard Gram-Schmidt procedure.

One can prove the following propositions (see pp. 146–148 of Saad [39]).

Proposition A.1 Assume that Arnoldi’s algorithm does not stop before the
m-th step. Then, the vectors v1, v2, . . . , vm form an orthonormal basis of the
Krylov subspace

Km = span
{
v1,Av1, . . . ,Am−1v1

}
. (A.1)

Proposition A.2 Denote by Vm the n×m matrix with column vectors v1, . . . ,
vm. Denote by H̄m the (m+1)×m Hessenberg matrix whose nonzero entries hi,j

are defined by Arnoldi’s algorithm. Furthermore, denote by em = {0, 0, . . . , 1}T

and by Hm the matrix obtained from H̄m by deleting its last row. Then, the
following relations hold:
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AVm = VmHm + wmeT
m (A.2)

= Vm+1Hm, (A.3)
VT

mAVm = Hm. (A.4)



Appendix B

Preconditioned Krylov
Iterative Methods

The preconditioned Krylov iterative methods Bi-CGSTAB, GMRES and GCR
are given below. The preconditioner is denoted by M.

Algorithm B.1: Preconditioned Bi-CGSTAB

1. Compute r0 := f−Ap0

2. Set z0 := r0, α0 := z̃0
(Az0,r̃0) and s0 := r0 − α0Az0

3. Choose r̃0 arbitrary

4. For j := 0, 1, . . . , until convergence Do :
*. ẑj = M−1zj

*. ŝj = M−1sj

5. wj := Aẑj

6. vj := Aŝj

7. αj := z̃j

(wj ,r̃0)
8. sj := rj − αjwj

9. ωj := (vj ,sj)
(vj ,vj)

10. pj+1 := pj + αj ẑj + ωj ŝj

11. rj+1 := sj − ωjvj

12. βj := αj

ωj

ρj+1

ρj

13. zj+1 := rj + βj(zj − ωjwj)
14. EndFor
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Algorithm B.2: Preconditioned GMRES

1. Choose x0 and compute r0 := f−Ap0, β := ||r0||2 and v1 := r0/β
2. Define the (m+1)×m matrix Hm := {hi,j}1≤i≤m+1,1≤j≤m. Set Hm := 0

3. For j := 1, 2, . . . , until convergence Do :
4. wj := M−1Avj

5. For i := 1, 2, . . . , j Do :
6. hi,j := (wj ,vi)
7. wj := wj − hijvi

8. EndFor

9. hj+1,j := ||wj ||2
10. vj+1 := wj

hj+1,j

11. EndFor
12. Compute ym := arg miny ||βe1 − H̄my||2
13. Compute pm := p0 + Vmym

Algorithm B.3: Preconditioned GCR

1. Choose p0 and compute r0 := f−Ap0

2. For j := 1, 2, . . . , until convergence Do :
3. sj := M−1rj−1

4. vj := Asj

5. For i := 1, 2, . . . , j − 1 Do :
6. α := (vj ,vi)
7. vj := vj − αvi, sj := sj − αsi

8. EndFor

9. vj := vj

||vj ||2 , sj := sj

||vj ||2

10. pj := pj−1 + (rj−1,vj) sj

11. rj := rj−1 + (rj−1,vj)vj

12. EndFor

Recall that M−1 is never computed in the implementation of the above al-
gorithms. For instance, if we have to compute sj := M−1rj−1, then this is done
by solving Msj = rj−1 efficiently.

Moreover, note that M is required in determining the coefficients αj in
Algorithm B.1 and also in determining the coefficients hi,j in Algorithm B.2,
whereas the coefficients αj in Algorithm B.3 do not require M. Therefore, in
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GCR it is possible to apply alternately preconditioners M1 and M2 in the form
of

M =
{

M1, if j = even;
M2, if j = odd.

(B.1)
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Appendix C

Diagonal and Incomplete
Cholesky Preconditioners

In this appendix, we describe the diagonal (D) and the incomplete Cholesky
(IC) preconditioners.

C.1 Diagonal Preconditioner

We transforms the original system in the following preconditioned system

Ãp̃ = f̃, (C.1)

where Ã = P−1AP−T ,p = P−T p̃, f̃ = P−1f and moreover, P is a non-singular
matrix and A is symmetric positive definite matrix with dimensions N ×N .

A simple choice for P is a diagonal matrix with diagonal elements

Pii =
√

Aii, for i = 1, 2, . . . , N. (C.2)

Then we can easily derive

Ãii = P−1
ii AiiP−T

ii = 1, for i = 1, 2, . . . , N. (C.3)

In Van der Sluis [44] it has been shown that this choice for P minimizes
the condition number of Ã, if P is restricted to be a diagonal matrix. For this
preconditioner it is advantageous to apply CG to Ãp̃ = f̃, since Ã is easy to
calculate.

However, in the HP we have a Hermitian and symmetric-complex matrix
A, instead of a symmetric positive definite matrix. More research is required
to decide of the diagonal preconditioner can be used in this case.

C.2 Incomplete Choleski Factorization

Made [31] has introduced a new incomplete factorization based on a precondi-
tioning technique, which consists in adding small perturbations to the diagonal
entries of the real part of the matrix. In doing so, the real part is made positive
definite, or less indefinite.
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C.2.1 Idea of Incomplete Cholesky factorization

As a model problem, we consider again the large-scale linear system Ap = f,
where A is complex-symmetric and the linear system is deduced from the
Helmholtz problem. To solve this system with a direct method, one may fac-
torize A as A = L̃L̃

T
with L̃

T
being lower triangular, and solves successively

two triangular systems. This is known as the Cholesky factorization. Even if A
is sparse, L̃

T
is generally less sparse due to fill-in. This makes direct methods

both memory and time consuming for N fairly large, as in real-life scientific or
industrial problems.

