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heterogeneous nucleation (on dislocations). In this literature study, one of these models (by
Zurob et al. (2002)) is explained, analysed and tested for different values of the model parameters
and different initial values. This model exists of three different models: a precipitation, a recovery
and a recrystallisation model, each interacting with the other ones. For one of this models: the
precipitation model, the differential equations are derived, improvements are made and the final
results are compared to the results obtained by Tata Steel (Kranendonk (2005)). The derived differ-
ential equations are solved using a different numerical methods: the Backward Euler method, the
Backward Euler method combined with Forward Euler and a build-in MATLAB function Ode15s.
The model shows to be flexible, but still has some drawbacks. A new model will be developed
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1
Introduction

Precipitates play a very important role in the process of steel making and the final product steel. They can
increase the strength of steal and decrease the growth of grains. Precipitation strengthening and small fer-
rite grains form the basis for the strength in High-Strength Low-Alloy (HSLA) steel, also named microalloying
steels. This product group finds wide application in automotive, construction and energy (pipelines). The
main alloying elements for precipitates in HSLA are niobium, titanium and vanadium. Moreover, precipi-
tation strengthening is also increasingly being used as an additional strengthening mechanism in Advanced
High Strength Steels (AHSS). Controlling and optimization of precipitation for both the hot rolling process as
well as the annealing process is, therefore, essential.

Experiments on precipitation kinetics are time consuming, laborous and demand very special equipment.
Models which describe the precipitation kinetics are therefore an essential addition to the experimental tools.
Such models should (and can) reduce the development time for new steel grades, support the solution of
production problems, support the optimisation of processes and improve the design of experimental tests. It
would be therefore profitable to develop and improve new and existing models for (niobium) precipitation in
steel.

These precipitates can grow at different spots in the steel: on grains, at grain boundaries, at dislocations,
etc. The nucleation of precipitates on grains is called homogeneous nucleation, and the nucleation of pre-
cipitates on dislocations and other defects in the steel is called heterogeneous nucleation. Several models
for both types of nucleation have been developed, but most of them just return the mean diameter and the
density of the precipitates, whereas some would like to have a distribution for the diameter of the precipitates.

Den Ouden (2015) constructed a model with distributions for the diameter of the precipitates, but primarily
for homogeneous nucleation. Since, heterogeneous nucleation seems to play a key role during plastic defor-
mation of steel, which occurs for example during the hot rolling process, the goal of this Master Thesis is to
make a new model with distributions for the diameter of the precipitates, but now for heterogeneous nucle-
ation and with a multi-component part. Multi-component meaning that, contrary to some models, multiple
types of precipitates (Nb(C,N), AlN, MnS, etc.) can be involved and analysed at the same time.

To understand the process of nucleating and growing precipitates on dislocations, a model by Zurob et al.
(2002) is implemented and analysed. This model is limited to the mean diameter and density of the precipi-
tates and describes only niobiumcarbonitride precipitates, but gives a good indication of how the precipitates
nucleate and grow and also describes the interaction with recovery and recrystallisation (of dislocations). In
this literature study we show the advantages and disadvantages of the model, give some improvements and
end with a suggestion for future work during the Master Thesis.

The structure of this literature study is as follows. First in Chapter 2 some preliminaries of metallurgy are in-
troduced, like some information on thermodynamics, phase diagrams and Gibb’s free energy, but also infor-
mation on dislocations and metalworking techniques is given to fully understand the process of steel making
and the processes where precipitation plays a big role. After that in Chapter 3 the mathematical model by
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2 1. Introduction

Zurob et al. (2002) is derived and improved. Then in Chapter 4, various numerical methods are introduced
to solve the obtained differential equations, which led to some computation issues which are then described
and solved in Chapter 5. Finally in Chapter 6 the results of the simulations are shown, compared to experi-
mental data and different initial values are chosen to see the effect on the solutions. And to finish off, some
concluding remarks are made in Chapter 7, together with ideas for future work.



2
Preliminaries in metallurgy

To model the nucleating and growing of precipitates on dislocations, one needs some preliminaries in met-
allurgy. This chapter starts with an introduction to the crystal structure of metals. Thereafter a discussion
is presented on thermodynamics and the phase diagram of steel. Then the diffusional concepts related to
alloys are explained, followed by a short explanation of precipitation reactions due to this diffusion. These
precipitation reactions can take place in two different ways: homogeneous and heterogeneous, which will be
explained and linked to dislocations. Finally the process of steel making is presented and it is shown where
the precipitation reactions we focus on occur during this process. The information presented in this chapter
mostly originates from Porter and Easterling (1981) (especially Chapters 1, 2 and 5). Also some of the infor-
mation originates from Den Ouden (2015) and the more detailed information about dislocations comes from
Hull and Bacon (2001).

2.1. Crystal Structure
Metals can have different crystal structures, of which the body-centred and face-centred cubic crystal struc-
ture are the most common.

Figure 2.1: A part of a metal with a body-centred cubic (bcc) crystal structure (left) and a face-centred cubic
(fcc) crystal structure (right). Image from Wikipedia (2016c).

When a metal solidifies from the liquid state, such crystals start to grow in the metal. The longer the metal
takes to cool the larger the crystals grow in the metal. These crystals form the grains in the solid metal. Each
grain is a distinct crystal with its own orientation. The areas between the grains are known as grain boundaries
and are illustrated in Figure 2.5b (cross-section of the grains).

2.2. Thermodynamics and Phase Diagrams
To understand the concept of steel making and the process that takes place during the nucleating and growing
of precipitates in steel, we first need to understand the thermodynamics of these processes. The keywords
during this process are ‘free energy’ and ‘equilibrium’. However, for this we need four important definitions
to start with:

Definition 2.1. A phase is a region of space where the physical properties and composition are homogeneous
and which is physically distinct from other parts of the system.

Definition 2.2. A system is an alloy that can exist as one phase or a mixture of phases.

3



4 2. Preliminaries in metallurgy

Definition 2.3. A component of the system is one of the different elements or chemical compounds that make
up the system.

A system can have two types of properties:

1. Intensive properties, which are independent of size of the system (number of moles in the system), like
the absolute temperature (T ) and the pressure (P ).

2. Extensive properties, which are directly proportional to the quantity of material in the system, like
volume (V ), internal energy (E), enthalpy (H), entropy (S) and free energy (G).

Definition 2.4. A phase transformation is how one or more phases in an alloy (a system) changes into a new
phase or mixture of phases.

In phase transformations we are always concerned with changes towards equilibrium, where we mean equi-
librium in the sense of the lowest free energy. For phase transformations that occur at constant temperature
and pressure, the relative stability of a system is determined by its Gibbs free energy (G), measured in Joules
(J), and defined by

G = H −T S,

where H is the enthalpy, T the absolute temperature in Kelvin (K) and S the entropy of the system. The
enthalpy H is the sum of the internal energy E and the mechanical energy PV :

H = E +PV ,

where E is the internal energy of the system in Joules (J), both kinetic and potential, P is the pressure in the
system in Joules per cubic meter (J/m3) and V is the volume of the system in cubic meters (m3). It is good
to notice, that in condensed phases like solid and liquid, the value of PV is much smaller than the internal
energy E and the heat content of the system H is therefore close to this internal energy. When we plot the
Gibbs free energy for a spontaneous change in the state of a system (with constant T and P ), we get a graph
like in Figure 2.2. The driving force behind a phase transformation is the difference between the Gibbs free
energy in a certain (non-)equilibrium state of the system and the equilibrium state, where the state is in
equilibrium when the free energy of the system is at minimum, i.e.:

dG = 0.

The intermediate states dG 6= 0 are unstable. From mathematics we know that when dG = 0, we have found
a minimum or maximum, however we are only interested in the minimum free energy. Also, we can have
a purely local minimum or a global minimum, which respectively corresponds to a metastable or a stable
equilibrium. Given time, systems in a metastable state will transform to a stable state. However, the system
then first has to overcome the energy maximum between the metastable and stable state, which is called the
activation energy (Figure 2.2: Ea) and will determine the rate of the transformation.

Figure 2.2: Illustration of a spontaneous change in the state of a system and the associated states.
Image from Learning Geology (2015).
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Using the Gibbs free energy plots for different temperatures, a phase diagram for alloys can be constructed.
This derivation will not be given in this literature study, but an example can be found in Porter and Easterling
(1981).

Since the focus of this thesis will be on steel, the phase diagram for iron-carbon is given in Figure 2.3. In this
figure different phases of the system are shown for different temperatures (vertical axis) and different weight
percentages of carbon (horizontal)1. Examples of these phases are Austenite and Ferrite, which also corre-
spond to a crystal structure as described in Section 2.1 (Austenite ↔ γ↔ fcc, Ferrite ↔ α↔ bcc). However,
the probability that one has a system that is in such an equilibrium state is small. For a system to reach such a
state or for us to model it, we need to introduce the concept of diffusion. Some of these phase transformations
are not diffusion driven, but during this thesis we will only focus on diffusional phase transformations.

Figure 2.3: Phase diagram of iron-carbon (steel). Image from Nair (2015).

2.3. Diffusion
The concept of diffusion is based on the principle of the system wanting to reach the state with the lowest
Gibbs free energy. Diffusion is basically the random movement of atoms. There can be distinguished two
types of diffusion: interstitial and substitutional diffusion. For this we need to understand the concept of
interstitial and substitutional atoms. Interstitial atoms are significantly smaller than the atoms of the solvent,
and can thereby move between the other atoms freely. Substitutional atoms are larger or of approximate
equal size as the solute atoms and can thereby not move between the other atoms, but need vacancies to
move around. Both types of atoms are shown in Figure 2.5b. Since the interstitial atoms are smaller, they
are forced their way between the solvent atoms, as shown in Figure 2.4a. This is called interstitial diffusion.
The movement of substitutional atoms is called substitutional diffusion and is illustrated in Figure 2.4b. Here
a solute atom will move to a vacant place in the solvent matrix. Since substitutional diffusion needs vacan-
cies which only appear in small numbers, whereas interstitial diffusion occurs without vacancies, in general
substitutional diffusion rates are much lower than interstitial diffusion rates.
For both types of diffusion we can assume that Fick’s second law can be used to model how diffusion causes

1Some phase diagrams use a weight or molar fraction to measure the composition of the system.
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the concentration to change with time:
∂CB

∂t
= ∂

∂x
(DB

∂CB

∂x
),

where CB is the concentration of the solute atoms and DB the diffusion constant of the solute atoms. When
the diffusion constant has no variations with concentration of space, we find

∂CB

∂t
= DB

∂2CB

∂x2 .

(a) Illustration of interstitial diffusion.

(b) Illustration of substitutional diffusion.

Figure 2.4: Different types of diffusion. Images from Cdan (2015).

2.4. Precipitation
In multi-component systems, like steel, many different phases can occur, which depend on the temperature.
Five types of phase transformations can occur between different phases, of which almost all take place by
diffusional nucleation and growth. However, we are primarily interested in the phase transformation due to
precipitation reactions, which can be described by

α→α∗+β,

where α is the phase before the transformation, and α∗ and β are the phases after the transformation. When
starting with a system in a supersaturated metastable solid phase α and a precipitation reaction occurs, the
resulting system will consist of the α∗ and β phases. Here α∗ is a solid phase with lower Gibbs energy than
α but with the same crystal structure and β is a (meta)stable precipitate phase. Looking back at the phase
diagram in Figure 2.3, an example of this could be the phase transformation from austenite to austenite with
ferrite (γ→ γ+α).

There are three important concepts for precipitation:

1. Nucleation: the arise of precipitates from a supersaturated matrix.

2. Growth: the growing of precipitates. During this process the precipitates take atoms from the matrix to
grow until equilibrium between the precipitates and the matrix has been reached.

