
Faculty Electrical Engineering, Mathematics and Computer Science (EEMCS)
Department of Applied Mathematical Analysis

Literature Report

Numerical Aspects of Iterative Solving of Linear
Systems derived from Helmholtz’s Problem

Author

Jok Tang

MSc Thesis Committee
prof. dr. ir. P. Wesseling (TU Delft)

dr. ir. C. Vuik (TU Delft)
dr. W. Mulder (Shell Rijswijk)

Delft
February 2004

Numerical Aspects of Iterative Solving of Linear

Systems derived from Helmholtz’s Problem

J.M. Tang

February 19, 2004

Copyright 2004 c© J.M. Tang. All rights reserved. No part of this report may be
reproduced, stored in a retrieval system or transcribed in any form or by any means,
written, electronic, photocopying, recording, mechanical, or otherwise without the
prior written consent of Department of Applied Mathematical Analysis, Delft Uni-
versity of Technology, The Netherlands.

Version: 0.1.
Compiled at: February 19, 2004.

Abstract

In this report, several numerical aspects and difficulties for solving a large linear
system, derived from the Helmholtz equation are overviewed.

The presentation starts with the derivation of the Helmholtz equation.
Helmholtz’s boundary value problem (HBVP), or briefly Helmholtz’s Problem, with
absorbing boundary conditions is formulated. After finite difference discretization
of the problem we obtain a linear system which can be solved to obtain the solution
of HBVP. The resulting matrix is not only large and sparse, but also indefinite and
symmetric-complex.

Next, we give the numerical and exact solution of the one-dimensional HBVP
in cases when the wavenumber and the source term are both real-valued. Moreover,
special problems with variable wavenumber are also discussed. Some examples are
worked out in order to get more feeling for the Helmholtz equation and to develop
our intuition.

To solve HBVP we use iterative methods. Several CG-related methods are
known (CGNR, COCG, GMRES, Bi-CG and Bi-CGSTAB), which are summarized
and their algorithms are given. GMRES and BiCGstab are worked out in detail,
because these are mostly used to solve HBVP.

We deal with a few preconditioners (like ILU, AILU, separation-of-variables and
complex shifted Laplace precondtioners), which can be applied to solve Helmholtz’s
boundary value problem efficiently. The preconditioners are required to accelerate
the iterative methods.

At the end, we give a short outlook for further research.

Contents

1 Introduction 1

2 Helmholtz’s Boundary Value Problem 3
2.1 Helmholtz equation . 3

2.1.1 Derivation of the wave equation 4
2.1.2 Derivation of the wave equation in elastic solids 6
2.1.3 Derivation of the Helmholtz equation 7

2.2 Helmholtz’s problem . 9
2.2.1 Boundary conditions 9
2.2.2 Helmholtz’s boundary value problem 11

2.3 Analytical solution of HBVP 11
2.3.1 Homogeneous solution 12
2.3.2 General solution . 12

2.4 Finite difference discretization 13
2.4.1 Finite difference method 13
2.4.2 Interior points . 14
2.4.3 Boundary points . 14
2.4.4 Linear system . 15

3 One-dimensional HBVP and Some Examples 17
3.1 HBVP with constant wavenumber 17

3.1.1 Analytical solution . 17
3.1.2 Numerical solution . 18
3.1.3 Example 1: k = 1 and f = 2 19
3.1.4 Example 2: k = 2 and f = 1 21

3.2 HBVP with variable wavenumber 22
3.2.1 Analytical solution . 22
3.2.2 Numerical solution . 23
3.2.3 Example 3: k1 = 1, k2 = 3 and f = 9 24
3.2.4 Example 4: k1 = 1e− 6, k2 = 30 and f = 9 28

3.3 Eigenvalues . 30
3.3.1 Analytical system . 30
3.3.2 Discretized system . 31

i

ii CONTENTS

3.3.3 Comparing eigenvalues of the analytical and discretized
system . 32

3.3.4 Eigenvalues of example 1 with varied N 33
3.3.5 Comparing the original with a modified example 1 . . 33

4 Krylov Iterative Methods 37
4.1 Introduction . 37
4.2 Krylov subspace method . 38
4.3 Conjugate Gradient (CG) method 39

4.3.1 CG idea . 39
4.3.2 CG derivation . 40
4.3.3 CG algorithm . 41

4.4 CGNR method . 42
4.4.1 CGNR algorithm . 42

4.5 COCG method . 43
4.5.1 COCG algorithm . 43

4.6 GMRES . 44
4.6.1 Arnoldi’s method . 44
4.6.2 GMRES idea . 45
4.6.3 GMRES algorithm . 46

4.7 Bi-CG method . 47
4.7.1 Bi-CG algorithm . 47

4.8 CGS method . 48
4.8.1 CGS algorithm . 49

4.9 Bi-CGSTAB method . 50
4.9.1 Bi-CGSTAB derivation 50
4.9.2 Bi-CGSTAB algorithm 53

4.10 Stopcriterium . 54
4.11 Discussion . 55

5 Preconditioning techniques 57
5.1 Introduction . 57
5.2 Diagonal preconditioner . 58
5.3 Matrix-splitting preconditioners 59

5.3.1 Jacobi and Gauss-Seidel preconditioners 59
5.3.2 SOR and SSOR preconditioners 59

5.4 ILU preconditioners . 60
5.4.1 Zero fill-in ILU (ILU(0)) 61
5.4.2 ILU(p) . 61
5.4.3 Other variants of ILU 62

5.5 Incomplete Choleski factorization 62
5.5.1 Idea of incomplete Cholesky factorization 62
5.5.2 Variants of preconditioners 63

5.6 Shifted Laplace preconditioners 64

CONTENTS iii

5.6.1 Real shifted Laplace preconditioner 65
5.6.2 Complex shifted Laplace preconditioner 70
5.6.3 Comparing real and complex α 71

5.7 Separation - of - Variables (SOV) 73
5.7.1 Separation-of-variables method 73
5.7.2 Preconditioned system 76

5.8 Analytic ILU (AILU) . 76
5.8.1 Analytic parabolic factorization 76
5.8.2 AILU preconditioner 78

6 Summary & Outlook 81
6.1 Short summary . 81
6.2 Future research . 82

A Matlab codes 87
A.1 Example 1 . 87
A.2 Example 2 . 89
A.3 Example 3 . 90
A.4 Example 4 . 93
A.5 Norm of error of example 1 96
A.6 Eigenvalues of example 1 . 98
A.7 Comparing modified & original example 1 100

B Rest of appendices 103
B.1 Proof from Chapter 5 . 103

iv CONTENTS

List of Figures

2.1 Hermann Ludwig Ferdinand von Helmholtz (1821-
1894), one of the greatest German physicists and
mathematicians. 8

3.1 Plot of the solution of HBVP with k = 1 and f = 2. 20
3.2 Plot of the solution of HBVP with k = 2 and f = 1. 21
3.3 Plots of the solution of example 3 with method 1

and 2 with N = 101. 26
3.4 Plots of the norm of the residuals of example 3

with varied N . 27
3.5 Plots of the solution of example 4 with N = 101. . 29
3.6 Plots of the eigenvalues of example 1 with N = 25,

50, 100. 33
3.7 Plots of the eigenvalues of the original (with ab-

sorbing conditions) and modified (with Dirichlet con-
ditions) example 1 with N = 25. 34

3.8 Plots of the sorted set of real parts of the eigen-
values of both the original and modified example 1
with N = 25. 35

v

vi LIST OF FIGURES

Chapter 1

Introduction

Wave propagation through an inhomogeneous acoustic medium with a con-
stant density is described in the frequency domain by the Helmholtz equation

−∆p(x)− k(x)2p(x) = f(x), (1.1)

where p is the pressure field and f a point source term. The wavenumber
k = ω/c is a function of the spatial coordinates x = (x, y) in 2-dimensional
case and x = (x, y, z) in 3-dimensional case, because the velocity c depends
on the spatial coordinates in an inhomogeneous medium.

In practical applications, for instance when modeling a seismic survey,
the wavenumber is such that the Helmholtz operator has positive and neg-
ative eigenvalues. To mimic an infinite space by a finite computational
domain, absorbing boundary conditions are added to (1.1), which lead to
the Helmholtz boundary value problem (HBVP). More information about
the HBVP and the derivation of the Helmholtz equation can be found in
Chapter 2.

Chapter 3 deals with one-dimensional examples of the HBVP to get
more feeling and intuition of this kind of problems. Both numerical and
analytical solutions are discussed. Moreover, some spectral analysis is done
as preparation for the next chapters.

To solve equation (1.1) with suitable boundary conditions, a finite-
difference discretization is applied leading to the linear system

Au = f. (1.2)

The matrix A is a large but sparse symmetric-complex matrix. The solution
u is represented on a grid with between 500 and 2000 points per coordinate
direction in typical seismic applications. In 2 dimensions, the system (1.2)
can be solved by a direct method based on LU-factorization. In 3-dimension,
a direct solver is generally too expensive. To fully take into account the
sparseness of A, an iterative method should therefore be applied. We treat
iterative methods based on Krylov spaces, for instance CGNR, Bi-CGSTAB

1

2 CHAPTER 1. INTRODUCTION

and GMRES methods, see therefore Chapter 4 where these methods and
their numerical algorithms are discussed in more detail.

A preconditioner is needed to improve the convergence and robustness
of iterative methods. Several preconditioners for solving HBVP are the
subject of Chapter 5. Both standard and recently designed preconditioners
like AILU, separation-of-variables and complex shifted Laplace are discussed
in this chapter.

We end with Chapter 6, where a short summary of this report is given
and a temporary plan is made for further research.

Chapter 2

Helmholtz’s Boundary Value
Problem

The Helmholtz equation is given by

∆p(x) + k(x)2p(x) = f(x), (2.1)

with the Laplace-operator ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and x = (x, y, z) in Ω ∈ R3

which is a 3-dimensional region 1. The pressure p(x) needs to be solved
from this partial differential equation. This equation, derived from the wave
equation, is used to describe for example scattering phenomena.

In this report we derive the Helmholtz equation (2.1) and formulate
the Helmholtz boundary value problem (HBVP). Using a finite difference
discretization we obtain a linear system belonging to HBVP.

2.1 Helmholtz equation

The central equation that governs acoustic wave propagation in a medium
with constant density is the Helmholtz equation, see (2.1). Strongly related
to this is the wave equation

∂2p

∂t2
(x, t) = c(x)2∆p(x, t), (2.2)

with x ∈ R3, t > 0 and c(x) the speed of sound which is spatial dependent.
In the next subsections, we derive the wave equation (2.2) and the

Helmholtz equation.

1in 1-dimension: x = x in the region Ω ∈ R and 2-dimensions: x = (x, y) in the region
Ω ∈ R2.

3

4 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

2.1.1 Derivation of the wave equation

The wave equation appears in various disciplines and as a consequence there
are several derivations of this equation. In this report we give the derivation
with acoustic waves, see for instance Colton & Kress [5] and Erlangga [6].
The derivation with elastic solids, which is of our interest, is given in for
instance Achenbach [1] and is almost identical to the derivation of acoustic
waves.

Sound waves of small amplitude propagate in a region Ω ∈ R3. In an
acoustic wave problem, the local motions of particles c.q. elements in the
medium are considered, while the medium itself is motionless.

We define field variables which are of our interest: pressure p = p(x, t),
particle velocity v = v(x, t), density ρ = ρ(x, t) and entropy S = S(x, t).
If we assume the medium to be inviscid and weakly compressible, the wave
motion can be represented by the following equations: equation of Euler
(derived from the equation of motion, see for instance p.48-51 of Korving &
Corstens [14])

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p, (2.3)

the continuity equation
∂ρ

∂t
+∇ · (ρv) = 0, (2.4)

and the equation of state
p = f(ρ, S), (2.5)

where f is a function depending on the nature of the medium and S follows
the adiabatic hypothesis

∂S

∂t
+ v · ∇S = 0. (2.6)

Since this adiabatic hypothesis is imposed and no dissipative process occurs
from the equations of Euler, the process during the propagation of waves is
isentropic, which means that the entropy of the whole process is preserved.

If waves propagate through the medium, all field variables are perturbed
from their quiescent conditions. If we assume only small perturbations
caused by wave propagation, the perturbed field variables can be expressed
as 

p(x, t) = p0 + δp(x, t);
ρ(x, t) = ρ0 + δρ(x, t);
v(x, t) = v0 + δv(x, t);
S(x, t) = S0 + δS(x, t),

(2.7)

with respectively |δp| � |p0|, |δρ| � |ρ0|, |δv| � |v0| and |δS| � |S0|. In
general the parameters p0, ρ0,v0 and S0 are functions, but in the static state
they are constant. Moreover v0 = 0. The expressions in (2.7) can be used

2.1. HELMHOLTZ EQUATION 5

to linearize equations (2.3)-(2.6), giving the following equations: linearized
Euler equation

∂v
∂t

= − 1
ρ0
∇p, (2.8)

linearized continuity equation

∂ρ

∂t
+ ρ0∇ · v = 0, (2.9)

and linearized equation of state

∂p

∂t
=

∂f

∂ρ
(ρ0, S0)

∂ρ

∂t
. (2.10)

Differentiating (2.8) in space and (2.9) in time gives us, respectively,

∇ · ∂v
∂t

= − 1
ρ0

∆p, (2.11)

and

∇ · ∂v
∂t

= − 1
ρ0

∂2ρ

∂t2
. (2.12)

Combining (2.11) and (2.12) leads to

∆p =
∂2ρ

∂t2
. (2.13)

After differentiating (2.10) in time, we can substitute this in (2.13) to obtain

∆p =
(

∂f

∂ρ
(ρ0, S0)

)−1 ∂2p

∂t2
. (2.14)

The speed of sound c is in our assumed situation defined by

c2 =
∂f

∂ρ
(ρ0, S0). (2.15)

We notice again that in each part of the medium with constant ρ0 and S0

has spatial-dependent speed of sound.
From (2.14) and (2.15) we obtain finally the wave equation

∂2p

∂t2
(x, t) = c2∆p(x, t). (2.16)

However, in applications we are interested in variable c. After several com-
putations we can derive

∂2p

∂t2
(x, t) = c(x)2∆p(x, t), (2.17)

wherein ρ0 is no longer constant anymore.

6 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

2.1.2 Derivation of the wave equation in elastic solids

The derivation of the Helmholtz equation was given with acoustic waves.
However, our interest is in waves in elastic solids. Earlier in this section there
is mentioned that both derivations are roughly the same. For completeness
we give shortly the steps in the elastic solid medium in onedimension. For a
full understanding of this steps and for the three-dimensional case we refer
to Achenbach [1].

Non-linearized theory

In a purely one-dimensional longitudinal motion all material particles move
along parallel lines and the motion is uniform in planes normal to the direc-
tion of motion.

Suppose the position of a material point p at a certain time, say t = 0,
is defined by the position x. At a later time t the position of the particle
can be specified by

x = p(x, t). (2.18)

The displacement is denoted by u(x, t) and can be expressed as

u(x, t) = x− p(x, t). (2.19)

As a consequence of the nonuniformity in the direction of the motion,
the element undergoes a deformation. Then we obtain the displacement
gradient ∂u/∂x as a measure of the deformation.

To make use of material derivative of u(x, t) one can derive Reynolds’
transport theorem

d
dt

∫ x2

x1

f(x, t)dx =
∫ x2

x1

[
∂f(x, t)

∂t
+

∂f(x, t)v(x, t)
∂x

]
dx, (2.20)

where v(x, t) is the velocity of a certain particle and f(x, t) is the total of a
global quantity carried by the mass system. Notice that x1 and x2 in (2.20)
are time-dependent.

Conservation of mass gives

∂ρ(x, t)
∂t

+
∂ρ(x, t)v(x, t)

∂x
= 0, (2.21)

where ρ(x, t) is the mass density.
The principle of balance of linear momentum implies that

τ(x, t)|x2
x1

=
d
dt

∫ x2

x1

ρ(x, t)v(x, t)dx. (2.22)

Here τ(x, t) defines the stress at position x, where body forces are not taken
into account. With a few computations we can derive

c2 ∂2u

∂x2
=

∂2u

∂t2
, (2.23)

2.1. HELMHOLTZ EQUATION 7

with
c2 =

1
ρ0

dS
d (∂u/∂x)

. (2.24)

In expression (2.24) ρ0 is the mass density as a function of the reference
configuration and τ(x, t) has the following form

τ(x, t) = S(∂u/∂x), (2.25)

with ∂u/∂x the displacement gradient.

Linearized theory

Although it is possible to determine solutions for certain one-dimensional
problems governed by the nonlinear theory, there are often rather substantial
complications. The complications disappear altogether when the theory is
appropriately linearized.

Let us consider the constitutive relation (2.25) for the special case that
τ(x, t) is proportional to ∂u/∂x:

τ(x, t) = S1
∂u(x, t)

∂x
, (2.26)

where S1 is a constant. For some materials this relation may be an approx-
imation applicable only when |∂u/∂x| � 1. For other materials and within
the context of a one-dimensional theory it may be exact in the sense that it
may apply for quite large values of |∂u/∂x|.

If expression (2.26) holds, equation (2.23) reduces finally to the linear
wave equation

∂2u

∂x2
=

1
c2

∂2u

∂t2
, (2.27)

where
c2 =

S1

ρ0
. (2.28)

In the same way we can derive the following expression for non-constant c
with variable ρ0:

∂2u

∂x2
=

1
c(x)2

∂2u

∂t2
. (2.29)

2.1.3 Derivation of the Helmholtz equation

We consider time-harmonic (standing) waves of frequency ω > 0 with time
independent pressure p̃ of the form

p(x, t) = cos(ωt)p̃(x). (2.30)

This may also be written as

p(x, t) = <e−iωtp̃(x), (2.31)

8 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

where i2 = −1 and < indicates that the real part of the right-hand-side of
(2.31) should be taken. We shall omit this symbol < in further analysis for
brevity and keep in mind that we are interested in the real part of imaginair
solutions. However, it appears that sometimes the complex part of the
solutions do give information, so these are also treated in some applications.

With the aid of (2.31) one derives that

∂2p(x, t)
∂t2

= −ω2e−iωtp̃(x). (2.32)

Using (2.31) and (2.32), the wave equation (2.17) reduces to the reduced
wave equation or Helmholtz equation

∆p̃(x) + k(x)2p̃(x) = 0, (2.33)

where the wave number k is given by

k(x) =
ω

c(x)
. (2.34)

This equation carries the name of Von Helmholtz for his contributions
to mathematical acoustics and electromagnetics.

Figure 2.1: Hermann Ludwig Ferdinand von Helmholtz (1821-
1894), one of the greatest German physicists and mathemati-
cians.

If there is no ambiguity in the context, we denote p(x) by p̃(x) in this
report. Moreover, if we assume a harmonic source in the neighbourhood
of Ω, i.e.,f a harmonic disturbance e−iωtf(x) which is producing the waves,
then the source appears on the right-hand-side of (2.33). We obtain the
inhomogeneous Helmholtz equation

∆p(x) + k(x)2p(x) = f(x). (2.35)

2.2. HELMHOLTZ’S PROBLEM 9

where f is a given source term. Equation (2.35) is identical to equation
(2.1).

2.2 Helmholtz’s problem

In this section we define Helmholtz’s boundary value problem.

2.2.1 Boundary conditions

Proper boundary conditions are required to find a unique solution of the
Helmholtz equation.

For a sound-soft obstacle the pressure of the total wave vanishes on the
boundary. Consider the scattering of a given incoming wave ui by sound-soft
obstacle D ∈ Ω and define us by the scattered wave. Then the total wave
u = ui + us must satisfy the wave equation in the exterior R3 \D of D and
a Dirichlet boundary condition u = 0 on ∂D.

Similarly, the scattering from sound-hard obstacles leads to a Neumann
boundary condition ∂u/∂n = 0 on ∂D where n is the unit outward normal
to ∂D, since here the normal velocity of the acoustic wave vanishes on the
boundary.