A common remedy consists in ignoring certain fill-in entries, which yields
an incomplete factorization preconditioning matrix f = LLT . There are two
basic strategies for accepting or discarding fill-in:

• by level of fill-in (or by position). The level ‘lev(li,j)’ of the coefficient lk,i

of matrix L is defined by Saad, see section 10.3.3 of [39],

1. initialization:

lev(li,j) :=
{

0 if li,j 6= 0 or k = i,
∞ otherwise,

(C.4)

2. factorization:

lev(li,j) = min{lev(li,j), lev(li,k) + lev(lk,j) + 1}, (C.5)

which is updated each time in line 5 of the algorithm of Gauss elim-
ination (IKJ-variant), see [39].

The set D of fill-in entries to be discarded is taken as

D = {(i, j) | lev(li,j > ξ)} , (C.6)

where the integer ξ denotes a user specified maximal fill-in level;

• by (numerical) value. Fill-in is ignored if it is ‘too small’ with respect to
some prescribed tolerance.

Dual approaches that combine ingredients from both structural and numerical
strategies are also used. The choice of both ξ and the drop tolerance depends,
among other things, on the problem at hand and the available workspace. Sev-
eral variants of the basic incomplete factorization have been designed, rang-
ing from modified methods in which the discarded fill-in entries are added to
the diagonal, to more sophisticated multilevel versions that use multigrid like
(re)numbering strategies, see for instance Axelsson [5].

C.2.2 IC Preconditioners

Made has used six variants of preconditioners based on the incomplete Cholesky
factorization, i.e.,
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1. IC: the standard incomplete Cholesky applied to A;

2. MIC: the standard modified incomplete Cholesky applied to A (see for
instance Section 5.1 of Vuik [53] for more details about this method);

3. IC0: IC applied to A0 ≡ Re(A) + Q (γ = 1);

4. ĨC0: IC applied to Ã ≡ A0 + i Im(A) = A + Q;

5. MIC0: MIC applied to A0 (γ = 1);

6. M̃IC: MIC applied to Ã,

where Q stands for the diagonal matrix, whose diagonal entries qii are defined
by

qii = −γ min{0,Re((Ae)i)}, (C.7)

with e the all-one vector and γ a given real parameter. In fact, Ae is the vector
with the sum of the rows of A. It can be proved, using spectral analysis (see
section 4.2 of [31]), that A0 is a diagonal perturbation of the Hermitian part
of the system matrix, while with Ã, the same diagonal perturbation is added
to the whole matrix.

In numerical experiments, using restarted GMRES (section 5.2 of [31]), we
can see that varying values for, respectively, wavenumber k, stepsize h, number
of fill-levels, parameter γ etcetera lead to different results. It appears that there
is no best preconditioner in most situations, although often M̃IC is the better
one.

In this thesis we apply the preconditioner based on the standard incomplete
Cholesky (IC) where only the real part of A, as in Ap = f, is taken.
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Appendix D

Comparing Eigenvalues of 1-D
HP using DBC and CS-ABC

In Chapter 3 of Tang [48], we have considered the 1-D HP with both absorbing
and Dirichlet boundary conditions. We have seen in both situations that the
real parts of the eigenvalues of matrix A were approximately identical, which
is favorable in iterative methods. If it can be shown that the HP with arbi-
trary boundary conditions leads to the same eigenvalue distributions in the real
parts, then it will be sufficient to look at the Dirichlet HP in further research
of convergence of iterative methods. The analysis of a Dirichlet problem is eas-
ier than a problem with absorbing conditions, since there are for instance no
imaginary components in the problem.

The observation that the real part of the spectrum of A is as good as in-
dependent of the boundary conditions is suprisingly. In the example below, we
see that the eigenvalues of a small matrix do depend on the choice of boundary
conditions.

Example

Consider the following small matrix:

A =

 2 + α −1 0
−1 2 −1
0 −1 2 + α

 , α ∈ C, (D.1)

which resembles the 1-D HP by taking k = 0 and ∆x = 1. The parameter
α ∈ C in (D.1) can be determined by the corresponding boundary conditions of
the HP. If α = 0, then we deal with Dirichlet conditions. Moreover, if α = 1,
then we have absorbing conditions, since

α =
1

∆x2(1 + ik∆x)
= 1, (D.2)

see also Section 2.5.
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Figure D.1: Real part of the eigenvalues of the matrix A of HP with k = 1 and
∆x = 1/5. The line for the absorbing problem lies above the line for the Dirichlet
problem.

Next, the eigenvalues of system (D.1) turns out to be

λ1 = 2 + α, λ2,3 = 2 +
1
2
α±

√
1
4
α2 + 2. (D.3)

Therefore, it can be immediately seen that the eigenvalues depends on α, thus
on the boundary conditions of HP.

�

D.1 MATLAB Tests

In MATLAB, we implement matrix A of the HP with both Dirichlet and ab-
sorbing conditions, denoted by Adir and Aabs, respectively. We have used a
constant wavenumber: k = 1. The plots of the corresponding eigenvalues for
N = 5 can be found in the left subplot of Figure D.1. 1

We define the relative diffence δi for each count of the two sorted sets in the
following way:

δi =
|(λdir)i − (λabs)i|

|(λabs)i|
, (D.4)

where (λdir)i and (λabs)i denote the i-th element of the sorted set of eigenvalues
of the Dirichlet and absorbing problem, respectively. This difference between
the real parts of the eigenvalues can be seen in the right plot of Figure D.1.

1In fact, we have N − 2 points since the boundary points are not considered in the matrix.
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Figure D.2: Eigenvalues of the matrix A of HP with k = 1 and ∆x = 1/10.

We have repeated the tests for various values of N , see Figures D.2 - D.4,
where in each figure we have shown on the left, the plot of the real part of the
eigenvalues, and, on the right, the relative difference δi.