3. Coarsening: the growth of large precipitates at the cost of small precipitates, also known as Ostwald
ripening. The driving force for coarsening is the reduction of the interfacial energy and thereby the
total free energy. By the growth of large precipitates and the disappearance of small ones the total
interfacial area is reduced and, thus, the free energy. This mostly happens if the concentrations (of the
precipitates compounds) in the matrix is near the equilibrium concentration.

All of these concepts can take place at the same time, so for the final model we also need the interaction
between these three concepts.
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2.5. Dislocations
The precipitation reaction as described before takes place by diffusional nucleation and growth. Two types
of nucleation can take place: homogeneous and heterogeneous (on defects). The different types of hetero-
geneous nucleation have lower activation energies than homogeneous nucleation, and, therefore, heteroge-
neous nucleation is the main mechanism in solids and liquids. In the thesis of Den Ouden (2015) the focus
is mostly on homogeneous nucleation, and so the focus during this thesis will be mostly on heterogeneous
nucleation.

As described in Section 2.1, metal alloys have a crystal structure, however, all real crystals contain some sort
of imperfections which can have different shapes: point, line, surface or volume defects. These defects locally
disturb the arrangement of the atoms in the crystal structure and in this way have an important effect on the
properties of the metal alloys. These defects are the locations for heterogeneous nucleation. Some of the
defects like vacancies, dislocations, stacking faults and grain boundaries are shown in Figure 2.5b. In this
thesis, the main focus will be on the nucleation and growth of precipitates on dislocations.

(a) Combination of two types of dislocations.
Image from Rey (2015).

(b) Crystal structure with several different defects.
Image from Shah (2012).

Figure 2.5: Defects in the crystal structure.

All these defects increase the free energy of the material, which is an unwanted effect. Each defect has his own
type of free energy contribution, for example a dislocation is associated with an increased elastic energy and
a grain boundary with an increased interface energy. The combination of a precipitate and the defect results
in a lower free energy (for a dislocation a lower elastic energy) and thereby reducing the total free energy of
the material. The equation for the energy change due to a heterogeneous reaction therefore becomes

∆Ghet =V (∆gv −∆gs )+ Aγ+∆Gd , (2.1)

where∆gv is the general free energy reduction, ∆gs is the misfit strain energy1, Aγ the increase of free energy
due to interfacial energy 2 and ∆Gd the free energy release due to the reduction of the elastic energy associ-
ated with dislocations. The sign of ∆gv is dependent on the saturation of the matrix. It has a negative sign
for an over-saturated matrix and a positive sign for an under-saturated matrix. Also, we will assume in this
thesis, that we deal with incoherent particles and the misfit strain energy can be approximated by zero.

To fully understand the energy changes due to heterogeneous nucleation, we need more information about
dislocations and their geometry. Starting with the types of dislocations there exists, Figure 2.5a shows both of
them.

1. An edge dislocation, and

2. a screw dislocation.

The edge dislocation can be simulated as follows: let a surface of the crystal structure be broken, such that
that the faces of the crystal are separated. Now an additional half-plane of atoms can be inserted in this

1In general the transformed volume will not perfectly fit into the original space occupied by the matrix, which will result in this free
energy increase.

2The creation of a nucleus with area A will give a free energy increase of Aγ, assuming that the α-β interfacial energy is isotropic.
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opening, which results in an edge dislocation. Both positive and negative edge dislocations can exist, respec-
tively meaning an additional half-plane from above the broken surface, illustrated with a ‘⊥′ or an additional
half-plane from below the broken surface, illustrated with a ‘>′. It is good to point out, that after an edge
dislocation has formed, edge dislocations can move to the side of the crystal under a shearing deformation
of the crystal, as shown in Figure 2.6.

or

Figure 2.6: Illustration of the movement of an edge dislocation.
Image from Academic Resource Center (2015).

The screw dislocation can be seen as a simple displacement of part of the crystal structure, relative to the
other part of the crystal structure. In Figure 2.5a both dislocations are shown and the difference between the
edge and the screw dislocation becomes clear. As with edge dislocations, two directions of the dislocation can
be distinguished. Contrary to the edge dislocations, however, screw dislocation are distinguished between
left-handed and right-handed, meaning the direction of the dislocation when looking down the dislocation
line. When a clockwise circuit is made round it, it is referred to as a right-handed screw dislocation and when
a counter-clockwise circuit is made round it, it is referred to as a left-handed screw dislocation. Mixtures of
both edge and screw dislocations also exist, as shown in Figure 2.5a. To formally describe the dislocation, we
introduce the definition of the Burgers circuit.

Definition 2.5. The Burgers circuit is any atom-to-atom path, a closed loop, containing the dislocations in the
crystal structure (Figure 2.7).

Another important concept is that of the Burgers vector, which together with the Burgers circuit defines the
dislocation. The Burgers vector’s magnitude and direction is best understood when the dislocation-bearing
crystal structure is first visualised without the dislocation, that is, the perfect crystal structure. For this we
use Figure 2.7 as an illustration. In this perfect crystal structure, a rectangle is drawn surrounding the site
of the original dislocation’s origin. The lengths and widths of this rectangle are integer multiples of the unit-
cell-edge length. Once the surrounding rectangle (MNOP) is drawn, the dislocation can be introduced. This
dislocation will have the effect of deforming, not only the perfect crystal structure, but the rectangle as well.
The MNOP-rectangle could have one of its sides disjointed from the perpendicular side, severing the connec-
tion of the length and width line segments of the rectangle at one of the rectangle’s corners, and displacing
each line segment from each other. What was once a rectangle before the dislocation was introduced, is now
an open geometric figure whose opening defines the direction and magnitude of the Burgers vector.

Figure 2.7: Illustration of the Burgers vector for both type of dislocations. Image from Wikipedia (2016b).

The Burgers vector is closely related to the dislocation density, a parameter of interest, since it influence both
the nucleation and growth of precipitates.



2.6. Metalworking Techniques 9

2.6. Metalworking Techniques
In the process of steel making, a series of metalworking techniques is used wherein precipitation reactions
play a role. The process will be explained in general and the parts which include these precipitation reactions
will be explained more thoroughly.

1. Reduction of iron oxides (ore) to iron metal

• Installation/process: blast furnace (around 2000 °C),

• Metallurgical processes: reduction reactions.

The process of steel making starts with iron ore. This is a chemical composition consisting of iron
oxides (FexOy ). At high temperatures the carbon level in these oxides is reduced, resulting in pig iron
(liquid iron, containing around 4.4 wt% carbon) and CO2.

2. Lowering of carbon concentration and adding alloying elements

• Installation/process: basic oxygen steel plant (1550 °C),

• Metallurgical processes: oxidation, dissolution (of alloying elements).

The pig iron is transported to a steel mill, at which the carbon level in the iron is reduced. When the
pig iron arrives at the steel mill it is carbon-rich (around 4.8 wt-%), but for the pig iron to be called
steel, it has to be carbon-low (less than 2 wt-% carbon). To reduce the carbon in the mixture, we use the
following reaction

C +O2 →CO2.

In Figure 2.8 the process of blowing oxygen into the pig iron to get the reaction, is illustrated. During
this process also several alloying elements like Ti (Titanium), Nb (Niobium) or V (Vanadium) are added,
to change the mechanical properties of the resulting steel. This is an important part to point out, since
especially these allloying elements are the ones that will form precipitates later on in the process. The
result of the so called Basic oxygen steelmaking (Wikipedia (2015)) can be then poured into big molds
of around 230 mm thick and 10-20 ton. The structure of the resulting strips has large grains and can
contain already precipitates.

Figure 2.8: Principle of a LD (Linz-Donawitz) converter. Image from Wikipedia (2016e).

3. Rolling of strip from 230 mm to 2-25 mm

• Installation/process: hot strip mill (1250-850 °C),

• Metallurgical processes: deformation, recrystallisation, recovery, precipitation, transformation
(oxidation).
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The thick slabs will then arrive at the hot strip mill, where the slabs are rolled in a roughing and finishing
mill to the final thickness between 2 and 25 mm. The deforming of the steel is an application of elastic
and/or inelastic deformation and can therefore be described with a stress-strain relation.

Between the rolls, recrystallisation and recovery can take place. Recrystallisation is the process of re-
ducing dislocations (created by plastic deformation) by nucleation and growing of new, dislocation
free, grains whereas recovery is reducing the dislocation density by annihilation and redistribution. An
illustration of part of this process is shown in Figure 2.9. The last process of hot rolling: transformation,
is the process where the steel transforms from the austenite to the ferrite phase, and takes place at the
end of the hot strip rolling, when the strip is cooled down to around 600-700 °C.

Figure 2.9: Illustration of the hot rolling and the processes that take place during this process. Image from
Rendy Yusman (2011).

4. Rolling of strip from 2-5 mm to 0.2-1.5 mm (optional)

• Installation/process: cold strip mill and annealing line (20-150 °C),

• Metallurgical processes: deformation (cold strip mill), recrystallisation, recovery, precipitation,
transformation (annealing line).

The goal of this part of the process is to control the shape, size and thickness of the steel. The thickness
is reduced by cold rolling, which results in a hard and difficultly deformable strip. To recover the forma-
bility again, the rolled strip is annealed (600-750°C) where recovery, recrystallisation, precipitation and,
depending on the temperature, transformation will take place. Contrary to the metallurgical process
that took place at the hot strip mill, this process mainly takes place in the ferrite phase instead of the
austenite phase.

5. Coating and painting (optional)

• Installation: coating and painting line,

• Metallurgical processes: tempering (coating), hydrogen embrittlement(coating).

This part of the steel making process only concerns the corrosion protection and/or outlook of the strip
and is not relevant for the subject of this thesis.



3
Mathematical Model

During softening after deformation at high temperatures or during annealing after cold rolling, three pro-
cesses are of our main interest: precipitation, recrystallisation and recovery. Each of these processes strength-
ens or weakens the other processes. The different connections in Figure 3.1 will now be explained (based on
Zurob et al. (2002)):

• Green line: When precipitates are present they slow down the process of recrystallisation and in re-
turn a decrease in the dislocation density due to recrystallisation reduces the number of precipitates
nucleation sites available and therefore the rate of precipitation.

• Pink line: The driving force for both recovery and recrystallisation is the stored energy of deformation
(dislocations), meaning that the process of recovery will reduce this driving force available in the ma-
terial for the migration of the recrystallisation boundaries. Therefore the recovery and recrystallisation
process are competing processes.

• Blue line: When precipitates are present at dislocations they slow down the process of recovery and in
return recovery can delay the progress of precipitation by reducing the number of available nucleation
sites.

Dislocations

Precipitation

Recrys-
tallisation

Recovery

Figure 3.1: An illustration of the connection between the three processes of our interest, with the
dislocations as driving force of these processes.

It is clear that these three processes are linked and therefore they cannot be viewed separately to state con-
clusions on the nucleating and growing of precipitates on dislocations.

11
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3.1. Recrystallisation, recovery and precipitation model by Zurob et al.
Zurob et al. (2002) introduced a combination of the three models (a recrystallisation, a recovery and a pre-
cipitation model) to describe the growth and nucleation of precipitates on dislocations. In this combination
each model interacts with the other models as described in the introduction. The model by Zurob et al. (2002)
primarly describes the nucleation, growth and coarsening of the precipitates and not the dissolving.

Since the the focus in this thesis is on the modelling of the nucleation and growth of precipitates, we will first
model the precipitation part of the Zurob model before we will link this to the recovery and recrystallisation
models (found in Appendix A). The model for precipitation is described using two stages. The first stage
describes the part when precipitates are nucleating and growing, whereas the second stage describes the
part when precipitates are growing and coarsening will take place. The two stages and the switch between
these two will be explained more thoroughly in the coming section, but will result in the following model for
precipitation:

• Precipitation stage 1 (Nucleation and Growth)

d N

d t
= (Ntot al −N )

(
Dpi pe xM

N b

a2

)
exp

(−∆G∗

kbT

)
,

dR

d t
= De f f

R

C M
N b −C E q

N b exp(R0/R)

C P
N b −C E q

N b exp(R0/R)
+ 1

N

d N

d t
(αnR∗−R).