Impedance boundary condition

More generally, allowing obstacles for which the normal velocity on the
boundary is proportional to the excess pressure on the boundary leads to
an impedance boundary condition of the form

∂p(x)
∂n

+ iλp(x) = 0 (2.36)

on x ∈ ∂D with λ > 0 2. Such a condition can be used for the boundaries
of ∂Ω.

Sommerfeld radiation condition

Related to condition (2.36) is the first-order Sommerfeld radiation condition

∂p(x)
∂n

− ik(x)p(x) = 0, x ∈ ∂Ω. (2.37)

This condition is widely used in Helmholtz problems, see for instance Er-
langga [7].

2See section 2 (p.15) of Colton & Kress [5].

10 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

Absorbing condition

If we assume
p(x) = µeikx, µ ∈ C, (2.38)

then it can be derived that

∂p(x)
∂x

− ikp(x) = 0, (2.39)

which is used as condition at the two faces of the boundary, where the unit
outward normal is in x-direction. Similar conditions as (2.39) are defined
for the other faces.

In section 2 of Mulder & Plessix [17], condition (2.39) is given as

±∂p(x)
∂n

− ik(x)p(x) = 0, (2.40)

where n representing x, y or z, depending on the boundary. Expression
(2.40) is the so-called first order absorbing boundary condition. The aim
of this artificial condition is to represent our finite domain Ω as part of an
infinite domain, as accurately as possible.

One can write (2.40) in the following concise way

∂p(x)
∂n

+ ik(x)p(x) = 0, (2.41)

where n is the unit outward normal to the boundaries.

Choice of boundary conditions

In our further analysis we take the absorbing boundary condition (2.41) as
our boundary condition on ∂Ω. Later on we shall choose other values of λ
in order to represent the real situation as accurately as possible.

We assume our region Ω to be a box-shaped computational domain with
dimensions [xmin, xmax] × [ymin, ymax] × [zmin, zmax], which are real-valued.
Then condition (2.37) holds only for the six faces, because the outward
normal is not defined for the edges and corners of the box.

For each edge of two bordered faces α and β we define the following
condition

1√
2

(
∂p(x)
∂nα

+
∂p(x)
∂nβ

)
+ ik(x)p(x) = 0, (2.42)

where nα and nβ are the unit outward normals of α respectively β.
In almost similar way as above we can define the boundary condition for

the corners of the box

1√
3

(
∂p(x, t)

∂nα
+

∂p(x)
∂nβ

+
∂p(x)
∂nζ

)
+ ik(x)p(x) = 0, (2.43)

2.3. ANALYTICAL SOLUTION OF HBVP 11

where α, β and ζ are the three faces which border the considered corner.
See Heikkola, Rossi, Toivanen [12] for accompanying literature.

Later on it turns out that the conditions at the edges and corners will
not be used in the numerical methods, see next chapter.

2.2.2 Helmholtz’s boundary value problem

Wave propagation in an inhomogeneous medium is considered, which means
that the medium can consist of several parts. Let Ω ∈ R3 be the region
enclosing the medium with scatterers and boundary ∂Ω. Furthermore, let
n denote the unit outward normal to ∂D. Then, the Helmholtz’s boundary
value problem for wave propagation in an inhomogeneous medium can be
defined as follows:

Helmholtz’s boundary value problem (HBVP)
Find the total field p(x) in an inhomogenous medium Ω such that(

∆ + k(x)2
)
p(x) = f(x), x ∈ Ω, (2.44)

with boundary conditions(
∂

∂n
+ ik(x)

)
p(x) = 0, x ∈ ∂Ω, (2.45)

where f is a given source term, n is the unit outward normal and

k =
w

c(x)
, (2.46)

with wave-frequency ω > 0 and sound of speed c.

HBVP can be solved by an integral equation method by transformation
into a Fredholm integral equation, see for instance Colton & Kress [5]. In the
discretized form, the Fredholm integral equation results in a large full matrix
which requires the inversion for resolving the solution. This is considered
too expensive in many practical problems.

In this report, we aim at numerical solutions of HBVP by applying a
finite difference approach. In many practical applications, the linear system
obtained after discretization is very large. This requires specials methods to
solve the linear system efficiently with a reasonable accuracy.

2.3 Analytical solution of HBVP

In this section we deal with the analytical solutions of the Helmholtz bound-
ary value problem (HBVP), where Green’s functions are used.

12 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

2.3.1 Homogeneous solution

First we consider the homogeneous Helmholtz equation without source-term
and with constant positive wavenumber k, i.e.,

∆p(x) + k2p(x) = 0. (2.47)

Straightforward differentiation shows that for fixed y ∈ R3 the fundamental
solution

G(x,y) := − eik|x−y|

4π|x− y|
, x 6= y, (2.48)

satisfies this Helmholtz equation in R3 \ {y}.
G(x,y) is called a Green’s function. Later on we will see why this func-

tion makes sense.

2.3.2 General solution

By definition the Green’s function for the Helmholtz equation satisfies

(∆ + k2)G(x,y) = δ(x− y) (2.49)

subject to a suitable boundary (radiation) condition, in such a way that
f(x) → 0 as |x| → ∞ . So in (2.49) the source-term is represented as a point
source. Then it follows that

Φ(x) =
∫

Ω
G(x,y)f(y)dy, (2.50)

is the solution of the homogeneous Helmholtz equation with again constant
positive wavenumber k, i.e.

(∆ + k2)Φ(x) = f(x). (2.51)

Note that no determination of arbitrary constants is required, since Φ(x)
as given by the Green’s function integral formula automatically satisfies the
boundary conditions.

With simple but laborious computional work we find that G(x,y) in
(2.49) has the following form

G(x,y) := − eik|x−y|

4π|x− y|
, x 6= y, (2.52)

This is exactly (2.48).
The usefulness of a Green’s function solution rests on the fact that the

Green’s function is independent of the non-homogeneous term in the differ-
ential equation.

By definition of the Green’s function, this should satisfy the homoge-
neous equations except at the source point where an appropiate singularity

2.4. FINITE DIFFERENCE DISCRETIZATION 13

must exist. Furthermore, the Green’s function should vanish on the bound-
aries, i.e.,

G(x,y) = 0 for x ∈ ∂Ω, (2.53)

Moreover, we can notice that the Green’s function in the Helmholtz
equation is different for the one-, two- and three-dimensional cases. In this
section we have only considered the 3-dimensional case.

To summarize: the solution of the inhomogeneous Helmholtz problem

(∆ + k2)Φ(x) = f(x), (2.54)

which satisfies the outward radiation boundary condition is given by

Φ(x) = − 1
4π

∫
Ω

eik|x−y|

|x− y|
f(y)dy. (2.55)

2.4 Finite difference discretization

We apply a discretization to HBVP to obtain a suitable equation for nu-
merical computation. Several discretization schemes are available and can
be used to solve the problem. In this research we use the finite difference
discretization with second order accurary.

2.4.1 Finite difference method

The 3-dimensional domain of interest Ω with boundary ∂Ω is discretized
vertex-centered on an equidistant grid with L + 2, M + 2 and N + 2 points
in respectively x-, y- and z-direction, i.e.

xl = x0 + l∆x, for l = 0, 1, . . . , L + 1;
ym = y0 + m∆y, for m = 0, 1, . . . ,M + 1;
zn = z0 + n∆z, for n = 0, 1, . . . , N + 1.

(2.56)

with constant parameters ∆x, ∆y and ∆z and where xmin = (x0, y0, z0) and
xmax = (xL+1, yM+1, zN+1).

We apply a finite difference stencil to approximate the first derivative

Dxpl,m,n =
pl+1,m,n − pl,m,n

∆x
, (2.57)

which is first order accurate, i.e.

∂pl,m,n

∂x
= Dxpl,m,n + O(∆x), (2.58)

see for instance Van Kan & Segal [13], p.30, or Vuik [29], p.21-22. The
notation pl,m,n ≡ p(xl, ym, zn) is used in (2.58) for simplicity.

14 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

Moreover, in the interior we apply a standard finite difference stencil

Dxxpl,m,n =
pl−1,m,n − 2pl,m,n + pl+1,m,n

∆x2
. (2.59)

Equation (2.59) is derived from a Taylor’s expansion in order to approximate
the second order derivative in the x-direction. For sufficiently smooth p in
Ω, the second order derivative can be represented as

∂2pl,m,n

∂x2
= Dxxpl,m,n + O(∆x2), (2.60)

which means second-order accuracy in space if we use (2.59) as our standard
stencil. The proof of (2.60) can be found in for instance [13], p.29.

Equations (2.59) and (2.60) are derivatives in the x-direction. Similar
expressions can be found for the y- and z-directions.

2.4.2 Interior points

In the interior points, discretization of the Helmholtz equation (2.44) results
in the following equation

pl−1,m,n − 2pl,m,n + pl+1,m,n

∆x2
+

pl,m−1,n − 2pl,m,n + pl,m+1,n

∆y2

+
pl,m,n−1 − 2pl,m,n + pl,m,n+1

∆z2
+ k2

l,m,npl,m,n = fl,m,n,

(2.61)

for l = 1, . . . , L, m = 1, . . . ,M and n = 1, . . . , N .

2.4.3 Boundary points

In the case l = 0 forward discretization of the boundary condition (2.41)
gives

p0,m,n − p1,m,n

∆x
+ ik0,m,np0,m,n = 0, (2.62)

for m = 1, . . . ,M and n = 1, . . . , N . In (2.62) we used ∂/∂n = −∂/∂x and

Dxp0,m,n =
p1,m,n − p0,m,n

∆x
. (2.63)

With equation (2.62) we derive the following expression

p0,m,n =
1

1 + ik0,m,n∆x
p1,m,n, (2.64)

which we can substitute in equation (2.61) to eliminate p0,m,n.
In the case l = L + 1 we use backward discretization to obtain

pL+1,m,n =
1

1 + ikL+1,m,n∆x
pL,m,n, (2.65)

2.4. FINITE DIFFERENCE DISCRETIZATION 15

with m = 1, . . . ,M and n = 1, . . . , N .
In similar way as above we derive the expressions for the other bound-

aries. These boundary-elements will be eliminated. Thus, in each direction
there are resp. L,M and N elements left, which have to be determined.

2.4.4 Linear system

After applying equation (2.61) to all interior points pl,m,n in Ω and elimi-
nating all boundary points, one obtains a linear system

Ap = f, (2.66)

where p and f both are vectors with LMN elements and

p(l + (m− 1)L + (n− 1)L×M) = pl,m,n,
f(l + (m− 1)L + (n− 1)L×M) = fl,m,n,

(2.67)

for all l = 1, . . . , L, m = 1, . . . ,M and n = 1, . . . , N .
In the linear system (2.66) A is an (LMN)× (LMN)-matrix with seven

non-zero diagonals. The non-zero elements of the main diagonal are given
by

A(d, d) = −
(

2
∆x2

+
2

∆y2
+

2
∆z2

)
+ k2

l,m,n + γl,m,n. (2.68)

The non-zero elements of the subdiagonals are

A(d, d + 1) = A(d, d− 1) =
1

∆x2
,

A(d, d + L) = A(d, d− L) =
1

∆y2
,

A(d, d + L×M) = A(d, d− L×M) =
1

∆z2
.

(2.69)

In (2.68) and (2.69) the symbol d represents a counting parameter. For
instance, expression (3.11) holds for d = 1, 2, ..., LMN .

Furthermore, the parameter γl,m,n is determined by the position of the
points pl,m,n in the region. For interior points these are zero, i.e.

γl,m,n = 0 for l = 1, . . . , L, m = 1, . . . ,M and n = 1, . . . , N. (2.70)

For points at the boundaries, the expression depends on the type of boundary
discretization.

We have assumed the region Ω as a box with 6 faces, 12 edges and
8 corners. If we choose the discretization defined in paragraph 2.4.3, the

16 CHAPTER 2. HELMHOLTZ’S BOUNDARY VALUE PROBLEM

following expression yields for γl,m,n on the faces, excluded the edges and
corners 3

γl,m,n =



1
∆x2(1+ik0,m,n∆x)

if l = 1;
1

∆x2(1+ikL+1,m,n∆x)
if l = L;

1
∆y2(1+ikl,0,n∆y)

if m = 1;
1

∆y2(1+ikl,M+1,n∆y)
if m = M ;

1
∆z2(1+ikl,m,0∆z)

if n = 1;
1

∆z2(1+ikl,m,N+1∆z)
if n = N.

(2.71)

The total number of nonzero elements of A is at most 7LMN of (LMN)2

total entries, indicating sparsity. Moreover, matrix A is symmetric, but non-
Hermitian 4. This follows immediately from (2.71).

3The expressions on the edges and corners for γl,m,n are combinations of those of
expression (2.71).

4A is Hermitian when the matrix has the property Ā
T

= A.

Chapter 3

One-dimensional HBVP and
Some Examples

In this report we give two cases of the one-dimensional Helmholtz’s bound-
ary value problem (HBVP): one with constant wavenumber and one with
variable wavenumber. We give both analytical and numerical solutions of
these problems.

3.1 HBVP with constant wavenumber

We consider the one-dimensional version of the HBVP in the domain Ω =
[0, π], where the wavenumber and the sourceterm are real -valued constants;
in formulae (

d2

dx2
+ k2

)
p(x) = f, x ∈ (0, π), (3.1)

with boundary conditions(
− d

dx
+ ik

)
p(x) = 0, x = 0,

(
d
dx

+ ik

)
p(x) = 0, x = π,

(3.2)

where k ∈ R+ and f ∈ R.

3.1.1 Analytical solution

One can easily derive the following solution of (3.1)

p(x) =
f

k2
+ c1 cos kx + c2 sin kx, (3.3)

with c1, c2 ∈ C, using for instance the method of variation of parameters,
see section 3.7 of Boyce & DiPrima [4].

17

18CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

The constants c1 and c2 can be determined with the aid of (3.2). If we
first assume k to be a positive integer, i.e., k = N, then the constants can
be derived with the following linear system[

ik −k
ikθ kθ

] [
c1

c2

]
=

[
−if

k

−if
k

]
(3.4)

where

θ =
{
−1 if k is odd;

1 if k is even.
(3.5)

System (3.4) can be easily solved to obtain the following general solution of
(3.1) and (3.2)

p(x) =


f

k2
+ i

f

k2
sin kx if k is odd;

f

k2
− f

k2
cos kx if k is even.

(3.6)

When we are only interested in the real part of the solutions, we can write

p(x) =


f

k2
if k is odd;

f

k2
− f

k2
cos kx if k is even.

(3.7)

The imaginary part of solution (3.6) can be written as

p(x) =


i
f

k2
sin kx if k is odd;

0 if k is even.

(3.8)

Observe that for even k the solution is always real-valued.
In similar way we can derive expressions for general k, i.e., for arbitrary

k ∈ R+. Notice that the wavenumber k has a large influence on the shape
of the solution.

3.1.2 Numerical solution

We apply a finite difference discretization with

xl = x0 + l∆x, for l = 0, 1, . . . , N + 1, (3.9)

to obtain a linear system of (3.1) and (3.2)

Ap = f, (3.10)

3.1. HBVP WITH CONSTANT WAVENUMBER 19

where p and f both are vectors with N elements. The elements of the main
diagonal of A are given by

A(d, d) = −
(

2
∆x2

)
+ k2 + γd, (3.11)

where

γd =

{
1

∆x2(1+ik∆x)
if d = 1 or d = N ;

0 otherwise.
(3.12)

The non-zero elements of the subdiagonals are

A(d, d + 1) = A(d, d− 1) =
1

∆x2
. (3.13)

This linear system (3.10) will be solved with a direct method using Matlab.
In the next two subsections we shall consider two examples of the HBVP

and determine both the analytical and numerical solution.

3.1.3 Example 1: k = 1 and f = 2

We consider the HBVP with k = 1 and f = 2, i.e.

d2p(x)
dx2

+ p(x) = 2, x ∈ (0, π),

−dp(x)
dx

+ ip(x) = 0, x = 0,

dp(x)
dx

+ ip(x) = 0, x = π,

(3.14)

The real part of the analytical solution of system (3.14) is

p(x) = 2, (3.15)

and the imaginary part is given by

p(x) = 2 sinx, (3.16)

using expressions (3.7) and (3.8).
We compute the numerical solution of (3.14) with the command

Ex1(100,1,2),

where we have taken 100 elements in the discretization. The code of the
program can be found in Appendix A.1. The obtained plot of the solution
is given in Figure 3.1. We see that this is approximately equal to the ana-
lytical solution (3.15). We notice that the numerical solution is not exact,

20CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

Figure 3.1: Plot of the solution of HBVP with k = 1 and f = 2.

since we have dealt with a complex solution where the real and imaginary
part have been taken. This causes truncation errors.

The real part of the eigenvalues of this problem are both positive and
negative, since the extreme eigenvalues (i.e., λmax and λmin) are given by

1.0e+003 *

0.0007 - 0.0005i

-4.0508 - 0.0000i

So the system is indefinite, which has direct consequences for the choice
of iterative methods to solve the linear system, see next chapter.

3.1. HBVP WITH CONSTANT WAVENUMBER 21

3.1.4 Example 2: k = 2 and f = 1

We consider the HBVP with k = 2 and f = 1, i.e.

d2p(x)
dx2

+ 4p(x) = 1, x ∈ (0, π),

−dp(x)
dx

+ 4ip(x) = 0, x = 0,

dp(x)
dx

+ 4ip(x) = 0, x = π,

(3.17)

The analytical solution of system (3.17) is

p(x) =
1
4
− 1

4
cos 2x. (3.18)

We compute the numerical solution of (3.14) with the command

Ex2(100,2,1).

See Appendix A.2 for the code.
The obtained plot of the solution is given in Figure 3.2, which is practi-

cally equal to the analytical solution (3.18).

Figure 3.2: Plot of the solution of HBVP with k = 2 and f = 1.

The extreme eigenvalues are

22CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

1.0e+003 *
0.0033 - 0.0005i
-4.0478 - 0.0000i

So this system is also indefinite.

3.2 HBVP with variable wavenumber

One deals with non-constant values of k in the most of practical problems.
To illustrate this we consider HBVP wherein k behaves as a step function,
so we consider the following problem

d2p(x)
dx2

+ k2p(x) = f, x ∈ (0, 1
2π) ∪ (1

2π, π),

−dp(x)
dx

+ ikp(x) = 0, x = 0,

dp(x)
dx

+ ikp(x) = 0, x = π,

(3.19)

where f ∈ R and

k =
{

k1, x ∈ [0, 1
2π],

k2, x ∈ (1
2π, π],

(3.20)

where k1, k2 > 0.
The same boundary conditions as in the previous problem are used here.

We need two extra conditions in order to derive a unique solution of prob-
lem (3.19) 

p1(x) = p2(x), x = 1
2π,

dp1(x)
dx

=
dp2(x)

dx
, x = 1

2π,

(3.21)

where p1(x) is the solution at x ∈ [0, 1
2π] and p2(x) is the solution at

x ∈ (1
2π, π]. Thus, connecting conditions (3.21) imply that p(x) has to

be continuous and differentiable in x = 1
2π.

3.2.1 Analytical solution

One can derive the following solution of (3.19)

p(x) =


p1(x) =

f

k2
1

+ c1 cos k1x + c2 sin k1x, x ∈ [0, 1
2π],

p2(x) =
f

k2
2

+ c3 cos k2x + c4 sin k2x, x ∈ (1
2π, π].

(3.22)

3.2. HBVP WITH VARIABLE WAVENUMBER 23

Using the boundary conditions and connecting conditions (3.21) the con-
stants c1, . . . , c4 ∈ C can be determined, see example 3 for an illustration.

3.2.2 Numerical solution

Using the same finite difference discretization, like in the previous problem,
we can derive

Ap = f, (3.23)

where p and f both are vectors with N elements, where we shall take an
odd -valued N for simplicity.

The connecting conditions (3.21) can be implemented in the following
way.

• Continuity in 1
2π is automatically satisfied, because we have exact one

gridpoint in that point, namely p 1
2
(N+1).

• The second condition can be discretized in several ways. In the next
subsections we treat two methods and give the resulting matrix A.