In these figures, we observe the following:

• if N is relatively small, the eigenvalues of the Dirichlet and absorbing
problem are obviously different. The differences δi are relatively large. If
we increase N , then the relative differences become smaller, which can
also be seen in the left plots;

• the right plots of δi behave as an exponential function. This can be
expected, since the eigenvalues tend to zero in each left plot, if we increase
N . Thus, small differences between the eigenvalues around zero can give
large values of δi for i approaching N ;

• the disadvantage in iterative methods, that some real parts of the eigen-
values are close to zero, can be cancelled if the imaginary parts are suffi-
ciently far from zero. In our problem, this is exactly the case, see Figure
D.5 and also Figure 3.6 of Tang [48]. With the help of these figures, we
conclude that |λmin| < min |λ|, where λmin denotes the minimum value of
the real part of the eigenvalues (i.e., λmin ≡ minR(λ)) and min |λ| de-
notes the minimum of the modulus of the (complex) eigenvalues of Aabs.
However, later on we shall see that there is only a slight difference using
|λmin| or min |λ| in our spectral analysis.

Consider now
K1(A) = |λmax − λmin|, (D.5)
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Figure D.3: Eigenvalues of the matrix A of HP with k = 1 and ∆x = 1/25.

Figure D.4: Eigenvalues of the matrix A of HP with k = 1 and ∆x = 1/40.
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Figure D.5: The real and imaginary parts of the eigenvalues of the matrix A of HP
with k = 1 and ∆x = 1/40.

and

K2(A) =
|λmax|
|λmin|

, (D.6)

and finally

K3(A) =
|λmax|
min |λ|

, (D.7)

where A is Adir or Aabs. Furthermore, λmax and λmin are the maximum and
minimum real part of the eigenvalues of A, respectively. Then, in fact K1(A)
denotes the range of the eigenvalues, K2(A) is the condition number for sym-
metric and real A and K3(A) is a kind of the condition number for complex
matrices. In Table D.1, we compute K1 and K2 for Figures D.1 to D.4.

N K1(ADir) K1(Aabs) K2(ADir) K2(Aabs) K3(ADir) K3(Aabs)
5 73.5 77.6 7.2 32.8 7.2 19.2
10 383.1 392.4 79.9 56.9 79.9 48
25 2499 2511 271 205 271 193
40 6412 6427 285 561 285 527

Table D.1: Outcomes of K1, K2 and K3 in the Dirichlet and absorbing problem with
N = 5, 10, 25, 40.

In Table D.2, the quantities δ1,δ2 and δ3 denote the relative differences be-
tween K1(ADir) and K1(Aabs), K2(ADir) and K2(Aabs), K3(ADir) and K3(Aabs),
respectively.
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N δ1 δ2 δ3

5 0.05 3.6 1.7
10 0.05 0.29 0.39
25 0.00 0.24 0.29
40 0.00 0.97 0.85

Table D.2: The relative differences of K1, K2 and K3 between the two problems.

One concludes that the relative differences δ1 are in all situations very small
(δ1 ≤ 0.05), i.e., the range of the real parts of the eigenvalues are approximately
the same in both the Dirichlet and the absorbing problem. However, the relative
differences δ2 and δ3 are comparatively large between both problems, which can
lead to different convergence results in iterative methods. This is the result of
the bad location of |λmin| in all situations, which is very close to zero. We end
with the remark that δ2 and δ3 resemble each other, so in these problems there
is no preference for using K2 or K3.

In the next section we give some analytical evidence of the fact that δ1 is
generally very small.

D.2 1-D Continuous HP

We consider the continuous 1-D HP with Dirichlet, Neumann and absorbing
boundary conditions, respectively, and we determine the analytical eigenvalues.
In general, the eigenvalues of the discrete HP converges to these analytical
eigenvalues (when M,N →∞).

D.2.1 Dirichlet Conditions

In subsection 3.3.1 of [48], we have defined the 1-D HP with Dirichlet conditions,
i.e., 

(
− d2

dx2
− k2

)
p(x) = f, x ∈ (0, 1),

p(0) = p(1) = 0.

(D.8)

Then, the eigenvalue equation is
(
− d2

dx2
− k2

)
φ(x) = λφ(x), x ∈ (0, 1),

φ(0) = φ(1) = 0,

(D.9)

where λ and φ(x) are the eigenvalue and eigenfunction of system (D.8), respec-
tively. The solution of (D.9) is

φ(x) = c1 cos(
√

λ + k2x) + c2 sin(
√

λ + k2x). (D.10)
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Since we are not interested in the trivial solution, we have obtained the equation

sin(
√

λ + k2) = 0. (D.11)

This has given us immediately the eigenvalues

λn = (nπ)2 − k2, (D.12)

for n = 1, 2, . . ..

D.2.2 Neumann Conditions

Consider now the Neumann problem:
(
− d2

dx2
− k2

)
p(x) = f, x ∈ (0, 1),

d
dx

p(0) =
d
dx

p(1) = 0.

(D.13)

The eigenvalues obey
(
− d2

dx2
− k2

)
φ(x) = λφ(x), x ∈ (0, 1),

φ′(0) = φ′(1) = 0.

(D.14)

The solution of (D.14) is

φ(x) = c1 cos(αx) + c2 sin(αx), (D.15)

where α =
√

λ + k2 Therefore,

φ′(x) = −c1α sin(αx) + c2α cos(αx). (D.16)

Using the boundary conditions, it can be derived that c2 = 0 and

−c1α sin(α) = 0. (D.17)

We are not interested in the trivial solution. Hence, we obtain the eigenvalues

λn = (nπ)2 − k2, (D.18)

for n = 0, 1, 2, . . .. Note that these are almost the same eigenvalues as in the
Dirichlet problem (see previous subsection). In the Neumann problem, we have
one extra eigenvalue (λ0 = −k2) relative to the previous problem. Furthermore,
using (D.9) and (D.14), it is easy to see that the eigenfunctions φ(x) are different
for both problems.
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D.2.3 Absorbing Conditions

The eigenvalue problem with absorbing conditions reads(
− d2

dx2
− k2

)
φ(x) = λφ(x), x ∈ (0, 1), (D.19)

with boundary conditions(
− d

dx
+ ik

)
φ(x) = 0, x = 0,

(
d
dx

+ ik

)
φ(x) = 0, x = 1.