• Precipitation stage 2 (Growth and Coarsening)

d N

d t
= Fc

(
4

27

C E q
N b

C P
N b −C E q

N b

R0D

R3

)(
R0C M

N b

R(C P
N b −C M

N b)

(
3

4πR3 −N

)
−3N

)
,

dR

d t
= (1−Fc )

dR

d t

∣∣∣∣
growth

+Fc
dR

d t

∣∣∣∣
coarse

.

Symbols that are not explained in the text, can be found in the nomenclature.

3.1.1. Stage 1: Nucleation and growth
Focusing on the nucleation of precipitates first, we assume it occurs on dislocations exclusively. The rate of
nucleation is given by

d N

d t
=

(
1− N

Ntot al

)
Ntot al Zβ∗ exp

(−∆G∗

kbT

)
,

where Ntot al is the number of nucleation sites that is available, Z is the Zeldovich non-equilibrium factor, β∗
is the rate of atomic attachment to the critical nucleus, ∆G∗ is the energy barrier needed for the nucleation
to take place, kB is the Boltzman constant and T is the temperature given in K . Ntot al is defined as

Ntot al =
Fρ

b
, (3.1)

where b is the length of the Burgers vector, F a fitting parameter and ρ the dislocation density. Furthermore,
we assume that the precipitates are spherical, leading to the approximation of Zβ∗

Zβ∗ ≈ Dpi pe xM
N b

a2 .

Zurob et al. (2002) used the concentration of niobium in the matrix C M
N b in this approximation, but after

dimensional analysis (Appendix B), we find this should be the above stated xM
N b , which is a molar fraction.

This leads to the following equation, as the describing equation for the nucleation rate during the first stage.

d N

d t

∣∣∣∣
nucl eati on

= (Ntot al −N )

(
Dpi pe xM

N b

a2

)
exp

(−∆G∗

kbT

)
(3.2)
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The activation energy∆G∗ and the accessory critical radius R∗ are estimated using the expression for the free
energy of precipitate formation (Equation 2.1):

∆G =V∆gv + Aγ+∆Gd .

Zurob et al. (2002) define the free energy release due to the reduction of the elastic energy associated with
dislocations by

∆Gd =−µb2R ln(R/b)

2π(1−ν)
− µb2R

5
,

leading to the energy balance for heterogeneous nucleation:

∆G =V∆gv + Aγ− µb2R ln(R/b)

2π(1−ν)
− µb2R

5
, (3.3)

where V and A are respectively the volume and the area of the precipitate, γ the interface energy, ν the Poisson
ratio, µ the shear modulus and ∆gv the free energy change attending nucleation, also known as the chemical
driving force. This chemical driving force is estimated by1

∆gv =− kB T

vN bC N
ln

(
matrix product

solubility product

)
:=− Rg T

vm,N bC N
ln(saturation). (3.4)

The saturation is the fraction of the matrix product and the solubility product. The matrix product is the
product of the concentrations (in weight percentages) of the precipitate compounds in the matrix to the
power of their stoichiometric ratio x (the ratio of carbon and nitrogen in the precipitate at equilibrium)

matrix product = w t%N bM (w t%C M )x (w t%N M )1−x ,

and the solubility product is the product of the separate solubility products (Hudd et al. (1971))

K (N bC N ) = K (N bC )x K (N bN )1−x xx (1−x)1−x ,

=
(

w t%N bE q w t%C E q

x

)x (
w t%N bE q w t%N E q

1−x

)1−x

xx (1−x)1−x ,

= w t%N bE q (w t%C E q )x (w t%N E q )1−x .

The saturation can be rewritten as

saturation = w t%N bM

w t%N bE q

(
w t%C M

w t%C E q

)x (
w t%N M

w t%N E q

)1−x

, (3.5)

and gives an indication of how close the matrix concentrations are to their equilibrium concentration. In
isothermal conditions the system will move to a state of equilibrium and, thus, the saturation will approach
one.

The equilibrium concentration in the matrix w t%N bE q can be found by solving the following equation from
Hudd et al. (1971).

(w t%N bE q )4(MC MN )+ (w t%N bE q )3(−2w t%N bMC MN +w t%C MN MN b +w t%N MC MN b)

+ (w t%N bE q )2(−MN b MN ∗K (N bC )−MN b MC K (N bN )+ (w t%N b)2MC MN −w t%C w t%N bMN MN b

−w t%N w t%N bMC MN b)+w t%N bE q (w t%N bMN b MN K (N bC )+K (N bN )w t%N bMC MN b

−w t%N K (N bC )M 2
N b −w t%C K (N bN )M 2

N b)+K (N bC )K (N bN )M 2
N b = 0, (3.6)

where the solubility products K (N bN ) and K (N bC ) are temperature dependent. The solvus temperature
Tsol , the maximum temperature at which precipitates can form, is found by substituting w t%N b0 in Equa-
tion (3.6) and solve for the temperature. During the isothermal and non-isothermal simulations in Chapter
6, the temperature should stay below this solvus temperature.

1The model works for several types of precipitates, but for this literature study we will focus on N bC N precipitates only.
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Figure 3.2: Schematic representation of the energy changes ∆G . Image from Perez et al. (2008).

Going back to the energy balance in Equation (3.3), a schematic representation of the energy changes of
precipitate forming (Equation (3.3)) is given in Figure 3.2, where it can be seen that the activation energy∆G∗
is the maximum of ∆G . Therefore we take the derivative of ∆G to R, given in Equation (3.7) (note that ∆gv

does not depend on R), and set it to zero to find the critical radius, where after we substitute the radius back
into Equation (3.3) to find the activation energy.

d(∆G)

dR
= 4πR2∆gv +8πRγ− µb2

2π(1−ν)
(ln(R/b)+1)− µb2

5
= 0 (3.7)

Beside the rate of nucleation, we are also interested in the growth rate during the first stage. The growth rate
of existing precipitates is given by

v = dR

d t
= De f f

R

C M −C R

C P −C R
, (3.8)

where the concentrations C and effective diffusion coefficient refer to the elements in the precipitate (Nb, C,
N). In the case of niobiumcarbonitrides Equation (3.8) can be formulated for each element in the precipitate,
and all these formulations are equal. C M is the concentration of the growth driving solute in the matrix, C P

the concentration of this solute in the precipitate and C R the concentration of this solute in the matrix at the
precipitate/matrix interface. The value of this precipitate/matrix interface concentration is modelled by the
use of a Gibbs-Thomson equation (Zurob et al. (2002))

C R =C E q exp

(
R0

R

)
, where R0 =

2γvm,N bC N

Rg T
. (3.9)

The effective diffusion coefficient De f f is defined by

De f f = Dpi peπb2ρ+Dbulk (1−πb2ρ), (3.10)

where the dislocation density ρ is taken constant for now and Dpi pe and Dbulk are respectively the diffusion
coefficients in the pipe and bulk.

The total growth rate of the precipitate mean radius during the first stage is the growth rate of the existing
precipitates (Equation (3.8)) plus the contribution of the arrival of d N new nuclei in the existing population
of precipitates. The contribution of the arrival of new nuclei is defined by

1

N

d N

d t

(
αnR∗−R

)
,

whereαn is a numerical factor, accounting for the fact that nucleated precipitates can grow only if their radius
is slightly larger than the nucleation radius. This results in the full growth rate to be

dR

d t
= De f f

R

C M
N b −C E q

N b exp(R0/R)

C P
N b −C E q

N b exp(R0/R)
+ 1

N

d N

d t
(αnR∗−R). (3.11)
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3.1.2. Stage 2: Growth and coarsening
In the first stage of precipitation we considered simultaneously nucleation and growth (when the saturation
(Equation (3.5)) is much larger than 1), whereas in the second stage of precipitation (when the saturation
(Equation (3.5)) is near 1) we now consider a combination of growth and coarsening. During this second stage
of precipitation the growth rate is slightly different from the one for the first stage, since it is a combination
of the growth rate of pure growth and the growth rate of pure coarsening. When the mean radius of the
precipitates is much larger than the critical radius, the equation for pure growth is valid, but when the mean
radius is equal to the critical radius, the conditions for the standard LSW law are fulfilled (Deschamps and
Brechet (1999)) and pure coarsening takes place1:

dR

d t

∣∣∣∣
growth

= De f f

R

C M
N b −C E q

N b exp(R0/R)

C P
N b −C E q

N b exp(R0/R)
, (3.12)

dR

d t

∣∣∣∣
coarse

= 4

27

C E q
N b

C P
N b −C E q

N b

R0D

R2 . (3.13)

A coarsening function Fc is used to combine the two growth rates to one equation for the growth rate of the
second stage:

dR

d t
= (1−Fc )

dR

d t

∣∣∣∣
growth

+Fc
dR

d t

∣∣∣∣
coarse

,

where we choose the coarsening function in accordance with Deschamps and Brechet (1999) to be

Fc = 1−erf

(
4

(
R

R0
ln

(
C M

N b

C E q
N b

)
−1

))
. (3.14)

Later on we will use the coarsening function to combine the differential equations for the precipitate number
density N and the mean radius R of the first and second stage, resulting in a slightly different description for
the growth rate.
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Figure 3.3: Coarsening function by Deschamps and Brechet (1999).

Other coarsening functions are defined by Perrard et al. (2007), Kranendonk (2005), and Perez et al. (2008),
each with their own advantages and disadvantages.

Using the equation of the critical radius, the mean radius, and the mass balance, we find the following vari-
ation in the precipitate number density during coarsening in the second stage (using the derivation by De-
schamps and Brechet (1999)):

d N

d t
= 4

27

C E q
N b

C P
N b −C E q

N b

R0D

R3

(
R0C M

N b

R(C P
N b −C M

N b)

(
3

4πR3 −N

)
−3N

)
. (3.15)

1Several descriptions of the pure coarsening regime are developed, of which the one by Kreye (1970) takes into account the dislocations.
It involves the fourth power of the mean radius (1/R4), in contrast to the one used in this thesis, which involves the second power of the
mean radius (1/R2).
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Multiplication of this variation by the coarsening function Fc is necessary to only take into account the effect
of growth and coarsening when Fc > 0.

3.2. Implementation
As stated before, the precipitation model from Zurob et al. (2002) uses two stages which act successively:

• Precipitation stage 1 (Nucleation and Growth)

d N

d t
= (Ntot al −N )

(
Dpi pe xM

N b

a2

)
exp

(−∆G∗

kbT

)
, where Ntot al =

Fρ

b
,

dR

d t
= De f f

R

C M
N b −C E q

N b exp(R0/R)

C P
N b −C E q

N b exp(R0/R)
+ 1

N

d N

d t
(αnR∗−R).

• Precipitation stage 2 (Growth and Coarsening)

d N

d t
= Fc

(
4

27

C E q
N b

C P
N b −C E q

N b

R0D
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)(
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N b)

(
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)
−3N

)
,

dR

d t
= (1−Fc )

dR

d t

∣∣∣∣
growth

+Fc
dR

d t

∣∣∣∣
coarse

.