Method 1
We discretize the second condition of (3.21) as follows

p 1
2
(N+1) − p 1

2
(N−1)

∆x
=

p 1
2
(N+3) − p 1

2
(N+1)

∆x
. (3.24)

Remember that we have taken odd-valued N . Furthermore, notice that one-
side difference is applied in (3.24) to discretize the first derivative. Now,
expression (3.24) leads to the equation

−p 1
2
(N−1) + 2p 1

2
(N+1) − p 1

2
(N+3) = 0. (3.25)

Notice that this indirect implies that the second derivative in p 1
2
(N+1) is

equal to zero.
The original equation of the point p 1

2
(N+1) can be replaced by equation

(3.25).

Now, the elements of the main diagonal of A are given by

A(d, d) =



−
(

2
∆x2

)
+ k2

1 + γd, d < 1
2(N + 1);

2, d = 1
2(N + 1);

−
(

2
∆x2

)
+ k2

2 + γd, d > 1
2(N + 1),

(3.26)

24CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

where

γd =


1

∆x2(1+ik1∆x)
if d = 1 ;

1
∆x2(1+ik2∆x)

if d = N ;
0 otherwise.

(3.27)

The non-zero elements of the subdiagonals are
A(d, d− 1) =

1
∆x2

, A(d, d + 1) =
1

∆x2
, if d 6= 1

2(N + 1) ;

A(d, d− 1) = −1, A(d, d + 1) = −1, if d = 1
2(N + 1) .

(3.28)

The linear system (3.23) can now be solved in the same way as in the pre-
vious problem.

Method 2
The second method to treat the second connecting condition is to assume
that

k =


k1 if d < 1

2(N + 1);
k1+k2

2 if d = 1
2(N + 1);

k2 if d > 1
2(N + 1).

(3.29)

which can be justified using Finite Elements method (FEM). Now, the ele-
ments of the main diagonal of A are given by

A(d, d) = −
(

2
∆x2

)
+ k2 + γd, (3.30)

where

γd =


1

∆x2(1+ik1∆x)
if d = 1;

1
∆x2(1+ik2∆x)

if d = N ;
0 otherwise.

(3.31)

The non-zero elements of the subdiagonals are

A(d, d + 1) = A(d, d− 1) =
1

∆x2
. (3.32)

Notice that expressions (3.30) and (3.32) are the same as (3.11) respectively
(3.13).

3.2.3 Example 3: k1 = 1, k2 = 3 and f = 9

We consider 

d2p(x)
dx2

+ k2p(x) = 9, x ∈ (0, π),

−dp(x)
dx

+ ikp(x) = 0, x = 0,

dp(x)
dx

+ ikp(x) = 0, x = π,

(3.33)

3.2. HBVP WITH VARIABLE WAVENUMBER 25

where

k =
{

1, x ∈ [0, 1
2π],

3, x ∈ (1
2π, π].

(3.34)

Analytical solution

The general solution of (3.33) and (3.34) is{
p1(x) = 9− (ic1 + 9) cos x + c1 sinx,
p2(x) = 1 + c2 cos 3x + i(1− c2) sin 3x,

(3.35)

with c1, c2 ∈ R. The constants c1 and c2 can be determined with the aid of
(3.21), resulting in the following linear system[

1 −i
1 3i

] [
c1

c2

]
=

[
−(8 + i)

9i

]
. (3.36)

The solution of (3.36) is {
c1 = 3

2 i− 6,
c2 = 21

2 − 2i,
(3.37)

which can be substituted in (3.35) to obtain{
p1(x) = 9 + (6i− 71

2) cos x + (3
2 i− 6) sinx,

p2(x) = 1 + (21
2 − 2i) cos 3x− (3

2 i + 2) sin 3x.
(3.38)

Thus, the real parts of solution (3.38) are
p1(x) = 9− 15

2 cos x− 6 sinx, x ∈ [0, 1
2π],

p2(x) = 1 + 5
2 cos 3x− 2 sin 3x, x ∈ (1

2π, π],
(3.39)

and the imaginairy parts are given by
p1(x) = 6 cos x + 3

2 sinx, x ∈ [0, 1
2π],

p2(x) = −2 cos 3x− 3
2 sin 3x, x ∈ (1

2π, π].
(3.40)

Numerical solution

Making use of the code in Appendix A.3 we obtain the plot of the solution
for method 1 and 2. We typ the following two commando’s in Matlab:

Ex3met1(101,1,3,9),
Ex3met2(101,1,3,9).

See Figure 3.3 for the results.

26CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

Figure 3.3: Plots of the solution of example 3 with method 1 and
2 with N = 101.

3.2. HBVP WITH VARIABLE WAVENUMBER 27

Figure 3.4: Plots of the norm of the residuals of example 3 with
varied N .

The exact solution has been included in this figure for a comparison
between the methods. We see that the three solutions are consistent with
each other.

We compare the two numerical methods by observing the norm of the
residuals

r(x) = ||p̃(x)− p(x)||2 =

√√√√ 1
N

N∑
i=1

(p̃(xi)− p(xi))
2 (3.41)

where p̃(x) is the numerical solution of method 1 or 2 and p(x) is the exact
solution. We vary the number of elements N . Therefore we take consecutive
N = 5, 15, . . . , 205. For each case and for both real and part of the solutions
we compute the norm of the residuals as given in expression (3.41). This
results in the Matlab-code as seen in Appendix A.5. Plots of the results
are represented in Figure 3.4. In further research it may be advantageous
to plot the figure logarithmically.

Since we are interested in relative high values of N , method 1 is the
most accurate one in this example, see Figure 3.4. More research is needed

28CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

to seek out this item.

The extreme eigenvalues (i.e., λmax and λmin) of method 1 (with N = 101
elements) are, respectively,

1.0e+003 *
0.0057 - 0.0017i
-4.1291 - 0.0000i

The extreme eigenvalues of method 2 (with N = 101 elements) are

1.0e+003 *
0.0066 - 0.0009i
-4.1306 - 0.0000i

So both systems are indefinite.

3.2.4 Example 4: k1 = 1e− 6, k2 = 30 and f = 9

We end the examples with the same case as example 3, but now we define

k =
{

1× 10−6, x ∈ [0, 1
2π],

30, x ∈ (1
2π, π].

(3.42)

instead of expression (3.34).
The analytical solution is omitted here. We compute with the following

commando’s the numerical solution of this problem

Ex4met1(101,1e-6,30,9),
Ex4met2(101,1e-6,30,9),

using Appendix A.4. The resulting plots can be found in Figure 3.5. In
the figure we can see some differences, especially in the plot of the imaginary
part of the solution. More research is needed to decide which method is the
best in this case, comparing the corresponding solutions with the analytical
one.

The extreme eigenvalues of method 1 are

1.0e+003 *
0.8959 - 0.0002i
-4.1301 - 0.0000i

The extreme eigenvalues of method 2 are

3.2. HBVP WITH VARIABLE WAVENUMBER 29

Figure 3.5: Plots of the solution of example 4 with N = 101.

30CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

1.0e+003 *
0.8961 - 0.0002i
-4.1303 - 0.0000i

Both systems are again indefinite.

3.3 Eigenvalues

In all examples we have observed the systems are indefinite, i.e., the eigen-
values have both positive and negative real parts. Notice that we have
|λmax| � |λmin| in examples 1-3. In this section we are looking for the
eigenvalues of the same systems in an analytical way.

3.3.1 Analytical system

First we examine the analytical eigenvalues of the Helmholtz problem with
Dirichlet conditions, i.e.,

(
d2

dx2
+ k2

)
p(x) = f, x ∈ (0, 1),

p(0) = p(1) = 0.

(3.43)

Notice that in this section we have taken x ∈ (0, 1) instead of (0, π). Then,
the eigenvalue differential equation has to satisfy

(
d2

dx2
+ k2

)
φ(x) = λφ(x), x ∈ (0, 1),

φ(0) = φ(1) = 0,

(3.44)

where λ and φ(x) are, respectively, the eigenvalue and eigenfunction of sys-
tem (3.43). The solution of (3.44) is

φ(x) = c1 cos(
√

k2 − λx) + c2 sin(
√

k2 − λx), (3.45)

where c1 and c2 can be derived using the Dirichlet conditions p(0) = p(1) =
0. Since we are not interested in the trivial solution, we obtain the equation

sin(
√

k2 − λ) = 0. (3.46)

This gives us immediately the eigenvalues

λn = k2 − (nπ)2, (3.47)

for n = 1, 2, Observe that there are an infinite number of eigenvalues
and also eigenfunctions.

3.3. EIGENVALUES 31

Moreover, if we multiply both sides of the differential equation in (3.43)
with −1, then the eigenvalues as given in (3.47) get an extra minus-sign,
i.e., the eigenvalues for the negative Helmholtz-operator are given by

λ̃n = (nπ)2 − k2. (3.48)

Hence, there exists a positive integer ñ such that

λ̃n > 0 ∀n > ñ, (3.49)

which is favourable in some practical situations, see next chapters.

3.3.2 Discretized system

In Peters, Eiermann, Daniels [18] one found for the Toeplitz matrix

A =


α β ∅
γ α β

.
. β

∅ γ α

 ,where A ∈ RN×N , (3.50)

the following eigenvalues

λj = α + 2
√

βγ cos(πj∆x), j = 1, 2, . . . , N, (3.51)

where ∆x = 1
N and α, β, γ ∈ R. These eigenvalues can be found by using

the solution φj = sin(δjh) with δ ∈ R. Then the boundary conditions leads
to the expressions given in (3.51).

Consider the matrix obtained from discretizing system (3.43), i.e., con-
sider again example 1 with modified boundary conditions p(0) = p(1) = 0
instead of absorbing conditions (see (3.14)) and therefore γd = 0 instead of
expression (3.12). Then the eigenvalues are given by

λj =
(
− 2

∆x2
+ k2

)
+

2
∆x2

cos(πj∆x), j = 1, 2, . . . , N, (3.52)

with the aid of (3.51) 1.
Therefore, the smallest eigenvalue is

λmin = − 4
∆x2

+ k2, (3.53)

since cos(π) = −1 by taking j = N . As a consequence, λmin is negative
when k < 2N .

1Using the fact that 1 − 2 cos 2x = 2 sin2 x, we can rewrite (3.52) as λj = k2 −
4

∆x2 sin2(1
2
πj∆x).

32CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

The largest eigenvalue is

λmax = − 2
∆x2

+ k2 +
2

∆x2
cos(π∆x), (3.54)

by taking j = 1 in expression (3.52). We can write (3.54) as

λmax = k2 − π2 +O(∆x2), (3.55)

using the Taylor serie of the cosinus, i.e., cos(π∆x) = 1− (π∆x)2

2 +O(∆x4).
Now, if we let N →∞, i.e., ∆x → 0 then we derive

λmax = k2 − π2. (3.56)

In other words, if we increase the dimensions of matrix A, then the largest
eigenvalue tends to k2 − π2. Therefore,

λmax < 0 if k < π,
λmax > 0 if k > π ,
λmax = 0 if k = π .

(3.57)

We can conclude that if we choose k such that π < k < 2N with sufficient
large N , then we have λmin < 0 and λmax > 0, thus then we deal with an
indefinite system.

Moreover, notice that if we have a sufficient large N and a fixed (relative
small) k, then it yields |λmax| � |λmin| with the aid of expressions (3.53)
and (3.56). This is exactly the case in examples 1-3.

However, in example 1 we have considered absorbing instead of Dirich-
let conditions. In that case we can not use pj = sin(δj∆x) to derive the
eigenvalues, but we expect that the (real part of the) eigenvalues as given
in (3.52) will not change much.

3.3.3 Comparing eigenvalues of the analytical and discretized
system

In theory, the eigenvalues of the discretized system, found in (3.52), have to
converge asymptotically to the eigenvalues of the analytical system given in
(3.47). Below we shall give the proof.

We take the limit ∆x → 0 in (3.52) which results in

λj = lim∆x→0− 2
∆x2 + k2 + 2

∆x2 cos(πj∆x),
= lim∆x→0− 2

∆x2 + k2 + 2
∆x2

(
1− (πj∆x)2

2 +O(∆x4)
)

,

= lim∆x→0 k2 − (jπ)2 +O(∆x2),
= k2 − (jπ)2,

(3.58)

for j = 1, 2, In (3.58) we have used again the Taylor expansion of the
cosinus. Indeed, the eigenvalues of the discretized system are asymptotically
equal to those of the analytical system.

3.3. EIGENVALUES 33

Figure 3.6: Plots of the eigenvalues of example 1 with N = 25,
50, 100.

Now, we return to example 1 and in the next subsections one deals
with some aspects with respect to the eigenvalues. Firstly, we compute the
eigenvalues for different values of N . Secondly we compare the eigenvalues
of the original system with a system where A is a Toeplitz matrix.

3.3.4 Eigenvalues of example 1 with varied N

We examine the eigenvalues of example 1 with three different numbers of
elements: N = 25, 50, 100. The code can be found in Appendix A.6. Now,
the results are given in figure 3.6 2.

We conclude that the imaginary part of the eigenvalues do not change if
we vary N . However, the real part of the eigenvalues are much dependent
of N . In this case we see obviously that the system is more indefinite when
we increase N . This is the expected result, considering expression (3.53).

3.3.5 Comparing the original with a modified example 1

We compare matrix A found in example 1 with a modified example where we
have taken the following Dirichlet boundary conditions instead of absorbing

2Denote Re(λ)= values of the real part of the eigenvalues. Then figure 3.6 will be more
clear if we plot Re(λ) ∗ 1

N
in the horizontal axis instead of Re(λ). This is left here.

34CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

Figure 3.7: Plots of the eigenvalues of the original (with absorb-
ing conditions) and modified (with Dirichlet conditions) exam-
ple 1 with N = 25.

conditions,
p(0) = p(π) = 0. (3.59)

Then we get a matrix Ã which has a Toeplitz structure.
We compute the eigenvalues of this modified matrix Ã and compare

this with the eigenvalues of A, see figure 3.7. The code can be found in
Appendix A.7.

One can conclude that the real part of the eigenvalues of both systems
has the same range, while the exact values are not the same, see also figure
3.8. Actually, there is only a shift in the range of the imaginary part of
the eigenvalues. This imaginary shift is not disadvantageous in iterative
methods, see next chapter.

Considering this example we conclude that we can work with the Toeplitz
version of the original matrix A to derive the real-valued spectrum of the
eigenvalues of A. More research is needed to generalize this conclusion.

3.3. EIGENVALUES 35

Figure 3.8: Plots of the sorted set of real parts of the eigenvalues
of both the original and modified example 1 with N = 25.

36CHAPTER 3. ONE-DIMENSIONAL HBVP AND SOME EXAMPLES

Chapter 4

Krylov Iterative Methods

4.1 Introduction

Consider the linear system

Ax = b, A ∈ Cn×n, (4.1)

where A is an n × n matrix and x and b are both complex vectors with
n elements. Moreover, matrix A is sparse and assumed in general to be
complex. We intend to solve (4.1).

The one or two dimensional version of Helmholtz’s boundary value prob-
lem (HBVP) gives a linear system, which in general can be solved with direct
numerical methods, like Gauss-elimination or nested dissection method, see
Mulder & Plessix [17]. A case with 1000 × 1000 gridpoints has been tested
on a workstation and the nested dissection method can indeed be applied to
solve the linear system at efficient cost. In 3-dimensional cases, the direct
methods are in general inefficient to use. For instance the nested dissection
method gives problems because the amount of fill-in is too large, see chapter
4 of Erlangga [6].

However, solution methods with an acceptable efficiency can still be
pursued by implementing iterative numerical methods for the linear system
(4.1). Recently, several iterative methods have been developed. The un-
derlying concept in deriving this methods is the so-called Krylov subspace
method.

In this report, we first describe some iterative methods, relevant to
HBVP. Since we aim at the numerical solution of a complex symmetric and
(highly) indefinite linear system, we will consider iterative methods feasible
for this kind of linear systems. We treat respectively Conjugate Gradient
(CG), CGNR, COCG, GMRES, Bi-CG and Bi-CGSTAB, see next subsec-
tions. We shall give special attention to GMRES and Bi-CGSTAB, because
these methods are frequently used to deal with HBVP.

Conjugate Gradient (CG) method is not applicable to HBVP, because
the linear system has to be real and positive-definite to secure an accurate

37

38 CHAPTER 4. KRYLOV ITERATIVE METHODS

solution, see e.g. section 6.7 of Saad [19]. Nevertheless, we include the CG
method, since this algorithm is of importance as a basis for deriving several
related iterative methods.

In practice, standard iterative methods are not sufficiently efficient for
solving a sparse and large linear system without modifications. It is known
that in order to obtain a very efficient algorithm, the linear system should be
transformed into a formulation which is similar and therefore gives approx-
imately the same solution, but which is much easier to solve. This process
is called preconditioning. Krylov iterative methods are inattractive without
preconditioning. We deal with preconditioners in the next section.

4.2 Krylov subspace method

In standard iterative methods, the iterant in the (j + 1)-th step can be
determined from the j-th step in the following way

xj+1 = xj + P−1rj , (4.2)

where P is a n× n matrix and the j-th residu rj is defined as

rj = b−Axj , (4.3)

which is a measure of the difference of the iterative and the exact solution
of the problem. If we work out the first iterations of (4.2), one obtains

x0

x1 = x0 + P−1r0

x2 = x1 + P−1(b−Ax0 −AP−1r0)
= x0 + 2P−1r0 −P−1AP−1r0

x3 = . . .
...

(4.4)

Using (4.4) we get the following expression for (4.2)

xj+1 ∈ x0 + span
{
P−1rj ,P−1A(P−1rj), . . . , (P−1A)i−1(P−1rj)

}
. (4.5)

Subspaces of the form

Kj(A, r0) = span
{
r0,Ar0,A2r0, . . . ,Aj−1r0

}
. (4.6)

are called Krylov subspaces with dimension j, belonging to A and r0. Using
(4.6) we get the following expression for standard iterative methods

xj+1 ∈ x0 +Kj(P−1A,P−1r0). (4.7)

Expression (4.7) is equivalent to (4.2) and (4.5).

4.3. CONJUGATE GRADIENT (CG) METHOD 39

From (4.7) we can observe that Krylov subspace methods rely on finding
a matrix P and a basis for Kj such that the iterative method converge
fast with reasonable accuracy and efficiency with respect to memory and
computational time. Matrix P is called the preconditioner.

Standard iterative methods like Gauss-Jacobi and Gauss-Seidel are de-
scribed in e.g. section 11.2 of Segal & Van Kan [13], chapter 3 of Tang [24]
and section 5.1 of Vuik [28]. If we denote A = D − L − LT with D the
matrix with the main diagonal and L the (strict) undertriagonal of A, then
we get the following expressions of matrix P:

• Gauss-Jacobi: PJAC = D;

• Gauss-Seidel: PGS = D− L.

It is well-known that this methods converge very slow in (3-dimensional)
practical problems. Successive Over Relaxation (SOR) can be used to ac-
celerate this methods.

4.3 Conjugate Gradient (CG) method

The CG method is the most prominent iterative method for solving sparse
systems Ax = b, see (4.1), where A is Hermitian and positive definite. The
whole idea of this method can be found in e.g. Shewchuk [20].

4.3.1 CG idea

For convenience we take P = I and x0 = 0, thus r0 = b. This is no
important restriction, because if x0 6= 0, then Az = b − Ax0 = b̃ with
z ≡ x − x0. And then we can take z0 = 0 as initial vector for the system
Az = b̃.

A standard method is to find the iterants in the Krylov-subspace, so

xj+1 ∈ Kj(A, r0). (4.8)

The CG method also has its iterants in this subspace, but it attemps to
minimize the distance between the jth iterant and the exact solution. Min-
imizing the true solution in the standard norm is attractive, i.e.,

min
y∈Kj(A,r0)

||y− x||2, (4.9)

where x is the exact solution of Ax = b. This is impossible to compute,
because x is clearly unknown. However, we do know Ax (= b), so it is
obvious to define the following norm

||v||A =
√

(v,Av), (4.10)

40 CHAPTER 4. KRYLOV ITERATIVE METHODS

and we attemp to minimize the distance in this norm (4.10), i.e.

min
y∈Kj(A,r0)

||y− x||A, (4.11)

It will appear that (4.11) is useful. This leads to the CG-method.