(D.20)

Now, we apply the same method as in the previous sections to this absorbing
problem. We have the following corresponding eigenvalue problem:

−φ′′(x)− (k2 − λ)φ(x) = 0, x ∈ (0, 1),
−φ′(0) + ikφ(0) = 0,

φ′(1) + ikφ(1) = 0.
(D.21)

The general solution can be found:

φ(x) = c1 cos(αx) + c2 sin(αx), (D.22)

where α =
√

λ + k2. Therefore,

φ′(x) = −c1α sin(αx) + c2α cos(αx). (D.23)

Substituting (D.22) and (D.23) into the absorbing conditions of (D.21) leads to{
c2α = ikc1

(c1α− ikc2) sinα = (c2α + ikc1) cos α
(D.24)

Combining the two expressions in (D.24) gives us immediately

tanα =
2ikα

α2 + k2
(D.25)

with i2 = −1, k ∈ R+ and α =
√

λ + k2, where λ still needs to be determined.

Solution

In this subsection we try the find a solution of (D.25).
Note that it is obvious that α can not be real-valued, since we then obtain

only the trivial solution α = 0 from (D.25). Moreover, α can not be pure
complex, i.e., there exist no α of the form α = bi where b ∈ R, because then we
obtain

tan(bi) = b̃i, b̃ = tanh b ∈ R, (D.26)
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on the left hand side of (D.25). In expression (D.26), we have used the fact that

tanx = i
e−ix − eix

e−ix + eix
, (D.27)

and therefore

tan bi = i
eb − e−b

eb + e−b
= tanh bi = b̃i, (D.28)

where b̃ = tanh b = eb−e−b

eb+e−b . Then, tan bi is indeed purely imaginary and
−2kb/(k2 − b2) on the right hand side of (D.25) is purely real-valued. This
leads to the trivial solution α = 0.

As a consequence, we have to look for solutions of (D.25) in the form

α = a + bi, (D.29)

with a, b ∈ R\{0}. First, we substitute (D.29) into the left-hand-side of expres-
sion (D.25) and we use the fact that

tan(x + y) =
tanx + tan y

1− tanx tan y
, x, y ∈ C. (D.30)

Then we obtain the following:

tan(a + bi) =
tan a + tan bi

1− tan a tan bi
=

tan a + i tanh b

1− i tan a tanh b

=
(tan a + i tanh b)(1 + i tan a tanh b)

1 + tan2 a tanh2 b

= u + iv,

(D.31)

where

u =
tan a(1− tanh2 b)
1 + tan2 a tanh2 b

, v =
tanh b(tan2 a + 1)
1 + tan2 a tanh2 b

. (D.32)

Next, we treat the right-hand-side of expression (D.25):

2ikα

α2 + k2
=

2ik(a + bi)
(a + bi)2 + k2

=
−2bk + 2aki

(a2 − b2 + 2abi)

=
(−2bk + 2aki)(a2 − b2 − 2abi)
(a2 − b2 + 2abi)(a2 − b2 − 2abi)

= d + ei,

(D.33)

where

d =
4a2bk − 2bk(a2 − b2 + k2)
(a2 − b2 + k2)2 + 4a2b2

, e =
2ak(a2 − b2 + k2) + 4ab2k

(a2 − b2 + k2)2 + 4a2b2
. (D.34)
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Now, we rewrite equation (D.25) as a system of two equations
tan a(1− tanh2 b)
1 + tan2 a tanh2 b

=
4a2bk − 2bk(a2 − b2 + k2)
(a2 − b2 + k2)2 + 4a2b2

;

tanh b(tan2 a + 1)
1 + tan2 a tanh2 b

=
2ak(a2 − b2 + k2) + 4ab2k

(a2 − b2 + k2)2 + 4a2b2
,

(D.35)

combining (D.32) and (D.34). However, this new system (D.35) is not easy to
solve.

Furthermore, if we have solved this system, then we need to solve the next
problem: √

c + di = a + bi, a, b, c, d ∈ R, (D.36)

where λ + k2 = c + di. This leads to:{
a = c2 − d2;
b = 2cd.

(D.37)

which gives the following solutions for c and d:
c1,2,3,4 = ± 2b

−2a±
√

a2 + b2
;

d1,2,3,4 = ±1
2

√
−2a±

√
a2 + b2.

(D.38)

The problem is obviously too complex to solve analytically. We finish here our
analysis.

D.2.4 Conclusion

The eigenvalues of both the continuous Dirichlet and Neumann problem are

λn = (nπ)2 − k2, (D.39)

where we note that also λ0 = −k2, is also an eigenvalue in the Neumann prob-
lem.

Moreover, the eigenvalues of the the continuous absorbing problem are too
difficult to determine for us. If we assume the eigenvalues of this problem to be
approximately the same as the Dirichlet problem, then we see that enlarging k
leads to a shift of the eigenvalues in the direction of the negative axis. Moreover,
enlarging the gridsizes M,N leads to a better approximation of the eigenvalues
in (D.39), in general. Since λn in (D.39) are not bounded, the eigenvalues
of the discrete problem increase if M,N also become larger. This is also the
reason why the number of iterations in the HP increases in the iterative method
(without preconditioner), when we enlarge the gridsizes M,N .
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Examples illustrating the SoV
Technique

Example E.1

Consider k(x, y) =
√

xy at (x, y) ∈ (0, 1)2, then k2(x, y) = xy. Moreover, using
Theorem 5.1 we obtain:

k2
x(x) =

∫ 1
0 xy dy = 1

2x;

k2
y(y) =

∫ 1
0

(
xy − 1

2x
)

dx = 1
2y − 1

4 ;

k̃2 = k2(x, y)− k2
x(x)− k2

y(y) = xy − 1
2x− 1

2y + 1
4 .