The switch from stage 1 to stage 2 takes place at the moment when the following inequality from Deschamps
and Brechet (1999) holds

− d N

d t

∣∣∣∣
coarse

> d N

d t

∣∣∣∣
nucleation

. (3.16)

This is the moment when the decrease in precipitate density due to coarsening is larger than the increase of
the precipitate density due to nucleation. Another option as provided by Kranendonk (2005) is to combine
the two stages using the coarsening function Fc , which results in the following differential equations:

d N

d t
= (1−Fc )

d N

d t

∣∣∣∣
nucleation

+ Fc
d N

d t
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coarse

,

dR

d t
= (1−Fc )

dR

d t

∣∣∣∣
nucleation,growth

+ Fc
dR

d t
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coarse

,

where

•
d N

d t

∣∣∣∣
nucleation

equals Equation (3.2),

•
d N

d t

∣∣∣∣
coarse

equals Equation (3.15),

•
dR

d t

∣∣∣∣
nucleation,growth

equals Equation (3.11),

•
dR

d t

∣∣∣∣
coarse

equals Equation (3.12).

This combination of the two stages by the coarsening function has our preference, since it could occur when
using the switch, that inequality (3.16) holds, but the coarsening function Fc returns 0, leading to a nucleation
rate d N

d t of 0, which is not the result we would physically expect.

Now that we have defined the differential equations, we can solve them to find N , the precipitate number
density in time and R, the mean radius of precipitates in time. Since the differential equations are complex,
they cannot be solved analytically, so we use multiple numerical time integration methods. These methods
will be explained in the next chapter.



4
Numerical methods

In the implementation of the model, as described in Chapter 3, the differential equations have to be solved
numerically. In this chapter different numerical integration methods for solving the differential equations
will be described, evaluated and compared. Also various non-linear equation solvers needed, for example to
solve Equation (3.7) for the activation energy, will be explained. More information on the basic mathematical
concepts discussed in this chapter concerning numerical time integration methods, like stability regions,
stiff equations and implicit and explicit methods can be found in Chapter 6 from Numerieke Methoden voor
Differentiaalvergelijkingen by Vuik et al. (2015).

4.1. Integration methods
The differential equations obtained in Chapter 3 lead to an initial value problem (IVP) when adding initial
conditions to the model. This IVP can be solved using various numerical integration methods, which can be
divided into explicit and implicit methods. The difference between these two types of methods is that implicit
methods require the solving of a (non-)linear equation in each time step, whereas explicit methods do not. It
seems that the easy choice would be to use explicit methods, however, implicit methods have a larger stability
region, meaning that a larger step size can be taken when using such a method. In Figure 4.1 the difference in
stability regions between explicit methods (Forward Euler and Modified Euler) and implicit methods (Back-
ward Euler) is clearly seen. A loose rule of thumb dictates that stiff differential equations require the use of
implicit schemes because of their stability, whereas non-stiff problems can be solved more efficiently with
explicit schemes (Wikipedia (2016d)). Because our IVP is indeed stiff 1 and we would like to be able to choose
large step sizes, we choose an implicit method. Besides the character of the method, also the order or rate of
convergence of the method is of importance. One could choose a higher order method to have a fast com-
putation at the same accuracy. Unfortunately, also these higher order methods have the property of small
stability regions. For example, in Figure 4.1 compare the stability regions of a first order method Backward
Euler and a fourth order method Runge-Kutta 4. For our IVP we compare and analyse three numerical inte-
gration methods, each chosen because of their properties of having large stability regions. First we will use a
simple Backward Euler method with adaptive time step, secondly a Backward Euler method combined with a
Forward Euler method, also with adaptive time step and last a built-in MATLAB method: Ode15s. Moreover,
we will discuss the adaptive time step control algorithm.

1This was found using the MATLAB Ode45 function.

17



18 4. Numerical methods

(a) Forward Euler (interior of curve). (b) Modified Euler (interior of curve).

(c) Backward Euler (exterior of curve). (d) Runge-Kutta 4 (interior of curve).

Figure 4.1: Stability regions of various numerical integration methods in the complex plane.

4.1.1. Backward Euler
The Backward Euler method is an implicit method which takes more time to solve the equations than For-
ward Euler (explicit method) for example, but has the advantage that it is usually more numerically stable for
solving a stiff equation and therefore a larger step size can be used. The implicit backward Euler method is
defined by 1

Yn+1 = Yn +hf(t n+1,Yn+1), where Yn+1 ≈ Y(t n+1) (4.1)

Even though the method is numerically quite stable, the step size is chosen adaptively, meaning that it adapts
to the truncation error. An approximation for this truncation error is given by

τ j+1 = ||Y j+1 − Ỹ j+1||∞, (4.2)

where Y and Ỹ are two different numerical methods. In our problem we compute the truncation error for
the precipitate number density N and precipitate mean diameter R separately. To use this adaptive step size,
we need a second numerical method to compare it to our Backward Euler method. We choose the Backward
Euler method itself for this, but using two smaller step sizes h

2 leading to two solutions, at time( j )+ h
2 and

time( j ) + h
2 + h

2 =time( j ) +h, which we can then compare to the one step Backward Euler at time( j ) +h.
Subsequently we use a tolerance parameter to determine whether we accept or reject our approximation
Y j+1:

TOL = percentage · ||Y j+1||∞. (4.3)

This leads to Algorithm 4.1, where the parameters hst ar t , α β, T OL and tend are set by the user.

4.1.2. Backward Euler combined with Forward Euler
Since the differential equation for N , the precipitate number density, is more easy than the differential equa-
tion for R, the precipitate radius, and the differential equation for R has a singularity making it unstable, we
use a combination of the Backward Euler method for the differential equation for R and the Forward Eu-
ler method for N , which leads to Algorithm 4.2 for each time step. Again we will use the method itself with
two half time steps and one whole time step for finding an approximation of the truncation error. Again we
compute the truncation error for N and R separately.

1Note that the new time is also found in this step.
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Algorithm 4.1: Euler Backward with adaptive time step algorithm

1 Set h = hstart;
2 while time(j)+h < tend
3 Compute Ỹ j+1/2;
4 Compute Ỹ j+1/2+1/2 based on Ỹ j+1/2;
5 Compute Y j+1; %Use Ỹ j+1/2+1/2 as initial value for the BE method
6 Compute τ j+1;
7 if τ j+1 >β· TOL
8 Reject Y j+1;
9 Set h = h/2;

10 elseif τ j+1 > TOL
11 Accept Y j+1;
12 Set h = h·0.9 · (TOL/τ j+1)1/2;
13 Set j = j+1;
14 elseif τ j+1 > TOL/α
15 Accept Y j+1;
16 Set j = j+1;
17 else
18 Accept Y j+1;
19 Set h = h·0.9 · (TOL/τ j+1)1/2/α;
20 Set j = j+1;
21 end
22 end

Algorithm 4.2: Euler Backward and Forward Euler with adaptive time step algorithm

1 Set h = hstart;
2 while time(j)+h < tend
3 % Compute using Forward Euler
4 Compute Ñ j+1/2;
5 Compute Ñ j+1/2+1/2 based on Ñ j+1/2;
6 Compute N j+1;
7 Compute τN

j+1;

8 % Compute using Backward Euler
9 Compute R̃ j+1/2;

10 Compute R̃ j+1/2+1/2 based on R̃ j+1/2;
11 Compute R j+1;; %Use R̃ j as initial value for the BE method
12 Compute τR

j+1;

13
14 if τN

j+1 >β· TOL && τR
j+1 >β· TOL

15 Reject N j+1 && R j+1;
16 Set h = h/2;
17 elseif τN

j+1 > TOL && τR
j+1 > TOL

18 Accept N j+1 && R j+1;
19 Set h = max(h·0.9 · (TOL/τN

j+1)1/2,h·0.9 · (TOL/τR
j+1)1/2);

20 Set j = j+1;
21 elseif τ j+1 > TOL/α
22 Accept N j+1 && R j+1;
23 Set j = j+1;
24 else
25 Accept N j+1 && R j+1;
26 Set h = max(h·0.9 · (TOL/τN

j+1)1/2/α,h·0.9 · (TOL/τR
j+1)1/2/α);

27 Set j = j+1;
28 end
29 end
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4.1.3. MATLAB Ode15s
The MATLAB Ode15s method is based on the 1-5th Backward Differentiation Formulas (BDFs), which are a
family of implicit methods for the numerical integration of ordinary differential equations. They are linear
multi-step methods that, for a given function and time, approximate the derivative of that function using
information from already computed times, thereby increasing the accuracy of the approximation (Wikipedia
(2016a)). These methods are especially used for the solution of stiff differential equations, indicated in the
MATLAB method by the s. However, by default MATLAB uses the Numerical Differentiation Formulas (NDFs),
which are based on BDF methods (Alberdi Celaya et al. (2014)). This NDF method anticipates a backward
difference of order (k +1) when working in order k, which has a positive effect on the local truncation error.
This means that the NDF methods are more accurate than the BDF methods (with a same step size), but also
a bit less stable. Applying the NDF methods instead of the BDF methods is done for order k = 1, ..,4, since for
higher orders it is inefficient. The Ode15s method starts by solving with order 1 and by the maximum order.
The maximum order (MaxOrder) is 5 by default, but can be changed by giving a different input for MaxOrder
to the MATLAB function. In Figure 4.2 the stability regions (exterior of curves) of the 1-5th BDF methods are
given. The colours of the lines correspond to the order of the BDF method: blue = 1st, red = 2nd, green = 3rd,
pink = 4th, yellow = 5th. If we zoom in on the origin (Figure 4.3), we see that the stability regions of the first
order (blue) and second order (red) BDF method include the entire left half complex plane. This is called A-
stable and also holds for the first and second order NDF method. Increasing the order of the formula, means
decreasing the stability. There is a class of stiff problems (stiff oscillatory) that is solved more efficiently if
MaxOrder is reduced (for example to 2) so that only the most stable formulas are used (Mathworks (2016)).
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Figure 4.2: Stability regions (exterior of the curves) for
the 1-5th BDF methods in the complex plane.
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Figure 4.3: Zoomed in stability region (exterior of the
curves) for the 1-5th BDF methods in the complex

plane.

More details on this MATLAB Ode15s function can be found in Alberdi Celaya et al. (2014).

4.2. Non-linear equations
For each time step of our numerical time integration method we calculate the activation energy ∆G∗, critical
radius R∗ and matrix concentrations that depend on the amount and size of precipitates and therefore de-
pend on time. For the critical radius and activation energy, Equation (3.7) cannot be solved analytically so we
have to use a numerical method. Various methods can be used for this, but we need one which converges
fast to keep the simulation fast. The implementation done by Tata Steel (Kranendonk (2005)) uses the Rid-
ders method, which converges superlinearly. An alternative is the Newton-Raphson method which converges
quadratically most of the time. A disadvantage of this method is that the derivative of the function is needed,
which is not an objection in our case because of the simplicity of the function. Another disadvantage is that
the method is not very robust, meaning that a wrongly chosen initial value could lead to divergence of the
method. However, also this is not an objection in our case because we have a good initial guess: the critical
radius and activation energy for homogeneous nucleation. For other non-linear equations that come forward
during the implementation, we weigh the advantages and disadvantages of each solving method again and
choose the one that fits best.

Besides the non-linear equations in the model itself, the solving of the differential equations also results in
a set of non-linear equations, since we use an implicit integration method and our right hand side f is non-
linear. To solve this non-linear equation a variety of (root finding) methods could be used. Using Newton-
Raphson for the Backward Euler iteration could be an option, except that we would have to find the derivative
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of the right-hand side of our differential equations, which is difficult. A different option could be to use the
bisection method, but this method has some disadvantages. Since we have two differential equations, we
need a two-dimensional bisection method, which is quite difficult. Also, the bisection method converges
slowly, which could lead to a slow integration method.
We believe the best option in this case would be to use a fixed point method called Picard’s iteration method,
since it is an easy method which does not depend strongly on the initial guess as other methods do. The fixed
point method states we can find a fixed point p of a function g if we start with an initial point p0 and use the
iteration pn by pn = g (pn−1). If this sequence converges to p and g is continuous it holds that p = g (p) and
we have found a fixed point p (Vuik et al. (2015)). Going back to equation (4.1), we find

Yn+1
k+1 = g (Yn+1

k ), k = 0,1, ...