4.3.2 CG derivation

We express the vector xj+1 as

xj+1 = xj + αjpj , (4.12)

where αj ∈ C and pj is the search direction. We shall choose the initial
search direction p0 = r0. Therefore the residual vectors must satisfy the
recurrence

rj+1 = rj − αjApj . (4.13)

If we wish rj for all j to be orthogonal to each other, it is necessary that

(rj , rj+1) = (rj − αjApj , rj) = 0, (4.14)

resulting in

αj =
(rj , rj)

(Apj , rj)
. (4.15)

Recall that (a,b) ≡
∑n

i=1 ai · bi for arbitrary a,b ∈ Cn.
It is known that the next search direction pj+1 is a linear combination

of rj+1 and pj . After rescaling the p vectors appropriately, it follows that

pj+1 = rj+1 + βjpj , (4.16)

where β ∈ C. A first consequence of (4.16) is that the denominator in (4.15)
can be written as

(Apj , rj) = (Apj ,pj − βj−1pj−1) = (Apj ,pj), (4.17)

because Apj is orthogonal to pj−1, using (4.16) and (Apj , rj−1) = 0. Then,
expression (4.15) becomes

αj =
(rj , rj)

(Apj ,pj)
. (4.18)

In addition, knowing that pj+1 is orthogonal to Apj yields

(pj+1,Apj) = (rj+1 + βjpj ,Apj) = 0. (4.19)

From (4.19) we derive

βj = −
(rj+1,Apj)
(pj ,Apj)

. (4.20)

4.3. CONJUGATE GRADIENT (CG) METHOD 41

Note that from (4.13)

Apj = − 1
αj

(rj+1 − rj). (4.21)

Using (4.16) and (4.21), we can write expression (4.20) in the following way

βj =
(rj+1, rj+1)

(rj , rj)
. (4.22)

Above we have seen that the vectors pj are A-orthogonal, or conjugate.
That is why the method is called the conjugate gradient method.

4.3.3 CG algorithm

In the previous subsection we derived expressions that are applied in the
algorithm for the CG method.

Conjugate Gradient Algorithm

1. Compute r0 := b−Ax0 and p0 := r0.

2. For j := 0, 1, . . . , until convergence Do :

3. wj := Apj

4. αj := (rj ,rj)
(wj ,pj)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjwj

7. βj := (rj+1,rj+1)
(rj ,rj)

8. pj+1 := rj+1 + βjpj

9. EndDo

Notice that we defined wj ≡ Apj in the above algorithm for simplicity.
In terms of storage, in addition to the matrix A, four vectors x,p,Ap

and r must be saved in the CG-algorithm.
The CG-algorithm works well for symmetric, Hermitian and positive

definite (PD) matrices with real coefficients. With a suitable choice of pre-
conditioner, the algorithm runs very efficiently. The CG-method encounters
problems, when A is indefinite, i.e. when A has both positive and negative
eigenvalues, see subsection 11.3.2 of Segal & Van Kan [13].

To overcome the indefiniteness, non-Hermite and nonsymmetry of A,
modifications are introduced to the standard CG-method. These lead to
several variants of CG, for example SYMMLQ, CGS and Bi-CGSTAB. These
variants preserve some of the nice properties of the CG algorithm (e.g. short

42 CHAPTER 4. KRYLOV ITERATIVE METHODS

recurrences or optimal method with respect to the || · ||–norm) and also
extend the methods to be able to solve non-PD matrices.

Alternatively, by transformation into normal equations, the CG algo-
rithm sitll works nicely. We discuss this approach in the next section.

4.4 CGNR method

If we multiply Ax = b with the Hermitian of A, i.e., AH , then this leads
to the normal equations

AHAx = AHb. (4.23)

If matrix A is not singular, then it can easily be derived that AHA is always
positive definite, Hermitian and symmetric. The consequence is that we can
apply CG to (4.23) and all properties of the method are still valid. Notice
that now we want

min
y∈Kj(A

HA,AHr0)
||y− x||AHA. (4.24)

We derive easily

||y− x||AHA = ||A(y− x)||2 = ||r||2, (4.25)

where the residu r = b−Ay.
This is why the method is called CGNR, because it is the Conjugate

Gradient method applied to the Normal equations where the Residu is min-
imized.

4.4.1 CGNR algorithm

The residual vectors z satisfy the recurrence

zj+1 = zj − αjAHApj . (4.26)

We may compute this residual in two parts:

rj+1 = rj − αjApj ;
zj+1 = AHrj+1.

(4.27)

The CGNR-algorithm can now be cast in the following form.

CGNR Algorithm

1. Compute r0 := b−Ax0, z0 = AHr0 and p0 := r0.

2. For j := 0, 1, . . . , until convergence Do :

3. wj := Apj

4.5. COCG METHOD 43

4. αj := (zj ,zj)
(wj ,wj)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjwj

7. zj+1 = AHrj+1

8. βj := (zj+1,zj+1)
(zj ,zj)

9. pj+1 := zj+1 + βjpj

10. EndDo

The disadvantage of this method is that both round-off-errors and con-
vergence speed depend on the spectral condition number of AHA in the
Euclidian norm, i.e. they depend on K2(AHA) = K2(A)2 with K2(A) =
||A||2 · ||A−1||2. This means that if A has a relative bad condition number,
K2(AHA) can only be worse.

Furthermore, another disadvantage is that CGNR requires the matrix-
multiplication AHx which may be difficult to compute. Notice that AHA
is usually not determined. When we need to compute AHAx, we apply
AH(Ax) which is often cheaper.

In spite of these disadvantages there are several categories of matrices
where CGNR gives good results.

4.5 COCG method

The Conjugate Orthogonal Conjugate Gradient (COCG) method can be
used for symmetric-complex matrix, which is of our interest. It is the same
method as CG, but with an additional modification of the orthogonality
condition. Instead Herminitian orthogonality, we use the conjugate orthog-
onality, i.e.

(rj , rk) = 0 if j 6= k. (4.28)

4.5.1 COCG algorithm

The COCG algorithm is given below.

COCG Algorithm

1. Compute r0 := b−Ax0 and p0 := r0.

2. For j := 0, 1, . . . , until convergence Do :

3. wj := Apj

4. αj := (rj ,rj)
(wj ,pj)

5. xj+1 := xj + αjpj

44 CHAPTER 4. KRYLOV ITERATIVE METHODS

6. rj+1 := rj − αjApj

7. βj := (rj+1,rj+1)
(rj ,rj)

8. pj+1 := rj+1 + βjpj

9. EndDo

We see that COCG has short recurrences. Moreover, notice that for
arbitrary a, b ∈ Cn yields

(a,b) =
n∑

i=1

ai · bi =
n∑

i=1

ai · bi, (4.29)

which does not satisfy all properties of the inner product, i.e., the method
is optimal to the defined semi -inner product. Furthermore, COCG-method
is not robust. See Van der Vorst & Melissen [26] for more details about
COCG.

4.6 GMRES

The generalized minimal residual (GMRES) is an extension of the minimal
residual method (MINRES) for unsymmetric systems. GMRES minimizes
the residual norm over the Krylov subspace. In order to reach this, it gen-
erates a sequence of orthogonal vectors with long recurrences due to the
unsymmetry. The method uses a variant of the Arnoldi’s procedure to find
a set of orthonormalized vectors.

4.6.1 Arnoldi’s method

Arnoldi’s procedure is an algorithm for building an orthonormal basis of the
Krylov subspace Km. One variant of the algorithm is given below.

Arnoldi’s algorithm

1. Choose a vector v1 of norm 1

2. For j := 1, 2, . . . ,m Do :

3. hi,j := (Avj ,vi) for i = 1, 2, . . . , j

4. wj := Avj −
∑j

i=1 hijvi

5. hj+1,j := ||wj ||2

6. vj+1 :=
wj

hj+1,j

4.6. GMRES 45

7. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector vj by A
and then orthonormalizes the resulting vector wj against all previous vi’s
by a standard Gram-Schmidt procedure.

One can prove the following propositions (see p.146-148 of Saad [19]).

Proposition 1 Assume that Arnoldi’s algorithm does not stop before the
m-th step. Then the vectors v1, v2, . . . , vm form an orthonormal basis of the
Krylov subspace

Km = span
{
v1,Av1, . . . ,Am−1v1

}
. (4.30)

Proposition 2 Denote by Vm the n×m matrix with column vectors v1, . . . ,
vm. Denote by H̄m the (m + 1) × m Hessenberg matrix whose nonzero
entries hi,j are defined by Arnoldi’s algorithm. Furthermore, denote by em =
{0, 0, . . . , 1}T and by Hm the matrix obtained from H̄m by deleting its last
row. Then the following relations hold:

AVm = VmHm + wmeT
m (4.31)

= Vm+1H̄m, (4.32)
VT

mAVm = Hm. (4.33)

4.6.2 GMRES idea

GMRES method is a projection method based on the m-th Krylov subspace
Km with initial vector v1 = r0/||r0||2. The basic idea of this method will be
described below.

Any vector x in x0 +Km can be written as

x = x0 + Vmy, (4.34)

where y is an m-vector. Defining

J(y) = ||b−Ax||2
= ||b−A (x0 + Vmy) ||2
= ||r0 −AVmy||2,

(4.35)

relation (4.32) results in

b−Ax = r0 −AVmy
= βv1 −Vm+1H̄my
= Vm+1

(
βe1 − H̄my

)
,

(4.36)

where we have used β = ||r0||2 and e1 = {1, 0, . . . , 0}T .

46 CHAPTER 4. KRYLOV ITERATIVE METHODS

Since the column-vectors of Vm+1 are orthonormal, expression (4.35)
can be written as

J(y) = ||r0 −AVmy||2
= ||Vm+1

(
βe1 − H̄my

)
||2

= ||βe1 − H̄my||2.
(4.37)

The GMRES approximation is the unique vector of x0+Km which minimizes
(4.35). By (4.34) and (4.37), this approximation can be obtained quite
simply as xm = x0 + Vmym where ym minimizes the function J(y) =
||βe1 − H̄my||2, i.e.,

xm = x0 + Vmym, with
ym = arg miny ||βe1 − H̄my||2.

(4.38)

The minimizer ym is inexpensive to compute since it requires the solution
of an (m + 1)×m least-squares probles where m is typically small.

4.6.3 GMRES algorithm

The GMRES algorithm is now given as follows:

Generalized Minimum Residual (GMRES) Algorithm

1. Choose x0 and compute r0 = b−Ax0, β = ||r0||2 and v1 = r0/β

2. For j := 1, 2, . . . ,m Do :

3. wj := Avj

4. For i := 1, 2, . . . , j Do :
5. hi,j := (wj ,vi)
6. wj := wj − hijvi

7. EndDo

8. hj+1,j := ||wj ||2

9. vj+1 :=
wj

hj+1,j

10. EndDo

11. Compute ym := arg miny ||βe1 − H̄my||2
12. Compute xm := x0 + Vmym

As we can see, line 2 to 10 represent Arnoldi’s algorithm for orthogonal-
ization.

4.7. BI-CG METHOD 47

The GMRES algorithm may break down if hj+1,j = 0 at iteration step j
(see line 9). However, this situation implies that the residual vector is zero
and therefore, the algorithm gives the exact solution at this step. Hence,
examination of value hj+1,j becomes important.

If the iteration number m is large, the GMRES algorithm becomes im-
practical as consequence of a lack of memory and increasing computational
requirements. This is understandable from the fact that during the Arnoldi
steps (lines 2-10) the number of vectors requiring storage increases. There
are several ways to remedy this problem, like restarting and truncating, see
p.79 of Vuik [28].

4.7 Bi-CG method

The CG method is not suitable for non-Hermitian systems, because the
residual vectors cannot be made orthogonal with short recurrences, as proved
in Voevodin [25] and Faber and Manteuffel [9]. The GMRES method re-
tains orthogonality of the residuals by using long recurrences, at the cost
of a larger storage demand. The Biconjugate Gradient (Bi-CG) method
takes another approach, replacing the orthogonal sequence of residuals by
two mutually orthogonal sequences, at the price of no longer providing a
minimization.

The update relations for residuals in the CG method are augmented in
the biconjugate gradient method by relations that are similar but based on
AH instead of A. Thus we update two sequences of residuals{

rj+1 = rj − αjApj ,

r̃j+1 = r̃j − αjAH p̃j ,
(4.39)

and two sequences of search directions{
pj+1 = rj+1 + βjpj ,

p̃j+1 = r̃j+1 + βjp̃j .
(4.40)

The choices  αj = (rj ,r̃j)
(Apj ,p̃j)

,

βj = (rj+1,r̃j+1)
(rj ,r̃j)

,
(4.41)

ensure the orthogonality relations

(ri, r̃j) = (Api, p̃j) = 0 for i 6= j. (4.42)

4.7.1 Bi-CG algorithm

Below we describe the Bi-CG algorithm.

48 CHAPTER 4. KRYLOV ITERATIVE METHODS

Biconjugate Gradient (Bi-CG) Algorithm

1. Compute r0 := b−Ax0 and set p0 := r0

2. Choose r̃0 such that (r0, r̃0) 6= 0 and set p̃0 := r̃0

3. For j := 0, 1, . . . , until convergence Do :

4. wj := Apj

5. w̃j := AH p̃j

6. αj := (rj ,r̃j)
(wj ,p̃j)

7. xj+1 := xj + αjpj

8. rj+1 := rj − αjwj

9. r̃j+1 := r̃j − αjw̃j

10. βj := (rj+1,r̃j+1)
(rj ,r̃j)

11. pj+1 := rj+1 + βjpj

12. p̃j+1 = r̃j+1 + βjp̃j

13. EndDo

For symmetric positive definite systems, Bi-CG is equivalent with CG, but
it takes twice the cost per iteration.

A small disadvantage of Bi-CG is the extra computation involving AH

which can be costly if the solution for the dual system is not of interest.
It is difficult to make a fair comparison between GMRES and Bi-CG.

GMRES really minimizes a residual, but at the cost of increasing work for
keeping all residuals orthogonal and increasing demands for memory space.
Bi-CG does not minimize a residual, but often its accuracy is comparable to
GMRES, at the cost of twice the amount of matrix vector products per iter-
ation step. However, the generation of the basis vectors is relatively cheap
and the memory requirements are modest. Several variants of Bi-CG have
been proposed (e.g., conjugate gradient squared (CGS) method and bicon-
jugate gradient stabilized (Bi-CGstab) method, see next subsections) that
increase the effectiveness of this class of methods in certain circumstances.

4.8 CGS method

The conjugate gradient squared (CGS) method was developed in 1984 by
Sonneveld [22].

In the BiCG method, the residual vector rj can be regarded as the
product of r0 and the j-th degree polynomial R in A, i.e.,

rj = Rj(A)r0, (4.43)

4.8. CGS METHOD 49

satisfying the constraint Rj(0) = 1. This same polynomial satisfies also

r̃j = Rj(AT)r̃0, (4.44)

by construction of the BiCG method.
Similarly, the conjugate-direction polynomial Pj(t) satisfies the following

two expressions
pj = Pj(A)r0, p̃j = Pj(AT)r̃0. (4.45)

Also, the scalar αj in BiCG is given by

αj =
(rj , r̃j)

(Apj , p̃j)
=

(Rj(A)r0,Rj(AT)r̃0)
(APj(A)r0,Pj(AT)r̃0)

=
(R2

j (A)r0, r̃0)
(AP2

j (A)r0, r̃0)
. (4.46)

which indicates that if it is possible to obtain a recursion for the vectors
R2

j (A)r0 and P2
j (A)r0, then computing αj and, similarly, βj cause no prob-

lem.
Expression (4.46) suggests that if Rj(A) reduces r0 to a smaller vector

rj , then it might be advantageous to apply this ’contraction’-operator twice
and compute R2

j (A)r0. The iteration coefficients can still be recovered from
these vectors (as shown above), and it turns out to be easy to find the
corresponding approximations for x. This approach is the conjugate gradient
squared (CGS) method.

4.8.1 CGS algorithm

The derivation of CGS relies on simple but laborous algebra only. To es-
tablish the desired recurrences for the squared polynomials, recurrences are
used which define Rj and Pj ,{

Rj+1(t) = Rj(t)− αjtPj ,
Pj+1(t) = Rj+1(t) + βjPj ,

(4.47)

which can be compared with lines (6) and (8) of the CG algorithm.
The whole derivation of CGS can be found at p.214-216 of Saad [19].

Below we describe the CGS algorithm.

Conjugate Gradient Squared (CGS) Algorithm

1. Compute r0 := b−Ax0 and set p0 := u0 := r0

2. Choose r̃0 arbitrary.
3. For j := 0, 1, . . . , until convergence Do :

4. wj := Apj

5. αj := (rj ,r̃0)
(wj ,r̃0)

6. qj := uj − αjwj

50 CHAPTER 4. KRYLOV ITERATIVE METHODS

7. xj+1 := xj + αj

(
uj + qj

)
8. rj+1 := rj − αjA

(
uj + qj

)
9. βj := (rj+1,r̃0)

(rj ,r̃0)

10. uj+1 = rj+1 + βjqj

11. pj+1 := uj+1 + βj

(
qj + βjpj

)
12. EndDo

CGS avoids using AH as in BiCG, which is an advantage when AH is not
of our interest.

In the BiCG method, the residual vector is given by rj = Rj(A)r0.
In CGS we have r̃j = R2

j (A)r0 (see p.75-76 of Vuik [28]), therefore the
name ’CG Squared’. In many cases, this causes the algorithm to converge
twice as fast as BiCG, while the same number of operations per iteration is
required. However, because of squaring of polynomials, jumps in the residual
errors tend to be more damaging than in the standard BiCG algorithms, see
Sonneveld [22].

4.9 Bi-CGSTAB method

The CGS algorithm is based on squaring the residual polynomial and there-
fore it shows often irregular convergence patterns which may lead to sub-
stantial build-up of rouding errors, see Van der Vorst [27]. The Biconjugate
Gradient Stabilized (Bi-CGSTAB) algorithm is a variation of CGS, which
was developed by Van der Vorst to remedy this difficulty. Instead of com-
puting the residual vector r̃j = R2

j (A)r0, Bi-CGSTAB computes

r̃j = Qj(A)Rj(A)r0, (4.48)

with Qj a new polynomial which is defined recursively at each step with the
goal of ’stabilizing’ or ’smoothing’ the convergence behaviour of the original
algorithm. Specifically, Qj is defined by the simple recurrence

Qj+1(t) = (1− ωjt)Qj . (4.49)

This is equivalent with

Qj+1(t) = (1− ω0t)(1− ω1t) · · · (1− ωjt), (4.50)

in which the scalars ωk for all k = 0, . . . , j are to be determined.

4.9.1 Bi-CGSTAB derivation

We give the derivation of Bi-CGSTAB, which is almost the same as in sub-
section 7.4.2 of Saad [19].

4.9. BI-CGSTAB METHOD 51

Ignoring the scalar coeffients at first, we start with a relation for the
residual polynomial Qj+1Rj+1. We immediately obtain

Qj+1Rj+1 = (1− ωjt)QjRj+1

= (1− ωjt)Qj(Rj − αjtPj)
= (1− ωjt)(QjRj − αjtQjPj).

(4.51)

Moreover we can write

QjPj = Qj(Rj(t) + βj−1Pj−1)
= QjRj + βj−1QjPj−1

= QjRj + βj−1(1− ωj−1t)Qj−1Pj−1.
(4.52)

In expressions (4.51) and (4.52) we used recurrences (4.47) formulated in
the CGS method. Define{

rj = Qj(A)Rj(A)r0,
pj = Qj(A)Pj(A)r0.

(4.53)

According to formulae (4.53), these vectors can be updated from a double
recurrence provided the scalars αj and βj were computable. Using (4.51)
and (4.52) this recurrence is{

rj+1 = (I − ωjA)(rj − αjApj),
pj+1 = rj + βj(I − ωjA)pj .