This decomposition satisfy the two conditions of Theorem 5.1:
∫ 1
0 k̃2(x, y) dx =

∫ 1
0 xy − 1

2x− 1
2y + 1

4 dx = 0,∫ 1
0 k̃2(x, y) dy =

∫ 1
0 xy − 1

2x− 1
2y + 1

4 dy = 0.

�

Example E.2

Consider matrix B, as in (7.46), with M = 3 and N = 3 and write

B =



b1 u1

b2 u2

b3 u3

l1 b4 u4

l2 b5 u5

l3 b6 u6

l4 b7

l5 b8

l6 b9


, (E.1)
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with bi, li and ui to be the non-zero elements of matrix B. Moreover,

P = PT =



1
1

1
1

1
1

1
1

1


.

We first compute PTB:

PTB =



b1 u1

l1 b4 u4

l4 b7

b2 u2

l2 b5 u5

l5 b8

b3 u3

l3 b6 u6

l6 b9


. (E.2)

Comparing the matrices (E.1) and (E.2), we see that the elements of PTB are
vertically moved with respect to B.

Now we can finally determine D:

D = (PTB)P =



b1 u1

l1 b4 u4

l4 b7

b2 u2

l2 b5 u5

l5 b8

b3 u3

l3 b6 u6

l6 b9


. (E.3)

Observe that now, comparing matrices (E.2) and (E.3), the elements of D are
horizontally moved with respect to PTB, .

Indeed, matrix D has a block diagonal structure with blocks with sizes
N × N = 3 × 3. We can notice further that the diagonal elements of each
diagonal block of D are the collection of elements of the same position of all
diagonal blocks of B. For instance, the diagonal elements b1, b4, b7 are the diag-
onal elements of the first block of D, which are positioned in the same position
as the diagonal blocks of B.

A last remark can be made about li and ui. The index i has only been
added to investigate the new position of the elements, while all li and ui are
the same elements. The latter statement is an immediate consequence of (7.27)
and (E.3).
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�

Example E.3

Consider again the problem with M,N = 3. Denote

Iy ⊗WH
L =



w1 w2 w3

w4 w5 w6

w7 w8 w9

w10 w11 w12

w13 w14 w15

w16 w17 w18

w19 w20 w21

w22 w23 w24

w25 w26 w27


.

Notice that wi = wi+9 = wi+18 for all i = 1, . . . , 9. Now, we can compute
matrix PT (Iy ⊗WH

L ):

PT (Iy ⊗WH
L ) =



w1 w2 w3

w10 w11 w12

w19 w20 w21

w4 w5 w6

w13 w14 w15

w22 w23 w24

w7 w8 w9

w16 w17 w18

w25 w26 w27


.

Note that the elements of (Iy ⊗WH
L ) have vertically been shifted. Finally, we

can determine vector v:

v = (PT (Iy ⊗WH
L ))p

=



w1p1 + w2p2 + w3p3

w10p4 + w11p5 + w12p6

w19p7 + w20p8 + w21p9

w4p1 + w5p2 + w6p3

w13p4 + w15p5 + w16p6

w22p7 + w23p8 + w24p9

w7p1 + w8p2 + w9p3

w16p4 + w17p5 + w18p6

w25p7 + w26p8 + w27p9


=



w1p1 + w2p2 + w3p3

w1p4 + w2p5 + w3p6

w1p7 + w2p8 + w3p9

w4p1 + w5p2 + w6p3

w4p4 + w5p5 + w6p6

w4p7 + w5p8 + w6p9

w7p1 + w8p2 + w9p3

w7p4 + w8p5 + w9p6

w7p7 + w8p8 + w9p9


=

 v1

v2

v3

 ,
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where p = (p1, p2, . . . , p9)T and

v1 =

 w1p1 + w2p2 + w3p3

w1p4 + w2p5 + w3p6

w1p7 + w2p8 + w3p9

 , v2 =

 w4p1 + w5p2 + w6p3

w4p4 + w5p5 + w6p6

w4p7 + w5p8 + w6p9

 ,

v3 =

 w7p1 + w8p2 + w9p3

w7p4 + w8p5 + w9p6

w7p7 + w8p8 + w9p9

 .

We can determine g = PT (Iy ⊗WH
L )f = (g1,g2,g3)T in an analogous way.

�

Example E.4

Consider again the problem with M = N = 3, matrix D as defined in Exam-
ple E.2, matrices v and g as in Example E.3. Then, we have to solve three
problems of size 3: 

D1v1 = g1

D2v2 = g2

D3v3 = g3

where

D1 =

 b1 u1

l1 b4 u4

l4 b7

 , D2 =

 b2 u2

l2 b5 u5

l5 b8

 , D3 =

 b3 u3

l3 b6 u6

l6 b9

 .

�

Example E.5

Consider a problem with M,N = 3. Since Iy ⊗WH
L and Iy ⊗WR have a block

structure and K̃ is diagonal, we can write

(Iy ⊗WH
L ) K̃ (Iy ⊗WR) =



x1 x2 x3

x4 x5 x6

x7 x8 x9

x10 x11 x12

x13 x14 x15

x16 x17 x18

x19 x20 x21

x22 x23 x24

x25 x26 x27


.



151

Then, we obtain

˜̃K = PT (Iy ⊗WH
L ) K̃ (Iy ⊗WR)P

=



x1 x2 x3

x10 x11 x12

x19 x20 x21

x4 x5 x6

x13 x14 x15

x22 x23 x24

x7 x8 x9

x16 x17 x18

x25 x26 x27


.

�

Example E.6

In Example E.2 with M,N = 3, we have seen that:

K̃
′
=



x1 x2 x3

x4 x5 x6

x7 x8 x9

x10 x11 x12

x13 x14 x15

x16 x17 x18

x19 x20 x21

x22 x23 x24

x25 x26 x27


,

since K̃
′
= (Iy ⊗WH

L ) K̃ (Iy ⊗WR). Therefore, we obtain:

˜̃K = PT (Iy ⊗WH
L ) K̃ (Iy ⊗WR)P

=



x1 x2 x3

x10 x11 x12

x19 x20 x21

x4 x5 x6

x13 x14 x15

x22 x23 x24

x7 x8 x9

x16 x17 x18

x25 x26 x27


.
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Then, it follows immediately that ˜̃Kblock = ˜̃Kdiag:

˜̃Kblock = ˜̃Kdiag =



x1

x10

x19

x5

x14

x23

x9

x18

x27


.