= Yn
k +hf(tn+1,Yn+1

k )

as our Picard’s iteration step. In this iteration k indicates the fixed point iteration and n the time step.





5
Computational issues

During the first simulations, using the algorithms described in the previous chapter, a number of computa-
tional issues arouse. In this chapter, these issues will be explained and solutions are opposed. After apply-
ing the improvements mentioned in this chapter, simulations are done of which the results can be found in
Chapter 6.

5.1. Interface concentrations
During the first simulations, we found a negative growth rate. As Zurob also noticed in his PhD thesis (Zurob
(2003)) this is mainly because of the Gibbs-Thomson equation for homogeneous nucleation used to approx-
imate the interface concentrations. If the mean radius of the precipitates is smaller than the critical radius
for homogeneous nucleation, the Gibbs-Thomson equation results in a negative growth rate. A solution pro-
posed by Zurob (2003) was to calculate the interface concentrations by solving for the interface concentration
N b in Equation (3.7). We start with the growth rate (Equation (3.8)) for each element X separately:

R ′ = dR

d t
= De f f

R

C M
X −C R

X

C P
X −C R

X

,

equivalently

C R
X = De f f C M

X −R ′RC P
X

De f f −R ′R
. (5.1)

This results in three equations (for N b, N and C ) with four unknowns: R ′, C R
N b , C R

N and C R
C , for which generally

there are no solutions found. For the fourth equation Zurob et al. (2002) proposed to calculate the concen-
trations at the interface from the solubility product, corrected for the Gibbs-Thomson effect at dislocations.
We start from Equation (3.7):

d(∆G)

dR
= 4πR2∆gv +8πRγ− µb2

2π(1−ν)
(ln(R/b)+1)− µb2

5
= 0.

This equation involves the free energy change attending nucleation∆gv , a function depending on the product
of interface concentrations. Rewriting Equation (3.7), we find

∆gv =−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2 .

Using the definition of ∆gv (Equation (3.4)) and replacing the matrix product with the interface product, we
get

− Rg T

vm,N bC N
ln

(
interface product

solubility product

)
=−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2 , (5.2)
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where

interface product = w t%N bR (w t%C R )x (w t%N R )1−x .

Combining the three equations for the growth rates (Equation (5.1)) with the equation for the energy changes
(Equation (5.2)), results in four equations with four unknowns: R ′, C R

N b , C R
N and C R

C , which we can solve.

We use the bisection method to solve the following equation:

interface product

solubility product
−exp

(
−vm,N bC N

Rg T

(
−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2

))
= 0, (5.3)

which is a function of R ′ via the interface product (the interface concentrations depend on R ′ via Equation
(5.1)). Using this bisection method, we get back the growth rate R ′, and thereby via Equation (5.1) the inter-
face concentrations.

To analyse why this is an improved approximation of the interface concentrations, we rewrite Equation (5.3),
and retrieve the Gibbs-Thomson equation for homogeneous nucleation (Equation (3.9)):

interface product

solubility product
= exp

(
−vm,N bC N

Rg T

(
−2γ

R
+ µb2

8π2(1−ν)R
(ln(R/b)+1)+ µb2

20πR2

))
,

= exp

(
2γvm,N bC N

Rg T

1

R︸ ︷︷ ︸
homogeneous

Gibbs-Thomson

−vm,N bC N

Rg T

(
µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2

))
.

The interface concentrations found by the above described process are therefore also corrected for the Gibbs-
Thomson effect for heterogeneous nucleation at dislocations and not just for homogeneous nucleation.

5.2. Coarsening function
During the implementation it became clear that the value of the coarsening function chosen in Chapter 3
gave a value of 2 at time zero (when choosing N = 0 and R = 0 as initial conditions), whereas we require the
coarsening function to take values between 0 and 1. The coarsening function can be rewritten as

Fc = 1−erf

(
4

(
R

R0
ln

(
C M

N b

C E q
N b

)
−1

))
,

= 1−erf

(
4

(
R

R∗
h

−1

))
,

where R∗
h is the critical radius for homogeneous nucleation. Updating this function, using the critical ra-

dius for heterogeneous nucleation could already be an improvement, but will not solve the problem that the
coarsening function returns values between 2 and 0, as shown in Figure 5.1a.
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(a) Deschamps’ coarsening function from Deschamps and
Brechet (1999).
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(b) Adaption of Deschamps’ coarsening function by
Kranendonk (2005).

Figure 5.1: Plot of the coarsening function Fc against R/R∗, with R∗ the critical radius for heterogeneous
nucleation.
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To solve these problems, Kranendonk (2005) improved the function by setting restrictions on the value of the
function:

• If the mean radius is below the critical radius (R < R∗), the coarsening function should return 1, leading
to the following restriction:
If a = 4

( R
R∗ −1

)< 0, let a = 0, so that Fc = 1−erf(0) = 1.

• If the volume fraction of the system is too small, say below 10% of the maximum volume fraction, no
coarsening should be present and Fc should be 0.

When applying these restrictions to the implementation, the coarsening function looks like Figure 5.1b. As
can be seen, it returns values between 0 and 1, as necessary. In Chapter 6 of this literature study we will
introduce some other coarsening functions and compare them (and the way they influence the resulting
solution).

5.3. Unstable solutions
As described in Chapter 4 we use an adaptive step size in our numerical methods. Unfortunately this gave
some problems due to the large instability of the physical model. When the solution is correct, the step size
is increased, but during the simulation the step size eventually got too large. At that point the concentrations
got negative and the algorithm stopped. To prevent this from happening, we set a bound on the step size.
Also, when the computation is precisely good (τ j+1 = 0) the algorithm stopped, since the new step size is
found by a division by τ j+1. We adjusted this by setting the step size back to the starting step size hstart when
τ j+1 = 0. This was necessary since sometimes the step size can get quite large, it then may occur that the last
part of the time interval is skipped, as illustrated by the yellow block in Figure 5.2. In this case, we adjust the
step size to the remainder of the time interval.

Figure 5.2: Illustration of the time steps at the end of the time interval.

Applying the above mentioned adjustments to our algorithm, we came to Algorithm 5.1 (a general description
which can apply to both the Backward Euler and the Backward Euler with Forward Euler method).
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Algorithm 5.1: Adjusted algorithm (general version) with a different step size selection

1 Set N=1;
2 Set h = hstart;
3 while time(j)+h < tend
4 Compute Ỹ j+1;
5 Compute Y j+1;
6 Compute τ j+1;
7 if τ j+1 >β· TOL
8 Reject Y j+1;
9 Set h = h/2;

10 elseif τ j+1 > TOL
11 Accept Y j+1;
12 Set h = min(h·0.9 · (TOL/τ j+1)1/2,500);
13 while time(j+1)+h > tend
14 Set h = h/2;
15 end
16 Set j = j+1;
17 elseif τ j+1 > TOL/α
18 Accept Y j+1;
19 Set j = j+1;
20 else
21 Accept Y j+1;
22 if τ j+1 == 0
23 Set h = hstart;
24 else
25 Set h = min(h·0.9 · (TOL/τ j+1)1/2/α,500);
26 end
27 while time(j+1)+h > tend
28 Set h = h/2;
29 end
30 Set j = j+1;
31 end
32 end



6
Numerical Results

As described in Chapter 4 we use three different integration methods, which we will compare in Section 6.1.
We will compare different coarsening functions and their performance in the simulation in Section 6.2. Fi-
nally in Section 6.3 we will study the influence of the initial values on the evolution of the precipitates and
on the performance of the algorithm. During the simulations, we use the standard setting as described in
Appendix D and the conversion formulas from Appendix C. For the parameters, we use the configuration as
given in Table 6.11 and Table 6.22, and an alloy (Table 6.3) that was also used in the simulations done by Kra-
nendonk (2005) and Zurob et al. (2002), enabling a comparison of the algorithms and of their results. When
comparing the effects of the initial values, we start with the standard setting and compare the new result to it.

Table 6.1: Precipitation parameters used in the
simulations.

Parameter Value Unit

T 1123.15 (850 ◦C) K
Rg 8.31441 J/(K mol)
ρ 3.27×1014 1/m2

kB 1.38×10−23 J/K
ν 0.293
F 1.32×10−3

Na 6.022142×1023 1/mol
vm,N bC 13.39×10−6 m3/mol
vm,N bN 12.72×10−6 m3/mol

b 2.53144×10−10 m
N (0) 1×1010 1/m3

R(0) R∗ m

Table 6.2: Numerical parameters used in the
simulations.

Parameter Value Unit

αn 1.05
hst ar t 1×10−5 s
T OL 1×10−5

Nmax 75
α 2
β 100

tst ar t 0.001 s
tend 12040 s

Table 6.3: Alloy composition of alloy N1 used in the simulations in weight percentages (Kranendonk (2005)).

C Si Mn P S Nb Al N Fe
0.076 0.06 1.34 0.0058 0.0026 0.03 0 0.0061 98.4795

6.1. Integration methods
We compare the three integration methods from Chapter 4, checking the time it took for the method to
solve the problem, the number of iterations and the quality of the resulting solution (compared to those
retrieved by Kranendonk (2005)). In Figure 6.1 the simulation results using the different integration methods
are shown. Table 6.4 shows the duration of the simulation, the number of iterations and the number of time
steps for each integration method. For the Backward Euler and the combination method, the number of it-
erations is the total number of method iterations, so also includes rejections of a solution and reducing the
time step. The number of iterations in the MATLAB Ode15s method is the number of successful steps.

1The temperature, time and composition dependent parameters are found in Appendix D.
2The function of each numerical parameter can be found in the nomenclature.
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(a) Backward Euler - Number density.
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(b) Backward Euler - Mean diameter.
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(c) Backward Euler and Forward Euler - Number density.
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(d) Backward Euler and Forward Euler - Mean diameter.
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(e) ODE15s - Number density.
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(f) ODE15s - Mean diameter.

Figure 6.1: Simulation results using the standard settings from Appendix D and for the MATLAB Ode15s:
RelTol = 1×10−3, AbsTol = 1×10−7, NonNegative = N, Refine = 4.

Table 6.4: Overview of the different integration methods by time, number of iterations and error.
Method Computer time (s) #Iterations #Time steps

Backward Euler 63.0.14190 1623 316
Backward Euler & Forward Euler 66.523643 754 446

Ode15s 2.324776 109 (successful steps) 437

The overview in Table 6.4 shows that the Backward Euler method is slightly faster then the combined Back-
ward Euler and Forward Euler method, but that the MATLAB Ode15s is by far the fastest method. Using the
Backward Euler with Forward Euler method was mainly tested to speed up the simulation, since implicit
methods are known to be slow. However, this does not seem to work, even though the number of iterations
in the combined method is lower. This is due to the number of time steps made by the combination method,
which is higher then the number of time steps used by the Backward Euler method.

Using the duration of the simulations as a guideline, one would choose the MATLAB Ode15s method, but
looking at the results in Figures 6.1e and 6.1f we see it returns physically impossible values. The MATLAB
Ode15s method predicts negative values for the mean precipitate radius at very early times, which is physi-
cally unacceptable. In Figure 6.2 the results are plotted with the same vertical axes, as has been used for the
two other methods. Although this result is globally similar to the result of the Backward Euler the oscillations
in the results of the MATLAB routine have no physical explanation. Therefore this method will not be used in
further simulations.
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Using the Backward Euler with Forward Euler method also results in oscillations as shown in Figures 6.1c and
6.1d. We find that at some moment the precipitate density increases to above the plateau, which results in an
oscillatory precipitate diameter. The volume fraction as a function of time as predicted by the Backward Euler
with Forward Euler is given in Figure 6.3. We see that once the volume fraction is slightly above zero (0×10−4),
the oscillations start. When using only the Backward Euler method no such oscillations are found, showing
that using the forward step in the equation for the number density destabilises the algorithm. Therefore this
method will not be used in further simulations.
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Figure 6.2: Precipitate mean diameter using MATLABs
Ode15s method and axes from the other methods.
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Figure 6.3: Volume fraction in time using the
Backward Euler with Forward Euler method.

Even though the simulation done with the Backward Euler method result in a small bend at the beginning of
precipitate density (Figure 6.1a), it still gives the best results compared to the other two methods and therefore
we will use the Backward Euler as our integration method during the simulation for the other calculations.
When we compare the results from the simulation using this Backward Euler method (Figures 6.1a and 6.1b)
and the simulation done by Tata steel (Kranendonk (2005), Runge-Kutta 4) we find Figure 6.4. The results
of the two simulation methods look quite the same, but do have some small deviations with respect to each
other. These deviations can be explained by the differences between the two implementations, of which an
overview is given in Table 6.5. Since the deviations are small, and the model of Kranendonk (2005) was fitted
on experimental data and the model of Zurob et al. (2002), it is safe to assume that our model predicts the
experimental data accurately.
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Figure 6.4: Simulation results using BE compared to simulation by Tata Steel using Runge-Kutta 4.

Table 6.5: Differences in implementation between this literature study and Tata Steel

Literature study Tata Steel

Integration method Backward Euler Runge-Kutta 4

Lattice constant
10−9 × (0.36306+0.078xc )·

(1+ (24.9−50xc )(T −1000)×10−6)
3.6444×10−10

Calculation interface
concentration (IC)

Variable C and N IC
C and N IC equal to matrix

concentration

Differential equation for R
during coarsening

4

27

C E q
N b

C P
N b −C E q

N b

R0D

R2

De f f

R

0.01(w t%N bR −w t%N bR27/23)

w t P
N b −0.01w t%N bE q

(based on Zurob (2003))

Unit Concentrations Weight percentages / molar fractions
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6.2. Coarsening function
As described in Chapter 5 the original coarsening function by Deschamps and Brechet (1999) had to be ad-
justed to to fullfil the requirements (namely 0 ≤ Fc ≤ 1). However, by setting such restrictions, the coarsening
function looses its original properties. Also, this coarsening function fails to describe precipitate dissolution,
an effect we also would like to be able to describe later on.
Choosing a different coarsening function, which has the properties we want without setting restrictions on
the value of variables in the function would be preferable. We choose different coarsening functions and
compare them to the coarsening function chosen by Kranendonk (2005). These coarsening functions must
meet the requirement of returning values between 0 and 1, where it returns 1 during pure coarsening and 0
during pure nucleation. The following coarsening functions are compared:

1. The original coarsening function with the heterogeneous critical radius and restrictions proposed by
Kranendonk (2005):

Fc = 1−erf

(
4

(
R

R∗ −1

))
, Figure 5.1b.

2. A coarsening function based on the current volume fraction ( fv ) and the equilibrium volume fraction
corrected by the Gibbs-Thomson effect ( fv,GT ) by Perrard et al. (2007):

Fc = sup

[
1−100

(
fv

f eq
v,GT

−1

)2

,0

]
, Figure 6.5.

3. A coarsening function based on the heterogeneous critical radius by Perez et al. (2008), with restrictions:

Fc =
{

1−1000
( R

R∗ −1
)2

, inΩ

0, else
,

whereΩ= {0.99R∗ < R < 1.01R∗ and volume fraction > 0.1∗maximum volume fraction}, Figure 6.6.

4. A coarsening function based on the saturation, corrected for saturation above 1:

Fc = sup[2− saturation(t ),0] , Figure 6.7.
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Figure 6.5: Coarsening function by Perrard et al.
(2007).
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Figure 6.6: Coarsening function by Perez et al.
(2008).
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Figure 6.7: Saturation based coarsening
function.
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Unfortunately, it soon became clear that the saturation based coarsening function would not give the desired
result. Since the saturation must go to one for time to infinity, we used this to define our coarsening function.
However, if we plot the saturation found using Backward Euler with Picard and the coarsening function by
Kranendonk (2005), we find Figure 6.8. It seems that the saturation does indeed approach one, but never
reaches this point, resulting in the fact that the coarsening function never equals 1, and therefore pure coars-
ening never takes place. Comparing this to the other coarsening functions found in Figure 6.9, we see that
those functions do reproduce pure coarsening (Fc = 1). Therefore the saturation based coarsening function
will not be used.
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(a) By Deschamps and Brechet (1999).
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(b) By Kranendonk (2005).
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(c) By Perrard et al. (2007).
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(d) By Perez et al. (2008).

Figure 6.9: Coarsening functions in time (using Euler Backward with Picard in the implementation).

When we look at the results in Figure 6.9, and specifically at Figure 6.9d, we see that the coarsening function
by Perez et al. (2008) drops below one after some time. It is unclear why this happens and is physically incor-
rect for isothermal calculations. Furthermore, the coarsening functions by Deschamps and Brechet (1999)
(Figure 6.9a), by Kranendonk (2005) (Figure 6.9b) and by Perrard et al. (2007) (Figure 6.9c) have the same be-
havior, but slightly differ in the way they start (from Fc = 0 to Fc 6= 0) and the way they reach the top (close to
Fc = 1). However, the differences between the coarsening functions are so small, that they will not strongly
influence the final results.

We choose to use the coarsening function by Perrard et al. (2007) in our simulations, since that is the only

coarsening function that can also describe precipitate dissolution ( fv > f E q
v ) and does not have additional

restrictions when implemented. An additional benefit of this function is that it is checked to be valid for both
isothermal and non-isothermal heat treatments (Perrard et al. (2007)).

6.3. Variable variation
To test the model and the adaptivity of the implementation, we choose multiple initial values and analyse the
effect it has on the precipitate number density and the mean radius. First we will vary the initial precipitate
number density and mean radius to see whether the starting precipitate number density has large effects on
the nucleation rate of the precipitates. Second we will vary the temperature homogeneously and compare
the results. We also tested a non-isothermal condition by introducing a temperature curve, to see the effect
of increasing temperature during the nucleation and growth of precipitates. Thirdly, we will simulate for
different dislocation densities. Finally we compare the effect of different chemical compositions (alloys) on
precipitate evolution.
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6.3.1. Initial precipitate number density and mean radius
In this section we will compare the results using different initial values for the precipitate number density N
and the mean radius R. We will simulate the nucleation and growth for three different initial densities and
mean radiuses. For T = 850 °C and ρ = 3.27×1014 m−2 we have a maximum volume fraction of 3.2267×10−4

and a initial critical radius of 2.49×10−10. For each initial value we find the initial volume fraction via

fv = 4

3
πN R3,

and compare it to the maximum volume fraction. On t = 01, we set:

Table 6.6: Various initial values chosen in the simulations.

Setting
Precipitate number

density N
Precipitate mean

radius R
Initial volume fraction f Ini t

v

(a) 0 R∗ 0
(b) - original setting

in previous simulations
1×1010 R∗ 6.49×10−19

(c) 1×1021 R∗ 6.49×10−8

For initial setting (a) we start with no precipitates. if there are no precipitates, the radius of those precipitates
is free to choose. We set the radius as the critical radius, because once there is one precipitate it must initially
have the critical radius. For initial setting (b) we choose a small amount of precipitates to start with. In the
previous simulations we saw that the precipitate density had a top level of around 2.5×1021, so a small amount
of precipitates would be 1×1010 precipitates per m3. For initial setting (c) we choose the initial precipitate
density slightly lower than the maximum we have seen in previous simulations. The initial volume fraction
of setting (c) is the closest to the maximum volume fraction, but still orders of magnitude smaller. The results
of the simulation using different initial values are given in Figure 6.10.
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(a) Precipitate number density.
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(b) Precipitate mean diameter.
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(c) Saturation.
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(d) Coarsening function.

Figure 6.10: Simulation results for different initial values at 850 °C and ρ = 3.27×1014 m−2.

We note that the difference between the results using initial values setting (a) and initial values setting (b) is
very small and can only be seen in the precipitate density for times between 10−4 and 10−2 seconds. However,
the difference between initial values setting (c) and the other other setting is more pronounced for times up
to 10−2 seconds, even though it only still effects the density. Also we see that when the initial density is chosen

1Since we would like to change the density and diameter at t = 0 we set tst ar t = 0 for these simulations.
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this high (1×1021) the bend at the beginning has disappeared. This can be explained since the simulation has
difficulties around N ≈ 0 caused by the 1/N in the differential equation for the precipitate radius (Equation
(3.11)). This is avoided when starting with a high precipitate density (away from zero). Even though there is
a clear difference in the beginning, the maximum number density is the same for all initial values and this
maximum is reached at almost the same time, irrespective of the initial values. We find that the starting value
for the precipitate density has no strong influence on the final results.

6.3.2. Temperature
In this section we will discuss the effect of temperature on the precipitation evolution and investigate the
difference in results for isothermal versus non-isothermal temperature schemes. There are some restrictions
on the temperatures we choose, since we restrict the simulations to austenite (see Figure 2.3 for the right
temperatures), and we must stay below the solvus temperature. The solvus temperature depends on the
initial concentrations of the precipitate elements in the alloy and the solubility products of the precipitate
elements. It is found by the solving fourth order Equation (3.6) for the temperature. In this equation, we
take the initial weight percentage for N b as the equilibrium weight percentage. For the different alloys that
we consider (Table 6.8) we find the solvus temperatures presented in Table 6.7. Alloy N1 will be used in the
temperature simulations.

Table 6.7: Solvus temperatures
for the different alloys described

in Table 6.8.

Alloy
Solvus

temperature (°C)

N1 1093.88
N2 1021.21
N4 1240.30 750 800 850 900 950 1000 1050 1100

Temperature [
°
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Figure 6.11: Volume fraction against temperature for alloy N1.

Figure 6.11 shows the equilibrium volume fraction as a function of temperature, returning a comparable
solvus temperature as found in the analysis with Equation (3.6). For precipitation to take place the tempera-
ture should be lower than the solvus temperature.

In the results, the definition of the volume fraction is of great importance. The volume fraction is defined by

fv = 4

3
πN R3, (6.1)

meaning that for a constant volume fraction, a lower precipitate number density (N ) leads to larger precipi-
tates (R) and vice versa. This relation will often be used in the rest of this chapter.

Isothermal calculations
Taking the temperature restrictions into account, we choose the following temperatures for the isothermal
calculations:

(a) 850 °C, the original temperature from the previous simulations,

(b) 750 °C, below current temperature of 850 °C,

(c) 950 °C, above current temperature of 850 °C.

The results of the simulation using these temperatures are given in Figure 6.16.
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Using the results from the isotherm calculations for even more temperatures, we construct a PTT (precipitation-
time-temperature) curve, which involves the times when precipitation starts and finishes. This PTT curve can
be used to adjust the processes of steel making. It can give a good indication of what type of linear tempera-
ture decrease you should use to get the lowest amount of precipitates in the resulting product. We construct
the PTT curve, using the following steps, of which the result can be found in Figure 6.121.

• The volume fraction of precipitates as a function of time
is calculated for a constant temperature. This is indicated
in the top picture by the black line.

• Two times on this curve are selected: the time where the
volume fraction is 5% of the equilibrium volume fraction
and the time where the volume fraction is 95% of the equi-
librium volume fraction. These criteria can differ per re-
searcher, some choose respectively 1% and 99% percent
as start and end percentages. In the top picture, the equi-
librium volume fraction is indicated by the green line, and
the 5% and 95% criteria by the red lines. If the time at
which the volume fraction is exactly 5% or 95% of the
equilibrium volume fraction is not available, interpola-
tion is used to find the specific time.

• The previous step is repeated for various temperatures,
in every step leading to two points in the bottom picture.
The results are plotted in one diagram, giving two (black)
curves as shown in the bottom picture.

Figure 6.12: Illustration of the construction of a
PTT curve.

When we plot the volume fraction for different temperatures, we find Figure 6.13. From literature we know
that the temperature has influence on the activation energy and the diffusion coefficient, each with opposite
effect: increasing the temperature increases the activation energy, making the chance of forming new nuclei
smaller, which leads to a lower nucleation rate. On the other hand, increasing the temperature increases the
diffusion coefficient, making it easier to form new nuclei, leading to a higher nucleation rate. In Figure 6.13
we see that until 950 °C the influence from the diffusion coefficient is larger and the nucleation rate increases
and at 1000 °C we find the influence from the activation energy is larger, leading to a lower nucleation rate.
The hard switch between these situations is unexpected.
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Figure 6.13: Volume fraction in time for different temperatures with ρ = 3.27×1014 m−2.

When we look at the resulting PTT diagram in Figure 6.14a, the hard switch between 950 °C and 1000 °C
is reflected in the non-symmetrical shape of the PTT diagram. In literature most PTT diagrams are plotted

1When using the PTT curve, take into account that the dislocation density has influence on the curve.
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using a base 10 logarithmic scale for the time axis. However, when using such a logarithmic time scale, we
find the result is even more non-symmetric (Figure 6.14b). It could be possible that either in literature high
temperatures are not considered and the points are fitted to a symmetric curve (not taking the real results
into account), or our model is not giving the right results for the PTT diagram. Other causes could be that
the equilibrium volume fraction is not correct, as it is not corrected for the Gibbs-Thomson effect, or a large
error is made in the interpolation to find the time at which 5% and 95% of the equilibrium volume fraction is
reached. When a new model is developed during the continuation of this thesis, a new PTT diagram should
be constructed to compare the results and find the cause of the asymmetry. Assuming that our PTT diagram
is correct, we can apply various temperature cooling curves (Figure 6.15: indicated by the dotted lines), to see
which linear temperature decrease would give the fewest precipitates in the product: in this case the dotted
yellow line in Figure 6.15 would be chosen. This is an application of the PTT diagram that is often used in the
optimisation of the steel making process.
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(a) Precipitate-time-temperature curve on a linear time
scale.
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Figure 6.14: The precipitate-time-temperature curve with ρ = 3.27×1014 m−2.
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Figure 6.15: Precipitate-time-temperature curve on a logarithmic time scale and various temperature
cooling curves.

Using the PTT from Figure 6.14a, we see that results for temperatures above 1000 °C will result in very long
simulation times and we will therefore not use this in further simulations. In Figure 6.16 we see that the results
at 850 °C have an average time span of precipitation (between 10−2 and 105 seconds), and results at a slightly
higher temperature (950 °C) have a smaller time span of precipitation (between 10−1 and 104 seconds). In the
results of the simulations we furthermore see that the precipitate number density reaches the same maximum
plateau (determined by Ntot al , see Equations (3.1) and (3.2)) for 750 °C and 850 °C. The results for 950 °C
show that this maximum plateau is not reached, which is due to the competition between nucleation and
coarsening at high temperatures. The precipitate mean diameter reflects the same conclusion: for 750 °C and
850 °C the same size of precipitates is reached and for 950 °C the precipitates in the end are larger, due to
the constant volume fraction. Increasing the temperature also leads to a lower saturation (Figure 6.16c) and
earlier coarsening (Figure 6.16d).



36 6. Numerical Results

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Time [s]

0

2

4

6

8

10

12

14

16

18

P
re

c
ip

it
a

te
 d

e
n

s
it
y
 [

1
/m

3
]

×10
20

850 °C

750 °C

950 °C

(a) Precipitate number density.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Time [s]

0

2

4

6

8

10

12

14

P
re

c
ip

it
a

te
 d

ia
m

e
te

r 
[n

m
]

850 °C

750 °C

950 °C

(b) Precipitate diameter.
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(c) Saturation.
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(d) Coarsening function.

Figure 6.16: Simulation results for different temperatures and ρ = 3.27×1014 m−2.

Non-isothermal calculations
During hot rolling, the material is being heated and non-isothermal reactions take place. To model this pro-
cess, we implement a temperature curve depending on time. Using the restrictions on the temperature given
at the beginning of this section, we choose the following two temperature schemes for our non-isothermal
simulations.

(a) Linear temperature increase from 850 °C to 1000 °C in 140 minutes, after which the temperature stays
constant, to simulate the hot rolling process.

(b) Non-linear temperature increase from 728.36 °C to 1000 °C based on experimental temperature data.

The implemented temperature curves are given in Figure 6.17.
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Figure 6.17: Linear (setting (a)) and non-linear (setting (b)) temperature curves in time.

The temperature curves have different starting temperatures, but reach the same final temperature, slightly
below the solvus temperature. The results of the non-isothermal calculation with the linear temperature
increase (setting (a)) are shown in Figure 6.18 and the results of the non-isothermal calculation with the non-
linear temperature increase (setting (b)) are shown in Figure 6.20.
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For the linear temperature increase (Figure 6.18), the development of both the precipitate radius and precip-
itate number density follow the results for 850 °C, because the temperature also starts at 850 °C. Eventually
the density drops faster and the diameter grows faster then the 850 °C-results, more agreeing with the 950
°C-results, because of the temperature increase to 1000 °C. This could mean that results for non-isotherm
calculations could constructed using parts of the isotherm calculations. However, more simulations with
special temperature curves (for example high temperature peaks) should be run to test this presumption. In
Figure 6.18d the coarsening function drops below one at some point. When we plot both the volume fraction
and the equilibrium volume fraction corrected for the Gibbs-Thomson effect (Figure 6.19), we can see this
is because at high temperatures the volume fraction increases above the equilibrium volume fraction and
precipitates start to dissolve, i.e. the coarsening function drops below one. The behavior of the saturation in
time is not changed by the temperature increase and is only influenced by the starting temperature, as shown
in Figure 6.18c.
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(a) Precipitate number density.
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(d) Coarsening function.

Figure 6.18: Simulation results for a linear temperature increase and ρ = 3.27×1014 m−2.
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Figure 6.19: Volume fraction and equilibrium volume fraction corrected for the Gibbs-Thomson effect in
time with a linear temperature increase and ρ = 3.27×1014 m−2.

When using the non-linear temperature increase (setting (b)), we get the results shown in Figure 6.20. The
temperature curve is based on experimental temperature data. Unfortunately the experimental tempera-
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ture data took values above our solvus temperature, so we equally decreased the temperature to below the
solvus temperature, resulting in the temperature curve in Figure 6.17. The results in Figure 6.20 look similar
to those found for the linear temperature increase, except for the more oscillating coarsening function and
the much higher saturation. In the plot for the volume fraction in Figure 6.21 we see that the volume fraction
gets slightly above the equilibrium volume fraction, as with the linear temperature increase, and therefore
the coarsening function drops below one. The precipitate mean diameter even decreases when the coars-
ening starts, due to the large decrease in the coarsening function right after it reached one. The coarsening
function recovers to one and the precipitate mean diameter start growing again. The oscillations in the coars-
ening function can not be physically explained and are probably due to numerical errors or the definition of
the coarsening function. Since the volume fraction does not have the oscillations, regularisation of the coars-
ening function by Perrard et al. (2007) could solve the problem. The high saturation agrees with earlier results:
lower temperatures mean a higher saturation, and the behavior is not influenced by the temperature curve.
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Figure 6.20: Simulation results for a non-linear temperature increase and ρ = 3.27×1014 m−2.
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Figure 6.21: Volume fraction and equilibrium volume fraction corrected for the Gibbs-Thomson effect in
time with a non-linear temperature increase and ρ = 3.27×1014 m−2.
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6.3.3. Dislocation density
In the simulations, discussed in the previous sections, the dislocation density was taken to be equal to 3.27×
1014 m−2. However from Kranendonk (2005) we find, when taking the evolution of the dislocations into ac-
count by involving recovery and recrystallisation models in the simulation, the initial dislocation density can
be reduced by a factor two in the time interval of 12000 seconds. Therefore we test our model for different
dislocation densities:

(a) 3.27×1014 m−2, the original dislocation density from previous simulations,

(b) 1.18×1014 m−2, about half the original dislocation density,

(c) 6.54×1014 m−2, about double the original dislocation density.

The dislocation density ρ occurs twice in the precipitation model.

1. In the maximum number of potential nucleation sites Ntot al , which is defined by (Equation (3.1))

Ntot al =
Fρ

b
.

2. In the effective diffusion coefficient De f f , which is defined by (Equation (3.10))

De f f = Dpi peπb2ρ+Dbulk (1−πb2ρ).

We expect that when we decrease the dislocation density, the plateau in the precipitate density will also de-
crease, but the mean diameter will increase and vice versa. So positive effects on the density plateau and
opposite effects on the mean diameter. This because the maximum volume fraction (Equation (6.1)) stays
the same, independent of the dislocation density. The influence from the effective diffusion coefficient on
the results is probably low. The results of the simulations are given in Figure 6.22.
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Figure 6.22: Simulation results for different dislocation densities at 850 °C.

When we look at the results of the simulation using different dislocation densities, it confirms our expecta-
tions on the effect of the dislocation density. However, the precipitate mean diameter shows an interesting
inversion phenomenon. Increasing the dislocation density increases the growth rate, but the plateau in the
precipitate growth is also reached sooner, furthermore the plateau is at a lower value. This is attributed to the
lower number of nucleation sites and since the final volume fraction is the same, the average particle radius
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should be larger. Growth curves for lower dislocation densities start later but continue for a longer period and
therefore cross the growth curves belonging to higher dislocation densities.
Also, the results show that increasing the dislocation density expedites the coarsening (Figure 6.22d) and the
decrease of the saturation (Figure 6.22c).

6.3.4. Chemical composition
In this section, the influence of the composition will be studied, by comparing the results of composition
N1, presented in the previous sections, with the alloys N2 and N4 presented in Table 6.8. The results of the
simulation are given in Figure 6.23.

Table 6.8: Alloy composition of alloys N1, N2 and N4 used in the simulations in weight percentages
(Kranendonk (2005)).

Alloy C Si Mn P S Nb Al N Fe

N1 0.076 0.06 1.34 0.0058 0.0026 0.03 0 0.0061 93.3815
N2 0.20 0.20 1.0 0.024 0.013 0.007 0.006 0.0056 98.5444
N4 0.21 0.19 1.14 0.023 0.015 0.058 0.008 0.0061 98.3499

Since we are only focusing on N bCx N1−x precipitates, we expect that just the weight percentages of N b, C
and N will have influence on the results. When we compare the weight percentages of these elements in the
three different alloys we find the following table.

Table 6.9: Initial weight percentages and fractions of the precipitate elements together with the solvus
temperatures.

Alloy Nb C N XN b XC XN Tsol (°C)

N1 0.03 0.076 0.0061 1.7947×10−4 0.0035 2.4201×10−4 1093.88
N2 0.007 0.20 0.0056 4.1628×10−5 0.0092 2.2085×10−4 1021.21
N4 0.058 0.21 0.0061 3.4488×10−4 0.0097 2.4054×10−4 1240.30

When comparing the different weight fractions of N b, C and N in the different alloys, we find that N b de-
termines the maximum volume fraction in alloys N1 and N2 since it has the lowest weight fraction. A higher
concentration of the element determining the maximum volume fraction, leads to a higher maximum volume
fraction. To remind, the volume fraction is defined by (Equation (6.1))

fv = 4

3
πN R3,

meaning that a higher maximum volume fraction thereby leads to larger precipitates (R), since the maximum
number of precipitates (N ) will not be influenced (if the dislocation density is the same for all three compo-
sitions).

Figure 6.23 confirms our expectations for alloys N1 and N2. It shows that the mean diameter of N1 is larger
than the mean diameter of N2 and the same effect can be seen in the saturation, which is defined by (Equation
(3.5))

saturation = matrix product

solubility product
.

However, the higher saturation is mainly due to the initial matrix product which is different for each chemical
composition. For N4 a volume fraction based analysis cannot be made this easily, since N b is not the deter-
mining element for the volume fraction, but nitrogen (N ) is. Nevertheless, the results show that the higher
weight percentage of N b in N4 compared to the other two alloys still results in larger precipitates. For the
duration of precipitation, we find that the starting point of nucleation of N2 is later then that of N1 and N4,
and ends earlier. Even though, the decrease in nucleation for N4 is the latest, the start of nucleation is sec-
ond. We can conclude that when N b determines the maximum volume fraction, a higher maximum volume
fraction will lead to later nucleation. When N b does not determine the maximum volume fraction, no clear
conclusion can be stated from these results.
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Figure 6.23: Simulation results for different chemical compositions at 850 °C and ρ = 3.27×1014.





7
Concluding remarks and future work

In this literature study, the precipitation model by Zurob et al. (2002) has been implemented, analysed and
improved. For the solving of the differential equations different numerical methods have been tested and
the results compared to the results found by Kranendonk (2005). During the implementation some compu-
tational issues arose because of the model, but after some adjustments in the implementation these issues
were solved.
Various initial values and parameters have been varied to see the effect on the results and the performance
of the implementation. All results of the simulations could be qualitatively interpreted. Also, the model is
quite robust, but the computation time can increase drastically when different initial constants are chosen
(like a high temperature or high starting density). This is mainly because of the non-linear equations in the
model, like the critical radius and the interface concentration, that have be solved in every time step during
the simulation.
Even though the results we find using the precipitation model by Zurob et al. (2002) seem to be realistic
and predict the experimental data quite well after fitting, for applications to modern steel grades the Zurob
models needs a number of improvements and extensions:

• The approximation for Zβ∗ in the nucleation rate during the first stage could be improved, but also the
approximation for Ntot al in this equation, which involves an adjustable factor F which has no direct
physical meaning. From data fitting we even find a value for F about three orders of magnitude lower
than expected.

• Because most steel alloys frequently contain many alloying elements, different precipitates can oc-
cur simultaneously (for instance, Nb(C,N), AlN, MnS) and complex precipitates may exist, like (Nb,
Ti)(C,N). In the Zurob model, only one type of precipitate is considered at the time. For future work it
would be nice to be able to also describe the nucleation and growth of multiple types of precipitates at
the same time, since this is more realistic. A multi-component model is the extension to capture this
complexity (Den Ouden (2015)).

• A serious disadvantage of the Zurob model is the use of the mean radius of the precipitates. The dif-
ference between small and large precipitates or only average sized precipitates can not be found in this
way. An improvement for this would be to use distributions for the size of the precipitates, in which
you can see how many precipitates of that specific size exist. For homogeneous nucleation such an
implementation is already done by Den Ouden (2015), but for heterogeneous nucleation this still has
to be developed. After which the two models for homogeneous and heterogeneous nucleation could
be combined. An additional advantage of the distribution implementation is that it is not necessary to
distinguish a nucleation and growth stage from a coarsening stage, because both stages are covered in
the evolution of the precipitate size distribution.

Once the improvements on the precipitation model are completed, this model has to be linked to the original
recrystallisation and recovery models by Zurob et al. (2002). And if time allows it, also improvements in these
models could be made.

43



44 7. Concluding remarks and future work

Taking these considerations into account, the steps that need to be performed:

1. Make a new model with distributions, based on the old model.

2. Improve the new model with a multi-component version.

3. Improve the physical approximations made in the Zurob model, of which some are described previ-
ously (like the approximation for Zβ∗).

4. Couple the new model to the recrystallisation and recovery models.

5. Improve the recrystallisation and recovery model.

6. Add the homogeneous precipitation model to the system.



A
The recrystallization model and recovery

model as developed by Zurob et al.

• Recrystallisation

X (t ) = 1−exp

−Nr ex

 t∫
0

M(t )G(t )d t

3
Nr ex = kSv

Ac

M(t ) =
(

1

Mpur e
+αC M

N B

)−1

G(t ) = 1

2
ρ(t )µb2 − 3γg bFv (t )

R(t )

• Recovery

dσp

d t
=−

64σ2
p vd

9M 3α2
r E

exp

(
− Ua

kB T

)
sinh

(
σpVa

kbT

)(
1− N

Nc

)
, For N < Nc

dσp

d t
= 0, For N > Nc where Ua = 286 kJ/mole , Va = 45b3, Nc = 1

2
ρ(t )1.5, σp =σ−σy
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B
Dimensional analysis of the differential

equation for the precipitate number
density N in the Zurob model

The differential equation for the precipitate number density N is given by

d N

d t
= (Ntot al −N )

(
Dpi pe C

a2

)
exp

(−∆G∗

kbT

)
with dimensions

1

[m3]

1

[s]
=

(
1

[m3]
− 1

[m3]

) [m2]
[s] [?]

[m2]

exp

(
[J]

[J]
[K] [K]

)
,

1

[m3]

1

[s]
= 1

1

[m3]

[?]

[s]
1.

So C should be dimensionless, and therefore equals the molar fraction xM
N b and not the concentration C M

N b(Zurob
et al. (2002)).

47





C
Conversion formulas as used in the

simulations

In the implementation of the models, we use a set of conversion formulas from Kranendonk (2005). The
symbols used in these formulas are:

Table C.1: Used symbols in the conversion formulas

Symbol Property Unit

C M
X Concentration of element X in the matrix mol/m3

M j Molar weight of component j kg/mol

w t j Weight fraction of component j 1

x j Molar fraction of component j

ρaus Mass density of austenite g/m3

1 Note that in the implementation the weight percentage is used, where w t j = w t% j
100 .

The formulas are given by (for a system with N components)

x j =
w t j

M j

N∑
k=1

w tk
Mk

,

w t j =
x j M j

N∑
k=1

xk Mk

,

and

w tX = C M
X MX

ρaus
,

C M
X = w txρaus

MX
.
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D
Standard settings as used in the simulation

Solubility products

K (N bC ) = 103.42− 7900
T

K (N bN ) = 102.80− 8500
T

Mass densities

ρN bC N = MN b +xMC + (1−x)MN

vm,N bC N
g/m3

ρaus = (8283.8−0.5785 ·T ) ·1000 g/m3

Lattice constant

a = (0.36306+0.078xc )(1+ (24.9−50xc )(T −1000)×10−6)×10−9 m

Molar volumes

vm,N bC N = xvm,N bC + (1−x)vm,N bN m3/mol

vm,aus = 1

4
Na a3 m3/mol

Interface energy

γ= 2.5×10−5(Tsol −T )1.5 +0.375 J/m2

Shear modulus

µ= 81×109
(
1−0.91

T −300

1810

)
Pa

Diffusion coefficients

Dpi pe = 4.1×10−4 exp

(−172500

Rg T

)
m2/sec

Dbulk = 0.83×10−4 exp

(−266500

Rg T

)
m2/sec

Coarsening Function

Fc = 1−erf

(
4

(
R

R0
ln

(
C M

N b

C E q
N b

)
−1

))
(with restrictions from Kranendonk (2005))
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52 D. Standard settings as used in the simulation

Differential equations and functions

d N

d t
= (1−Fc )

d N

d t

∣∣∣∣
nucleation

+ Fc
d N

d t

∣∣∣∣
coarse

,

dR

d t
= (1−Fc )

dR

d t

∣∣∣∣
nucleation,growth

+ Fc
dR

d t

∣∣∣∣
coarse

,

where

d N

d t

∣∣∣∣
nucleation

= (Ntot al −N )

(
Dpi pe xM

N b

a2

)
exp

(−∆G∗

kbT

)
,

d N

d t

∣∣∣∣
coarse

= 4

27

C E q
N b

C P
N b −C E q

N b

R0D

R3

(
R0C M

N b

R(C P
N b −C M

N b)

(
3

4πR3 −N

)
−3N

)
,

dR

d t

∣∣∣∣
nucleation,growth

= De f f

R

C M
N b −C R

N b

C P
N b −C R

N b

+ 1

N

d N

d t
(αnR∗−R),

dR

d t

∣∣∣∣
coarse

= 4

27

C E q
N b

C P
N b −C E q

N b

R0D

R2 .
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Nomenclature

Numerical symbols

α Parameter used in the adaptive time step algorithm

β Parameter used in the adaptive time step algorithm

h Time step s

hst ar t Initial time step

Nmax Maximum number of iterations for Picard’s method

tend End time

tst ar t Starting time

T OL Tolerance level for the Picard iteration

Precipitation related symbols

αn Numerical factor, accounting for the fact that nucleated precipitates can grow only if their
radius is slightly larger than the nucleation radius

∆G∗ Activation energy for the nucleation of a precipitate (on a dislocation) J

∆Gd Free energy release due to the reduction of the elastic energy of a dislocation J

∆gv Driving force for precipitation J/m3

γ Interfacial energy between precipitate and matrix J/m2

µ Shear modulus of steel Pa

ν Poisson ratio

ρ Dislocation density 1/m2

ρaus Mass density of austenite g/m3

a Lattice constant of austenite m

b Burgers vector m

C 0
X Initial concentration of element X in the matrix mol/m3

C P
X Concentration of element X in precipitates mol/m3

C R
X Equilibrium concentration of element X with average radius R mol/m3

C M
X Concentration of element X in the matrix mol/m3

C E q
X Equilibrium concentration of element X in the matrix at infinite time mol/m3

Dbulk Diffusion coefficient in the bulk m2/s

De f f Effective diffusion coefficient m2/s

Dpi pe Diffusion coefficient in the pipe m2/s

F Adjustable factor smaller than 1
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Fc Coarsening function

fv Volume fraction

fv,GT Equilibrium volume fraction, corrected for the Gibbs-Thomson effect

f E q
v Equilibrium volume fraction

f Ini t
v Initial volume fraction

K (N bC ) Solubility product of niobium carbide

K (N bCx N1−x ) Solubility product of niobium carbonitride

K (N bN ) Solubility product of niobium nitride

kb Boltzmann constant J/K

MX Molar weight of element X g/mol

N (t ) Number density of precipitates as a function of time 1/m3

Na Number of Avogadro 1/mol

Ntot al Maximum number density of precipitation per nucleation site 1/m3

R(t ) Mean radius of precipitates over time m

R∗ Critical precipitate nucleus radius for heterogeneous nucleation at a dislocation m

R∗
h Critical precipitate nucleus radius for homogeneous nucleation m

Rg Gas constant J/(K mol)

T Temperature K

t Time s

Tsol Solvus temperature K

vm,aus Molar volume of austenite m3/mol

vm,N bC N Molar volume of Nb(Cx N1−x ) m3/mol

vm,N bC Molar volume of NbC m3/mol

vm,N bN Molar volume of NbN m3/mol

vN bC N Volume per atom Nb(Cx N1−x ) m3

w t%X 0 Initial weight percentage of element X

w t%X M Weight percentage of element X in the matrix

w t%X P Weight percentage of element X in the precipitate

w t%X E q Equilibrium weight percentage of element X in the matrix at infinite time

w t%X R27/23 Equilibrium weight percentage of element X with average radius 27
23 R

w t%X R Equilibrium weight percentage of element X with average radius R

w t i
X Weight fraction of elements X with special condition i , like E q , R, etc. (as with the weight

percentages)

x Stoichiometric ratio of carbon and nitrogen in the precipitate niobiumcarbonitride (NbCx N1−x )
at equilibrium

xM
X Molar fraction of X in the matrix
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