(4.54)

Now, we consider the computation of the scalars αj and βj needed in
the recurrence. According to line 10 of the original Bi-CG algorithm, one
can write βj = ρj+1/ρj with

ρj = (Rj(A)r0,Rj(AT)r̃0)
= (R2

j (A)r0, r̃0).
(4.55)

Unfortunately, ρj is not computable from (4.55) because none of the vectors
Rj(A)r0,Rj(AT)r̃0 or R2

j (A)r0 is available. However, ρj can be related to
the scalar

ρ̃j = (Rj(A)r0,Qj(AT)r̃0), (4.56)

which is computable via

ρ̃j = (Rj(A)r0,Qj(AT)r̃0)
= (Qj(A)Rj(A)r0, r̃0)
= (rj , r̃0),

(4.57)

using (4.53). To relate the scalars ρ̃j and ρ̃j , expand Qj(AT)r̃0 explicitly in
the power basis, to obtain

ρ̃j = (Rj(A)r0, η
(j)
1 (AT)j r̃0 + η

(j)
2 (AT)j−1r̃0 + . . .), (4.58)

52 CHAPTER 4. KRYLOV ITERATIVE METHODS

where η
(j)
1 , η

(j)
2 , . . . are scalars. Since Rj(A)r0 is orthogonal to all vectors

(AT)j r̃0 with k 6= j (see (4.42) of Bi-CG method), only the leading power
is relevant in the expansion on the right side of the inner product in (4.58),
i.e., expression (4.58) can be written as

ρ̃j = (Rj(A)r0, η
(j)
1 (AT)j r̃0). (4.59)

In particular, if γ
(j)
1 is the leading coefficient for the polynomial Rj , then

ρ̃j = (Rj(A)r0,
η

(j)
1

γ
(j)
1

Rj(AT)r̃0) =
η

(j)
1

γ
(j)
1

ρj . (4.60)

When examining the recurrence relations for Rj+1 and Qj+1, leading coef-
ficients for these polynomials are found to satisfy the relations{

η
(j+1)
1 = −ωjη

(j)
1 ,

γ
(j+1)
1 = −αjγ

(j)
1 .

(4.61)

As a result,
ρ̃j+1

ρ̃j
=

η
(j+1)
1

γ
(j+1)
1

γ
(j)
1

η
(j)
1

ρj+1

ρj

=
ωj

αj

ρj+1

ρj
,

(4.62)

which yields the following relation for βj

βj =
αj

ωj

ρj+1

ρj
. (4.63)

Similarly, a simple recurrence formula for αj can be derived. By defini-
tion,

αj =
(Rj(A)r0,Rj(AT)r̃0)
(APj(A)r0,Pj(AT)r̃0)

, (4.64)

see lines (3) and (4) of the CG algorithm. As in the previous case, the
polynomials in the right sides of the inner products in both the numerator
and denominator can be replaced by their leading terms. However, in this
case, the leading coefficient for Rj(AT)r̃0 and Pj(AT)r̃0 are identical, since
we have chosen p0 = r0, and therefore,

αj =
(Rj(A)r0,Rj(AT)r̃0)

(APj(A)r0,Rj(AT)r̃0)

=
(Rj(A)r0,Qj(AT)r̃0)

(APj(A)r0,Qj(AT)r̃0)

=
(Qj(A)Rj(A)r0, r̃0)

(AQj(A)Pj(A)r0, r̃0)

=
p̃j

(Apj , r̃0)
,

(4.65)

4.9. BI-CGSTAB METHOD 53

where we used expressions (4.53) and (4.56) in the last equality.
Next, the parameter ωj must be defined. This can be thought of as

an additional free parameter. One of the simplest choices, and perhaps the
most natural, is to select ωj to achieve a steepest descent step in the residual
direction obtained before multiplying the residual vector by (I − ωjA) in
(4.54). In other words, ωj is chosen to minimize the 2-norm of the vector
r̃j+1 = (I − ωjA)Qj(A)Rj+1(A)r0, i.e.,

min
ω∈R

||(I − ωjA)Qj(A)Rj+1(A)r0||2. (4.66)

Notice that the process minimalizes in each iteration. Equation (4.54) can
be rewritten as

rj+1 = (I − ωjA)sj , (4.67)

in which
sj ≡ rj − αjApj . (4.68)

Then the optimal value for ωj is given by

ωj =
(Asj , sj)

(Asj ,Asj)
. (4.69)

Finally, a formula is needed to update the approximate solution xj+1

from xj . Equation (4.67) can be written as

rj+1 = sj − ωjAsj = rj − αjApj − ωjAsj , (4.70)

which is equivalent to

A−1(rj − rj+1) = αjpj + ωjsj . (4.71)

This yields the following update formula

xj+1 = xj + αjpj + ωjsj . (4.72)

4.9.2 Bi-CGSTAB algorithm

The resulting algorithm is given below.

Biconjugate Gradient Stabilized (Bi-CGSTAB) Algorithm

1. Compute r0 := b−Ax0 and set p0 := r0

2. Choose r̃0 arbitrary
3. For j := 0, 1, . . . , until convergence Do :

4. wj := Apj

5. vj := Asj

54 CHAPTER 4. KRYLOV ITERATIVE METHODS

6. αj := p̃j

(wj ,r̃0)
7. sj := rj − αjwj

8. ωj := (vj ,sj)
(vj ,vj)

9. xj+1 := xj + αjpj + ωjsj

10. rj+1 := sj − ωjvj

11. βj := αj

ωj

ρj+1

ρj

12. pj+1 := rj + βj(pj − ωjwj)

13. EndDo

Investigation of the Bi-CGSTAB algorithm has been reported in Van der
Vorst [27] for various applications and compared to BiCG and CGS. In
general, Bi-CGSTAB converges more smoothly than CGS of BiCG. However,
the convergence rate is typically the same. This becomes more significant
in cases where the linear system is nonsymmetric. In some nonsymmetric
cases, it is also revealed that when CGS fails to converge and shows spurious
irregularity, Bi-CGSTAB still converges. The convergence rate is also faster
than CGS or BiCG. However, for symmetric matrix cases, these significances
are not clearly seen.

Though Bi-CGSTAB is an attractive alternative to CGS, further inves-
tigation reveal a weakness of this algorithm, as mentioned in Erlangga [6].
If the parameter ω becomes very close to zero during recursion, the algo-
rithm may stagnate or break down. Numerical experiments confirm that
this is likely to happen if A is real and has complex eigenvalues with imag-
inary part larger than the real part. To overcome this, improvements to
Bi-CGSTAB have been proposed, resulting in Bi-CGSTAB(l) where l ∈ N,
see Sleijpen and Fokkema [21]. This are modifications by forming a general
l -order minimum-residual polynomial, instead of using l = 1 in the original
Bi-CGSTAB.

The original Bi-CGSTAB has been tried to solve the discrete Helmholtz
equation, see e.g. Mulder & Plessix [17], but unfortunately without any
success.

4.10 Stopcriterium

In all iterative algorithms given in this section contain the following state-
ment

For j := 0, 1, . . . , until convergence Do :

To specify ’until convergence’ one can choose various stopcriteria. It depends
on each practical situation which of them should be chosen for an accurate
and efficient solution. Standard stopcriteria are for instance

||rj ||2 < ε, (4.73)

4.11. DISCUSSION 55

and
K(A)

||rj ||2
||b||2

< ε, (4.74)

with K(A) the condition number of A and a given ε > 0. In expressions
(4.73) and (4.74) one aims to minimize, respectively, the norm of the residual
and the norm of the relative error.

4.11 Discussion

We have dealt with several iterative methods in the previous sections. In
this section we discuss the applicability of these methods to HBVP. For ex-
ample, CGS and Bi-CG are not known to be used for solving HBVP (see
p.32 of [6]). Also, CG so far is only used for comparison studies, since the-
oretically it is not suitable for indefinite problems. Recall that in HBVP
we have a matrix A which is indefinite and symmetric complex. For indefi-
nite problems, CGNR is used due to its simplicity. However, without good
preconditioners CGNR is often not attractive because of slow convergence.

Some authors use GMRES, Bi-CGSTAB and COCG to solve HBVP, but
again, without good preconditioners these methods are not efficient.

It appears that the choice of the wavenumber has a large impact on the
convergence behaviour of the iterative methods. Therefore, there doesn’t
exist a best iterative method which can be used to deal all variants of HBVP.

Since all authors use different test cases, it is somewhat difficult to com-
pare the iterative methods with each other. Furthermore, the fact that the
methods show slow convergence, without being preconditioned, makes it im-
possible to compare the methods without incorporating preconditioners.

56 CHAPTER 4. KRYLOV ITERATIVE METHODS

Chapter 5

Preconditioning techniques

5.1 Introduction

Lack of robustness and efficiency are a widely recognized weakness of itera-
tive solvers, relative to direct solvers. This is mainly the consequence of the
fact that the convergence behaviour of Krylov subspace methods depends
strongly on the eigenvalue distribution of the coefficient matrix.

Both robustness and efficiency can be improved by using preconditioning.
Preconditioning is simply a means of transforming the original linear system
into one which has the same solution, but which is likely to be easier to solve
with an iterative solver.

If we want to solve Ax = b with a preconditioner P which is a matrix,
then we could solve the following preconditioned system:

P−1Ax = P−1b (5.1)

or
AP−1y = b, x = P−1y. (5.2)

We are looking for a preconditioner P such that (5.1) or (5.2) is easier to
solve, relative to the original system. In general, we aim to find PL and PR

such that
P−1

L AP−1
R y = P−1

L b, x = P−1
R y. (5.3)

is easier to solve. The ideal choice is PL = A and PR = I, which is obviously
impractical since in general the inverse of A is expensive to compute. One
can look for a preconditioner P−1

L which approximate the inverse of A and
is relatively inexpensive to compute.

A linear system obtained from discretizations of a PDE can have a highly
distributed spectrum and can result in an indefinite system, i.e., the spec-
trum consists of both positive and negative real eigenvalues. For such prob-
lems the iterative methods show slow convergence or even breakdown. A
good preconditioner can transform the original linear system into a system

57

58 CHAPTER 5. PRECONDITIONING TECHNIQUES

with a clustered spectrum, i.e., the spectrum consists of eigenvalues which
are concentrated in a coherent region. It is also important that a precondi-
tioned system does not have an eigenvalue close to zero.

To summarize, we can distinguish two approaches for constructing pre-
conditioners:

• Matrix -based approach. Within this class are, e.g., several variants of
ILU-factorization [19].

• Operator -based approach. Examples of these kind of preconditioners
are shifted Laplace preconditioners [7, 8], AILU [10] and separation–
of–variables [17].

In general, the reliability of iterative techniques, when dealing with var-
ious applications, depends much more on the quality of the preconditioner
than on the particular Krylov subspace accelerators used. In this chapter
we shall cover some of these preconditioners which can be applied to the
HBVP, where we consider the Helmholtz operator with a minus-sign, i.e.,
−∆− k2.

5.2 Diagonal preconditioner

We transforms the original system in the following preconditioned system

Ãx̃ = b̃, (5.4)

where Ã = P−1AP−T ,x = P−T x̃, b̃ = P−1b,P is a non-singular matrix
and A is symmetric positive definite matrix with dimensions N ×N .

A simple choice for P is a diagonal matrix with diagonal elements

Pii =
√

Aii, for i = 1, 2, . . . , N. (5.5)

Then we can easily derive

Ãii = P−1
ii AiiP−T

ii = 1, for i = 1, 2, . . . , N. (5.6)

In Van der Sluis [23] it has been shown that this choice for P minimizes
the condition number of Ã, if P is restricted to be a diagional matrix. For
this preconditioner it is advantageous to apply CG to Ãx̃ = b̃, since Ã is
easy to calculate.

However, in HBVP we have a Hermitian and symmetric-complex matrix
A, instead of a symmetric positive definite one. More research is required
to decide of the diagonal preconditioner can be used in this case.

5.3. MATRIX-SPLITTING PRECONDITIONERS 59

5.3 Matrix-splitting preconditioners

In this section we treat, successively, Jacobi, Gauss-Seidel, SOR and SSOR
preconditioners. In many cases, the performance of this preconditioners
is rather poor, unless modifications are incorporated into the original algo-
rithm. It appears that the results found in the next subsections have become
the basis for developing another types of preconditioners.

5.3.1 Jacobi and Gauss-Seidel preconditioners

In section 4.2 (Krylov subspace method) we have seen that Jacobi and
Gauss-Seidel methods give the following expressions for P in (5.1):{

PJAC = D;
PGS = D− L,

(5.7)

where A = D − L − LT with D the matrix with the main diagonal and L
the (strict) lower triangular part of A.

5.3.2 SOR and SSOR preconditioners

Generalization of Jacobi and Gauss-Seidel preconditioners can be made by
relaxing them with a factor ω > 0. In such a case, a Successive Overrelax-
ation (SOR) preconditioning is obtained, i.e.,

PSOR =
1
ω

(D− L), (5.8)

Notice that PSOR = PGS when ω = 1.
SOR can not be used, because in the preconditioned CG M−1

ω Nω is not
symmetric, where Mω = D + ωL and Nω = (1 − ω)D − ωU with U the
(strict)upper triangular matrix of A.

Generalizing SOR in order to obtain a symmetric matrix one obtains
Symmetric SOR (SSOR). In SSOR one SOR step is followed by a backward
SOR step. In this backward step the unknowns are updated in reversed
order. This leads to

PSSOR = (D− ωL)D−1(D− ωU), (5.9)

If ω = 1 then the symmetric Gauss-Seidel iteration is found:

PSGS = (D− L)D−1(D−U), (5.10)

which can be expressed as

PSGS = LSGSUSGS , (5.11)

60 CHAPTER 5. PRECONDITIONING TECHNIQUES

where USGS = D −U and LSGS = (D − L)D−1 = I − LD−1 are respec-
tively upper and unit lower triangular. In this case, we could solve the
preconditioned system

U−1
SGSL−1

SGSAx = U−1
SGSL−1

SGSb. (5.12)

However, most practical wave problems result in an indefinite linear system,
for which SSOR or SGS are not guaranteed to converge.

5.4 ILU preconditioners

In the previous section, the general pattern of preconditioner P can be writ-
ten as an L- and U-part of A. In practice, the exact factorization of A into
L and U is not necessarily required. Rather, an approximation factoriza-
tion is still useful for preconditioning. Since the degree of approximation
is rather arbitrary, constraints should be added to the factorization. This
leads to the general Incomplete LU (ILU) factorization.

An ILU factorization process computes a sparse lower triangular matrix
L and a sparse triangular matrix U so the residual matrix R = LU − A
satisfies certain constraints, such as having zero entries in some locations.

In a practical implementation, the ILU factorization depends on the im-
plementation of the Gaussian elimination. In section 10.1 of Saad [19] the
IKJ variant of Gaussian elimination is used and therefore the general ILU
factorization is given as follows:

Algorithm: General ILU factorization (IKJ variant)

1. For i = 2, 3, . . . , N Do :
2. For k = 1, 2, . . . , i− 1 and (i, k) /∈ P Do :
3. aik := aik

akk

4. For j = k + 1, k + 2, . . . , N and (i, j) /∈ P Do :
5. aij := aij − aikakj

6. EndDo
7. EndDo
8. EndDo

Here P is the zero pattern set such that

P ⊂ {(i, j) : i 6= j; 1 ≤ i, j ≤ N}, (5.13)

and aij with i, j = 1, 2, . . . , N are the elements of matrix A.
If we choose P = ∅, then the algorithm leads to the IKJ variant of the

Gaussian elimination where elements of A are overwritten with elements of
the L and U matrices of the factorization. Observe that diagonal entries
need not be stored, since L is unit lower triangular.

5.4. ILU PRECONDITIONERS 61

5.4.1 Zero fill-in ILU (ILU(0))

The first ILU variant is the so-called zero fill-in ILU factorization or ILU(0).
In general, if one takes any lower triangular matrix L and any upper trian-
gular matrix U, then the product LU does not have the same structure as
A. In ILU(0), one takes any pair of L0 and U0 having the zero pattern set to
be precisely the same as the zero pattern of the lower and upper triangular
of A. This defines the ILU(0) factorization in general terms: choose any
pair of L0 and U0 so that (A−L0U0)ij = 0 if Aij 6= 0 where L and U must
have the same structure as the lower respectively the upper triangular of A.
These constraints do not define ILU(0) factors uniquely since there are, in
general, infinitely many pairs of L0 and U0 which satisfy these requirements.
However, the standard ILU(0) is defined constructively using the previous
algorithm with the pattern PILU(0) equal to the zero pattern of A, i.e.,

PILU(0) = Z(A), (5.14)

where Z(A) is the set of pairs (i, j), 1 ≤ i, j ≤ N such that ai,j = 0. In
other words, the previous algorithm leads to an unique decomposition of L0

and U0, adding the requirement (L0)ii = 1 for i = 1, 2, . . . , N , i.e., L0 has
been chosen as an unit lower triangular matrix.

The algorithm of ILU(0) can now be represented in the following way.

Algorithm: ILU(0)

1. For i = 2, 3, . . . , N Do :
2. For k = 1, 2, . . . , i− 1 and (i, k) /∈ Z(A) Do :
3. aik := aik

akk

4. For j = k + 1, k + 2, . . . , N and (i, j) /∈ Z(A) Do :
5. aij := aij − aikakj

6. EndDo
7. EndDo
8. EndDo

The accuracy of the ILU(0) incomplete factorization may be insufficient
to yield an adequate rate of convergence, see e.g. section 10.3.2 of Saad [19].
Numerical experiments show that ILU(0) breaks down in HBVP for large k
(highly indefinite problems), see section 6.4.1 of Erlangga [6].

5.4.2 ILU(p)

In order to improve this convergence rate as well the efficiency, more accurate
ILU factorizations can be performed by allowing some fill-ins. Falling into
this category is ILU(p), especially ILU(1).

62 CHAPTER 5. PRECONDITIONING TECHNIQUES

The ILU(1) factorization results from taking P to be the zero pattern of
the product L0U0 of the factors L0 and U0 obtained from ILU(0). In other
words, we consider a matrix with additional off-diagonal components which
are actually zero in the original matrix A. The factors L1 and U1 of ILU(1)
are obtained by performing ILU(0) to this matrix.

In similar way we can define ILU(p) for p = 2, 3, Observe that
increasing p leads to more fill-in in Lp and Up which could be inefficient.
Therefore, choosing an ’ideal’ value for p, one has to look for a good mix of
restricted amount of fill-ins and fast convergence rate of the method.

5.4.3 Other variants of ILU

There are several variants of the ILU(p) factorization which differ slightly
from the original ILU(p). We have for instance the Modified ILU (MILU)
factorization in which the dropping process for the extra diagonals is com-
pensated at the k-loop of the algorithm of general ILU factorization. In an
MILU factorization, after the k-loop, the diagonal element aii is modified
by subtracting it with the sum of the row i.

Also, ILUT or ILU(tol) can be used to have a more accurate factorization
that improves the convergence rate. In ILUT one drops elements which are
smaller than a specified value. Details about MILU and ILUT can be found
in sections 10.3 and 10.4 of Saad [19].

However, preconditioners from this class are not effective for general in-
definite problems, see for instance Gander & Nataf [10]. For high wavenum-
bers k, ILU(0) converges slowly, while ILU(tol) encounters storage problems
and also slow convergence. Recently, some shifted ILU preconditioners have
been investigated, see for instance Made [16].

5.5 Incomplete Choleski factorization

Made [16] has introduced a new incomplete factorization based precondition-
ing technique, which consists in adding small perturbations to the diagonal
entries of the real part of the matrix. In doing so, the real part is made
positive definite, or less indefinite.

5.5.1 Idea of incomplete Cholesky factorization

As model problem, we consider again the large-scale linear system Ax = b,
where A is complex-symmetric and the linear system is deduced from the
Helmholtz problem. To solve this system with a direct method, one may
factorize A as A = L̃L̃

T
, L̃

T
being lower triangular, and solves successively

two triangular systems. This is known as the Cholesky factorization. Even
if A is sparse, L̃

T
is in general less sparse due to fill-in. This makes direct

5.5. INCOMPLETE CHOLESKI FACTORIZATION 63

methods both memory and time consuming for N fairly large, as in real-life
scientific or industrial problems.