�



Appendix F

Plots of the Original and SoV
Wavenumber

In this appendix, we give and compare the plots of the original and the SoV
wavenumber, for the wedge, sinus, random and min-max model, respectively,
in the case of M,N = 35. Note that, for the constant the and rectangular
model, the original and SoV wavenumber are identical and therefore they are
not treated in this appendix.

Recall that we have computed matrix K, which can be decomposed into:

K = Iy ⊗Kx + Ky ⊗ Ix + K̃. (F.1)

In the SoV preconditioner, we assume K̃ = 0. This gives

K̂ = Iy ⊗Kx + Ky ⊗ Ix. (F.2)

First, matrix K̂ is given in the left subplots and, second, matrix K̂ is given in
the right subplots and is used as wavenumber in the SoV preconditioning.

Notice that there are relatively large differences between kSoV and k in all
models, considering all figures in this appendix.

153



154 Appendix F. Plots of the Original and SoV Wavenumber

Figure F.1: Wavenumber k in the wedge model. Left: original wavenumber. Right:
wavenumber in the preconditioned case.

Figure F.2: Ssinus model with wavenumber k in the sinus model. Left: original
wavenumber. Right: wavenumber in the preconditioned case.
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Figure F.3: Random model with wavenumber k in the random model. Left: original
wavenumber. Right: wavenumber in the preconditioned case.

Figure F.4: Plot of the min-max model with wavenumber k in the min-max model.
Left: original wavenumber. Right: wavenumber in the preconditioned case.
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Appendix G

Eigenvalue Plots

Some plots of the eigenvalues of SoV preconditioned systems with alternative
kx(x) and ky(y) are given in this appendix.

(a) M, N = 25 (b) M, N = 35

(c) M, N = 45

Figure G.1: Eigenvalues of the system M−1
SoV A with M, N = 25, 35, 45 using choice

(C1), where test problem (V) is used in combination with the wedge model.
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(a) M, N = 25 (b) M, N = 35

(c) M, N = 45

Figure G.2: Eigenvalues of the system M−1
SoV A with M, N = 25, 35, 45 using choice

(C2), where test problem (V) is used in combination with the wedge model.



Appendix H

Errors using WL = WR in SoV

Since matrix W̃
H

L is only an approximation of the left eigenvector matrix WH
L ,

some errors are made during the iterative process. Although this approximation
has more or less no influence on the convergence (see Table 7.3), it makes sense
to investigate this observation further.

If we compute

(Iy ⊗WR)(Iy ⊗WH
L ) = Iy ⊗ (WRWH

L ), (H.1)

then this leads exactly to the identity matrix. However, in our case using
W̃

H

L = WH
R , it results in some ‘redundant’ terms at the places of the zeros for

sufficient large M and N . To investigate this, we define the following norm

||Iy ⊗ (WRWH
L )− I||2, (H.2)

where I is the unit matrix of length MN . The results of some experiments can
be found in Table H.1.

M,N ||Iy ⊗ (WRW̃
H

L )− I||2 ||Iy ⊗ (WRWH
L )− I||2

5 0.09 1.55× 10−16

15 0.68 6.67× 10−16

25 1.08 8.46× 10−16

35 1.30 2.19× 10−15

45 1.52 4.06× 10−15

Table H.1: Norm of the matrix of differences between two unit matrices in our test
problem (V) using the wedge model.

In Table H.1, one concludes that using W̃
H

L can clearly lead to significant
errors, especially for large M and N , while the errors using W−1

R are equal to
zero.

The errors can also be seen in the following tests. We apply the original K̃
in the preconditioner (leading to a non-diagonal-block system) in two ways:
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Test 1 Apply K̃ as defined in the decomposition k̃2(x, y) = k2(x, y)− k2
x(x)−

k2
y(y). In general, this converges very fast, but not in one iteration due

to the approximated boundary conditions;

Test 2 Apply K̃ as defined in Test 1, but now with an extra computation:

˜̃K = PT (Iy ⊗WH
L ) K̃ (Iy ⊗WR)P, (H.3)

followed by

(Iy ⊗WR)P ˜̃K PT (Iy ⊗WH
L ). (H.4)

Theoretically, after the computations, this has to result in the matrix K̃.

The results of these tests can be found in Table H.2.

W̃
H

L = WH
R WH

L = W−1
R

M,N Test 1 Test 2 Test 1 Test 2
15 5 17 5 5
25 3 12 6 6

Table H.2: Number of iterations of Bi-CGSTAB with preconditioner of Test 1 and
Test 2 using both choices of WH

L in test problem (V) in combination with the wedge
model.

One can see that the case with W̃
H

L gives poor results. However, to derive

K̃ as in Expression (H.4), we do not need the entire matrix ˜̃K. Only the main

block-diagonals are required. Therefore the differences between using W̃
H

L or

W̃
H

L are small, see Table 7.3.
However, in the remaining of this thesis we apply only WH

L = W−1
R to be

absolutely sure of the correctness of the left eigenvector matrix.



Appendix I

Including a Block Diagonal
˜̃
K

in SoV

In Section 7.4, we have seen that an addition of diagonal matrix ˜̃Kmod to the
SoV preconditioner leads to better convergence results for iterative methods.
In this appendix, we examine the possibilities to choose a block -diagonal matrix˜̃KB, such that the SoV preconditioner including this matrix is more efficient

in iterative methods. At first, we look at the eigenvalues of the system ˜̃K−1

B
˜̃K.

The criterium is to choose αi (see the next section for the definition of αi) such
that all eigenvalues are as far as possible from zero. In future research, other
more appropriate criteria can be chosen.

I.1 Example

Consider a HP with sizes M ×N = 2× 2 and assume that

˜̃K =


2 1

2 1
1 2

1 2

 . (I.1)

In Section 7.4, we have used a diagonal matrix ˜̃Kmod as additional term in the
preconditioner:

˜̃Kmod =


2

2
2

2

 . (I.2)

Now, can we choose a block diagonal matrix ˜̃KB of the form

˜̃KB =


2 α3

α1 2
2 α4

α2 2

 , (I.3)
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eeK in SoV

which speeds up the convergence of the iterative method?

I.1.1 Identical αi

Assume that α1 = α2 = α3 = α4 ∈ R which we denote by α. It appears that
in this situation α = 0 is the best choice. This can also be seen in Figure
I.1, which has been made in MATLAB with the help of a code that computes

the minimum eigenvalues of ˜̃K−1

B
˜̃K, by varying α in the region [−1.5, 1.5] with

stepsize h = 0.1. 1

Figure I.1: The minimum eigenvalue of each run with different value of α.

At α = 0, the maximum value of the plot is reached. We see that the
minimum eigenvalue is λmin = 0.5 in this case.

It appears in tests that choosing another values at the positions with value 1
in the matrix, as defined in (I.1), leads to the same result: α = 0 is optimal.

I.1.2 Different αi

In the tests, we can show that in cases of different αi leads to another results
than those of the previous subsection. For instance: the choices

α1 = −1.5;
α2 = 1.5;
α3 = 1.0;
α4 = −1.0,

(I.4)

leads to R(λmin) = 0.73. We have used αi ∈ [−1.5, 1.5] with stepsize h = 0.25
to limit the computational work.

1It appears that taking larger intervals than [−1.5, 1.5] leads to singular matrices
eeK−1

B
eeK.
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I.1.3 Different αi in Blocks

It may be inefficient in the SoV-preconditioner to use fully different values of
αi, as considered in the previous subsection. Instead of using these, we apply
identical blocks in expression (I.3), leading to

˜̃KB =


2 α2

α1 2
2 α2

α1 2

 . (I.5)

It appears that in this case α1 = α2 = 0 is optimal, leading to λmin = 0.5. We
make the observation that this choice is not unique; for instance α1 = α2 = −0.2
or α1 = α2 = −1.35 lead also to R(λmin) = 0.5.

I.2 Conclusion and Outlook

Considering the previous section, one can conclude that it may be possible to

find values of αi 6= 0, which leads to a better eigenvalue distribution of ˜̃K−1

B
˜̃K,

in the case of the possibility of choosing all αi differently. This may result in
better performance of the full SoV preconditioner.

In future, we may examine

• whether it is indeed inefficient to choose different diagonal blocks (and
therefore different αi) in expression (I.3);

• how to choose αi properly for each i in our 2-D testproblems of the wedge
model;

• how large is the influence of ˜̃KB in the preconditioner.
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Appendix J

Second Extension to
Example 2

In Figure J.1, one can find the results of Example 2: the weight of the coefficients
with respect to the eigenvalues.

Comparing to the extension of Example 1 (see Subsection 8.3.1), we have
only a few eigenvalues, but it can also be seen in these figures that the absolute
and real parts of the eigenvalues around zero are important. Note that there is
exactly one ‘lost’ eigenvalue with coordinates (−1.35, 0.65) that also has a large
influence on the solution.

Next, we compare the real and imaginary parts and absolute values of the
coefficients. The results for Example 2 can be found in Figure J.2. We found
the same kind of results as in Example 1.
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(a) Real parts of the eigenvalues

(b) imaginary parts of the eigenvalues (c) Absolute values of the eigenvalues

Figure J.1: Real parts of the coefficients corresponding to the real, imaginary and
absolute parts of the eigenvalues of A, respectively, in the case of M, N = 7.
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Figure J.2: Real part, imaginary part and the absolute values of the coefficients
corresponding to the real parts of the eigenvalues of A in the case of M, N = 7.
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Appendix K

Successive Refinement for the
1-dimensional HP

Considering the eigenvalue distributions of the SoV preconditioned systems,
there are possibilities to apply successive refinement techniques to solve these
systems.

We start with the 1-dimensional Helmholtz problem (HP). The SoV precon-
ditioner is exact in this case (i.e., the iterative method needs only one iteration
to converge). In this appendix, we apply the CSL preconditioner in the Bi-
CGSTAB method and we use the successive refinement technique to solve the
HP.

K.1 Problem Formulation

The one-dimensional HP is defined by

− d2

dx2
p(x)− k(x)2p(x) = f(x), x ∈ Ω, (K.1)

where we apply Dirichlet conditions for simplicity:

p(x) = 0, x ∈ ∂Ω. (K.2)

We take the unit domain Ω = (0, 1). Moreover,

k2(x) =



k2
1 if x < 1/2;

k2
1+k2

2
2 if x = 1/2;

k2
2 if x > 1/2,

(K.3)

and furthermore, we take the source term f(x) to be constant:

f(x) = 1 ∀x. (K.4)

After numerical discretization and second-order finite differences we obtain the
linear system:

Ap = f. (K.5)

169



170 Appendix K. Successive Refinement for the 1-dimensional HP

K.2 Successive Refinement Technique

The resulting linear system (K.5) is solved with Bi-CGSTAB using an appro-
priate starting vector. We find a ‘good’ starting vector such that Bi-CGSTAB
requires less iterations to converge. This will be done with successive refine-
ment.

The idea of successive refinement is that, if the original grid is of size N ,
then we start with finding the solution q on a grid of size 1

2(N − 1) and, there-
after, we prolongate this solution to p̂ which will be used as starting vector p0

for Bi-CGSTAB. The algorithm of the prolongation is given below.

Algorithm K.1: Prolongation

for i = 2 to N − 1
if mod(i, 2) = 0

p̂i = qi/2

else
p̂i = 1

2

(
q(i−1)/2 + q(i+1)/2

)
endif
p̂1 = 0.5 · q1

p̂N = 0.5 · q(N−1)/2

endfor

One is referred to Wesseling [54] for a more mathematical treatment of prolon-
gation methods.