A common remedy consists in ignoring certain fill-in entries, which yields
an incomplete factorization preconditioning matrix B = LLT . There are two
basic strategies for accepting or discarding fill-in:

• By level of fill-in (or by position). The level ’lev(li,j)’ of the coefficient
lk,i of matrix L is defined by Saad, see section 10.3.3 of [19],

1. initialization:

lev(li,j) :=
{

0 if li,j 6= 0 or k = i,
∞ otherwise,

(5.15)

2. factorization:

lev(li,j) = min{lev(li,j), lev(li,k) + lev(lk,j) + 1}, (5.16)

which is updated each time in line 5 of the algorithm of Gauss
elimination (IKJ-variant).

The set D of fill-in entries to be discarded is taken as

D = {(i, j) | lev(li,j > ξ)} , (5.17)

where the integer ξ denotes a user specified maximal fill-in level.

• By (numerical) value. Fill-in is ignored if it is ’too small’ with respect
to some prescribed tolerance.

Dual approaches that combine ingredients from both structural and numer-
ical strategies are also used. The choice of both ξ and the drop tolerance
depends, among other things, on the problem at hand and the available
workspace. Several variants of the basic incomplete factorization have been
designed, ranging from modified methods in which the discarded fill-in en-
tries are added to the diagonal, to more sophisticated multilevel versions
that use multigrid like (re)numbering strategies, see for instance Axelsson
[2].

5.5.2 Variants of preconditioners

Made has used six variants of preconditioners based on the incomplete
Cholesky factorization, i.e.,

1. IC: the standard incomplete Cholesky applied to A;

2. MIC: the standard modified incomplete Cholesky applied to A (see for
instance section 5.1 of Vuik [28] for more details about this method);

64 CHAPTER 5. PRECONDITIONING TECHNIQUES

3. IC0: IC applied to A0 ≡ Re(A) + Q (γ = 1);

4. ĨC0: IC applied to Ã ≡ A0 + i Im(A) = A + Q;

5. MIC0: MIC applied to A0 (γ = 1);

6. M̃IC: MIC applied to Ã;

where Q stands for the diagonal matrix whose diagonal entries qii are defined
by

qii = −γ min{0,Re((Ae)i)}, (5.18)

with e the all-one vector and γ a given real parameter. In fact, Ae is the
vector with the sum of the rows of A. It can be proved, using spectral
analysis (see section 4.2 of [16]), that A0 is a diagonal perturbation of the
Hermitian part of the system matrix, while with Ã, the same diagonal
perturbation is added to the whole matrix.

In numerical experiments using restarted GMRES (section 5.2 of [16]),
we can see that varying values for, respectively, wavenumber k, stepsize
h, number of fill-levels, parameter γ etcetera lead to different results. It
appears that there is no best preconditioner in all situations, although often
M̃IC is the better one.

5.6 Shifted Laplace preconditioners

Another approach is found in looking for an approximate inverse of the
discrete indefinite operator A, but merely looking for a form of P, for which
P−1A has satisfactory properties for Krylov subspace methods. A first effort
to construct a preconditioner in such a way was done in Bayliss, Goldstein
& Turkel [3]. An easy-to-construct P = ∆ preconditioner is incorporated
for CGNR, where one SSOR iteration is used whenever operations involving
P−1 are required.

Instead of the Laplace operator as preconditioner, Laird [15] investigates
possible improvements if an extra term k2 is added to the Laplace operator
∆, i.e., the Helmholtz equation with reversed sign is proposed as precon-
ditioner P. This preconditioner is applied in CGNR, where one multigrid
iteration is employed whenever P−1 must be computed.

One can generalize both preconditioners, mentioned above, to a complex
shifted Laplace preconditioner where an extra term (α + βi)k2 is added to
the Laplace operator ∆ with α, β ∈ R and α ≥ 0. This is proposed by
Erlangga, Oosterlee & Vuik [7, 8].

In the next sections, we motivate the real and complex shifted Laplace
preconditioner. This motivations are identical to section 5.1 respectively
section 5.2 of Erlangga, Oosterlee & Vuik [7].

5.6. SHIFTED LAPLACE PRECONDITIONERS 65

5.6.1 Real shifted Laplace preconditioner

Consider the continuous 1-dimensional Helmholtz equation, subject to dis-
cretization. For simplicity, suppose that both boundary conditions are either
Dirichlet or Neumann conditions.

We first consider the eigenvalues for the 1-dimensional (negative) oper-
ator without any preconditioning, i.e.,

L = −∆− k, k > 0. (5.19)

Eigenvalues of this standard problem were found in section 3.3.2, i.e.,

λs
n = k2

n − k2, kn = nπ, n = 1, 2, (5.20)

In expression (5.20), kn is the natural frequency of the system. If one consid-
ers the modulus of the eigenvalues, which in this case is simply their absolute
value, it is easily seen that |λ| becomes unbounded if either n or k is large.
If the condition number K = |λmax|/|λmin| is used to evaluate the quality
of the eigenvalue clustering (which is possible since the considered matrix is
assumed to be symmetric), one concludes that for any sufficient small λmin

this condition number is extremely large.
Now, assume an operator of the form

Lp =
d2

dx2
− αk2 , α ≥ 0, k > 0, (5.21)

is used as a preconditioner, constructed with the same discretization stencil
and boundary conditions. The following generalized eigenvalue problem is
obtained, i.e.,(

d2

dx2
+ k2

)
φ(x) = λ

(
d2

dx2
− αk2

)
φ(x), x ∈ (0, l), l > 0. (5.22)

To find the eigenvalues we divide the problem in two parts: α > 0 and α = 0.

Case α > 0
For expression (5.22) we find easily the eigenvalues

λn =
k2

n − k2

k2
n + αk2

=
1− (k/kn)2

1 + α(k/kn)2
, kn = nπ, n = 1, 2, (5.23)

For n → ∞ we get λn → 1, i.e., the eigenvalues are bounded above by one.
Moreover, for n → 0 we obtain λn → −1/α, which is also bounded. So, we
can write

|λmax| = max
(

1
α

, 1
)

, α > 0. (5.24)

To estimate the minimum eigenvalue, one can use a simple but rough
analysis as follows. Below it is assumed that |λmin| is very close but not

66 CHAPTER 5. PRECONDITIONING TECHNIQUES

equal to zero, since this is of our interest. The assumption indicates the
condition kj ≈ k for a specific j = 1, 2, . . . as obtained from (5.23). To be
more precise, let kj = k+ε where ε ∈ R is any small number. If this relation
is substituted into (5.23) and if higher order terms are neglected, then we
find

|λmin| =
2|ε|

k(1 + α)
. (5.25)

where εk � k2 has been assumed. From (5.25), one obtains λmin → 0 if
α →∞.

Now, the condition number K of the preconditioned Helmholtz operator
reads

Kα>0 =
|λmax|
|λmin|

=


(1 + α)k

2|ε|
if α ≥ 1,

(1 + α)k
2α|ε|

if 0 < α ≤ 1.

(5.26)

If α ≥ 1, then it is simple to see that K is a monotonically increasing
function with respect to α. In this case, the best choice for choosing α is
α = 1 which gives minimal Kα>0. If 0 < α ≤ 1, then K is a monotonically
decreasing function, which is also minimal if α = 1. So, we find

lim
α↓1

Kα>0 = lim
α↑1

Kα>0 =
k

|ε|
, (5.27)

to be the minimum value of Kα>0 for α > 0. In other words, when we
have to choose a suitable positive real-valued α, the best choice is α = 1,
which minimizes the condition number K. Decreasing the condition number
means a narrowing of the eigenvalue clustering, which is favorable in iterative
methods.

The choice α = 1 leads exactly to the preconditioner proposed by Laird [15].

Case α = 0
Substituting α = 0 in expression (5.22) leads to the eigenvalues

λn =
k2

n − k2

k2
n

= 1−
(

k

kn

)2

, kn = nπ, n = 1, 2, (5.28)

Then we find

|λmax| = max
n
|λn| = max

n

∣∣∣∣∣1−
(

k

kn

)2
∣∣∣∣∣ kn = nπ, n = 1, 2, (5.29)

We can distinguish three cases.

• |λmax| = 1 when 1 − (k
kn

)2 > 0 ∀n implying k < kn ∀n. This is the
case when k < π, since minn kn = π.

5.6. SHIFTED LAPLACE PRECONDITIONERS 67

• |λmax| = (k
π)2− 1 if 1− (k

kn
)2 < 0 ∀n implying k > kn ∀n. In this case

we have k = ∞ which never happens, since we assumed 0 < k < ∞.

• |λmax| = maxn

(
1, (k

π)2 − 1
)

when we have the situation

1−
(

k

kj1

)2

> 0 ∀j1, j1 ∈ Ω1 ⊂ [1, 2, . . .],

1−
(

k

kj2

)2

< 0 ∀j2, j2 ∈ Ω2 ⊂ [1, 2, . . .],

(5.30)

in the remaining domain k ∈ (π,∞) such that Ω1 ∪Ω2 = [1, 2, . . .] and
Ω1 ∩ Ω2 = ∅. Then, we deduce

k < kj1 ∀j1

k > kj2 ∀j2

}
→ kj2 < kj1 ∀j1 ∀j2. (5.31)

Hence, there is a q ∈ [1, 2, . . .] such that

[1, 2, . . . , q − 1︸ ︷︷ ︸
=Ω23j2

, q, q + 1, q + 2, . . .︸ ︷︷ ︸
=Ω13j1

]. (5.32)

Now, we have

|λmax| = max
j1,j2

{
1−

(
k

kj1

)2

,

(
k

kj2

)2

− 1

}
. (5.33)

We deal with both cases:

– If |λmax| = 1−
(

k
kj1

)2
, then kj1 has to be maximized which gives

kj1 = ∞ using (5.32). Therefore: |λmax| = 1.

– If |λmax| =
(

k
kj2

)2
− 1, then kj2 has to be minimized, so that

kj2 = π using again (5.32). Therefore: |λmax| =
(

k
π

)2 − 1.

Indeed, we obtain |λmax| = max
(
1, (k

π)2 − 1
)

in this case. Now, to
find the conditions for k, we has to distinguish here also two cases:

– we get |λmax| = (k
π)2 − 1 if 1 < (k

π)2 − 1, so if k >
√

2π,

– and otherwise |λmax| = 1 if 1 > (k
π)2 − 1, so if π < k <

√
2π.

Using case (1) above we get finally k <
√

2π.

We can summarize the above results as follows

|λmax| =
{

1 , if k <
√

2π,

(k
π)2 − 1 , if k >

√
2π.

(5.34)

68 CHAPTER 5. PRECONDITIONING TECHNIQUES

Observe that |λmax| depends on the choice of k.
Again, we assume that |λmin| is very close to zero, so let kj = k + ε

with some j = 1, 2, . . . and ε ∈ R a small number such that |ε| � k. As a
consequence we obtain k + ε > 0. Then, expression (5.28) turns out to be

|λmin| =

∣∣∣∣∣1−
(

k

k + ε

)2
∣∣∣∣∣ =

 1−
(

k
k+ε

)2
if ε > 0;(

k
k+ε

)2
− 1 if ε < 0.

(5.35)

We deal with both cases of the right hand side of (5.35).

• First, we assume ε > 0. Then the condition number of the precondi-
tioned Helmholtz operator turns out to be

Kα=0 =
|λmax|
|λmin|

=



1

1−
(

k
k+ε

)2 if k <
√

2π,

(k
π)2 − 1

1−
(

k
k+ε

)2 if k >
√

2π.

(5.36)

Neglecting higher order terms, (5.36) can be written as

Kα=0 =


k + 2ε

2ε
if k <

√
2π,

k(k2 − π2)
2επ2

if k >
√

2π.

(5.37)

• Secondly, we assume ε < 0. Then the condition number of the precon-
ditioned Helmholtz operator turns out to be

Kα=0 =
|λmax|
|λmin|

=



1(
k

k+ε

)2
− 1

if k <
√

2π,

(k
π)2 − 1(
k

k+ε

)2
− 1

if k >
√

2π.

(5.38)

Neglecting higher order terms, (5.36) can be written as

Kα=0 =


−(k + 2ε)

2ε
if k <

√
2π,

k(π2 − k2)
2επ2

if k >
√

2π.

(5.39)

5.6. SHIFTED LAPLACE PRECONDITIONERS 69

Comparing Kα=0 and Kα=1

In this subsection we compare Kα=0,1 in order to decide which α is the best
to choose. Again, one has to distinguish two cases: ε to be positive and
negative.

• ε > 0.

Case 1
Consider Kα=0 = k+2ε

2ε with k <
√

2π. We find easily

Kα=0 =
k + 2ε

2ε
<

k

ε
= Kα=1, (5.40)

neglecting again higher order terms. In other words, if k <
√

2π then
α = 0 leads to an optimal condition number.

Case 2
Consider Kα=0 = k(k2−π2)

2επ2 with k >
√

2π. The inequality

Kα=0 =
k(k2 − π2)

2επ2
<

k

ε
= Kα=1, (5.41)

only holds if k <
√

3π. In other words, if k ∈ (
√

2π,
√

3π) then α = 0
leads to an optimal condition number.

• ε < 0.

Case 1
Consider Kα=0 = −(k+2ε)

2ε with k <
√

2π. We find easily that

Kα=0 =
−(k + 2ε)

2ε
<

k

|ε|
= Kα=1, (5.42)

holds only if k > 2ε. In other words, if k ∈ (0,
√

2π) then α = 0 leads
to an optimal condition number since k > 0.

Case 2
Consider Kα=0 = k(π2−k2)

2επ2 with k >
√

2π. The inequality

Kα=0 =
k(π2 − k2)

2επ2
<

k

|ε|
= Kα=1, (5.43)

holds only if k <
√

3π. Thus, if k <
√

3π then α = 0 is optimal.

Conclusion

We conclude that

αbest =
{

0, if k <
√

3π,
1, if k >

√
3π.

(5.44)

Observe that (5.44) is independent of the sign of ε.

70 CHAPTER 5. PRECONDITIONING TECHNIQUES

5.6.2 Complex shifted Laplace preconditioner

The nice property of the real shifted Laplace operator, at least in one dimen-
sion, is that the eigenvalues have an upper bound. However, this property
does not guarantee that the eigenvalues are favourably distributed. There
is still the possibility that one or some eigenvalues (which are extremely
small) can be very close to zero, which may be disadvantageous for iterative
Krylov methods. We can improve the preconditioner by preserving the up-
per boundedness and at the same time shifting the minimum eigenvalue as
far as possible from zero. Therefore we generalize α to be complex -valued.

We introduce a complex coefficient of the form α + iβ and consider a
more general complex-valued shifted Laplace operator

Lcp =
d2

dx2
− (α + iβ)k2 , k > 0, α ≥ 0, β ∈ R. (5.45)

In the same way as in the previous section we find the eigenvalues

λc
n =

k2
n − k2

k2
n + (α + iβ)k2

=
1− (k/kn)2

1 + (α + iβ)(k/kn)2
, (5.46)

where kn = nπ and n = 1, 2, We can write expression (5.46) as

|λc
n|2 =

(k2
n − k2)2

(k2
n + αk2)2 + β2k4

. (5.47)

Evaluating λmax and λmin as in (5.24) and (5.25) leads to

|λc
max|2 = max

(
1

α2 + β2
, 1

)
, |λc

min|2 =
4

(1 + α)2 + β2

(ε

k

)2
. (5.48)

These results give the following condition numbers

|Kα,β|2 =
|λmax|2

|λmin|2
=


k2

4ε2
(
(1 + α)2 + β2

)
if α2 + β2 ≥ 1,

k2

4ε2

(
1 +

1 + 2α

α2 + β2

)
if 0 < α2 + β2 < 1.

(5.49)

Both expressions in (5.49) are monotonically increasing functions to both
α and β, so it is not difficult to see that choosing α2 + β2 = 1 leads to
minimal |Kα,β|2 in both situations 1. Therefore, Kα,β is minimal when we
take α = 0 implying β = 1, using (5.49). This combination gives the lowest
possible condition number for the complex shifted-Laplace preconditioner
for the 1-dimensional Helmholtz problem.

1In the second expression one can verify that there is no other circle giving K2 lower
that that on the circle with radius one. This can be seen, e.g., by introducing condition
α2 + β2 = 1 + ε1, ε1 ≥ 0 and proving ε1 = 0 is optimal.

5.6. SHIFTED LAPLACE PRECONDITIONERS 71

5.6.3 Comparing real and complex α

We analyze the spectral properties of the discrete formulation of the one-
dimensional Helmholtz equation with operator defined in (5.19). Suppose
that this equation is discretized. Then we obtain the linear system Ap = f.
Now we can write

(B− k2I)p = f, (5.50)

where B is the negative Laplace component and k2I the additional diagonal
term so that A = B− k2I.

In this analysis we use only Dirichlet or Neumann conditions at the
boundaries in order to keep the matrix A real-valued. We precondition
(5.50) using Mα,β = B + (α + iβ)k2I, constructed with the same boundary
conditions as for A. This gives(

B + (α + iβ)k2I
)−1 (B− k2I)p =

(
B + (α + iβ)k2I

)−1 f, (5.51)

The generalized eigenvalue problem of (5.51) is accordingly

(B− k2I)φv = λv

(
B + (α + iβ)k2I

)
φv, (5.52)

where φv is the corresponding eigenvector of λv for v = 1, 2, ..., N with N
the dimension of A.

Both systems (5.51) and (5.52) are indefinite if k2 is larger than the
smallest eigenvalue of B, which can be concluded by using (5.46). In such a
case, the convergence of the method is difficult to estimate. Therefore, the
subsequent analysis will be based on the normal equations formulation of
the preconditioned matrix system as in Laird [15], because then the systems
are positive definite and leads to a simpler convergence estimate.

Since B is positive definite, we can denote the eigenvalues of B as 0 <
µ1 ≤ µ2 ≤ . . . ≤ µN . Observe first that

λ(AHA) = (µj − k2)2, j = 1, 2, . . . , N. (5.53)

Denote further Qα+βi = (M−1
α,βA)H(M−1

α,βA). Then we find easily the fol-
lowing expressions for the eigenvalues of the preconditioners:

λj(Q0) =
(

µj−k2

µj

)2
=

(
1− k2

µj

)2
, Bayliss;

λj(Q1) =
(

µj−k2

µj+k2

)2
=

(
1− 2k2

µj+k2

)2
, Laird;

λj(Qi) =
(

µj−k2

µj+ik2

) (
µj−k2

µj+ik2

)
=

(
1− 2µjk2

µ2
j+k4

)2

, Erlangga.

for j = 1, 2, . . . , N .
We distinguish two cases: k < µ1 and µ1 ≤ k2 ≤ µN . There is no need

to examine the third case k2 > µN , because this case has no physical and
numerical meaning and therefore it happens rarely in applications.

72 CHAPTER 5. PRECONDITIONING TECHNIQUES

Case 1: k < µ1

In this case we have a positive definite matrix A. After some analysis (see
Appendix B.1), the following inequalities are derived:

λmin(Q0) > λmin(Q1) and λmin(Q0) > λmin(Qi). (5.54)

Moreover, the following limit can easily be obtained:

lim
µN→∞

λmax(Qγ) = 1, (5.55)

for all γ = 0, 1, i.
The convergence of CGNR is well described by the condition number

of Qγ , i.e., K(Qγ) = |λmax|
|λmin| = λmax

λmin
. Using relations (5.54) and (5.55),

we conclude that the Bayliss preconditioner M0,0 converges faster than the
other choices. This is the same result as seen in section 5.6.1.