For example, in the case of N = 45, we first start with N = 21 and find
the solution q for this simpler problem. Then, we compute the prolongated
solution p̂ of length N = 45, with the help of the linear prolongation formulae
as described in Algorithm K.1.

K.2.1 Gauss-Seidel Iterations

It appears in our numerical experiments that ||p − p0||2 can be very small,
whereas the residual ||f−Ap0||2 remains relatively large.

To remedy the relatively large residuals, we apply a few Gauss-Seidel (GS)
iterations with p0. This ‘smooths’ the starting vector such that the residual will
be smaller 1. The resulting vector p̂0 will be used as the new starting vector of
Bi-CGSTAB. In fact, we follow the following steps in the whole procedure:

1. solve q on the coarse grid;

2. compute p̂ after prolongation of q;

3. compute p̂0 with a few Gauss-Seidel iterations;

4. use p̂0 as starting vector in Bi-CGSTAB.

In the test problems of this appendix, we use 2 and 10 GS iterations, respec-
tively, denoting by ‘GS2’ and ‘GS10’.

1In future, we can also apply Gauss-Seidel to the gridpoints which are not points at the
coarse grid. This may lead to smaller relative residuals.
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K.3 Parameters in the HP

Since the iterative method in combination with CSL converges very fast, we
have to increase the wavenumbers k2

1 and k2
2, to obtain a method with sufficient

iterations to analyze. Moreover, we have to also increase N to keep an accurate
solution. Recall the following relations, as given in Chapter 2:

kmax =
2π

λmin
;

λmin =
L

Wmax
;

Wmax =
N

G
,

(K.6)

where Wmax is the maximum number of waves in Ω, G is the minimum number
of gridpoints per wavelength, N is the number of gridelements, L is the length
of each direction of Ω, λmin is the minimum wavelength and, finally, kmax is
the maximum wavenumber in the problem. With the help of the expressions in
(K.6), we obtain the following relation of N and k2

max:

N =

√
G2L2

4π2
k2

max. (K.7)

Taking G = 15 and L = 1, we obtain:

N =

√
225
4π2

k2
max ≈ 2.4

√
k2

max. (K.8)

Moreover, since we have k2
1 ≤ k2

2 in our test runs , it yields: k2
max = k2

2. This
leads to

N ≈ 2.4
√

k2
2. (K.9)

For example, if we take k2
1 = 1000, k2

2 = 2000, then at least

N ≈ 2.4
√

2000 = 107 gridpoints (K.10)

are required to be ensured of an accurate solution.
In our test runs, it appears that our computer is only able to compute with

at most about N = 2000. Hence, the maximum k2
2 is

k2
max =

N2

2.42
= 6.94 · 105. (K.11)

K.4 Results and Analysis

The results of the test problem with varying wavenumbers k1 and k2, using
successive refinement and a few Gauss Seidel steps, can be found in Table K.1.

In Table K.1, we can see that using a starting vector and using smoothing
Gauss Seidel steps, lead to rather good results, especially for relatively large
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problems. In row 3 of this table, we observe that the convergence of the iterative
method is more than twice as fast in that case!

Furthermore, the eigenvalue distributions of both matrix A and matrix
M−1A of a test run have been plotted in Figures K.1(a) and K.1(b). One
observes immediately that the eigenvalues of M−1A are complex. Moreover,
the range of the spectra M−1A is obviously smaller than the range of the
spectra of A, which may be favorable in the successive refinement method.

N k2
1 k2

2 It. It.(p0) It.(p0,GS2) It.(p0,GS10)
755 2.5× 103 5.0× 104 120 125 124 122
955 5.0× 103 1.0× 105 243 184 179 171
1855 1.0× 104 5.0× 105 2994 1255 648 603
1855 1.0× 105 5.0× 105 667 531 516 492

N ||f−Ap0||2 ||f−Ap0,GS2||2 ||f−Ap0,GS10||2
755 19.6 2.3 0.32
955 219.3 27.6 6.2
1855 117.5 15.5 4.2
1855 2027.3 267 73.9

Table K.1: Comparison of Bi-CGSTAB in combination with the CSL precondi-
tioner. First, without and, secondly, with starting vector p0 obtained with successive
refinement and also 2 and 10 Gauss Seidel iterations (GS2 and GS10, respectively).
The norms of residuals are also given and the number of iterations is denoted by
‘It.’.

(a) matrix A (b) matrix M−1A

Figure K.1: Eigenvalues of the original and the preconditioned system with N =
755, k2

1 = 2.5 × 103 and k2
2 = 5.0 × 104.

Finally, the logarithms of the relative residuals of the test runs, used in
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Table K.1, are given in Figure K.2.

(a) N = 755, k2
1 = 2.5×103, k2

2 = 5.0×104 (b) N = 955, k2
1 = 5.0 × 103, k2

2 = 1.0 ×
105

(c) N = 1855, k2
1 = 1.0 × 104, k2

2 = 5.0 ×
105

(d) N = 1855, k2
1 = 1.0 × 105, k2

2 = 5.0 ×
105

Figure K.2: Logarithms of the relative residuals during the iterations with Bi-
CGSTAB in combination with CSL without starting vector and with p̂0 including
two Gauss Seidel steps, respectively.

K.4.1 Conclusions and Future Research

We have seen that the successive refinement technique, in combination with the
Gauss-Seidel method, makes sense for the CSL preconditioned system.

In Figure K.2, we see the strongly erratic behavior of the residuals using Bi-
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CGSTAB. In future, we could apply GMRES instead of Bi-CGSTAB to avoid
the erratic behavior, which may easier to analyze the improvements using the
successive refinement technique.

Moreover, in future research, the 2-dimensional Helmholtz problem could
be implemented, whereafter we can investigate the SoV preconditioner, since
this is not exact anymore. The same procedure of the successive refinement
technique can be followed as in the 1-dimensional case.