Case 2: µ1 ≤ k2 ≤ µN

In this case we have an indefinite matrix A.
Firstly, we compare the Laird and Erlangga preconditioner. One find

lim
k→∞

λmax(Q1) = lim
k→∞

λmax(Q0) = 1, (5.56)

(see section 5.3 of [7]), so the largest eigenvalues of both preconditioners are
bounded by 1. In order to compare these preconditioners we have to consider
the smallest eigenvalue in more detail. Assuming that λmin ≈ 0 implies that
µj ≈ k2 (this can be seen to solve λj(Q1) = 0 or λj(Qi) = 0), i.e., there is an
j = 1, 2, . . . , N such that µj = k2 + ε with a small ε ∈ R. After substituting
this relation into the expressions of the smallest eigenvalues and neglecting
higher order terms (see section 5.3 of [7]), we find

λmin(Q1) =
ε2

4k4
<

ε2

2k4
= λmin(Qi) (5.57)

This implies immediately that

K(Qi) =
2k4

ε2
<

4k4

ε2
= K(Q1) (5.58)

The conclusion is that we expect that the Erlangga preconditioner M0,1 is
better than the Laird preconditioner M1,0.

Secondly, we compare Bayliss and Erlangga preconditioner. We find

lim
k→∞

λmax(Q0) = lim
k→∞

(
1− k2

µj

)2

= ∞ (5.59)

5.7. SEPARATION - OF - VARIABLES (SOV) 73

Therefore, λmax(Q0) can become very large, while we have seen that λmax(Qi)
is bounded by 1. On the other hand, we can assume λmin(Q0) ≈ λmin(Qi) ≈
0 for the most values of k. Therefore, we obtain K(Qi) < K(Q0) which
means that Erlangga preconditioner M0,1 is the best one to use in this case.

Indeed, it has been shown in numerical experiments (see e.g. section 5
of [8]) that the complex shifted Laplace operator leads to the most effective
preconditioning matrix within this class of preconditioners.

5.7 Separation - of - Variables (SOV)

In Plessix & Mulder [17] an iterative solver has been considered with a
preconditioner based on the separation-of-variables (SOV) technique and
applied to examples derived from the discretized Helmholtz boundary value
problem Ap = f. This technique leads to a direct solver when the wavenum-
ber k is constant. When the wavenumber is separable, meaning that it can
be expressed as a sum of two terms, one depending on one coordinate x
and the second depending on the other coordinates, the SOV would have
been exact if it were not for the absorbing boundary conditions. For a gen-
eral wavenumber distribution, the technique can be used as a preconditioner.
The idea is to replace the wavenumber k by a separable wavenumber and use
this approximation to build the preconditioner. The Bi-CGSTAB iterative
method is applied to solve the preconditioned system.

5.7.1 Separation-of-variables method

The matrix A (with dimensions MNL × MNL) is the sum of a matrix
corresponding to the (negative) Laplacian operator with some boundary
conditions and a diagonal matrix K containing the square values of the
wavenumber. Except for boundary conditions, the separation-of-variables
technique can be applied to solve the Laplacian operator. Approximations
γ for the absorbing boundary conditions are made (see section 2 and 3 of
[17]), such that A can be rewritten as

A = Ax ⊗ Iyz + Ix ⊗Ayz −K, (5.60)

where ⊗ is the Kronecker product and with Iyz to be the NL×NL identity
matrix, Ix to be the M ×M identity matrix,

Ax(m,m) =
2

∆x2
+


γmin

x if m = 1,
γmax

x if m = M,
0 if otherwise,

Ax(m + 1,m) = Ax(m, m + 1) =
−1
∆x2

,

(5.61)

74 CHAPTER 5. PRECONDITIONING TECHNIQUES

for m = 1, . . . ,M and finally

Ayz(q, q) =
2

∆y2
+

2
∆z2

+


γmin

y if n = 1,

γmax
y if n = N,

γmin
z if l = 1,

γmax
z if l = L,

0 if otherwise,

Ayz(q + 1, q) = Ax(q, q + 1) =
−1
∆y2

,

Ayz(q + N, q) = Ax(q, q + N) =
−1
∆z2

,

(5.62)

for q = (l − 1)N + n where l = 1, . . . , L and n = 1, . . . , N .
Generally K prevents us from using SOV. However, we can decompose

the square of the wavenumber into

k2(x, y, z) = k2
x(x) + k2

yz(y, z) + k̃2(x, y, z), (5.63)

such that 

∫
k̃2(x, y, z) dx = 0 ∀y, z,∫
k̃2(x, y, z) dy dz = 0 ∀x,∫
k2

x,y(y, z) dy dz = 0.

(5.64)

This decomposition is unique, see Appendix A of [17]. Hence, the matrix K
becomes

K = Kx ⊗ Iyz + Ix ⊗Kyz + K̃, (5.65)

leading to

A = (Ax −Kx)⊗ Iyz + Ix ⊗ (Ayz −Kyz)− K̃. (5.66)

The separation-of-variables technique consists of replacing the obtained
3-dimensional problem of size MNL by M 2-dimensional problems of size
NL or in replacing the 2-dimensional problem of size MN by M 1-dimensional
problems of size N . This involves eigenvector and eigenvalue decomposition
of Ax −Kx, i.e.,

WH
L (Ax −Kx)WR = Λ, (5.67)

with WL and WR the matrices of, respectively, the left and right eigenvec-
tors of Ax −Kx and Λ the corresponding diagonal eigenvalue matrix.

Multiplying A by WH
L ⊗ Iyz on the left and WR⊗ Iyz on the right gives

us matrix B, i.e.,

B = (WH
L ⊗ Iyz)A(WR ⊗ Iyz)

= Λ⊗ Iyz + Ix ⊗ (Ayz −Kyz)− (WH
L ⊗ Iyz)K̃(WR ⊗ Iyz)

(5.68)

5.7. SEPARATION - OF - VARIABLES (SOV) 75

where we have used the fact that WH
L WR = Ix and as an immediate con-

sequence (WH
L ⊗ Iyz)(WR ⊗ Iyz) = (WH

L WR)⊗ Iyz = I, with I the MNL
by MNL identity matrix.

If we introduce a permutation matrix P such that the non-zero elements
are

P (i + (j − 1)M, j + (i− 1)NL) = 1 ∀i ∈ [1,M], ∀j ∈ [1, NL], (5.69)

and if we further define ˜̃K by

˜̃K = PT (WH
L ⊗ Iyz)K̃(WR ⊗ Iyz)P. (5.70)

then the following simple relation is obtained:

PTB P = D + ˜̃K, (5.71)

with D a block diagonal matrix consisting of M blocks. Each block Dm of
D is equal to

Dm = λmIyz + Ayz −Kyz. (5.72)

where λm are the corresponding eigenvalues of Dm and are elements of Λ.

Now, if we assume constant k, implying ˜̃K = 0, and use the earlier
defined approximations γ for the absorbing conditions, the SOV method
gives the following solution:

Dp̃ = f̃, (5.73)

with new variables 
p̃ = PT (WH

L ⊗ Iyz)p

f̃ = PT (WH
L ⊗ Iyz)f

(5.74)

The linear system (5.73) is easy to solve, because D is block-diagonal. Fur-
thermore, since p̃ and f̃ comprise actually of M separate blocks of size NL,
the overall problem also reduces to solving M 2-dimensional problems of size
NL, which is clearly more efficient then solving one 3-dimensional problem
of size MNL. This can be done in the following way. Let us decompose p̃
and f̃ in M blocks p̃m and f̃m of size NL. Then the solution can be obtained
by solving the M systems

(λmIyz + Ayz −Kyz)p̃m = f̃m (5.75)

using expression (5.72).
Notice that even though the final cost for computing the solution is

lo, one should anticipate the overhead cost involving the computation of
M orthonormal eigenvectors and eigenvalues of the system Ax −Kx which
leads to matrix D.

76 CHAPTER 5. PRECONDITIONING TECHNIQUES

5.7.2 Preconditioned system

Until this point, we have only discussed solution of the discrete Helmholtz
equation using the separation-of-variables method which is workable for con-
stant k due to the condition K̃ = 0. Extension to inhomogeneous media can
not be done in the same way, because of this restriction. However, we can use
the linear system (5.73) as the preconditioner of the original system Ap = f
and solve the preconditioned linear system iteratively. This preconditioned
system is given as M−1Ap = M−1f where

M−1 = (WR ⊗ Iyz)PD−1PT (WH
L ⊗ Iyz) (5.76)

with the help of expressions (5.68) and (5.71).
Since M can be considered as an approximate system of A, M−1A

is close to the identity matrix I, which should be efficient to solve. This
is proved for very low frequency cases and relatively smooth media, espe-
cially when the wavenumber varies only in one dimension (i.e., with one-
dimensional models), see sections 5 of [17]. Only a few iterations are needed
to obtain convergence of the iterative scheme in one-dimensional cases. How-
ever, the degree of accuracy of this approximate depends largely on how k
varies in the medium. The SOV method fails in numerical examples with
more complex models, like small wedge and Marmousi, in cases where we
have largely varying k or large frequencies, which are of practical interest.

Although the convergence is faster in a smoother background, the method
also fails for large frequencies (ω ≥ 30) in this case.

In section 7 of [17] there has been concluded that numerically exam-
ples suggest that it is not possible to find a better decomposition of the
wavenumber that would improve the convergence rate of this approach.

5.8 Analytic ILU (AILU)

Gander & Nataf [10, 11] have derived a new block ILU preconditioner for
linear systems stemming from symmetric positive definite elliptic partial
differential equations. The new preconditioner AILU is able to improve the
asymptotic convergence behavior in contrast to other ILU preconditioners
like ILU(0) and ILU(tol). Instead of finding a proper preconditioner for
the discrete Helmholtz problems, the preconditioner is determined from an
analytical factorization of the continuous differential operator.

5.8.1 Analytic parabolic factorization

The main idea of AILU preconditioner is based on the parabolic factorization
of an elliptic operator (L) (like the Helmholtz operator) into a form

L = (∂x + Λ1) ◦ (∂x − Λ2) (5.77)

5.8. ANALYTIC ILU (AILU) 77

where Λ1 and Λ2 are positive opereators and thus the first factor represents
a parabolic operator acting in the positive x-direction and the second one a
parabolic operator acting in the negative x-direction.

In the sequel we restrict ourselves for the analysis tot the case of the
Helmholtz-operator L = −∆ − k2 where ∆ denotes the Laplacian in two
dimensions and k ≥ 0. The analysis in three dimensions is similar.

We denote the Fourier transform f̂(ϑ) of f(y) : R → R by

f̂(ϑ) = Fy(f)(ϑ) :=
∫ ∞

−∞
e−iϑyf(y) dy, (5.78)

and the inverse Fourier transform of f̂(ϑ) by

f(y) = F−1
y (f̂)(y) :=

1
2π

∫ ∞

−∞
eiϑyf̂(y) dk, (5.79)

We obtain the following lemma.

Lemma 1 The 2-dimensional linear operator L = −∆−k2 admits the con-
tinuous parabolic factorization

−∆− k2 = −(∂x + Λ1) ◦ (∂x − Λ2) (5.80)

where Λ1 = Λ2 = F−1
y

(√
ϑ2 − k2

)
are pseudo-differential operators in y.

In the proof of the above lemma we have used the fact that Fy

(
f (n)

)
=

(ik)nFy(f) and therefore Fy(−∆− k2) = −∂xx + ϑ2 − k2.
To relate this parabolic factorization to the exact block LU decomposi-

tion of the discrete matrix operator, we discretize the x-direction of −∆−k2

and compute the analytic factorization of (5.80) for the semi -discrete oper-
ator −∆h − k2 with

∆h = D−
x D+

x + ∂yy, (5.81)

where for a vector u the difference operator

D−
x (u)i :=

ui − ui−1

h
and D+

x (u)i :=
ui+1 − ui

h
(5.82)

represent the discrete derivatives on a given structured mesh. Then we get
the following lemma (see section 2 of [10] for the proof).

Lemma 2 The semi-discrete operator ∆h = D−
x D+

x +∂yy admits the follow-
ing semi-discrete parabolic factorization in the Fourier transformed domain:

Fy(−∆− k2) = −
(

D−
x +

(
τh− 1

h

))
1

h2τ

(
D+

x −
(

τh− 1
h

))
(5.83)

where the pesudo-differential operator τ has the symbol

τ =
1
h2

+
Ψ
2

+
1
2h

√
Ψ2 + 4Ψ, (5.84)

with Ψ := ϑ2 − k2.

78 CHAPTER 5. PRECONDITIONING TECHNIQUES

Note that as we take the limit for h → 0 in (5.83) we recover again the
continuous parabolic factorization (5.80), since the middle term disappears
in the limit (h2τ → 1 as h → 0). For discrete problems, it is however
important to include the middle factor, which was not the case in previous
work on continuous parabolic factorizations.

Furthermore, one can show that (5.83) corresponds to the exact block-
LU decomposition of the fully discrete matrix operator with the following
block structure

A =


D1 L1,2

L2,1 D2
. . .

. Ln−1,n

Ln,n−1 Dn

 (5.85)

where A satisfies Au = f, which is obtained by discretizing the Helmholtz
operator. See section 2 of [11] for the proof.

5.8.2 AILU preconditioner

One could use directly the parabolic factorization given in (5.83) to solve
the original problem Au = f. Instead of solving the linear system, one
would have to solve two lower-dimensional parabolic problems: one in the
positive and one in the negative x-direction, corresponding to a forward and
a backward solve of the exact block LU decomposition. This is however
not advisable since the parabolic factorization contains non-local operators
in y-direction corresponding to dense subblocks Ti in the block LU decom-
position (see lemma 2.3 of [11]). Therefore, we approximate the parabolic
factorization by local operators and use the factorization as a preconditioner
corresponding to a new type of ILU preconditioner we call Analytic ILU
(AILU). We replace the non-local operator τ in (5.83) by a local approxi-
mation of the form

τapp = τ =
1
h2

+
Ψ
2

+
1
2h

√
α + βϑ2, (5.86)

with α, β ∈ C,Re(β) > 0 and Ψ as in lemma 2. This leads to a classical linear
second order parabolic problem, since k2 corresponds to a second derivative
in y 2. Since we have the analytic parabolic factorization, we can use the
parameters α and β to optimize the performance of the AILU preconditioner.
We insert the approximation τapp into the factorization (5.83) and obtain
the operator resulting from the approximate factorization of the original
operator Fy (−∆h − k2) = Ψ−D−

x D+
x in the form

Lapp = −D−1D+ + τapp +
1

τapph4
− 2

h2
.[navragen] (5.87)

2Note that we did not include a first order term because the underling problem is
symmetric.

5.8. ANALYTIC ILU (AILU) 79

The complex numbers α and β are to be chosen such that L−1
app L is as close

as possible to the identity, except for a few frequencies which will be taken
into account by the Krylov method, see section 4 of [11]. We find after some
calculations that we have to minimize

ρ(ϑ) :=
∣∣∣∣1− 2

(2− k2h2 + αh + h(h + β)ϑ2)Ψ
(α− k2h + (β + h)ϑ2)2

∣∣∣∣ . (5.88)

Notice that in a numerical setting, the frequency parameter ϑ is bounded
by ϑmin and ϑmax which can easily be determined, see section 3 of both [10,
11]. There can also be found more detail analysis including the convergence
properties of the AILU.

In numerical experiments on the Helmholtz problem (section 4 of [10]),
one has found interesting computational performance with the AILU pre-
conditioner, where the QMR algorithm has been used (see section 5.9 (QMR
method) of [6] for an explanation of the method). A significant improve-
ment is shown for high frequency cases, whenever QMR with standard ILU-
preconditioners fails to converge. In such cases QMR with AILU converges
to the solution. In terms of operation count required for computing the
preconditioner, AILU is comparable to ILU(0).

80 CHAPTER 5. PRECONDITIONING TECHNIQUES

Chapter 6

Summary & Outlook

In this Chapter we give a short summary of this report and we give our
plans towards further research in the coming six months.

6.1 Short summary

We have derived the Helmholtz boundary value problem (HBVP) in Chap-
ter 2, which consists of the Helmholtz equation with absorbing boundary
conditions. The Helmholtz equation has been deduced from the wave equa-
tion.

Numerical experiments in one-dimension were done in Chapter 3 to get
more experience with HBVP. Analytical and numerical solutions of some
testcases, for constant and variable wavenumber k, are worked out and com-
pared. In numerical methods we have seen that inhomogenity of k can be
implemented in several ways. We have also done some spectral-analysis as
preparation to iterative methods and preconditioners.

Chapter 4 deals with this Krylov iterative methods and their algorithms.
For sparse and large linear systems direct solvers are not attractive, while it-
erative methods could lead to satisfactory solutions. Important methods are
CGNR, Bi-CGSTAB and GMRES, which has been discussed in more detail.
We have seen that these methods are only efficient if they are preconditioned.
Therefore, we summed up a few preconditioners in Chapter 5, which can be
used to deal with HBVP. Many preconditioners (like separation-of-variables
and Made) fail when increasing the frequency, while we are interested in
large frequencies.

Investigations on good preconditioners for Helmholtz problems are pur-
sued. An example is AILU, which has been compared with another ILU-
preconditioners in 2-dimensional numerical experiments. The results are
positive. However, so far no results are reported for general 3-dimensional
inhomogeneous problems.

Another example of a preconditioner is based on separation-of-variables

81

82 CHAPTER 6. SUMMARY & OUTLOOK

(SOV). For 2-dimensional test cases with simple inhomogenity, the linear
system can be solved with a convergence rate nearly independent of the do-
main and mesh size. However, the preconditioner breaks down for complex
inhomogeneous media.

Recently, the complex shifted Laplace preconditioner has been proposed
as a good one for solving HBVP. The method is being improved to get an
efficient method with this preconditioner.

6.2 Future research

In further research we will restrict our domain to preconditioning of HBVP
and try to find a good preconditioner which can be applied to solve the
3-dimensional case. Several ideas are available about the SoV and shifted
Laplace preconditioners. We know that the complex shifted Laplace precon-
ditioner is easy to implement and ’weakly’ dependent on the wavenumber
k, but it is still slowly converging. While separation-of-variables is a very
efficient preconditioner for constant k, it fails for large and highly inhomoge-
neous values of k. Therefore, combining this two preconditioners may lead
to a better preconditioner.

Plessix and Mulder [17] have given a possible (physical) explanation
for the bad convergence of the separation-of-variables method. We like to
investigate the cause of this bad convergence by using eigenvalue analysis.
Hopefully this will also lead to ideas for a good combination with the shifted
Laplace preconditioner.

We shall deal with target problems to test our preconditioners in future
research, where physical parameters will be applied to imitate the practical
situation as good as possible. In 2-dimensions, we use models with constant
k first and subsequently layer and wedge models (see e.g. Figure 2 of [17] and
Figure 5 of [6]), respectively. Later on, we shall use 3-dimensional models,
if it is practicable.

Bibliography

[1] Achenbach, J.D., Wave propagation in Elastic Solids, North-
Holland publishing company, 1973.

[2] Axelsson, O., Iterative Solution Methods, Cambridge Univer-
sity Press: Cambridge, 1994.

[3] Bayliss, A., Goldstein, C.I., Turkel, E., An iterative method
for Helmholtz equation, J. Comput. Phys., 49:443-457, 1983.

[4] Boyce, W.E., DiPrima, R.C., Elementary differential equa-
tions and boundary value problems, 6th edition, Wiley &
Sons, 1997.

[5] Colton, J., Kress, R., Inverse acoustic and electromagnetic
scatting theory, Springer-Verlag, Berlin-Heidelberg, 1998.

[6] Erlangga, Y.A., Some numerical aspects for solving sparse
large linear systems derived from the Helmholtz equation, re-
port 02-12, TU Delft, 2002.

[7] Erlangga, Y.A., Vuik, C., Oosterlee, C.W., On a class of
preconditioners for solving the Helmholtz equation, report 03-
01, TU Delft, 2003.

[8] Erlangga, Y., Oosterlee, C.W., Vuik, C., Shifted Laplace pre-
conditioners for the Helmholtz equations, report 03-18, TU
Delft, 2003.

[9] Faber, V., Manteuffel, T., Necessary and Sufficient Con-
ditions for the Existence of a Conjugate Gradient Method,
SIAM, J. Numer. Anal. 21, 315-339, 1984.

[10] Gander, M.J., Nataf, F., AILU for Helmholtz problems: a
new preconditioner based on the analytic parabolic factoriza-
tion, J. Comp. Acoustics, 9:1499-1509, 2001.

83

84 BIBLIOGRAPHY

[11] Gander, M.J., Nataf, F., AILU: a preconditioner based on
the analytic factorization on elliptic operator, Num. Linear
Algebra Appl, 7(7):543-567, 2000.

[12] Heikkola, E., Rossi, T., Toivanen, J., A parallel fictitious do-
main method for the three-dimensional Helmholtz equation,
No. B9, University of Jyväskylä, 2000.

[13] van Kan, J., Segal, A., Numerieke methoden voor partiële dif-
ferentiaalvergelijkingen, Delftse uitgevers Maatschappij BV,
1993.

[14] Korving, C., Corstens, H.F.M., Mechanica van continue me-
dia I, lecture-notes, WI2090, TU Delft, 2000.

[15] Laird, A.L., Preconditioned iterative solution of the 2nd
Helmholtz equation, 1st year’s report, Oxford University, St.
Hugh’s College, Oxford, 2001.

[16] Made, M.M.M., Incomplete factorization-based precondition-
ings for solving the Helmholtz equation, Int. J. Numer. Meth.
Engng., 50:1077-1101, 2001.

[17] Mulder, W., Plessix, R.E., Separation-of-variables as a pre-
conditioner for an iterative Helmholtz solver, Appl. Num.
Math., 44(3): 385-400, 2003.

[18] Peters, A., Eiermann, M., Daniels, H., Symmetric versus
non-symmetric matrix techniques: a comparative study of
two Galerkin-FE approaches for the advection dispersion
equation, IBM report 75.91.07, 1991.

[19] Saad, Y., Iterative methods for sparse linear systems, PWS
Publishing Company, Boston, 1996.

[20] Shewchuk, J.R., An Introduction to the Conjugate Gradient
Method without the Agonizing Pain, Edition 1,25, Carnegie
Mellon University Pittsburgh, 1994.

[21] Sleijpen, G.L.G., Fokkema, D.R., BiCGstab(l) for linear
equations involving unsymmetric matrices with complex spec-
trum. Electron. Trans. Numer. Anal.,1(Sept.):1132 , 1993.

[22] Sonneveld, P., CGS: a fast Lanczos type solver for nonsym-
metric linear systems, SIAM J. Sci. Stat. Comp., 10 , 36-52.
53, 1989.

[23] Van der Sluis, A., Conditioning, equilibration and pivoting
in linear algebraic systems, Numer. Math., 15:74-86, 1970.

BIBLIOGRAPHY 85

[24] Tang, J., Gauss-Seidel methods: iteratieve methodes ter
oplossing van de Poission vergelijking, report, wi4040, TU
Delft, 2003.

[25] Voevodin, V., The Problem of Non-Self-Adjoint Generaliza-
tion of the Conjugate Gradient Method is Closed, U.S.S.R.
Comput. Maths. and Math. Phys. 23, 143-144, 1983.

[26] Van der Vorst, H.A., Melissen, J.B.M, A Petrov-Galerkin
type method for solving Ax = b where A is symmetric com-
plex, IEEE Trans. on Magnetics 26(2), 1990.

[27] Van der Vorst, H.A., Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of Nonsym-
metric Linear Systems, SIAM, J. Sci. Statist. Comput. 13,
631-644, 1992.

[28] Vuik, C., Numerical methods for large algebraic systems,
lecture-notes, WI4010, TU Delft, 2004.

[29] Vuik, C., Numerieke methoden voor differentiaalvergelijkin-
gen, lecture-notes, wi2091/wi2092, TU Delft, 2000.

86 BIBLIOGRAPHY

Appendix A

Matlab codes

In this appendix one can find the Matlab codes which have been used in
Chapter 3.

A.1 Example 1

function p=Ex1(N1,k1,f1);

N=N1-2;
deltax=pi/N1;

k=k1*ones(N,1);
kreal=k1*ones(N+2,1);
f=f1*ones(N,1);

A=zeros(N,N);
hoofd=ones(N,1);
sub=ones(N-1,1);
A1=(1/deltax∧2)*(-2*diag(hoofd)+diag(sub,1)+diag(sub,-1));
A2=diag(k)∧2;
hoofdA3=zeros(N,1);
hoofdA3(1)=1/(deltax∧2*(1+j * kreal(1) * deltax));
hoofdA3(N)=1/(deltax∧2*(1+j * kreal(N+2) * deltax));
A3=diag(hoofdA3);
A=A1+A2+A3;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);
preal=zeros(N+2,1);
preal=real([p0; p; pLast]);

87

88 APPENDIX A. MATLAB CODES

pim=zeros(N+2,1);
pim=imag([p0; p; pLast]);

count=0:pi/(N+1):pi;
subplot(2,1,1)
plot(count,preal)
ylabel(’pressure p’)
title(’Example 1: Real part of the solution (N=100)’)
axis([0 pi 1.8 2.2])
subplot(2,1,2)
plot(count,pim)
hold on plot(count, 2*sin(count), ’r:’)
xlabel(’x-axis’)
ylabel(’pressure p’)
title(’Example 1: Imaginary part of the solution (N=100)’)
axis([0 pi -0.5 2.5])

A.2. EXAMPLE 2 89

A.2 Example 2

function p=Ex2(N1,k1,f1);

N=N1-2;
deltax=pi/N1;

k=k1*ones(N,1);
kreal=k1*ones(N+2,1);
f=f1*ones(N,1);

A=zeros(N,N);
hoofd=ones(N,1);
sub=ones(N-1,1);
A1=(1/deltax∧2)*(-2*diag(hoofd)+diag(sub,1)+diag(sub,-1));
A2=diag(k)∧2;
hoofdA3=zeros(N,1);
hoofdA3(1)=1/(deltax∧2*(1+j * kreal(1) * deltax));
hoofdA3(N)=1/(deltax∧2*(1+j * kreal(N+2) * deltax));
A3=diag(hoofdA3);
A=A1+A2+A3;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);
preal=zeros(N+2,1);
preal=real([p0; p; pLast]);

count=0:pi/(N+1):pi;
plot(count,preal)
xlabel(’x-axis’)
hold on
plot(count, 0.25-0.25*cos(2*count), ’r:’)
ylabel(’pressure p’)
title(’Solution of example 2 (N=100)’)
axis([0 pi 1.8 2.2])

90 APPENDIX A. MATLAB CODES

A.3 Example 3

Method 1

function p=Ex3met1(N1,k1,k2,f1);

N=N1-2;
deltax=pi/N1;
Nh=0.5*(N-1);

f=f1*ones(N,1);
f(0.5*(N+1))=0;

A=zeros(N,N);
hoofd1=(-2/deltax∧2+k1∧2)*ones(Nh,1);
hoofd2=2;
hoofd3=(-2/deltax∧2+k2∧2)*ones(Nh,1);
hoofd=[hoofd1; hoofd2 ;hoofd3];
subonder=(1/deltax∧2)*ones(N-1,1);
subonder(0.5*(N-1))=-1;
subboven=(1/deltax∧2)*ones(N-1,1);
subboven(0.5*(N+1))=-1;
A1=(diag(hoofd)+diag(subboven,1)+diag(subonder,-1));
hoofdA2(1)=1/(deltax∧2*(1+j * k1 * deltax));
hoofdA2(N)=1/(deltax∧2*(1+j * k2 * deltax));
A2=diag(hoofdA2);
A=A1+A2;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);

preal=zeros(N+2,1);
preal=real([p0; p; pLast]);
pim=zeros(N+2,1);
pim=imag([p0; p; pLast]);

h=pi/N;
x1=[0:h:0.5*pi];
x2=[0.5*pi:h:pi];
p1r=9-(15/2)*cos(x1)-6*sin(x1);
p2r=1+(5/2)*cos(3*x2)-2*sin(3*x2);
x=[x1 x2];
prex=[p1r p2r]’;

A.3. EXAMPLE 3 91

p1i=6*cos(x1) +1.5*sin(x1);
p2i=-2*cos(3*x2) - 1.5*sin (3*x2);
piex=[p1i p2i]’;
count=0:pi/(N+1):pi;

subplot(2,2,1)
plot(count,preal)
hold on
plot(x, prex, ’r:’)
ylabel(’pressure p’)
title(’Real part (Method 1)’)
axis([0 pi -3 5])

subplot(2,2,3)
plot(count,pim)
hold on
plot(x, piex, ’r:’)
xlabel(’x-axis’)
ylabel(’pressure p’)
title(’Imaginary part (Method 1)’)
axis([0 pi -4 7])

Method 2

function p=Ex3met2(N1,k1,k2,f1);

N=N1-2;
deltax=pi/N1;
Nh=0.5*(N-1);

f=f1*ones(N,1);
f(0.5*(N+1))=0;

A=zeros(N,N);
hoofd1=(-2/deltax∧2+k1∧2)*ones(Nh,1);
hoofd2=-2/deltax∧2+((k1+k2)/2)∧2;
hoofd3=(-2/deltax∧2+k2∧2)*ones(Nh,1);
hoofd=[hoofd1; hoofd2 ;hoofd3];
subonder=(1/deltax∧2)*ones(N-1,1);
subboven=(1/deltax∧2)*ones(N-1,1);
A1=(diag(hoofd)+diag(subboven,1)+diag(subonder,-1));
hoofdA2(1)=1/(deltax∧2*(1+j * k1 * deltax));
hoofdA2(N)=1/(deltax∧2*(1+j * k2 * deltax));

92 APPENDIX A. MATLAB CODES

A2=diag(hoofdA2);
A=A1+A2;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);

preal=zeros(N+2,1);
preal=real([p0; p; pLast]);
pim=zeros(N+2,1);
pim=imag([p0; p; pLast]);

h=pi/N;
x1=[0:h:0.5*pi];
x2=[0.5*pi:h:pi];
p1r=9-(15/2)*cos(x1)-6*sin(x1);
p2r=1+(5/2)*cos(3*x2)-2*sin(3*x2);
x=[x1 x2];
prex=[p1r p2r]’;
p1i=6*cos(x1) +1.5*sin(x1);
p2i=-2*cos(3*x2) - 1.5*sin (3*x2);
piex=[p1i p2i]’;
count=0:pi/(N+1):pi;

subplot(2,2,2)
plot(count,preal)
hold on
plot(x, prex, ’r:’)
ylabel(’pressure p’)
title(’Real part (Method 2)’)
axis([0 pi -3 5])

subplot(2,2,4)
plot(count,pim)
hold on
plot(x, piex, ’r:’)
xlabel(’x-axis’)
ylabel(’pressure p’)
title(’Imaginary part (Method 2)’)
axis([0 pi -4 7])

A.4. EXAMPLE 4 93

A.4 Example 4

Method 1

function p=Ex4met1(N1,k1,k2,f1);

N=N1-2;
deltax=pi/N1;
Nh=0.5*(N-1);

f=f1*ones(N,1);
f(0.5*(N+1))=0;

A=zeros(N,N);
hoofd1=(-2/deltax∧2+k1∧2)*ones(Nh,1);
hoofd2=2;
hoofd3=(-2/deltax∧2+k2∧2)*ones(Nh,1);
hoofd=[hoofd1; hoofd2 ;hoofd3];
subonder=(1/deltax∧2)*ones(N-1,1);
subonder(0.5*(N-1))=-1;
subboven=(1/deltax∧2)*ones(N-1,1);
subboven(0.5*(N+1))=-1;
A1=(diag(hoofd)+diag(subboven,1)+diag(subonder,-1));
hoofdA2(1)=1/(deltax∧2*(1+j * k1 * deltax));
hoofdA2(N)=1/(deltax∧2*(1+j * k2 * deltax));
A2=diag(hoofdA2);
A=A1+A2;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);

preal=zeros(N+2,1);
preal=real([p0; p; pLast]);
pim=zeros(N+2,1);
pim=imag([p0; p; pLast]);
count=0:pi/(N+1):pi;

subplot(2,2,1)
plot(count,preal)
ylabel(’pressure p’)
title(’Real part (Method 1)’)
axis([0 pi -12 2])

94 APPENDIX A. MATLAB CODES

subplot(2,2,3)
plot(count,pim)
xlabel(’x-axis’)
ylabel(’pressure p’)
title(’Imaginary part (Method 1)’)
axis([0 pi -1 1])

Method 2

function p=Ex4met2(N1,k1,k2,f1);

N=N1-2;
deltax=pi/N1;
Nh=0.5*(N-1);

f=f1*ones(N,1);
f(0.5*(N+1))=0;

A=zeros(N,N);
hoofd1=(-2/deltax∧2+k1∧2)*ones(Nh,1);
hoofd2=-2/deltax∧2+((k1+k2)/2)∧2;
hoofd3=(-2/deltax∧2+k2∧2)*ones(Nh,1);
hoofd=[hoofd1; hoofd2 ;hoofd3];
subonder=(1/deltax∧2)*ones(N-1,1);
subboven=(1/deltax∧2)*ones(N-1,1);
A1=(diag(hoofd)+diag(subboven,1)+diag(subonder,-1));
hoofdA2(1)=1/(deltax∧2*(1+j * k1 * deltax));
hoofdA2(N)=1/(deltax∧2*(1+j * k2 * deltax));
A2=diag(hoofdA2);
A=A1+A2;

p=A\f;
p0=p(1)/(1+j*kreal(1)*deltax);
pLast=p(N)/(1+j*kreal(N+2)*deltax);

preal=zeros(N+2,1);
preal=real([p0; p; pLast]);
pim=zeros(N+2,1);
pim=imag([p0; p; pLast]);
count=0:pi/(N+1):pi;

subplot(2,2,2)
plot(count,preal)

A.4. EXAMPLE 4 95

ylabel(’pressure p’)
title(’Real part (Method 2)’)
axis([0 pi -12 2])

subplot(2,2,4)
plot(count,pim)
xlabel(’x-axis’)
ylabel(’pressure p’)
title(’Imaginary part (Method 2)’)
axis([0 pi -1 1])

96 APPENDIX A. MATLAB CODES

A.5 Norm of error of example 1

Add-on in Ex3met1(N1,k1,k2,f) and Ex3met2(N1,k1,k2,f)

function normmet1=Ex3met1(N1,k1,k2,f1) /
function normmet2=Ex3met2(N1,k1,k2,f1);

normreal=norm(preal-prex);
normim=norm(pim-piex);
normmet2=[normreal normim];

Main program

function InputEx3(hoogsteN);

N=hoogsteN;
aantal=(N+5)/10;
realvec1=zeros(aantal,1);
imvec1=zeros(aantal,1);
realvec2=zeros(aantal,1);
imvec2=zeros(aantal,1);

for i=5:10:N
figure(1)
iecht=0.1*i+0.5;
pmet1=Ex3met1(i,1,3,9);
pmet2=Ex3met2(i,1,3,9);
realvec1(iecht,1)=pmet1(1);
imvec1(iecht,1)=pmet1(2);
realvec2(iecht,1)=pmet2(1);
imvec2(iecht,1)=pmet2(2);
end

i=5:10:N;
figure(2)
subplot(1,2,1)
plot(i,realvec1)
hold on
plot(i,realvec2,’--g’)
xlabel(’N’);
ylabel(’norm of error’);
title(’Real part of the solution’);
axis([5 N 0 6]);
legend(’Method 1’,’Method 2’)

A.5. NORM OF ERROR OF EXAMPLE 1 97

subplot(1,2,2)
plot(i,imvec1)
hold on
plot(i,imvec2,’--g’)
xlabel(’N’);
ylabel(’norm of error’);
title(’Imaginary part of the solution’);
axis([5 N 0 6]);
legend(’Method 1’,’Method 2’)

98 APPENDIX A. MATLAB CODES

A.6 Eigenvalues of example 1

A=Ex1(25,1,2);

figure(4);
subplot(3,3,1);
eigA=eig(A);
realeigA=real(eigA)
imeigA=imag(eigA)
plot(realeigA,imeigA, ’rx’);
xlabel(’real part’);
ylabel(’imaginary part’);
title(’N=25’);
axis([min(realeigA) max(realeigA) min(imeigA) max(imeigA)]);

figure(2);
A1=Ex1(50,1,2);

figure(4);
subplot(3,3,2);
eigA1=eig(A1);
realeigA1=real(eigA1);
imeigA1=imag(eigA1);
plot(realeigA1,imeigA1, ’bo’);
xlabel(’real part’);
title(’N=50’);
axis([min(realeigA1) max(realeigA1) min(imeigA1) max(imeigA1)]);

figure(3);
A2=Ex1(100,1,2);

figure(4);
subplot(3,3,3);
eigA2=eig(A2);
realeigA2=real(eigA2);
imeigA2=imag(eigA2);
plot(realeigA2,imeigA2, ’g*’);
xlabel(’real part’);
title(’N=100’);
axis([min(realeigA2) max(realeigA2) min(imeigA2) max(imeigA2)]);

figure(4);
subplot(3,3,5);
plot(realeigA,imeigA, ’rx’);

A.6. EIGENVALUES OF EXAMPLE 1 99

xlabel(’real part’);
ylabel(’imaginary part’);
hold on;
plot(realeigA1,imeigA1, ’bo’);
hold on;
plot(realeigA2,imeigA2, ’g*’);
axis([min(realeigA2) max(realeigA2) min(imeigA2) max(imeigA2)]);

100 APPENDIX A. MATLAB CODES

A.7 Comparing modified & original example 1

Modified system

function A=Ex1mod(N1,k1,f1);

N=N1-2;
deltax=pi/N1;

A=zeros(N,N);
hoofd=ones(N,1);
sub=ones(N-1,1);
A1=(1/deltax∧2)*(-2*diag(hoofd)+diag(sub,1)+diag(sub,-1));
A2=diag(k)∧2;
A=A1+A2;

Main program

A=Ex1(25,1,2);
eigA=eig(A);
realeigA=real(eigA);
imeigA=imag(eigA);

figure(3);
subplot(2,2,1);
plot(realeigA,imeigA, ’rx’);
xlabel(’real part’);
ylabel(’imaginary part’);
axis([min(realeigA) max(realeigA) min(imeigA) max(imeigA)]);
title(’Eigenvalues of example 1’);
subplot(2,2,3);
plot(realeigA,imeigA, ’rx’);
xlabel(’real part’);
ylabel(’imaginary part’);
A1=Ex1mod(25,1,2);
eigA1=eig(A1);
realeigA1=real(eigA1);
imeigA1=imag(eigA1);

figure(3);
subplot(2,2,2)
plot(realeigA1,imeigA1, ’bo’);
xlabel(’real part’);
ylabel(’imaginary part’);

A.7. COMPARING MODIFIED & ORIGINAL EXAMPLE 1 101

axis([min(realeigA) max(realeigA) -0.1 0.1]);
title(’Eigenvalues of modified example 1’);
subplot(2,2,3);
hold on;
plot(realeigA1,imeigA1, ’bo’);
xlabel(’real part’);
ylabel(’imaginary part’);
axis([min(realeigA) max(realeigA) min(imeigA) 0.1]);
legend(’Original example 1 (N = 25)’,’Modified example 1 (N = 25)’)

102 APPENDIX A. MATLAB CODES

Appendix B

Rest of appendices

After giving the Matlab codes in the previous appendices, the rest of the
appendices can be found here.

B.1 Proof from Chapter 5

Denote a = k2 and b = µ1 for simplicity, then we have 0 < a < b. We shall
prove λmin(Q0) > λmin(Q1) and λmin(Q0) > λmin(Qi) by using expressions
(31)-(34) of [7].

Proof of λmin(Q0) > λmin(Q1)
We have assumed 0 < a < b, so the following inequalities are equivalent to
each other

a

b
< 1,

1
b

<
2

a + b
,

1− 2a

a + b
< 1− a

b
,

(
1− 2a

a + b

)2

<
(
1− a

b

)2
,

λmin(Q1) < λmin(Q0).

�

103

104 APPENDIX B. REST OF APPENDICES

Proof of λmin(Q0) > λmin(Qi)
The following inequalities are equivalent:

1
a2 + b2

<
1
b2

,

(b− a)2

a2 + b2
<

(b− a)2

b2
,

1− 2ab

a2 + b2
<

(
1− a

b

)2
,

λmin(Qi) < λmin(Q0).

�

