
Delft Institute for Applied Mathematics

Reducing Communication in
AMG for Reservoir Simulation
Aggressive Coarsening and Non-Galerkin Coarse-Grid
Operators

E.D. Wobbes

M
as

te
ro

fS
cie

nc
e

Th
es

is

Reducing Communication in AMG for
Reservoir Simulation

Aggressive Coarsening and Non-Galerkin Coarse-Grid Operators

Master of Science Thesis

For the degree of Master of Science in Applied Mathematics at Delft
University of Technology

E.D. Wobbes

August 25, 2014

Faculty of Electrical Engineering, Mathematics and Computer Science (EWI) · Delft
University of Technology

The work in this thesis was supported by Schlumberger Oilfield UK Plc. The cooperation is
hereby gratefully acknowledged.

Copyright c© Delft Institute for Applied Mathematics (DIAM)
All rights reserved.

Delft University of Technology
Department of

Delft Institute for Applied Mathematics (DIAM)

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science (EWI) for acceptance a

thesis entitled
Reducing Communication in AMG for Reservoir Simulation

by
E.D. Wobbes

in partial fulfillment of the requirements for the degree of
Master of Science Applied Mathematics

Dated: August 25, 2014

Supervisor(s):
Prof.dr.ir. C. Vuik

Dr.ir. T.B. Jönsthövel

Dr. A.A. Lukyanov

Dr. S. MacLachlan

Reader(s):
Dr. D.J.P. Lahaye

VI

Dr. H.M. Schuttelaars

E.D. Wobbes Master of Science Thesis

Abstract

Algebraic Multigrid (AMG) is an efficient multigrid method for solving large problems, using
only the information provided by the underlying matrices. Unfortunately, on a parallel ma-
chine the performance of AMG can be negatively affected by dense communication patterns.
The exchange of extensive data sets is generally caused by a high number of non-zero entries
contained by the coarse grid operators. We discuss two solution strategies, that can be applied
in order to improve the sparsity patterns of these operators: aggressive coarsening and the
non-Galerkin method. Aggressive coarsening reduces the number of coarse grid variables by
modifying the basic concepts of the standard coarsening scheme. The non-Galerkin approach
is entirely different. While preserving the row sums, the non-Galerkin method removes less
important entries of the coarse level operators, generated by AMG. In fact, it can be seen as
an extension of the standard multigrid algorithm. We explore both techniques in the frame of
reservoir simulation. We demonstrate that aggressive coarsening and non-Galerkin algorithm
significantly reduce the total number of non-zero entries in the AMG hierarchy. Although
aggressive coarsening shows high performance, in terms of execution time, on one processor
core, it is less effective for parallel simulations. The non-Galerkin has not been tested in
parallel, but its serial results are very promissing.

Master of Science Thesis E.D. Wobbes

ii

E.D. Wobbes Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Motivation . 1
1-2 Scope . 2

1-3 Outline . 2

2 INTERSECT 5
2-1 Simulator Framework . 5
2-2 Formulation . 6

2-2-1 Darcy’s Law . 6

2-2-2 Governing Equation . 7

2-2-3 Thermodynamic Equilibrium . 8

2-2-4 Saturation and Mole Fraction Constraints 8
2-2-5 Variables . 9
2-2-6 Black Oil Fluid Model . 10

2-3 Non-linear Solver . 12
2-3-1 Newton-Raphson . 12

2-3-2 Convergence Criteria . 13

2-3-3 Time Step Selection . 14

2-3-4 Linear Solver . 14
2-4 CPR . 15

2-4-1 Decoupling . 16

2-4-2 Second Stage: ILU . 17

2-5 Parallel Computing . 18

Master of Science Thesis E.D. Wobbes

iv Table of Contents

3 AMG 21
3-1 Classical AMG . 21

3-1-1 Undirected Adjacency Graph . 22
3-1-2 Smoothing: Basic Iterative Methods . 22
3-1-3 Algebraic Smoothness . 26
3-1-4 Influence and Dependence . 29
3-1-5 Coarsening Heuristics . 30
3-1-6 Coarsening . 30
3-1-7 Interpolation . 33
3-1-8 Galerkin Operators . 36
3-1-9 Algorithm . 36
3-1-10 Convergence . 38
3-1-11 Costs of AMG . 40

3-2 Coarse Grid Selection . 40
3-2-1 Serial Coarsening Strategies . 40
3-2-2 Parallel Coarsening Strategies . 42

3-3 AMG within INTERSECT . 46
3-3-1 Heuristics . 46

4 Problem Description and Solution Strategies 47
4-1 Problem Description . 47

4-1-1 Terminology . 47
4-1-2 Strong Scalability of AMG within INTERSECT 49

4-2 Solution Strategies . 50
4-2-1 Aggressive Coarsening . 50
4-2-2 Non-Galerkin method . 53

5 Results 63
5-1 Test Cases . 64

5-1-1 Mathematical Analysis . 65
5-2 Aggressive Coarsening . 67

5-2-1 Serial: Aggressive Coarsening without Heuristics 67
5-2-2 Serial: Aggressive Coarsening with Heuristics 70
5-2-3 Parallel: Aggressive Coarsening with Heuristics 71

5-3 Non-Galerkin . 73
5-3-1 Serial: Standard Non-Galerkin without Heuristics 73
5-3-2 Serial: Standard Non-Galerkin with Heuristics 85
5-3-3 Serial: Modified Non-Galerkin without Heuristics 86

6 Conclusions 91
6-1 Aggressive Coarsening . 91
6-2 Non-Galerkin . 92
6-3 Future Research . 92

E.D. Wobbes Master of Science Thesis

Table of Contents v

A Well Modeling 95

B Krylov Subspace Methods 97
B-1 Arnoldi . 98
B-2 GMRES . 100
B-3 Preconditioned GMRES . 102
B-4 Ritz Values and Ritz Vectors . 103

C Results 105
C-1 Aggressive Coarsening . 105
C-2 Non-Galerkin . 106

Master of Science Thesis E.D. Wobbes

vi Table of Contents

E.D. Wobbes Master of Science Thesis

List of Figures

2.1 INTERSECT overview. 5
2.2 Domain partitioned into four subdomains. Blue, green, yellow and red cells are

assigned to subdomain Ω1,Ω2,Ω3 and Ω4, respectively. Black cells r and s and
their dark blue neighbours are internal nodes of the subdomain Ω1. The orange
cell is assigned to Ω3. The dashed line separates the halo cells of the subdomain
Ω1 from the domains they are assigned to. 18

2.3 Schematic illustration of a general linear system Au = f corresponding to the
domain shown in Figure 2.2. The neighbouring cells of p and s are denoted by x. 19

2.4 Schematic illustration of an inner product w · u calculation. Colored boxes with
partially dashed border lines represent the halo cells. Blue, green, yellow and red
parts of the vectors are owned by processor 1, 2, 3 and 4 respectively. 20

3.1 The sparsity structure of A, where X represents a non-zero entry, and the corre-
sponding undirected adjacency graph. 22

3.2 Error that is smooth in the algebraic sense, but is geometrically oscillatory (source:
[37]). 28

3.3 PASS I and II of the coloring process. Black points represent C-points, gray
points denote F -points, and white points denote unassigned points. The numbers
correspond to the values of measure λ. In PASS II solid lines represent strong F -F
connections that do not satisfy heuristic H 3.1. 31

3.4 Semicoarsening in the y-direction produced for an anisotropic Poisson problem
(Example 3.3). On the left, the original grid is shown. Solid lines denote strong
dependences. On the right, the final coarsening is illustrated. 32

3.5 Semicoarsening of Example 3.2 (source: [37]). 33
3.6 Multigrid V-cycle on five levels. 37
3.7 W- and FMG cycles for a four grid method. 38
3.8 Aggressive coarsening applied to 5-point isotropic Laplacian: A2 coarsening (mid-

den), A1 coarsening (right). On the left, the intermediate step is shown. 41
3.9 The first pass of the aggregation scheme applied to a 5-point Laplacian. Black

points represent root points, boxes and triangles correspond with aggregates (source:
[44]). 42

Master of Science Thesis E.D. Wobbes

viii List of Figures

3.10 CLJP coarsening. Black points denote C-points, gray points are F -points, and
white points are unassigned points. The numbers represent the sum of measure λ
and a random number between 0 and 1. 43

3.11 Parallel coarsening strategies applied to a 5-point Laplacian using 4 processors.
White points represent F -points, black points are C-points and gray points are
C-points obtained during special boundary treatments (source: [44]). 44

4.1 Strong scaling with a sequential fraction (source: [26]). 48

4.2 Strong scalability of INTERSECT for a case with 4× 106 variables. 49
4.3 Example of aggressive coarsening with PMIS applied to a 10 × 10 5-point 2D

Laplace operator (source: [43]). Black points denote coarse variables, while gray
point indicate fine variables. 51

4.4 The hierarchy of the non-Galerkin coarse grid operators on three levels. AmG and
AmNG denote the Galerkin and non-Galerkin coarse grid operators on level m (m =
1, 2), respectively. 54

5.1 Local grid refinement of the 2528-case. 65
5.2 Sparsity patterns of the selected cases. 66
5.3 The decrease in algebraic and geometric complexities due to the use of aggressive

coarsening. Delta shows the reduction. The total height of a bar denotes the
complexity obtained with the Galerkin method, whereas the green part represents
the complexity obtained with aggressive coarsening. The complexity of the cases
corresponding to the gray bars is equal to one, when aggressive coarsening is
applied. The height of the gray bars indicates the complexity with the Galerkin
method. 67

5.4 Number of linear iterations with the Galerkin and aggressive coarsening method. 69
5.5 Total simulation time and linear solver time with Galerkin and aggressive coarsening

methods. The total bar length is equal to the total simulation time, whereas the
bottom part denotes the linear solver time. 69

5.6 Total simulation time and linear solver time with Galerkin and aggressive coarsening
methods with heuristics. The total bar length is equal to the total simulation time,
whereas the bottom part denotes the linear solver time. 71

5.7 Number of linear iterations, and total and linear solver time for parallel simulations
on 32 processors with the Galerkin and aggressive coarsening approach. 72

5.8 Scalability of the 389559-case with the standard Galerkin and aggressive coarsening
strategy. 73

5.9 The influence of the non-Galerkin algorithm on the algebraic and geometric com-
plexity with respect to the Galerkin method. Delta illustrates the difference in
the complexities obtained with the Galerkin and non-Galerkin approach. In Fig-
ure (a) the decrease in the algebraic complexity is demonstrated. The total bar
height represents the operator complexity when the Galerkin method is applied.
The blue part of a bar shows the complexity obtained with the non-Galerkin ap-
proach. Figure (b) demonstrates the increase in the geometric complexity due to
the non-Galerkin method. The total bar heights denotes the grid complexity with
the non-Galerkin algorithm. The red part shows the complexity obtained with the
Galerkin method. 74

5.10 Number of linear iterations with the Galerkin and non-Galerkin coarse grids. . . . 76
5.11 Cumulative number of linear iterations of the 389559-case with Galerkin and non-

Galerkin methods. 77

E.D. Wobbes Master of Science Thesis

List of Figures ix

5.12 Total simulation time and linear solver time with Galerkin and non-Galerkin meth-
ods. The total bar length is equal to the total simulation time, whereas the bottom
part denotes the linear solver time. 78

5.13 Sources of the total time growth due to the use of the non-Galerkin coarse grid
operators, the 389559-case. 79

5.14 Solution for the cell pressure after one V-cycle. 79
5.15 Sparsity patterns. In Figure (a), the blue dots form sparsity pattern of the non-

Galerkin operator, whereas the combination of the blue and red dots represents
the sparsity of the Galerkin operator. In Figure (b), the red dots correspond to the
Galerkin sparsity pattern, while the combination of the blue and red dots without
squares shows the sparsity pattern of the non-Galerkin operator. 80

5.16 The sparsity patterns of the Galerkin and non-Galerkin operators. The negative
and positive off-diagonal entries are shown in red and black, respectively. The first
row is formed by the Galerkin operators starting from the second coarse level. The
second row shows the non-Galerkin operators on the same levels. 81

5.17 The approximated spectrum of the pressure matrix preconditioned by one AMG
V-cycle with the Galerkin and non-Galerkin coarse grid operators. 81

5.18 Solution for the cell pressure after one V-cycle. 83
5.19 Sparsity patterns. The blue dots form sparsity pattern of the non-Galerkin operator,

whereas the blue and red dots form the sparsity of the Galerkin operator. 84
5.20 The approximated spectrum of the pressure matrix preconditioned by one AMG

V-cycle with the Galerkin and non-Galerkin coarse grid operators after the first
linear iteration. 85

5.21 Total simulation time and linear solver time with Galerkin and non-Galerkin meth-
ods with heuristics. The total bar length is equal to the total simulation time,
whereas the bottom part denotes the linear solver time. 86

5.22 Number of linear iterations with the Galerkin and modified non-Galerkin coarse grids. 87
5.23 Total simulation time and linear solver time of the modified non-Galerkin method

compared to the Galerkin and standard non-Galerkin method. The total bar length
is equal to the total simulation time, whereas the bottom part denotes the linear
solver time. 88

5.24 Sparsity patterns. The blue dots form sparsity pattern of the modified non-Galerkin
operator, whereas the combination of the blue and red dots represents the sparsity
of the standard non-Galerkin operator. 90

C.1 The number of non-zero entries per level, the 389559-case. 105
C.2 Linear solver statistics for the Galerkin and non-Galerkin methods: (a) average

number of linear iterations per time step, (b) average time of a linear iteration. . 107
C.3 Sources of the total time growth due to the use of the non-Galerkin coarse grid

operators, 348809-case. 108
C.4 AMG hierarchy, 2250-case: (a) number of variables, (b) number of non-zero elements.108
C.5 AMG hierarchy, 1639-case: (a) number of variables, (b) number of non-zero elements.109
C.6 The approximated spectrum of the pressure matrix preconditioned by one AMG

V-cycle with the Galerkin and modified non-Galerkin coarse grid operators after
the first linear iteration (a) for the 2250-case , (b) for the 1639-case. 109

Master of Science Thesis E.D. Wobbes

x List of Figures

E.D. Wobbes Master of Science Thesis

List of Tables

2-1 Property dependencies on natural variables. 9

3-1 Partial setup per AMG level. Yes means recompute, while NO means reuse. . . 46

5-1 General properties of the test cases. 64
5-2 The number of variables and non-zero entries on each AMG level of the 389559-

case obtained with the Galerkin and non-Galerkin method. 75

C-1 Number of time steps with the Galerkin and aggressive coarsening method. H
denote a strategy with heuristics, while P corresponds to parallel simulations. . . 106

C-2 Number of non-linear iterations with the Galerkin and aggressive coarsening method.
H denotes a strategy with heuristics, while P corresponds to parallel simulations. 106

C-3 Number of time steps with the Galerkin and non-Galerkin coarse grids. H denotes
a strategy with heuristics. 107

C-4 Number of non-linear iterations with the Galerkin and non-Galerkin coarse grids.
H denotes a strategy with heuristics. 107

Master of Science Thesis E.D. Wobbes

xii List of Tables

E.D. Wobbes Master of Science Thesis

Acknowledgements

First off all, I would like to thank my supervisors. Without their help, this project would not
have been realized. I would like to express my gratitude to my daily supervisor, Dr. Tom
Jönsthövel, for his patient guidance, elaborate explanations and enthusiastic encouragement.
Our discussions have motivated my work and fundamentally changed my attitude about
scientific research.
I am particularly grateful to Dr. Alexander Lukyanov, for his original ideas and passionate
belief in monotonicity. Moreover, Alex’s academic guidance and technical assistance were
critical in the successful completion of this work.
I would like to thank my other supervisors, Prof. Kees Vuik and Dr. Scott MacLachlan, for
the support they provided on all levels of this research project.

My gratitude is extended to Gareth Shaw, who was my manager at Schlumberger, for the
guidance and input on this project.

I am grateful to to Dr. Domenico Lahaye and Dr. Henk Schuttelaars for taking time to
evaluate my research work and attend my final presentation.

Special thanks to Matteo Cusini, who was an intern at Schlumberger as well. Matteo helped
make my time in th UK more interesting and fun.

Finally, I take the opportunity to thank my mother, Larisa Wobbes, and my boyfriend,
Mathijs Rozemuller, for their constant love, encouragement and support.

Master of Science Thesis E.D. Wobbes

xiv List of Tables

E.D. Wobbes Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Reservoir simulation is an integrated part of oil-reservoir management. Physical and numeri-
cal models of reservoir simulation have been evolving through several decades, expanding from
simple one-dimensional single phase flow variants to complicated three-dimensional compo-
sitional variants. The contemporary models consist of millions of grid cells and describe the
flow in highly heterogeneous media with extremely complex geometries. In attempt to simul-
taneously obtain accuracy of the solution and minimization of computational costs for current
models, reservoir simulation software is continuously adapted. In this thesis, we consider a
high-resolution reservoir simulator, INTERSECT. The simulator is developed by Schlum-
berger, in partnership with Chevron and Total, and is based on the company’s previous, yet
still widely used, reservoir simulation software ECLIPSE.
INTERSECT utilizes a sophisticated mechanism to model fluid flow. An indispensable part
of this mechanism is a Krylov-subspace method, required for the repeated solution of large
linear systems of equations, originating from the linearization of coupled mass-balance equa-
tions. These systems are associated with several unknowns, such as pressure, saturation and
composition of each fluid phase. Typically, the simulation is determined by the behaviour
of the elliptic (or parabolic) pressure part. For this reason, INTERSECT uses a two-stage
Constrained Pressure Residual (CPR) method as a preconitioner for the Krylov solver. The
main idea behind the CPR preconditioner is to decouple the equations and solve the pressure
subsystem separately from the hyperbolic non-pressure subsystem.
Multigrid methods solve elliptic linear equations in a very efficient manner. Within INTER-
SECT, the algebraic approach is used to obtain the pressure solution. There are several
reasons for this choice. On the one hand, algebraic multigrid (AMG) method is well-suited
for the porous-media-flow simulations, because it is able to deal with complex structures,
anisotropies and discontinuous or varying coefficients. On the other hand, AMG does not
require geometric information and, hence, can be easily integrated into existing simulation
code. Unfortunately, experiments have shown that for large models AMG does not perform
as efficient as expected due to dense communication patterns.

Master of Science Thesis E.D. Wobbes

2 Introduction

In this thesis, we aim to resolve the communication issue in AMG. The relevant previous
work is presented in [37, 11, 14, 40]. In this project, the focus is on two solution strategies:
aggressive coarsening and the non-Galerkin method. Since the exchange of large data sets is
caused by a high number of non-zero entires in the coarse grid operators, both approaches
aim to improve the sparsity patterns of these operators.

Aggressive coarsening was introduced in 1996 in [27]. Its application to AMG is discussed in
[37, 12], whereby in [37] aggressive coarsening is recommended in order to decrease the ratio
of the number of non-zero entries on a coarser level to that on a finer level. The aggressive
coarsening approach modifies the concepts and heuristics, required by the standard coarsening
scheme, and should be seen as its substitute.

In [2, 42], the non-Galerkin method is explored in settings where multigrid methods use
geometric information to construct the sparsity pattern and choose matrix coefficients. The
description of the method for the purely algebraic approach, applied to symmetric positive
definite matrices, is provided in [15]. The non-Galerkin algorithm removes less important
entries of the coarse grid matrices, produced by AMG, while preserving the row sums.

1-2 Scope

In this work, an extensive overview of the simulation process in INTERSECT is presented. It
describes the formulation of the non-linear system, Newton-Raphson method, FGMRES and
CPR preconditioner. After narrowing the focus to AMG, the techniques that can be used to
enhance its performance are discussed.
To investigate the aggressive coarsening strategy, INTERSECT is interconnected with SAMG
(Algebraic Multigrid Methods for Systems), a commercial software package developed at
Fraunhofer SCAI. More precisely, the complete AMG cycle is replaced by the black-box AMG
solver, provided by SAMG. Both serial and parallel versions of this approach are available.
The non-Galerkin method is first prototyped in MATLAB and is subsequently implemented
in C++ as an extension of the AMG algorithm within INTERSECT. The non-Galerkin code
is serial. Based on the observed properties of the non-Galerkin operators, we propose a
promising modification of the algorithm.

1-3 Outline

The thesis is organized as follows:

Chapter 2: INTERSECT. In Chapter 2, the framework of INTERSECT is explored. After
a schematic representation is provided, each individual component is discussed in more detail.

Chapter 3: AMG. In Chapter 3, we make a general characterization of AMG and give an
overview of serial and parallel coarsening strategies. In addition, the basic properties of AMG
within INTERSECT are summarized.

Chapter 4: Problem Description and Solution Strategies. The data communica-
tion problem is stated in Chapter 4. We introduce the ideas behind the solution strategies
(aggressive coarsening and the non-Galerkin method) and present the possible realizations.

E.D. Wobbes Master of Science Thesis

1-3 Outline 3

Chapter 5: Results. In this chapter, the results are discussed in terms of the operator
and grid complexities, number of non-linear and linear iterations, and linear solver and total
execution time.

Chapter 6: Conclusions. We conclude this thesis and provide suggestions for future
research in Chapter 6.

Master of Science Thesis E.D. Wobbes

Chapter 2

INTERSECT

2-1 Simulator Framework

INTERSECT models the flow of fluids such as water and oil, through the porous media
comprising the reservoir. The flow is described in terms of the pressure, saturation and
composition of each fluid phase.
In this section, we outline the structure of INTERSECT. The upcoming chapters describe
each simulation phase in more detail.

Formulation

Begin Time Step n

Newton-Raphson

ILU(0)

AMG

CPR

FGMRES

Converge? No

Yes

n=n+1

Figure 2.1: INTERSECT overview.

As shown in Figure 2.1, the first step in the simulation is the formulation of the equations
describing the physical process. These equations are based on the conservation of mass in the
reservoir, Darcy’s law and the fact that the fluid phases are in thermodynamic equilibrium. In

Master of Science Thesis E.D. Wobbes

6 INTERSECT

Section 2-2 it is explained that the constructed system of equations is non-linear and coupled.
After the formulation stage and given the initial guess, the solution is progressed over time.
For each time step, the system is linearized by the Newton-Raphson method.
The resulting linear system is solved using FGMRES preconditioned by the Constrained
Pressure Residual algorithm. The CPR method consists of two stages. Previous to the first
stage, the system is decoupled so that the elliptic (or parabolic) pressure part can be solved
separately from the remaining hyperbolic part of the discrete operator. In the first stage,
the decoupled linear system is restricted to the elliptic (or parabolic) part and the pressure is
approximated by applying an FGMRES-accelerated AMG preconditioner. The solution found
by AMG is used as the initial guess for pressure in the second stage of the CPR scheme, which
solves the complete system using ILU(0). In Section 2-4 the CPR method is described in more
detail.
When the outer FGMRES iteration is completed, the solution is updated and a convergence
check is performed. If the solution satisfies the convergence criteria, Intercest proceeds with
the next time step. Otherwise, the linearization stage is repeated.

2-2 Formulation

The fluids and gas in a hydrocarbon reservoir contain several components in a number of
phases. The formulation of reservoir equations within INTERSECT is general, i.e. it makes
no assumption about phase-component partitioning. Any component can exist in any phase
and there is no maximum number of components or phases. Furthermore, no particular
ordering of components and phases is assumed. For this reason, the only input necessary for
the simulator is the phase-component partitioning.

2-2-1 Darcy’s Law

From a theoretical point of view, it is possible to simulate multiphase flow in a porous medium
by solving Navier-Stokes equation at a pore level. However, due to complex geometry of
porous media this approach is not used in practice. Multiphase flow models are generally
based on macroscopic equations such as Darcy’s law, a special case of momentum equation.
Darcy’s law describes a linear relation between the fluid velocity and the pressure gradient,
[9]:

u = − 1
µ

k (∇P − ρg∇z) , (2.1)

where,
u is the fluid velocity,
µ is the fluid viscosity,
k is the permeability tensor of the porous medium,
P is the pressure,
ρ is the fluid density,
g is the magnitude of the gravitational acceleration,
z is the depth.

E.D. Wobbes Master of Science Thesis

2-2 Formulation 7

The absolute permeability is an average measure of the ability of the porous medium to
transmit fluid.
Denoting the potential p − ρgz by Φ, we can rewrite Equation (2.1) for incompressible flow
in the following form:

u = − 1
µ

k∇Φ. (2.2)

To apply Darcy’s law to multiphase flow in a porous medium, the simulation domain should
be divided into small control volumes so that the fluid and rock properties can be considered
constant.

2-2-2 Governing Equation

From the previous discussion, we know that within INTERSECT it is assumed that any
component can exists in any phase. If the changes in the compounds of hydrocarbons are
negligible, the fluid flow can be simulated by the black oil approach. Otherwise, the more
complex compositional fluid model should be applied.
In both cases, we introduce the nonlinear residual Rji to describe the transfer of fluid compo-
nent i in grid block j,

Rji = ∂M j
i

∂t
+
∑
κ

F jκi +
∑
l

Qjli , (2.3)

where
∂Mj

i
∂t is the rate of change of the number of moles of component i in cell j,
F jκi is the flux of component i into cell j from connected cell κ,
Qjli is the flow of component i into cell j contributed by external source or sink l.

The non-linear residual is defined for each cell and each component. To satisfy the law of
conservation of mass, it is required that Rji → 0 within a certain tolerance.

In Equation (2.3), M j
i is defined as

M j
i = V j

p

∑
α

bjαS
j
αx

j
αi,

where,
α is the phase,
V j
p is the pore volume of cell j,
Sjα is the saturation,
bjα is the molar density of phase α,
xjαi is the mole fraction of component i in phase α.

Let biα be the molar density of component i in phase α and denote the number of components
by Nc. If Wi and ρiα are the molecular weight and mass density of component i, respectively,
then biα = ρiα

Wi
. The molar density of phase α is then bα =

∑Nc
i=1 ρiα
Wα

. Hence, the mole fraction

Master of Science Thesis E.D. Wobbes

8 INTERSECT

of component i in phase α is xαi = biα
bαSα

. Furthermore, the saturation of a fluid phase is
defined as the fraction of the void volume of a porous medium filled by this phase, [9].
The flux can be expressed as follows,

F jκi = T̄ jκ
∑
α

xjαib
j
αu

jκ
α , (2.4)

where T̄ jκ and ujα are the partial transmissibility between cells j and κ and the Darcy’s
velocity, respectively.
According to Equation (2.2), for incompressible flow ujα is equal to

ujκα = kakrα
µα

∇Φjκ
α . (2.5)

Here, ka is the absolute permeability of the porous medium that depends on the geological
structure of the reservoir. The variable krα is the relative permeability function and depends
on the saturation.

Remark 1. The permeability k from Equation 2.1 is a product of absolute and relative per-
meability.

Substituting Equation (2.5) into Equation (2.4), we obtain

F jκi = T jκ(ka)
∑
α

xjαib
j
αkrα
µα

∇Φjκ
α ,

where T jκ is the transmissibility (ability of a medium to transmit a fluid, based on the absolute
permeability).

2-2-3 Thermodynamic Equilibrium

Thermodynamic phase equilibrium is needed when a component exists in more than one
phase. The equilibrium is reached when the fugacity of each component in phase α equals to
the fugacity of the same component in phase β:

fα,i = fβ,i. (2.6)

Equation (2.6) is known as Gibbs relation. When it holds, the phases are in equilibrium and
therefore the Gibbs energy of the system is at an extremum.

2-2-4 Saturation and Mole Fraction Constraints

Saturation and mole fraction constraints are formulated as follows:∑
α

Sα = 1,

nc∑
i=1

xαi = 1 ∀ α,

with nc equal to the total number of components.
The fact that all the components existing in a given volume fill the voids implies the above
constraints.

E.D. Wobbes Master of Science Thesis

2-2 Formulation 9

2-2-5 Variables

Table 2-1 provides the property dependencies on the natural variables for isothermal processes.

Property Symbol Dependencies
pore volume Vp P

absolute permeability ka P

relative permeability krα Sα
viscosity µα P, xαi

potential difference ∆Φα P, xαi, Sα
phase density bα P, xαi

Table 2-1: Property dependencies on natural variables.

Therefore, the following variables are selected as unknowns:

• pressure P ,

• saturation Sα,

• mole fraction xαi.

Defining Nc and Np as the number of components and the number of possible phases, respec-
tively, the total number of governing equations for cell i is equal to N = Nc · Np + Np + 1.
This means that to make the system solvable, N variables should be selected. This number
of variables can be reached if we prescribe to each cell one pressure variable, Np saturation
variables and Nc ·Np mole fraction variables.

Primary Variables

Primary variables are the variables that are determined after the saturation, mole fraction
and phase equilibrium constraints are applied. The number of primary variables depends on
the number of variables that are solved implicitly. There exist four solution approaches.

• IMPES (Implicit Pressure Explicit Saturations): pressure is solved implicitly, while
saturations and mole fractions are solved explicitly.

• IMPSAT (Implicit Pressure and Saturations): pressure and saturations are solved im-
plicitly, whilst mole fractions are solved implicitly.

• FIM (Fully Implicit): all primary variables are solved implicitly.

• AIM (Adaptive Implicit Method): cells that violate the CFL constraint, are treated fully
implicit, whereas IMPES and IMPSAT are applied to the variables in more stable cells.

In this thesis we only consider fully implicit method and AIM, whereby IMPES is used for
stable cells. It should be noted that in fully implicit models the time step is assumed to be
unconditionally stable, [35]. However, in practice the size of the time step is restricted due
to mathematical and physical processes.

Master of Science Thesis E.D. Wobbes

10 INTERSECT

2-2-6 Black Oil Fluid Model

In this section, we describe the black oil model for a three component system. Consider
a system that consists of three phases (two liquid phases and a gaseous phase) and three
components (water, oil and gas). Water is only contained in one liquid phase, denoted by w.
At the same time, gas and oil are contained in the gaseous phase g and the oil phase o. In
this three component system, the solution vector Xj for grid block j generally consists of the
oil pressure and water and gas saturation,

Xj = [P jo , Sjw, Sjg]T .

The residual vector Rj is a function of Xj and has three elements: oil, water and gas residual.

Rj = [Rjo, Rjw, Rjg]T .

The accumulation term is defined as

Mj = V j
p

So
Bo

+ RvSg
Bg

Sw
Bw

Sg
Bg

+ RsS
j
o

Bo

j

,

where,
Bi is the formation volume factor of component i, i.e.

Bi = volume of component i at reservoir conditions
volume of component i at surface conditions ,

Rs is the solution oil-gas ratio, i.e.

Rs = volume of surface gas dissolved in reservoir oil
volume of surface oil from reservoir oil ,

Rv is the vapor oil-gas ratio, i.e.

Rv = volume of surface oil in reservoir gas
volume of surface gas in reservoir gas .

The rate of flow from a neighbouring cell k is

Fjk = T jk

kro
Boµo

0 Rvkrg
Bgµg

0 krw
Bwµw

0

Rskro
Boµo

0 krg
Bgµg

∗

×

∆Φjk

o

∆Φjk
w

∆Φjk
g

 .

Here, the ∗ symbol indicates that the fluid mobilities are to be evaluated in the upstream cell.

E.D. Wobbes Master of Science Thesis

2-2 Formulation 11

The black oil model is a special case of the compositional model. The compositional model
treats each hydrocarbon component separately and therefore is more complex. Since our
research is focused on the problems with the black oil formulation, we refer to [8] for more
details about the compositional model.

Example 2.1. For illustrative purposes, we consider the case of two-phase flow in heteroge-
neous porous media described in [24]. The system consisting of oil and water, is immiscible,
i.e. the components do not dissolve. Fluids and rock are incompressible. That is, their density
and porosity remain constant. In addition, we ignore gravity effects and the effect of capillary
action (the capillarity pressure can be used to flow opposite to gravity).
The governing conservation equations for the flow under these assumptions can be written
as:

φ∂Sw∂t −∇ · uw = −Qw,

φ∂So∂t −∇ · uo = −Qo,
(2.7)

where φ denotes the porosity (the ratio of pore volume to total volume). Subscript w cor-
responds with water, whilst o corresponds with oil. The Darcy velocity in this case can be
written as:

uj = −ka(x)λj∇P.

Here, λj is the phase mobility given by,

λj =
krj (S(x, t))

µj
. (2.8)

Obviously, the saturations should sum up to one:

Sw + So = 1. (2.9)

Using Equation (2.9), we can replace system presented in (2.7) by
−∇ · u = Q,

φ∂Sw∂t −∇ · (fwu) = −qw,
(2.10)

where,
u = uw + uo is the total Darcy velocity,
Q = Qw +Qo is the total contribution of the source terms,
fw is the fractional flow of water, i.e. uw = fwu.

Darcy’s law provides a useful expression for the total Darcy velocity:

u = −ka(x)λ∇P, (2.11)

where λ = λw + λo is the total mobility. It should be noted that from Equation (2.8) follows
that the total mobility depends on the saturation.

Master of Science Thesis E.D. Wobbes

12 INTERSECT

Substituting Equation (2.11) into the first equation in System (2.10) gives us the pressure
equation:

∇ · ka(x)λ∇P = Q.

In reservoir simulations, the velocity in System (2.10) is usually obtained by first solving the
pressure equation for the pressure field and then computing the total velocity using Equation
(2.11). The non-linear system

∇ · ka(x)λ∇P = Q,

u = −ka(x)λ∇P,

φ∂Sw∂t −∇ · (fwu) = −Qw

is coupled due to the dependence of the mobility on the saturation.

2-3 Non-linear Solver

2-3-1 Newton-Raphson

In this section we discuss the Newton-Raphson method. The method is a very efficient root
finding method if the initial guess is sufficiently close to the solution [29].

For a vector X ∈ Rn and differentiable vector function R : Rn → Rn Newton-Raphson
attempts to solve the non-linear system

R(X) = 0. (2.12)

The function R represents the equations obtained in the formulation stage (see Equation
(2.3)), while the vector X corresponds to pressure, saturation and mole fraction variables.

A Taylor expansion of Equation (2.12) around X yields

R(X + ∆X) = R(X) + ∆X · ∇R|X +O
(
∆X2

)
,

where ∆X is the difference between X and an arbitrary point in the neighbourhood of X.
Ignoring higher order terms, we obtain

∇R(X)∆X = −R(X).

By defining ∆X as Xk+1 −Xk, an iterative method is constructed:

∇R(Xk)∆X = −R(Xk).

Obviously, R(X) represents the residuals, while ∆X is the solution deltas (the correction
required to take the coupled system towards the solution). For a particular time step, the
use of Newton-Raphson can be outlined as follows:

E.D. Wobbes Master of Science Thesis

2-3 Non-linear Solver 13

1. Calculate R(X).

2. Apply a linear solver to solve the linear system A∆X = −R(X), where A is the Jacobian
∇R(X).

3. Update the solution: X→ X + ∆X.

This process is iterated to convergence.

After the discretization, which is performed using the finite volume method, the coupled linear
system can be written as: [

Arr Arw
Awr Aww

] [
∆Xr

∆Xw

]
= −

[
Rr
Rw

]
, (2.13)

where the subscript r is for the reservoir and w for the wells (see Appendix A). For instance,
Awr is the submatrix of derivatives of the well equations with respect to the reservoir vari-
ables. For the details of discretization see [35].

The matrix A is typically very sparse, mainly due to the fact that the each cell is only
connected to its nearest neighbours. The order of equations may vary per time step.
The solution of the full system is outside the scope of this thesis. In the upcoming chapters
only the pressure part corresponding to the submatrix Arr will be considered.

2-3-2 Convergence Criteria

In each iteration of the Newton-Raphson method, we have a linear approximation to a non-
linear system. For convergence a few iterations may be required. INTERSECT uses the
following convergence criteria:

• Solution delta limit. For each solution variable, the maximum absolute solution delta
over all reservoir cells is bounded by a user-defined limit.

• Overall material balance error. The overall reservoir material balance error, which is
defined as the sum of residuals from Equation (2.3) over all cells is smaller than a
user-defined limit.

• Maximum/minimum number of Newton-Raphson iterations. A minimum number of
Newton iterations may be required to accept the time step as converged. In addition,
there is a maximum number of iterations to reject and halve the time step.

For the convergence of the solution, at least the first or the second convergence criterion
should be satisfied.

Master of Science Thesis E.D. Wobbes

14 INTERSECT

2-3-3 Time Step Selection

If the solution converges, a new time step size has to be selected. To choose an appropriate
time step the following criteria are used:

• Maximum/minimum time step size. An upper and lower limit on the time step size are
provided by the maximum and minimum time step, respectively.

• Maximum increase factor. The ratio of the current time step to the last converged time
step is bounded by the maximum increase factor.

• Report step synchronization. The time step size depends on the upcoming report date
(the user-requested time at which the solution has to be computed. Sometimes two time
steps are required to reach the report date. In this case, it can be more beneficial to
use two equal medium-sized time steps instead of a large step followed by a small one.

• Time truncation error limit. The time truncation error limit prevents propagation of
truncation error due to linearization.

• Solution change criteria. The Newton-Raphson method only converges when the it-
eration starts close enough to the final solution. Therefore, the each of the solution
variables is bounded by a maximum change criteria to ensure the convergence.

• CFL condition. Except simulations with an unconditionally stable time step, the time
step is restricted by the Courant-Friedrichs-Lewy (CFL) criterion to guarantee the con-
vergence of the full system.

2-3-4 Linear Solver

Consider a coupled linear system
Au = f , (2.14)

where A ∈ Rn×n and u, f ∈ Rn.

To solve this system, INTERSECT uses FGMRES, a Krylov subspace method, preconditioned
by CPR.
FGMRES, Flexible Generalized Minimal RESidual, is a variant of the right-preconditioned
GMRES method (Appendix B-3) that allows changes in the preconditioning at every step.
For this scheme, any iterative method can be used as a preconditioner, even the standard
GMRES method itself.

The algorithm is presented in Algorithm 1.
It should be noted that vector w̄i on line 4 is allowed to change at every step:

w̄i = M−1
i qi,

where Mi is the preconditioner and qi is the ith Arnoldi vector.
Subsequently, vectors w̄i are saved to be used in updating the solution, vm, on line 15.
Obviously, when Mi = M for i = 1, . . . ,m, the new method is mathematically equivalent to
right-preconditioned GMRES.

E.D. Wobbes Master of Science Thesis

2-4 CPR 15

A short introduction to the Krylov subspace methods is provided in Appendix B. For the
basic properties of FGMRES we refer to [32].

Algorithm 1: FGMRES
Data: Initial guess v0.

1 Setup (m+ 1)×m zero-matrix H̃m

2 Compute r0 = f −Av0 and q1 = v0
||v0|| .

3 for i = 1,2, . . . , m do
4 w̄i = M−1

i qi
5 w = Aw̄i

6 for j = 1, . . . , i do
7 hj,i = (w,qj)
8 w = w− hj,iqj
9 end

10 hi+1,i = ||w||2
11 if hi+1,i = 0 then m = i and break
12 qi+1 = 1

hi+1,i
w

13 end

14 Define W̄m =
[

w1 | w2 | ... | wm

]
.

15 Compute vm = v0 + W̄mym where ym minimizes ym = ||βe1 − H̃my||2.
16 if convergence then stop
17 v0 = vm and go to line 2.

In line 15 vector ym is found by solving (i+1)×i matrix least square problem with Hessenberg
structure. The solution is found by means of QR decomposition (see [39]). Due to the
Hessenberg structure this is done at a cost of O(i2) flops.

2-4 CPR

The reservoir part of (2.13) can be written as follows:

Ax =
[
App Aps
Asp Ass

] [
xp
xs

]
=
[
bp
bs

]
= b,

where
A is the matrix Arr from Equation (2.13),
App represents the pressure block coefficients,
Ass corresponds to the non-pressure block coefficients (i.e. saturation),
Aps and Asp represent the respective coupling coefficients.

The pressure block App has an elliptic (or parabolic) structure, while Ass holds coefficients of
a set of hyperbolic problems [38].

Master of Science Thesis E.D. Wobbes

16 INTERSECT

The CPR preconditioner is based on the idea that coupled system solutions are mainly de-
termined by the solution of their elliptic (or parabolic) components [38]. For this reason, the
procedure begins by extracting and solving pressure subsystems, forming the first stage of
the CPR algorithm. Residuals associated with the pressure solution are corrected with an
additional preconditioning step that is applied to the full system, the second stage. In other
words, the CPR preconditioner solves the coupled linear system as follows:

1. Obtain the decoupled system: A∗x = b∗.

2. Use the first stage preconditioner, preferably an iterative method, to solve the pressure
system: A∗ppδδδp = rp.

3. Compute new residual: r̂ = r−A∗
[
δδδp
0

]
.

4. Apply the second stage precondtioner and correct: δδδ = M−1r̂ +
[
δδδp
0

]
.

Here, r =
[
rp | rs

]T
and δδδ =

[
δδδp | δδδs

]T
are the residual vector corresponding to the

decoupled system and correction obtained after the two stages, respectively.

The decoupling procedure and second stage preconditioner are presented in Section 2-4-1 and
2-4-2, respectively. The first stage preconditioner is the AMG method, which is described in
Chapter 3.

2-4-1 Decoupling

To separate the pressure part from the remaining saturation part, Aps has to be transformed
to a (nearly) zero matrix. This can be accomplished by taking the Schur complement (see
[19]) as described below.

Definition 2.1. Let A ∈ Rm×m and 1 =
[
1 1 . . . 1

]
∈ R1×m. Then colsum (A) is defined

as an m×m diagonal matrix with diagonal equal to 1A.

Define matrix Q by
Q = colsum (Aps) colsum (Ass)−1 ≈ ApsA−1

ss .

Using Q, the original system can be converted to the system

A∗x =
[
A∗pp A∗ps
Asp Ass

] [
xp
xs

]
=
[
b∗p
bs

]
= b∗, (2.15)

E.D. Wobbes Master of Science Thesis

2-4 CPR 17

where

A∗pp = App −QAsp,
A∗ps = Aps −QAss,
b∗p = bp −Qbs.

Obviously, A∗ps is a nearly zero matrix. Therefore, the coupling between pressure and non-
pressure blocks is weak.

2-4-2 Second Stage: ILU

Consider a system of linear equations
Au = f .

The LU decomposition is a direct method that factors matrix A as the product of a lower
triangular matrix L and an upper triangular matrix U , A = LU . The linear system LUu = f
is easily solved: the solution of the lower triangular system Ly = f is found, followed by the
solution of the upper triangular part Uu = y. A detailed description of the LU decomposition
can be found in [41].
Due to the fill in, the LU decomposition for large, sparse matrices is expensive. For A ∈ Rn×n,
it requires approximately O(n2) flops, which is not competitive with iterative solvers [20]. For
this reason, the LU algorithm is frequently used in incomplete form as a preconditioner for
an iterative solver. The ILU method requires the residual matrix R = A−LU to satisfy some
constraints, such as having a certain sparsity pattern.
Let A ∈ Rn×n be a general sparse matrix with elements aij and P a zero pattern set, such
that

P ⊂ {(i, j) : i 6= j, 1 ≤ i, j ≤ n}.

For a general static pattern, an Incomplete LU factorization can be computed as follows.

Algorithm 2: General static pattern ILU.
Data: A,P

1 foreach (i, j) ∈ P do aij = 0;
2 for k = 1, . . . , n− 1 do
3 for i = k + 1, . . . , n and if (i, k) /∈ P do
4 aik ← aik/akk
5 for j = k + 1, . . . , n and for (i, j) /∈ P do
6 aij ← aij − aikakj
7 end
8 end
9 end

The ILU(0) factorization sets the zero pattern P to be precisely the zero pattern of A. For a
detailed description of ILU(0), see [31]. INTERSECT contains block-wise ILU(0) factoriza-
tion. That is, instead of treating A point-wise, ILU(0) is used in a block-wise approach.

Master of Science Thesis E.D. Wobbes

18 INTERSECT

The main advantages of the ILU methods are the simplicity and robustness for a broad class
of problems. Regarding the use of ILU within INTERSECT, its primary disadvantage is that
there is still no highly scalable parallel ILU(0) algorithm, [13]. The concept of scalability is
explained in Chapter 4.

2-5 Parallel Computing

ΩΩΩ1 ΩΩΩ2

ΩΩΩ3 ΩΩΩ4

s

r

Figure 2.2: Domain partitioned into four subdomains. Blue, green, yellow and red cells are
assigned to subdomain Ω1,Ω2,Ω3 and Ω4, respectively. Black cells r and s and their dark blue
neighbours are internal nodes of the subdomain Ω1. The orange cell is assigned to Ω3. The
dashed line separates the halo cells of the subdomain Ω1 from the domains they are assigned to.

The number of reservoir cells within INTERSECT is generally extremely large. Therefore, it
is natural to parallelize the simulation. For parallel computing, the overall grid is partitioned
into subdomains, one on each processor. Figure 2.2 illustrates a partitioning into four subdo-
mains.
In this example, subdomain Ωi (i = 1, . . . , 4) is assigned to processor i which performs all the
computations concerning the cells comprising this particular domain.
Furthermore, since updating a node requires the values of its neighbours, processor i main-
tains copies of the cells on other processors to which it is connected. These cells are called
halo cells. The use of halo cells, minimizes the frequency of information that has to be send
between processors.
Figure 2.2 highlights two internal cells of the subdomain Ω1, cell r and cell s. It also shows
the connections of r and s: seven dark blue nodes and one orange node. The orange cell is a
halo cell on processor 1. That is, processor 1 only keeps a copy of the orange cell and updates
its value after it is computed by processor 3.

The matrix obtained from the overall grid is partitioned in a similar way. More precisely, if a
given cell is assigned to a particular processor then the entire row corresponding to that cell
is also stored on the same processor. This is shown in Figure 2.3.
The figure schematically represents a linear system Au = f . The neighbours of r and s are
denoted by x. The remaining values in the two rows are equal to zero and are not shown in

E.D. Wobbes Master of Science Thesis

2-5 Parallel Computing 19

ΩΩΩ1

ΩΩΩ2

ΩΩΩ3

ΩΩΩ4

ΩΩΩ1 ΩΩΩ2 ΩΩΩ3 ΩΩΩ4

rxx xx

sxxx x

A

ΩΩΩ1

ΩΩΩ2

ΩΩΩ3

ΩΩΩ4

=

u

ΩΩΩ1

ΩΩΩ2

ΩΩΩ3

ΩΩΩ4

f

Figure 2.3: Schematic illustration of a general linear system Au = f corresponding to the domain
shown in Figure 2.2. The neighbouring cells of p and s are denoted by x.

the Figure 2.3. It should be noted that the value of the halo cell is stored into the sub-block
matrix A[Ω1Ω3], while other neighbouring nodes belong to the sub-matrix A[Ω1Ω1].

Analogously, the solution and right-hand-side vector are partitioned into the subdomains and
maintain the copies of the halo cells. For the sake of simplicity, Figure 2.3 does not show the
halo cells contained by the vectors. However, an extensive version of vector u is illustrated in
Figure 2.4, that demonstrates the principles behind the calculation of a dot product. In the
figure, the inner product w · u is equal to a. The value of a is obtained by communicating
ai’s between the processors, where ai (i = 1, . . . , 4) may be seen as a “local" inner product
calculated by processor i. Obviously, if no halo cells are present, then a =

∑4
i=1 ai.

The described storage structure makes a matrix-vector remarkably straightforward. Inter-
estingly, this operation requires less communication than the calculation of an inner product
and therefore is cheaper. Of course, the row vector of matrix A corresponding to cell s can
be seen as vector w in Figure 2.4. Due to the data structure of A, it is known a priori that
only one ai is unequal to zero. In our example, ai is zero for i = 2, . . . , 4, so to calculate the
value of a we only need processor 1, because a = a1. Therefore, for parallel simulations the
calculation of a matrix-vector product is cheaper than the calculation of an inner product due
to the matrix storage structure.

For more information on parallel computing see [35] and [16].

Master of Science Thesis E.D. Wobbes

20 INTERSECT

T

a4

a3

a2

a1

a=

w u

Figure 2.4: Schematic illustration of an inner product w · u calculation. Colored boxes with
partially dashed border lines represent the halo cells. Blue, green, yellow and red parts of the
vectors are owned by processor 1, 2, 3 and 4 respectively.

E.D. Wobbes Master of Science Thesis

Chapter 3

AMG

3-1 Classical AMG

Multigrid methods form an essential step towards solving systems of linear equations resulting
from the discretization of PDEs in a fast and efficient manner. Typically, these methods are
applied to PDEs of elliptic nature.
Multigrid methods are called optimal, because they can solve a problem with N unknowns
with only O(N) work. Since it is possible to allocate this work on parallel computers, in
general large systems are solved readily by means of the multigrid techniques, [14].

A discretized PDE can be written as a linear system

Au = f , (3.1)

where A ∈ Rn×n is the discretization matrix, f ∈ Rn is the right-hand side and u ∈ Rn is the
solution vector. The multigrid methods solve system (3.1) by employing two complementary
processes: smoothing and defect correction. The smoothing involves the application of a
smoother Sh, generally a basic iterative method (BIM) such as Jacobi and Gauss-Seidel. BIMs
efficiently reduce the high frequency components of the iteration error, but their convergence
is hindered by the low frequency errors. If however a problem is transfered to a coarser grid,
the previously low frequency errors can be damped by a BIM effectively, because they turn
into high frequency errors after coarsening. This error elimination technique is called defect
correction. The use of BIMs is further described in Section 3-1-2.

There are two main types of multigrid methods: geometric and algebraic. Geometric mutligrid
determines the various multigrid components based on the geometry of the problem and is
explained in detail in [6]. Algebraic multigrid method (AMG) can be constructed without the
explicit knowledge of the stencil. This approach uses only the underlying matrices. Therefore,
AMG can be readily applied to structured and unstructured problems. This flexibility comes
with a price: the approach requires a relatively expensive setup phase in addition to the solve
phase, consisting of the smoothing and defect correction processes.

Master of Science Thesis E.D. Wobbes

22 AMG

AMG was introduced in the 80s in [30, 3, 4, 5]. Since then, many AMG versions have been
developed. In this section we focus on the classical Ruge-Stüben AMG.
First of all, we explain in Section 3-1-1 what the term ‘grid’ represents in the context of AMG.
After that, we describe the smoothing process (Section 3-1-2). The discussion is revolved
around the Jacobi and Gauss-Seidel methods. The fundamental concepts of dependence and
algebraic smoothness are introduced in Section 3-1-3 and 3-1-4, respectively. Subsequently,
the heuristic criteria, required for the coarsening procedure, are presented. The heuristics are
stated in Section 3-1-5, while their application is visualized in Section 3-1-6. The transfer and
coarse grid operators are described in Section 3-1-7 and Section 3-1-8, respectively. Since at
this stage all crucial components of AMG are already introduced, we provide the AMG setup
and solve algorithms in Section 3-1-9. The description of the method is concluded by a note
on its convergence and costs (Section 3-1-10 and Section 3-1-11).

3-1-1 Undirected Adjacency Graph

In the geometric case, the unknown variables ui have known spatial locations on a fine grid
and a subset of these unknown variables is used on a coarse grid. In the algebraic case, the
grid is generally not known, but by analogy with geometric multigrid, a subset of the variables
ui serves as the coarse grid unknowns. Clearly, it is useful to identify the grid with the indices
of unknown quantities.
For illustrative purposes, we construct an adjacency graph corresponding with matrix A. The
vertices of the undirected adjacency graph are associated with the grid points. Letting aij be
the entries of A, an edge between the ith and jth vertices is drawn, when aij 6= 0 or aji 6= 0
with i 6= j (see Figure 3.1). For the sake of simplicity, loops corresponding to the case i = j
are not included in the adjacency graph in Figure 3.1. obviously, the grid is based solely on
the matrix A.

A =

X X X
X X X X

X X X
X X X X

X X X X
X X X X

1

2 3

45

6

Figure 3.1: The sparsity structure of A, where X represents a non-zero entry, and the corre-
sponding undirected adjacency graph.

3-1-2 Smoothing: Basic Iterative Methods

Suppose that system (3.1) has a unique solution u. Then, by v we denote the iterative
approximation to u. The accuracy of v can be established using any of the standard vector
norms for the error

e = u− v.

Unfortunately, for the most problems the error is just as inaccessible as the exact solution
itself. For this reason, the quality of the approximation is usually presented by the residual,

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 23

given by
r = f −Av.

It follows that
Ae = r. (3.2)

Equation (3.2) is known as the residual equation.
In Section B we introduced a non-singular matrix M and matrix N = M −A and explained
that at step k + 1 of an iterative method the numerical solution is computed as follows:

vk+1 = vk +M−1rk. (3.3)

It should be noted that ek+1 =
(
I −M−1A

)
ek, while rk+1 =

(
I −AM−1) rk. This implies

that rk+1 and ek+1 satisfy the residual equation provided rk and ek do so.
The iteration matrix of a BIM is defined as

B = I −M−1A.

To introduce specific basic iterative methods, we denote the matrix A as

A = D − L− U,

where D is the diagonal matrix, −L is the strictly lower triangular part of A and −U is the
strictly upper triangular part of A. In addition, we define matrix Ld and Ud:

Ld = D−1L,

Ud = D−1U.

Although there exist various basic iterative methods, we focus on Gauss-Seidel, Jacobi and
damped Jacobi methods.

Jacobi

The Jacobi method is one of the simplest iterative schemes. It sets MJAC = D. Therefore,
NJAC becomes equal to L+ U . With other words,

vk+1 = D−1
(
(L+ U) vk + f

)
.

In component form, we can write the Jacobi iteration as follows:

vk+1
i =

fi − n∑
j=1,j 6=i

Aijv
k
j

 /Aii ∀i = 1, . . . , n.

It can be easily shown that matrix BJAC is equal to Ld + Ud, see [41].

A variation of the Jacobi method can be obtained using the damping parameter ω ∈ R:

vk+1 = (1− ω)vk + ωv̄k+1,

where v̄k+1 is the original Jacobi iterand at step k + 1. Obviously, ω = 1 yields the original
Jacobi scheme.

Master of Science Thesis E.D. Wobbes

24 AMG

Gauss-Seidel

The Gauss-Seidel method is constructed by setting

MGS = D − L,
NGS = U.

Thus, vk+1 = (D − L)−1
(
Uvk + f

)
. This leads to the following equation in component form:

vk+1
i =

fi − i−1∑
j=1

Aijv
k+1
j −

n∑
j=i+1

Aijv
k
j

 /Aii ∀i = 1, . . . , n.

For the Gauss-Seidel method, BGS = (I − Ld)−1 Ud, [41].
As shown above, the (damped) Jacobi method calculates all components of the new iteration
a priori, while the Gauss-Seidel method uses the components as soon as they become avail-
able. This is the main difference between the two methods.

According to the calculation (B.1) and the definition of B, the basic iterative methods may
be presented in the form

v1 = Bv0 +M−1f . (3.4)

Moreover, BIM’s are designed so that the exact solution is a fixed point of the iteration, [6]:

u = Bu +M−1f . (3.5)

Subtracting Equation (3.4) from Equation (3.5), we obtain

e1 = Be0.

Repeating this argument m times, provides us with the error in the mth approximation:

em = Bme0. (3.6)

To proceed further, the definitions of the matrix norm and the spectral radius are required.

Definition 3.1. The matrix norm induced by the vector norm ||.||p with 1 ≤ p <∞ is given
by

||A||p = sup
x 6=0

||Ax||p
||x||p

.

Definition 3.2. The spectral radius of matrix A is defined by

ρ(A) = { max
i=1,...,n

|λi| : λi is an eigenvalue of A}. (3.7)

For a particular vector norm and its corresponding matrix norm, it is not difficult to see that
due to the consistency condition the error after m iterations is bounded by

||em|| ≤ ||B||m||e0||.

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 25

Thus, if ||B|| < 1, the iteration will converge. In [21] it is demonstrated that

lim
m→∞

Bm = 0 if and only if ρ(B) < 1.

It follows that the iteration associated with matrix B converges for all initial guess if and only
if ρ(B) < 1. Further discussion of the convergence of basic iterative methods is held using a
straightforward, but illustrative example.

Example 3.1. Consider the damped Jacobi iteration applied to the two-point boundary
problem that describes the steady-state temperature distribution in a long uniform rod:

−u′′(x) = f(x), 0 < x < 1,

with homogeneous Dirichlet boundary conditions. The domain is partitioned into n subin-
tervals by by introducing the grid points xj = jh with h = 1

n . The components of the
approximation vector v = (v1, v2, . . . , vn−1)T satisfy the linear system of n− 1 equations:

−vj−1 + 2vj − vj+1
h2 = f(xj), 1 ≤ j ≤ n− 1,

v0 = vn = 0.

Thus, in the matrix form we can write Av = f , where f = (f1, f2, . . . , fn−1)T and

A = 1
h2

2 −1
−1 2 −1

.
.

−1
−1 2

.

The iteration matrix of the damped Jacobi method satisfies Bω = (1−ω)I +ωBJAC . There-
fore, we find

Bω = I − ω

2A.

It follows that the eigenvalues of Bω and A are related by λ(Bω) = 1− ω
2λ(A). The eigenvalues

of A are given by
λl(A) = 4 sin2

(
lπ

2n

)
, 1 ≤ l ≤ n− 1.

It is useful to calculate the corresponding eigenvectors. We denote the jth component of the
lth eigenvector wl by wl,j , where

wl,j = sin
(
jlπ

2n

)
, 1 ≤ l ≤ n− 1, 0 ≤ j ≤ n.

When the wavenumber l is in the range 1 ≤ l ≤ n
2 , these Fourier modes are called low-

frequency or smooth modes, since the corresponding sine waves are long and smooth. Anal-
ogously, the modes in the upper half of the spectrum, with n

2 ≤ l ≤ n − 1, are known as
high-frequency or oscillatory waves.

Master of Science Thesis E.D. Wobbes

26 AMG

We conclude that the eigenvalues of Bω are

λl(Bω) = 1− 2ω sin2
(
lπ

2n

)
,

whilst the eigenvectors of Bω are equal to those of A. Thus, the iteration converges when
0 < ω ≤ 1.

Using the eigenvectors of the iteration matrix, it is possible to compute the expansion for the
error after m iterations. The error in an initial guess of the Jacobi method can be presented
as

e0 =
n−1∑
l=1

clwl.

Substituting this into Equation (3.6), we obtain

em =
n−1∑
l=1

clB
m
ω wl =

n−1∑
l=1

clλ
m
k (Bω)wl. (3.8)

The last step follows from the fact that wl is an eigenvector of the iteration matrix.
Equation (3.8) shows that after m iterations the lth mode of the original error is reduced by
a factor λmk (Bω). Therefore, we continue with the further analysis of the eigenvalues.
For 0 < ω ≤ 1 the following holds:

λ1 = 1− 2ω sin2
(
π

2n

)
= 1− 2ω sin2

(
πh

2

)
≈ 1− ωπ2h2

2 .

From this follows that λ1 associated with the smoothest mode, also called the near null space
of A, will always stay close to 1. This implies that no value of ω can effectively diminish the
smooth components of the error. Furthermore, the reduction of the grid spacing h = 1

n brings
λ1 only closer to 1. Nevertheless, in [6] it is pointed out that the value of ω is 2

3 is optimal
for the damping of smooth components. To be more precise, for n

2 ≥ l ≥ n− 1, |λl| < 1
3 when

ω = 2
3 .

Although Example 3.1 illustrates only the inability of the damped Jacobi method to reduce the
smooth components of the error, the same conclusion holds for other basic iterative methods.

3-1-3 Algebraic Smoothness

Before introducing the concept of algebraic smoothness, we state several important definitions
needed in this section.

Definition 3.3. The matrix A is irreducible if and only if there is no matrix P such that
PAP T is a block upper triangular matrix.

Definition 3.4. The matrix A with entries aij is irreducibly diagonal dominant if and only
if A is irreducible and

|aii| ≥
n∑

j=1,j 6=i
|aij | ∀i = 1, . . . , n (3.9)

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 27

with strict inequality for at least one i.

Definition 3.5. The matrix A is an M-matrix if and only if

1. the diagonal entries of A are positive;

2. the non-zero off-diagonal entries of A are negative;

3. A is non-singular;

4. A−1 ≥ 0.

An equivalent, but more useful in practice definition of the M-matrix property stated [41] is
provided below.

Definition 3.6. The matrix A is an M-matrix if it satisfies the following properties:

1. the diagonal entries of A are positive;

2. the non-zero off-diagonal entries of A are negative;

3. A is irreducibly diagonally dominant.

The algebraically smooth error is defined loosely as any error that is not reduced effectively
by smoothing. To provide a deeper insight into this definition we focus again on the damped
Jacobi method. We assume that A of the linear system (3.1) is an M-matrix.
The damped Jacobi method approximates the solution as follows:

vk+1 = vk + ωD−1(f −Avk),

where v is the iterative approximation of the exact solution and D is the diagonal of A.
To ensure the convergence, the damping factor ω is set to α||D−1/2AD1/2||−1 for α ∈ (0, 2).
The error propagation for this iteration is

ek+1 = (I − ωD−1A)ek. (3.10)

At the point when the convergence of the Jacobi method starts to decrease significantly, the
error is defined as algebraically smooth. This implies that the size of ek+1 is insufficiently
less than the size of ek. A natural measure of size in this case is the A-norm:

||e||A = (Ae, e)1/2.

According to Equation (3.10), algebraically smooth error satisfies

||e||A ≈ ||(I − ωD−1A)e||A. (3.11)

Using the definition of the A-norm, it can be easily shown that

||(I −D−1A)e||2A = ||e||2A − 2ω||Ae||2D−1 + ω2||D−1Ae||2A. (3.12)

Master of Science Thesis E.D. Wobbes

28 AMG

Combining Equation (3.2), (3.11) and (3.12) yields

||r||D−1 � ||e||A.

In the component form this expression is equivalent to

n∑
i=1

r2
i

aii
�

n∑
i=1

riei.

Therefore, at least on average, |ri| � aii|ei| for the algebraically smooth error. We can write
this condition as

Ae ≈ 0,

what is equivalent to saying that smooth error has relatively small residuals.

Example 3.2. The following differential equation is examined in [37]:

− (aux)x − (buy)y + cuxy = f(x, y),

with homogeneous Dirichlet boundary conditions. The domain is two dimensional unit square.
The problem is discretized using a uniform grid and finite difference approximations. The
locally constant coefficients a, b and c are defined in the unit square as follows:

a = 1 a = 1
b = 1000 b = 1
c = 0 c = 2
a = 1 a = 1000
b = 1 b = 1
c = 0 c = 0

Figure 3.2: Error that is smooth in the algebraic sense, but is geometrically oscillatory (source:
[37]).

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 29

The source function is equal to zero and the initial guess is chosen randomly. After having
applied several smoothing steps, the iteration stalls and the algebraically smooth error on the
finest level looks as shown in Figure 3.2. According to our definition this error is algebraically
smooth, but is geometrically oscillatory on three of the four quadrants.

3-1-4 Influence and Dependence

Since AMG was originally developed for M-matrices, the ith equation is associated with the
ith unknown due to the diagonal dominance. That is, the ith equation is used to determine
the value of ui. Obviously, all the equations are needed to determine any variable precisely.
However, not all the variables in an equation are evenly important. If in the ith equation
the coefficient aij is large relative to the other coefficients, then a small change in uj will
have more effect on ui than a small change in other variables. This leads us to the following
definition.

Definition 3.7. The variable ui (corresponding to grid point i) strongly depends on the
variable uj (corresponding to point j) if

− aij ≥ θmax
k 6=i
{−aik}, (3.13)

where the strength threshold θ satisfies 0 < θ ≤ 1.

Remark 2. It is important to understand that the use of the above definition is not limited
to M-matrices. If positive off-diagonal entries are present, they are considered to be weak
connections.

The choice of the strength threshold is important, since θ can influence the stencil size and
the convergence of the algorithm significantly, [44]. Generally, this parameter is set to 0.25,
[1].

Having introduced the concept of dependence, we provide the definition of influence.

Definition 3.8. If the variable ui strongly depends on the variable uj , then the variable uj
strongly influences the variable ui.

From these two definitions follows that the variable uj strongly influences ui, if the coefficient
aij is comparable in magnitude to the largest off-diagonal element in the ith equation.

Definition 3.9. If the variable ui strongly influences/depends on variable uj , then ui and uj
are strongly connected.

Within the AMG algorithm, the strength of connection between the variables is usually stored
in the strength-of-connection matrix, which is usually denoted by S. As will be shown in
following sections, the coarsening and interpolation processes are based on the fundamental
concepts of algebraic smoothness and influence.

Master of Science Thesis E.D. Wobbes

30 AMG

3-1-5 Coarsening Heuristics

The coarsening process describes the construction of a partitioning of the indices {1, 2, . . . , n} =
C∪F into coarse grid and fine grid variables, also known as C- and F -points. Here, a variable
is called a fine grid variable, if it is not present on the coarse grid. In contrast, a C-point
exists on the fine and coarse grid.
The classical (also called Ruge-Stüben or simply RS) coarsening process is based on the fol-
lowing two heuristic criteria:

H 3.1. For each F -point i, every point j that strongly influences i either should be a C-point
or should strongly depend on at least one C-point that strongly influences i.

H 3.2. The set of coarse points C should be a maximal independent subset of all points, i.e.
no two C-points are connected to each other, and no other C-point can be added without
losing the independence.

Criterion H 3.1 is designed to control the quality of interpolation. We will explore this
heuristics in more detail in Section 3-1-7, where the interpolation formula is introduced.

CriterionH 3.2 aims to control the multigrid efficiency, which is defined by the computational
costs per cycle and convergence factor. If the coarse grid is a large fraction of the fine grid,
the interpolation of smooth errors is generally very accurate and therefore leads to a faster
convergence. However, the costs of doing a V-cycle increase drastically. Criterion H 3.2
bounds the size of the coarse grid by prohibiting the strong dependence of C-points on one
another and therefore moving the coarse grid elements farther apart. The heuristic controls
the convergence by requiring C to be a maximal subset.

Generally, it is not possible to fulfill both criteria simultaneously. Since criterion H 3.1 is
important for the interpolation quality, H 3.1 is enforced, while H 3.2 is used as a guideline.

3-1-6 Coarsening

Although the coarsening procedure is based solely on the strength-of-connection operator S,
it is difficult to get an intuitive understanding of this procedure from a purely matrix point-
of-view. Therefore, we provide an explanation which uses the adjacency graph corresponding
to S.

Before the coarsening (or coloring) algorithm is described, we make two definitions.

Definition 3.10. Define Si as the set of points that strongly influence i.

Definition 3.11. Define STi as the set of points that strongly depend on i.

The coarse grid selection algorithm consists of two passes. The first pass creates a set of
C-points that have good approximation properties and tend to satisfy heuristic H 3.2. Once
the initial coarse grid points have been assigned according to the first pass, the second pass
changes some F -points to C-points to enforce H 3.1.

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 31

2 3 3 2

3 5 4 4

3 4 8 3

2 4 3 3

2 3 3 2

3

3

2

2 4 4 3

4

4

3

3 4 4 3

PASS I

PASS II

Figure 3.3: PASS I and II of the coloring process. Black points represent C-points, gray points
denote F -points, and white points denote unassigned points. The numbers correspond to the
values of measure λ. In PASS II solid lines represent strong F -F connections that do not satisfy
heuristic H 3.1.

The process begins by assigning to each point i a measure λi, that represents its potential to
become a coarse grid point. The simplest approach to make this assignment is to define the
measure as the number of points strongly influenced by i. This number is the cardinality of
STi . When the measures are assigned, we select the point with maximum λi value to be the
first C-point.

There are several points that strongly depend on the first C-point. Hence, the interpolation
formula for each of these point should include this first C-point. For this reason, the points
that the first coarse grid point strongly influences, should become F -points. The whole set
STi can be added to the set of F -points, without any violations of criterion H 3.1 or potential
violations of H 3.2. Since the points strongly depended on these new F -points can be useful
for an accurate interpolation, it is logical to consider them as potential C-points. Therefore,

Master of Science Thesis E.D. Wobbes

32 AMG

for each new F -point j in STi , the measure λk of each unassigned point k on which j strongly
depends, is incremented. That is, the measures of unassigned points k in Sj are incremented
by 1 for each fine grid point j. This process continues until all points have become either fine
or coarse grid points.

Since the first pass does not guarantee to fulfill criterion H 3.1, it is followed by the second
pass. This pass examines all strong connections between fine grid points for common coarse
neighbours. If H 3.1 is not satisfied, new points are added to the set C. It should be noted
that there are many problems that do not require the second pass, such as a five- and nine-
point Laplacian stencil on a uniform grid. Figure 3.3 illustrates a general example where both
passes are needed.

The coarsening process depends on the order in which the points are scanned while seeking
for the next point with maximal measure. For example, in many cases there are several grid
points with the maximal value of λ at the start, and any of them can be selected as the first
C-point. Obviously, also during the coloring process, there can arise several points with the
same maximal measure. Thus, there are many possible coarsenings. The heuristics H 3.1
and H 3.2 ensure that all the possible coarse grids will provide an adequate representation
of smooth error components and keep the size of the coarse grid relatively small.

Example 3.3. Consider an anisotropic Poisson problem

− εuxx − uyy = f,

where ε is very small. The grid is uniform. This problem shows strong dependence in the
y-direction and little dependence in the x-direction. The coloring produced in this case is
shown in Figure 3.4.

Figure 3.4: Semicoarsening in the y-direction produced for an anisotropic Poisson problem
(Example 3.3). On the left, the original grid is shown. Solid lines denote strong dependences.
On the right, the final coarsening is illustrated.

The coloring scheme generates a semicoarsened grid, because there is no coarsening in the
x-direction. Thus, AMG performs coarsening only in the direction of strong dependence.

Although for Example 3.2 the main idea behind the semicoarsening stays the same, it obtains
a more complicated form (see Figure 3.5). In this case there is strong dependence in the

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 33

y-direction (b = 1000) in the upper left quadrant. Therefore, AMG preliminary coarsens
that part of the grid in the y-direction. Analogously, in the lower right quadrant where the
dependence is strong in the x-direction (a = 1000), the grid is coarsened in the x-direction.
In the upper right quadrant, where a = b = 1 and c = 2 the coarsening is performed in the
northwest direction. Finally, in the lower left quadrant the coarsening is standard, because
there is no anisotropy in that region.

Figure 3.5: Semicoarsening of Example 3.2 (source: [37]).

3-1-7 Interpolation

Suppose that {ei : i ∈ C}, is a set of values on the coarse grid corresponding to a smooth
error. This set has to be interpolated to the fine grid. When the grid is unstructured or does
not exist, it can be challenging to find an accurate interpolation operator. The goal of this
section is to provide a suitable approach for the grid transfer.

If a fine grid point i strongly depends on a coarse grid point j, then the value ej contributes
considerably to the value of ei in the ith fine grid equation. Therefore, the value ej in
the coarse grid equation is a reasonable candidate for the interpolation formula in order to
accurately approximate ei on the fine grid.
To strengthen this idea, we recall from Section 3-1-3 that for a symmetric M-matrix A the
following inequality holds:

||r||D−1 � ||e||A.

Using this expression and the Cauchy-Schwarz inequality, we have

||e||2A = (Ae, e) = (D−1/2Ae, D1/2e) ≤ ||D−1/2Ae|| ||D1/2e|| = ||r||D−1 ||e||D � ||e||A ||e||D.

Master of Science Thesis E.D. Wobbes

34 AMG

Thus, assuming that A has a zero row sum

||e||A =
∑
ij

aijeiej = 1
2
∑
ij

(−aij)(ei − ej)2 +
∑
ij

aije
2
i

= 1
2
∑
i

∑
j 6=i
|aij |(ei − ej)2 + aii(ei − ej)2

=
∑
i

∑
j 6=i
|aij |(ei − ej)2 � ||e||D =

∑
i

aiie
2
i .

From this follows, that for most i holds

∑
j 6=i

(|aij |
aii

)(
ei − ej
ei

)2
� 1, 1 ≤ i ≤ n. (3.14)

The left side of Equation (3.14) is a sum of products of two nonnegative components. Since
the products are very small, one or both of the terms in each product must be small. How-
ever, if ej strongly influences ei, off-diagonal element −aij can be comparable to the diagonal
element aii. This means that for these ej ’s holds ej ≈ ei, because ej − ei is small. With other
words, smooth error varies slowly in the direction of strong dependence. We can conclude
that the fine grid quantity ui can be interpolated from the coarse grid quantity uj if i strongly
depends on j.

Remark 3. In order to make smooth error more oscillatory on a coarser grid, AMG performs
coarsening in the direction of strong dependence. This is exactly what we observed in Exam-
ple 3.3.

Remark 4. A slightly different manner to show that ej ≈ ei is provided in [14]. The alterna-
tive derivation is based on the fact that geometrically smooth functions are in the near null
space of the fine grid operator.

To define the interpolation operator P , we introduce the neighbourhood of i, Ni: for each
fine grid point i, Ni is the set of all points j 6= i such that aij 6= 0. Ni contains three types
of points:

• the neighbouring C-points that strongly influence i; these points form the coarse inter-
polatory set for i, denoted by Ci;

• the neighbouring F -points that strongly influence i; this set is denoted by Ds
i ; and

• the neighbouring C- and F -points that do not strongly influence i; they form the set of
weakly connected neighbours, Dw

i .

For the interpolation formula we require the ith component of Pe to be defined as follows

(Pe)i =
{
ei if i ∈ C,∑
j∈Ci ωijej if i ∈ F,

(3.15)

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 35

where the interpolation weights, ωij have to be determined.

From Section 3-1-3, we know that smooth error has relatively small residuals: Ae ≈ 0. In the
component form, this condition is equivalent to:

aiiei ≈ −
∑
j∈Ni

aijej .

The sum on the right hand side can be splitted into a sum over Ci, Ds
i and Dw

i :

aiiei ≈ −
∑
j∈Ci

aijej −
∑
j∈Dsi

aijej −
∑
j∈Dwi

aijej . (3.16)

From Equation (3.15) follows that to obtain the interpolation weights, we need to replace the
ej with j ∈ Ds

i and j ∈ Dw
i either by ei or ej with j ∈ Ci.

If the points are weakly connected to i we distribute ej to the diagonal coefficients. In other
words, if j ∈ Dw

i , we replace ej by ei. By doing so and redistributing the terms, we obtain:aii +
∑
j∈Dwi

aij

 ei ≈ −∑
j∈Ci

aijej −
∑
j∈Dsi

aijej . (3.17)

This approach is easily justified. Assume that the dependence has been underestimated: the
points in Ds

i strongly influence ei. Then ej ≈ ei, because smooth error varies slowly in the
direction of strong dependence. Therefore, the replacement is a logical step. Alternatively,
we can assume that ei has no strong dependence on the points of Ds

i . This means that
the corresponding value of aij is relatively small. Thus, the possible error created by the
distribution to the diagonal is insignificant.

The ej ’s in the third sum of Equation (3.16) can also be distributed to the diagonal. However,
experience has shown that it is better to distribute these terms to Ci [6]. The main idea behind
this distribution is to approximate ej with j ∈ Ds

i with a weighted sum of ek, where k ∈ Ci.
This can be done by making the following approximation:

ej ≈
∑
k∈Ci ajkek∑
k∈Ci ajk

. (3.18)

The choice of the numerator is based on the fact that the ej strongly depends on the ek’s
in proportion to ajk. The denominator assures that constants are interpolated exactly by
Equation (3.18). It should be noted that if there is strong F -F connection between points i
and j, then there must exist at least one point common to their interpolatory sets.

Substituting Equation (3.18) into Equation (3.17) and interchanging sums in the last term,
gives us the interpolation weights:

ωij = −
aij +

∑
m∈Dsi

(
aimamj∑
k∈Ci

amk

)
aii +

∑
n∈Dwi

ain
. (3.19)

This completes the interpolation formula (3.15).

At this point we have all the information required for the motivation of criterion H 3.1 from
Section 3-1-5 that says that for each F -point i, every point j that strongly influences i either

Master of Science Thesis E.D. Wobbes

36 AMG

must be a C-point or must strongly depend on at least one C-point that strongly influences
i. Approximation (3.18) is applicable to F -points strongly influencing the F -point i, so to
achieve an accurate interpolation, these points should be represented in the interpolation
formula. In contrast to coarse grid points, they contribute to the interpolation formula by
distributing their values to points in Ci as illustrated in Equation (3.18). Obviously, Equation
(3.18) will be more precise if there would be several points in Ci that strongly influence j.
However, the necessary condition for the approximation is that there is at least one point in
Ci on which j strongly depends. This requirement is enforced by H 3.1.

3-1-8 Galerkin Operators

Once the coarse grid k + 1 is constructed and the interpolation operator is defined, the
restriction operator R is easily obtained:

Rk = (P k)T . (3.20)

The coarse grid operator is then constructed using Galerkin condition:

Ak+1 = RkAkP k. (3.21)

This definition has certain pros and cons. On the one hand, it guarantees the convergence of
AMG under the assumption that Ak is symmetric positive definite and the smoothing step
is convergent. On the other hand, the Galerkin approach creates coarse grid operators with
high density.

3-1-9 Algorithm

Assume that the superscript 0 andM correspond to the finest and coarsest level, respectively.
We denote the grids by Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ · · · ⊃ ΩM . Furthermore, for everym ∈ {0, 1, . . . ,M−
1} grid Ωm is partitioned into a set of fine points Fm and a set of coarse points Cm, such that
Fm∩Cm = {∅}. To transfer grid m+ 1 to a finer grid m, the prolongation operator Pm from
Equation (3.15) is used. The inverse transformation is obtained by applying the restriction
operator Rm, which is defined by (3.20). The coarse grid operator Am+1 is obtained using the
Galerkin condition (3.21). These multigrid components are constructed in the setup phase,
as shown in Algorithm 3.

Algorithm 3: AMG setup phase.
Data: m = 0, Ωm, Am

1 while Ω0 is not sufficiently small do
2 Split Ωm into Cm and Fm.
3 Set Ωm+1 = Cm.
4 Define interpolation Pm.
5 Define restriction Rm.
6 Define coarse grid operator Am.
7 Set up smoother Sm, if necessary.
8 Set m = m+ 1.
9 end

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 37

When the setup phase is completed, the method proceeds with the solve phase which repeats a
certain cycle until the termination criterion is reached. A possible cycle is shown in Algorithm
4. In the algorithm, the smooth error on level m is defined as em = u − vm, where u and
vm are the exact solution and its approximation on mth level, respectively. This error is
eliminated by defect correction, which solves the residual equation on a coarser grid m + 1
and interpolates the error back to grid m in order to improve the numerical solution.

Algorithm 4: AMG solve phase.
Data: Am, Rm, Pm, Sm, um, fm

1 while m ≤M do
2 if m=M then
3 Solve AMvM = fM directly.
4 else
5 Apply smoother Sm µ1 times to Amvm = fm.
6 Perform defect correction:
7 Set rm = fm −Amvm.
8 Set rm+1 = Rmrm.
9 Apply AMG solve phase to Am+1em+1 = rm+1.

10 Interpolate em = Pmem+1.
11 Correct the solution: vm ← vm + em.
12 Apply smoother Sm µ2 times to Amvm = fm.
13 end
14 end

Level 0 (finest)

Level 1

Level 2

Level 3

Level 4 (coarsest)

smoothing

restriction

prolongation

Figure 3.6: Multigrid V-cycle on five levels.

Depending on the order in which the grid levels are visited, it is possible to categorize the V -,
W -cycle and full multigrid cycle (FMG). Algorithm 4 describes a V (µ1, µ2)-cycle. It starts at
the finest grid level, where a presmoothing procedure, consisting of µ1 steps, is performed. At
that point, the residual is calculated and transfered to the next coarser level, where another
µ1 presmoothing steps take place. This process is repeated until the coarsest grid is reached.
After that, the correction is interpolated back to a finer grid and µ2 postsmoothing steps are
performed. The cycle stops when the finest grid level is attained. For M = 4 a V-cycle is
schematically illustrated in Figure 3.6.
Figure 3.7 shows a W -cycle and an FMG. Obviously, W-cycles weight coarse grids more
heavily than V -cycle. Therefore, for complicated problems a W -cycle can be more efficient

Master of Science Thesis E.D. Wobbes

38 AMG

Figure 3.7: W- and FMG cycles for a four grid method.

and robust. The cost to find solution using an FMG cycle for a large problem is proportional to
the number of grid elements on the finest grid. Thus, full multigrid cycles are asymptotically
optimal.

3-1-10 Convergence

In [30] a description of the convergence of the V-cycle with respect to the A-norm is presented.
The analysis is carried out under the assumption that the fine grid matrix is symmetric and
positive definite (SPD).

Definition 3.12. A symmetric matrix A ∈ Rn×n is positive definite if xTAx > 0 for all
non-zero vectors x ∈ Rn.

For the coarse level m, the error propagation operator of the defect correction is denoted by
Tm. Using the notation introduced in Section 3-1-9 and line 7 to line 11 of Algorithm 4,
we compute Tm. The approximation of the exact solution at iteration k + 1 of the defect
correction process is given by

vmk+1 = vmk + emk
= vmk + Pm+1

(
Am+1

)−1
Rm+1 (fm −Amvmk)

= vmk + Pm+1
(
Am+1

)−1
Rm+1rmk .

Therefore, the error at step k + 1 becomes

emk+1 = um − vmk+1

= um − vmk − Pm+1
(
Am+1

)−1
Rm+1rmk

= emk − Pm+1
(
Am+1

)−1
Rm+1Amemk

=
(
Im − Pm+1

(
Am+1

)−1
Rm+1Am

)
emk .

Thus, Tm = Im − Pm+1 (Am+1)−1
Rm+1Am.

In Section 3-1-2 it shown that the error propagation matrix corresponding to the smoother
Sm is equal to Im − (Mm)−1Am, where M is defined by the relaxation method, e.g. M is
equal to the diagonal of A in case of Jacobi.

E.D. Wobbes Master of Science Thesis

3-1 Classical AMG 39

We denote the error propagator for AMG by EALG, where ALG refers to a given algorithm.
For instance, for the two grid method with ν pre- and post-smoothing steps, we obtain

ETG =
(
S0
)ν
T 0
(
S0
)ν

=
(
I0 −

(
M0

)−T
A0
)ν (

I0 − P 1
(
K1
)−1

R1A0
)(

I0 −
(
M0

)−1
A0
)ν

, (3.22)

where K1 represents the coarse grid matrix, i.e. K1 = A1.
The associated convergence factor ρ (EALG) is defined as in Equation (3.7).

Theorem 3.1. Define A,Sm, Tm and em as above. Let A > 0. Assume that the interpolation
operators have full rank and that the restriction and coarse grid operators are defined as in
Section 3-1-8. Moreover, suppose that, for all em,

||Smem||2A ≤ ||em||2A − δ||Tmem||2A (3.23)

holds with some δ > 0 independently of em and m. Then δ ≤ 1. In addition, provided that
the coarsest grid equation is solved and that at least one smoothing step is performed after
each defect correction step, the V -cycle to solve Au = f has a convergence factor ρ

(
EV (0,ν)

)
bounded above by

√
1− δ.

Proof: see (Theorem 3.1, [30]).

Remark 5. The condition stated in Equation (3.23) means that error components em that
cannot efficiently be reduced by defect correction, i.e. ||Tmem||A ≈ ||em||A, have to be ef-
fectively reducible by the smoothing process. At the same time, for components that can be
efficiently reduced by the defect correction procedure, i.e. for which ||Tmem||A � ||em||A,
the smoothing process is allowed to be ineffective.

Theorem 3.2. Consider the assumptions made in Theorem 3.1. If the condition stated in
Equation (3.23), is replaced by

||Smem||2A ≤ ||em||2A − δ||TmSmem||2A,

the V -cycle convergence factor is bounded above by 1√
1+δ if at least one smoothing step is

performed before each defect correction step.

Proof: see (Remark 3.2, [30]).

In the context of AMG, convergence is not a suitable measure for the performance of the
method, if numerical work is not taken into account. Since nothing definite is known a priori
about the the size of the coarse grids and the dependence of the coarse grid variables on
each other, it is very important to find the conditions that are not only beneficial in terms of
convergence, but also allow to control the costs of the algorithm.

Master of Science Thesis E.D. Wobbes

40 AMG

3-1-11 Costs of AMG

Since the ratio of C- and F -points is not known in advance, the costs of AMG cannot be
predicted in terms of the floating-point operation counts and storage. Therefore, we introduce
two simple tools to analyse the performance of the algorithm.

Definition 3.13. Geometric complexity is the total number of grid points, on all levels, di-
vided by the number of grid points on the finest level.

Definition 3.14. Algebraic complexity is the total number of non-zero elements, in the fine
grid discretization matrix A0 and all the coarse grid operators, Am with m ∈ {0, 1, . . . ,M},
divided by the number of non-zero entries in the fine grid operator.

Geometric complexity, also known as grid complexity, indicates the storage space required for
the right hand side and approximation vectors.
Algebraic complexity provides an accurate approximation of the storage of all Ak operators.
In addition, it gives a reasonable indication of the expense of the AMG V-cycle: the costs
in solve phase of the algorithm are dominated by relaxation and the computation of the
residual, which are directly proportional to the number of non-zero elements in the operator
and, therefore, to the algebraic complexity.

3-2 Coarse Grid Selection

There are two fundamentally different types of coarsening schemes. The first type splits
all points into two disjoint sets: C-points that will form the grid on the next level and F -
points that will be interpolated by the C-points. The second type, known as coarsening
by aggregation, accumulates aggregates, which are disjoint subsets of the variable set and
correspond to exactly one coarse grid point.

3-2-1 Serial Coarsening Strategies

Classical Ruge-Stüben coarsening algorithm introduced in Section 3-1-6, belongs to the first
type and is serial, [44]. Before describing any parallel approaches, we outline the structure
of two other serial methods, because sequential schemes form the basis for the majority of
parallel algorithms.

Aggressive Coarsening

For many PDEs, the application of classical AMG leads to surprisingly large Galerkin oper-
ators on the first coarse grid, but performs relatively efficiently on all the other levels. For
example, in [37], where isotropic 7-point stencils on regular 3D meshes are concidered, it is
shown that the Galerkin matrix on the first coarse grid is larger, than the fine grid matrix by
the factor of 1.36. Since the first coarse level significantly contributes to the final complexity,

E.D. Wobbes Master of Science Thesis

3-2 Coarse Grid Selection 41

Figure 3.8: Aggressive coarsening applied to 5-point isotropic Laplacian: A2 coarsening (midden),
A1 coarsening (right). On the left, the intermediate step is shown.

it is important to reduce the number of non-zero elements on this level. This can be done
efficiently by using aggressive coarsening, which is based on the standard coarsening scheme.

Aggressive coarsening adapts the concept of strong connection by introducing long-range
strong n-connection.

Definition 3.15. A variable i is strongly n-connected to a variable j along a path of length
l, if there exists a sequence of variables i0 = i, i1, . . . , il = j with ik strongly connected to ik+1
for k = 0, 1, . . . , l − 1.

Definition 3.16. A variable i is strongly n-connected with respect to (p, l) to a variable j, if
at least p paths of lengths at most l exist such that i is strongly n-connected to j along each
of these paths.

Analogously to the set Si in Section 3-1-6, we define the set S(p,l)
i :

Definition 3.17. S(p,l)
i is the set of points to which variable i is strongly n-connected with

respect to (p, l).

With other words, for any p and l, aggressive coarsening can be applied by replacing Si by
S

(p,l)
i in the standard coarsening scheme and omitting its second pass. However, the use of
S

(p,l)
i requires the storage of the complete connectivity information for each point i. To prevent

this, we consider a different approach that also leads to aggressive coarsening. Essentially,
aggressive coarsening can be applied by using the first pass of the coloring scheme twice.
First, it is used exactly as described in Section 3-1-6. Then, the first pass is applied to S(p,l)

i

which comprises only the resulting C-points.
It should be noted that aggressive coarsening is normally used only on the first coarse level.
For this reason, the memory requirements for this strategy stay low.

Aggressive A2 coarsening, i.e. choosing p = 2, l = 2, and aggressive A1 coarsening (p = 1,
l = 2) are the most common in practical use, [37]. Figure 3.8 illustrates A1 and A2 coarsening
of 5-point isotropic Laplacian on a 7× 7 grid.

Master of Science Thesis E.D. Wobbes

42 AMG

Coarsening by Aggregation

Coarsening by aggregation is fundamentally different from the standard and aggressive coars-
ening. It is defined by building aggregates.

Definition 3.18. An aggregate consists of a root point i and its neighbourhood, i.e. all
points j such that |aij | > θ

√
|aiiajj |.

Exactly one coarse grid variable is associated with each aggregate. The aggregation scheme
consists of two passes. In the first pass, a root point is selected that is not adjacent to
any aggregate. After that, the aggregate corresponding to the chosen root point is built.
This procedure is repeated until all points are adjacent to an aggregate. The first pass is
demonstrated in Figure 3.9. In the second pass, all unaggregated points are either used to
create new aggregates or absorbed into already existing aggregates.

When this approach is applied, each F -variable is interpolated from exactly one C-variable
(the root point). That is, although each fine grid point may have more than one connection
to the set of coarse grid points, the sets of interpolatory variables are restricted to exactly
one C-variable each. For more details see [28].

Coarsening by aggregation is generally fast and produces small complexities, [44]. However,
the performance of the aggregation scheme is strongly depended on its second pass: creating
too many aggregates can increase the complexity, while enlarging the existing aggregates can
lead to slower convergence.

Figure 3.9: The first pass of the aggregation scheme applied to a 5-point Laplacian. Black
points represent root points, boxes and triangles correspond with aggregates (source: [44]).

3-2-2 Parallel Coarsening Strategies

There exist various approaches to parallelize the coarse grid selection algorithms described
previously. The simplest method, called RS0, starts by partitioning all variables in subdo-
mains so that each processor corresponds to one subdomain. On each subdomain a serial

E.D. Wobbes Master of Science Thesis

3-2 Coarse Grid Selection 43

coarsening algorithm ia used, whereby the variables are treated independently of variables on
other subdomains. With other words, the variables located on the processor boundaries are
ignored.
Since this approach requires no communication between processors, it is highly efficient, but
leads to poor convergence, [44]. Moreover, generally this approach violates heuristic H 3.1
required for the standard and aggressive coarsening, and leads to large complexities if coars-
ening by aggregation is applied, [44].
A possible way to improve this strategy for standard and aggressive coarsening algorithm is
by performing an extra pass only on the boundary variables which will ensure that condition
H 3.1 is satisfied by assigning additional coarse grid points. This algorithm is known as RS3.
For coarsening by aggregation, we can start by generating aggregates on the boundaries to
achieve better performance. Once there are no more unaggregated points adjacent to an ag-
gregate on the processor boundaries, the method can proceed by choosing aggregates in the
interior.

Cleary-Luby-Jones-Plassman

Cleary-Luby-Jones-Plassman (CLJP) coarsening begins by computing global measures as in
classical approach, and then adding a random number between 0 and 1 to each measure. This
procedure creates unique local maxima. The algorithm is demonstrated in Figure 3.10

2.7 3.7 3.1 2.8

3.9 5.1 4.8 4.9

3.2 4.7 8.1 3.3

2.7 4.3 3.7 3.1

2.7 3.7 3.1 2.8

3.9 4.1 3.8 3.9

3.2 3.7 2.3

2.7 3.3 2.7 2.1

2.7 3.7 3.1 2.8

3.9 2.1 1.8 1.9

3.2 1.7

2.7 1.3

2.7 3.7 3.1 2.8

2.1 1.8 1.9

3.2 1.7

2.7 1.3

Figure 3.10: CLJP coarsening. Black points denote C-points, gray points are F -points, and
white points are unassigned points. The numbers represent the sum of measure λ and a random
number between 0 and 1.

Suppose that point i is a local maximum, then it is made a C-point and all connections to
points j that are strongly connected to i, are removed. In addition, we subtract 1 from j’s
measure. This step increases the likelihood of the neighbours of i to become F -points, but
does not make it an F -point instantly. After that, for each j, all points k that depend on j,
are examined: if k also depends on i, we remove the edge connecting k and j, and decrement
the measure of j. A point becomes an F -point, when its measure becomes smaller than 1.

Master of Science Thesis E.D. Wobbes

44 AMG

One of the advantages of CLJP coarsening procedure is that it is completely independent of
the number of processors, if the same set of global random numbers is used, [44]. Further-
more, not each processor has to contain a C-point. Therefore, coarsening does not slow down
on coarser levels. The main disadvantages of this approach is that often it creates coarse grid
point clusters and leads to high complexities (see [44] for an example).

Parallel Maximally Independent Set

The beginning of Parallel Maximally Independent Set (PMIS) algorithm is similar to that of
CLJP: PMIS adds a random number between 0 and 1 to the global measures and choses the
local maxima to be C-points. After that, all points that are influenced by coarse grid points
are made F -points and are eliminated from the graph. This process continues till all variables
are either F - or C-points.
To reduce the complexities, PMIS replaces criterion H 3.1 by H 3.3.

H 3.3. For each F -point i there has to be at least one C-point j that strongly influences it.

Although the complexities of PMIS are significantly lower than those of CLJP, it is still
independent of the number of processors, [44].

Figure 3.11: Parallel coarsening strategies applied to a 5-point Laplacian using 4 processors.
White points represent F -points, black points are C-points and gray points are C-points obtained
during special boundary treatments (source: [44]).

E.D. Wobbes Master of Science Thesis

3-2 Coarse Grid Selection 45

Subdomain Blocking

Subdomain blocking begins by coarsening the processor boundaries. Once the coarse grid
points on the boundaries are selected, the method proceeds to coarsen inside the subdomains.
For the interior of the subdomains, any serial approach can be used.
The subdomain blocking is called full, when all the boundary points are set to be C-points.
This strategy produces too many coarse grid points on the boundaries, which may cause
problems on the coarser grids and lead to high complexities. An alternative approach for
the coarsening of the boundaries is to apply standard coarsening. This method is known as
minimum subdomain blocking.

The difference in behaviour of the parallel coarsening strategies is illustrated in Figure 3.11.
Undoubtedly, there exist other parallel strategies. For instance, in [23] classical coarsening
is combined with CLJP to produce an efficient algorithm for structured problems. In fact,
the majority of alternative parallel coarsening strategies is based on the algorithms described
above. Since these approaches are not related to our project, we refer to [12] and [25] for their
description.

Master of Science Thesis E.D. Wobbes

46 AMG

3-3 AMG within INTERSECT

As explained in Chapter 2, within INTERSECT AMG is applied to the pressure equation in
the first stage of the CPR preconditioner. In the second stage the complete system is solved.
Therefore, the solution for cell pressure provided by AMG does not have to be very accurate
and the multigrid method terminates after one V -cycle.
The coarse grids are constructed by the PMIS coarsening scheme described in Section 3-2-2.
Since this parallel scheme is suitable for a simulation on one processor core, it is used for
serial and parallel runs.
The number of levels comprising the V -cycle is established according to several criteria. Level
m+ 1 becomes the coarsest level in the hierarchy of AMG if:

• the ratio of the number of variables on level m+ 1 to the number of variables on level
m is smaller than a certain limit,

• level m+ 1 consists of one variable,

• level m+ 1 is the 50th level.

On each level except the coarsest level, one pre- and one post-smoothing step is performed.
The Gauss-Seidel method discussed in Section 3-1-2, is used for the smoothing process.
On the coarsest level, the solution is found by FGMRES preconditioned by ILU(0).

3-3-1 Heuristics

Within INTERSECT, AMG is repeatedly used to find the solution of the pressure equation.
Assuming that the time step is sufficiently small, the structure of the coarse grids and the
strength of dependence between the coarse grid variables obtained from the pressure matrix
should be preserved. For this reason, the frequency of the complete AMG setup can be reduced
in order to minimize the computational time required for the multigrid method within the
simulation. When the setup is partial, the coarse grids and the sparsity structure of the
prolongation, restriction and coarse grid operators can be reused. Table 3-1 provides an
overview of the preserved parameters per AMG level.

Level Grid P R RAP
Sparsity Values Sparsity Values Sparsity Values

0 Yes Yes Yes Yes Yes Yes Yes
1 No No Yes No Yes No Yes
2 No No No No No No Yes
3 No No No No No No No

Table 3-1: Partial setup per AMG level. Yes means recompute, while NO means reuse.

Typically, INTERSECT performs the complete setup every five time steps. For the time step
with the complete setup, coarse grids, P , R and RAP are recomputed for the first non-linear
iteration. At subsequent Newton iterations, the setup is partial.

E.D. Wobbes Master of Science Thesis

Chapter 4

Problem Description and Solution
Strategies

4-1 Problem Description

As explained in Section 2-5, INTERSECT uses parallel computing for large problems. Here,
we introduce some terminology, including the concept of strong scalability and Amdahl’s
Law, required to evaluate the quality of parallelisation. After that, we describe the parallel
performance of AMG within INTERSECT.

4-1-1 Terminology

An algorithm’s execution time τ is the wall clock time required by a K-processor system
to execute an algorithm to solve a problem of size N . Independent of the definition of the
problem size, τ is supposed to be directly proportional to N .
A fundamental quantity for assessing the performance of a parallel programme, which is based
on the running time, is the computation rate, also known as the computation speed.

Definition 4.1. Computation rate R(N,K) is the amount of computation per second that
the programme performs:

R(N,K) = N

τ(N,K) . (4.1)

The metric that compares the computation speed before and after the parallelisation is called
speedup.

Definition 4.2. Speedup is the ratio of the parallel algorithm’s speed to the serial algorithm’s
speed:

Speedup = R(N,K)
R(N, 1) . (4.2)

Master of Science Thesis E.D. Wobbes

48 Problem Description and Solution Strategies

Substituting Equation 4.1 into Equation (4.3), speedup can be rewritten as

Speedup = τ(N, 1)
τ(N,K) . (4.3)

The scalability of a parallel algorithm quantifies the relation between the execution time and
the number of processor cores on which the algorithm is executed. There are two types of
scalability: strong and weak. Strong scalability measures the ratio of time to the number of
cores assuming that the problem size is fixed, as the number of cores increases. By contrast,
to compute weak scalability, the problem size is also increased in direct proportion to the
number of cores.
If an algorithm is strongly scalable, then ideally it should require 1/K̄ of the serial execution
time to compute the answer to the same problem on K̄ processors. On the other hand, if
an algorithm is weakly scalable, then its running time should ideally be preserved when a
problem of size K̄ × N̄ is executed on K̄ cores, where N̄ denotes the size of the problem
executed in serial.
Definition 4.3. The fraction of the algorithm’s total running time that must be performed
on a single processor is called the sequential fraction.

Figure 4.1: Strong scaling with a sequential fraction (source: [26]).

We denote the sequential fraction by F . Let T be the serial running time of the algorithm.
Then the sequential portion of the algorithm on one core takes time FT , whilst the paralleliz-
able portion requires time (1− F)T . When several cores are used, the parallelizable portion
experiences an ideal speedup and its time becomes (1−F)T divided by the number of cores,
but the sequential portion still takes time FT (see Figure 4.1). This leads us to Amdahl’s
Law, stated in Theorem 4.1.

Theorem 4.1. The total running time of an algorithm executed in parallel is equal to

T (N,K) = FT (N, 1) + 1− F
K

T (N, 1).

E.D. Wobbes Master of Science Thesis

4-1 Problem Description 49

The direct consequence of Amdahl’s Law is that the overall speedup of a parallelisation is
limited by the sequential portion of the algorithm, i.e. serial computation seriously hinders
strong scalability.

4-1-2 Strong Scalability of AMG within INTERSECT

Although the greater part of the AMG algorithm, comprised of matrix and vector operations,
can be parallelized in a straightforward way, it certainly requires communication and data
exchange among processors. In addition, the parallelisation of the smoothing and coarsening
processes is challenging [44].

As explained in Chapter 2, AMG forms a part of the linear solver. Therefore, the linear solver
time is partially consumed by the multigrid method. Figure 4.2 illustrates the total execution
time of INTERSECT and the running time of the linear solver on an increasing number of
processor cores, for a problem of approximately 4× 106 variables.

Figure 4.2: Strong scalability of INTERSECT for a case with 4× 106 variables.

The total and linear solver time are efficiently reduced when the number of cores gradually
rises from 16 to 128. However, the timings corresponding to 256 processors are approximately
equal to those on 128 processor cores. This indicates the loss of strong scalability. Experiments
have shown that a substantial amount of time within the linear solver is required for the
communication within AMG. Obviously, for a more efficient functioning of the simulator in
parallel, the data communication within the multigrid method should be reduced.

Remark 6. AMG remains weakly scalable, independent of the number of cores.

Master of Science Thesis E.D. Wobbes

50 Problem Description and Solution Strategies

4-2 Solution Strategies

As explained in Section 3-1-11, the costs of AMG are strongly related to the algebraic com-
plexity. The number of nonzero elements affects the number of operations per cycle. A
denser operator requires more operations and, hence, a denser communication pattern. At
the same time, large number of variables may entail the exchange of larger sets of data, which
also requires communication between processors. Thus, the appropriate minimization of the
operator and grid complexities is crucial for the reduction of communication.

Lower complexities inevitably lead to the loss of accuracy within the AMG hierarchy and
accordingly slower convergence of the multigrid method. Since INTERSECT uses only one
AMG V-cycle per linear iteration, the sacrifice of the convergence speed should lead to a
poorer approximation of the cell pressure. Although this certainly has a negative influence on
the second stage of the CPR preconitioner, ILU(0) may sufficiently improve the solution and,
therefore, prevent the number of linear iterations from rising significantly. For this reason,
the overall effect of the reduction of complexities should be positive with regard to the linear
solver and total execution time.

In the remaining part of this section, we will discuss two solution strategies used to resolve
the communication issue. Although both approaches decrease the number of nonzero entries
within the hierarchy of AMG, the theory behind them is entirely different. The first solution
strategy is aggressive coarsening. As explained in Section 3-2-1, aggressive coarsening is
a substitute for the standard coarsening, because it modifies the coarsening scheme. By
contrast, the second solution strategy, the non-Galerkin method, decreases the density of the
existing coarse level operators and should be seen as an extension of the AMG algorithm.

4-2-1 Aggressive Coarsening

Aggressive coarsening was introduced in 1996 in [27]. In [37], it is suggested to apply ag-
gressive coarsening to the finer levels in order to reduce the complexities. On the one hand,
the application of aggressive coarsening drastically reduces the setup and solution costs, the
complexity of the operators and the memory requirement. On the other hand, it decreases the
efficiency of the smoothing procedure and encumbers the interpolation, because the prolonga-
tion operator deals with longer distances between coarse grid variables. According to [37], the
benefits of the aggressive coarsening strategy certainly outweigh its disadvantages, at least
when applied to Ruge-Stüben AMG. The theory behind the classical AMG with aggressive
coarsening is presented in Section 3-2-1.

In [43] it is pointed out that aggressive coarsening can successfully be used with any coarsen-
ing algorithm. Similarly to the application of aggressive coarsening on classical Ruge-Stüben
AMG, in order to construct sparser coarse grid operators than those generated by PMIS, the
coarsening scheme used within INTERSECT, it is necessary to replace the concept of strong
connection (Definition 3.9) by that of strong n-connection (Definition 3.15).
The most efficient manner to implement aggressive coarsening is by applying the PMIS al-
gorithm twice. Firstly, PMIS is applied to the strength-of-connection matrix that should be
seen as Si from Definition 3.10. This produces a set of coarse points C, which is generally
larger than desired. Secondly, PMIS is applied to matrix S(p,l)

i (Definition 3.17), restricted to

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 51

the variables belonging to C. For p = 1 and l = 2, an example of aggressive coarsening with
PMIS is provided in Figure 4.3.

Figure 4.3: Example of aggressive coarsening with PMIS applied to a 10 × 10 5-point 2D
Laplace operator (source: [43]). Black points denote coarse variables, while gray point indicate
fine variables.

In the upcoming discussion, we use the notation introduced in Section 3-1-7.
Clearly, the interpolation formula, shown in Equation (3.19), fails whenever criterion H 3.1
is violated by aggressive coarsening. The failure is caused by the fact that if Ci is empty, we
divide by zero. To provide an alternative expression for the interpolation weights, that does
not lead to a slower convergence, aggressive coarsening uses long-range interpolation, such as
multipass interpolation [44].
The first pass of the miltipass interpolation is based on the following formula:

ωij = −
(∑

l∈Ni ail∑
k∈Ci aik

)
aij
aii
. (4.4)

More precisely, Equation (4.4) is applied to all F -points that are influenced by C-points (the
length of connection path is equal to one). In the second pass, multipass interpolaion evaluates
weights using the standard approach for variables which are influenced by those variables for
which interpolation weights have already been obtained and which are connected by a path of
length one. The second pass is repeated until weights are prescribed to to all remaining points.

To apply aggressive coarsening, INTERSECT was interconnected with SAMG (Algebraic
Multigrid Methods for Systems), commercial software developed at Fraunhofer Institute for
Algorithms and Scientific Computing. More precisely, the complete first stage of the CPR
preconditioner was replaced by the AMG cycle within SAMG.

SAMG

SAMG is designed for the efficient solution of scalar and coupled systems of elliptic PDEs.
It is a FORTAN90 library with the realization based on a modular concept. All modules are
separated from each other and each has a fixed task. That is, each of the essential components
of an AMG algorithm, such as smoothing, coarsening and interpolation, corresponds to a
separate module. The central modules, in turn, consist of several child modules. For example,

Master of Science Thesis E.D. Wobbes

52 Problem Description and Solution Strategies

the coarsening module contains a module for sorting and splitting procedures.
SAMG can be plugged into existing simulation codes and should be considered as a black
box. Since no explicit information on the geometry is not required by AMG, only the fine grid
operator and the corresponding right-hand side have to be passed to the solver. In addition,
SAMG provides a rich environment allowing for many different approaches. For instance,
it provides an option for design of heuristics. If a series of matrix equations with similar
matrices have to be solved, the software can be advised to partially or completely reuse the
setup.

The matrix data used within SAMG is the so-called modified Compressed Sparse Row (CSR)
format. When the data is transformed into the standard CSR format, every matrix A is stored
by means of three vectors, ia ∈ R1×nv+1, ja ∈ R1×nA and a ∈ R1×nA . Here, nv and nA denote
the number of variables and the number of non-zero matrix entries, respectively. Vectors a
contains the entries of A, whereas ja consists of the corresponding column numbers. The
non-zero entries of the first row are stored first, followed by the second row, etc. Although
the entries can be stored in any order within the row, typically the entry from a column with
the lowest index comes first, then that from a column with the second lowest index, and so
on. The third vector, ia is comprised of the cumulative sum of the number of entries per row.
However, the ia(1) is always is equal to 0. Thus, the number of non-zero entries in row i is
computed as ia(i+ 1)− ia(i).
When the modified CSR format is used, then diagonal entries are stored first within a row.
The order of the off-diagonal entries is not specified.

Example 4.1. Let matrix A be given by

A =

4 1 0
0 3 0
0 4 8

 .
Then the corresponding modified CSR vectors are

ia = [0, 2, 3, 5],
ja = [0, 1, 1, 2, 1],
a = [4, 1, 3, 8, 4].

As suggested in Section 3-1-9, all AMG approaches within SAMG are split into two phases,
a setup phase and a solution phase. Obviously, the coarsening process is a part of the setup
phase. According to [10], the typical ratio of coarse grid variables selected by SAMG to
the total number of variables varies between 0.25 and 0.5 per level, i.e. the ratio of the
cardinality of set C to the cardinality of set C ∪ F is equal to 0.25 - 0.5. Usually, this
results in Galerkin operators which have more entries for the first coarse level than the finest
level matrices. To reduce the number of non-zero entries of the coarse grid matrices, SAMG
provides several options for aggressive coarsening. The user can choose between A1 and A2
coarsening strategies and select the levels on which aggressive coarsening should be applied.
In the second phase of AMG, SAMG performs standard cycles of V-, W- or FMG-type. The
most important degrees of freedom for the solution phase are the choice of

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 53

• the type of cycling,

• the smoother,

• the solver on the coarsest level,

• the accelerator.

All smoothers and accelerators provided by SAMG are listed in [10].

SAMGp is the parallel version of SAMG. SAMGp uses subdomain blocking (see Section 3-2-2)
as a parallel coarsening scheme, but allows to accelerate the coarsening by various aggressive
coarsening strategies. It should be noted that all accelerated AMG approaches comprising
SAMGp are scalable if applied to proper classes of applications [10]. The user’s manual of
SAMG/SAMGp and information on how to purchase the software can be found at [34].

In the frame of this project, both serial and parallel versions of SAMG are used. For serial
simulations PMIS is replaced by the classical coarsening, while for parallel computations
subdomain blocking is applied. Both classical coarsening and subdomain blocking are used
with aggressive A1 coarsening on the first and second coarse levels. On the remaining levels
the coarsening is standard. Moreover, on the coarsest grid SAMG applies Gauss elimination,
instead of ILU(0)-preconditioned FGMRES. The other settings are equivalent to the standard
INTERSECT settings, described in Section 3-3. The coupling of INTERSECT and SAMG is
tested with and without heuristics.

4-2-2 Non-Galerkin method

Non-Galerkin method has been successfully applied in settings where geometric information
is used to aid the multigrid algorithms in constructing the sparsity patterns and choosing
matrix coefficients [2, 42]. We focus on the non-Galerkin method described in [15]. This
purely algebraic approach is based on the traditional AMG techniques.

As problem size increases, the number of levels in the AMG hierarchy grows and denser
coarse grid operators are generated [15]. This leads to denser communication patterns than
existed on the fine level, because the processors that were not coupled on the fine level become
coupled. In [18] it is shown that in parallel the time spent on some coarse levels can actually
be larger than the time required for the fine level due to high density of the coarse grid
operators.
The increase in density is caused by the standard Galerkin operator RAP with R = P T .
The non-Galerkin algorithm replaces RAP with a sparser coarse grid matrix, which aims to
improve parallel scalability and maintain the convergence rate of AMG. The hierarchy of the
non-Galerkin coarse grid operators is schematically shown in Figure 4.4.

Master of Science Thesis E.D. Wobbes

54 Problem Description and Solution Strategies

Level 0 (finest) A = A0

A1
G = R0A0P 0

Level 1 A1
NG

A2
G = R1A1

NGP
1

Level 2 A2
NG

Figure 4.4: The hierarchy of the non-Galerkin coarse grid operators on three levels. Am
G and Am

NG

denote the Galerkin and non-Galerkin coarse grid operators on level m (m = 1, 2), respectively.

The algorithm consists of two phases. In the first phase the sparsity pattern of the non-
Galerkin coarse grid operator is selected. While preserving the row sum, the second phase
removes the entries in RAP that lie outside the non-Galerkin sparsity pattern.

Mathematical Motivation

We provide the mathematical motivation for the non-Galerkin approach under the assumption
that AMG is applied to an SPD matrix.

In this section the following notation is used:

AG is the Galerkin RAP operator,

ANG is the sparser approximation of AG obtained by the non-Galerkin algorithm,

EG is the Galerkin two-grid error propagator,

ENG is the non-Galerkin two-grid error propagator.

The general form of the two-grid error propagator is presented in Equation (3.22). For the
Galerkin and non-Galerkin methods, the coarse grid matrix K1 is equal to A1

G and A1
NG,

respectively. In the remaining part of this chapter, the level number is omitted in order to
simplify the notation.

It is not difficult to see that EG and ENG can be rewritten as

EG = I −B−1
G A,

ENG = I −B−1
NGA,

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 55

where BG and BNG are the corresponding preconditioners for A.
The associated convergence factors are given by

ρ(EG) = max
(
λmax

(
B−1
G A

)
− 1, 1− λmin

(
B−1
G A

))
,

ρ(ENG) = max
(
λmax

(
B−1
NGA

)
− 1, 1− λmin

(
B−1
NGA

))
.

The result below provides an expression for the non-Galerkin two-grid convergence rate in
terms of the two-grid convergence factor of the standard Galerkin method.

Theorem 4.2. Define EG, ENG, BG and BNG as above. In addition, let

θ = ||I −ANGA−1
G ||2. (4.5)

If θ < 1 and both AG and ANG are SPD, then

ρ(ENG) ≤ max
(
λmax

(
B−1
G A

) 1
1− θ − 1, 1− λmin

(
B−1
G A

) 1
1 + θ

)
.

Proof: see (Theorem 2.1, [15]).

Theorem 4.2 shows that if AG and ANG are SPD, and

||I −ANGA−1
G ||2

is minimized, then the quality of convergence is preserved by the non-Galerkin method. With
other words, the algorithm should construct an operator ANG with a certain sparsity pattern
(or non-zero pattern) so that θ is small.

To further motivate the algorithm heuristics, we define a matrix sparsity pattern as a set of
tuples {(i, j)}. Denoting the elements of an n × n matrix Z by zij , the space of operators
with a given non-zero pattern N is defined as

NN := {Z ∈ Rn×n : zij 6= 0 only if (i, j) ∈ N}.

The sparsity patterns of AG and ANG are represented by NG and NNG, respectively. The
algorithm decreases the density of the Galerkin matrix, if NNG ⊆ NG. Thus, our goal is to
find ANG ∈ NNG for which NNG ⊆ NG and θ is small. We begin by considering AG ∈ NG,
ANG ∈NNG and E ∈NG such that

ANG = AG + E. (4.6)

That is, the non-Galerkin operator is as a perturbation of the Galerkin operator.
Remark 7. Since ANG and AG are assumed to be SPD matrices, their eigenvalues are non-
negative. From Equation 4.6 follows that E is symmetric. Therefore, the eigenvalues of E
are real.

Master of Science Thesis E.D. Wobbes

56 Problem Description and Solution Strategies

Substituting Equation (4.6) into Equation (4.5) yields

θ = ||I −ANGA−1
G ||2 = ||EA−1

G ||2. (4.7)

Next, we show that under certain assumptions, the impact of the mid-range and high fre-
quency modes on θ is minimal.
For the mid-range and high frequency modes, x,

AGx = λx, such that ||x||2 = 1,

we assume that λ ∈ [ρ(AG)
10 , ρ(AG)] [15].

Furthermore, for the non-Galerkin algorithm, we enforce the following row-wise heuristics:

||ei||1 ≤ γ||aGi ||1, (4.8)

where,
||ei||1 =

∑
j |eij | with eij representing the entries of E,

||aGi ||1 =
∑
j |aGij | with aGij representing the entries of AG,

γ ∈ [0, 1].

Condition stated in Equation (4.8), implies that

max
i
||ei||1 ≤ γmax

i
||aGi ||1. (4.9)

To continue our discussion, we need Theorem 4.3 (the Gershgorin theorem).

Theorem 4.3. Let zij be elements of Z ∈ Rn×n. If λZ is an eigenvalue of Z, then λZ is
located in one of the n closed disks in the complex plane that centered in zii and have as radius

ri =
n∑

j=1,j 6=i
|zij |,

i.e.,

∃i such that |zii − λZ | ≤ ri =
n∑

j=1,j 6=i
|zij |.

Proof: see [7].

Remark 8. From Theorem 4.3 follows that

ρ(Z) ≤ max
i

n∑
j=1,j 6=i

|zij | = max
i
||zi||1.

Using Remark 8, we obtain

ρ(E) ≤ max
i
||ei||1 ≤ γmax

i
||aGi ||1.

According to [15], maxi ||aGi ||1 = kρ(AG) with k typically in the vicinity of 2 or 3. Thus, the
following inequality holds:

ρ(E) ≤ kγρ(AG).

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 57

From [41] follows that ||E||2 =
√
ρ (ETE). Since E is symmetric, ||E||2 = ρ(E). Therefore,

we have
||E||2 ≤ kγρ(AG).

Using Definition 3.1 with the mode x in question, we obtain the following expression:

θ = ||EA−1
G ||2 = sup

||x||2=1
||EA−1

G x||2 = 1
λ

sup
||x||2=1

||Ex||2 = 1
λ
||E||2 ≤

kγρ(AG)
λ

. (4.10)

Equation (4.10) implies that for mid-range or high frequency modes, the impact on θ is
minimal when γ of the order 0.01.

It is not difficult to see that for the low frequency mode x such that Ax ≈ 0 and ||x||2 = 1,
θ is small if Ex ≈ 0. Thus, for a set of vectors H, that represents the near null space of the
fine grid operator A, θ is close to zero when

EH ≈ 0⇔ AGH ≈ ANGH. (4.11)

To minimize the value of θ, the non-Galerkin algorithm enforces

AGH = ANGH. (4.12)

In Chapter 3, it was stated that geometrically smooth functions are in the near null space of A.
Therefore, H can be assumed to be constant. In fact, H = 1 is the most common assumption
[15].1 This choice implies that AG1 = ANG1. With other words, the non-Galerkin method
should preserve the row sums of A.

From the above discussion follows that the non-Galerkin algorithm attempts to minimize θ
and, therefore, preserve the convergence of the standard version of AMG, by enforcing two
heuristics:

• Equation (4.8) which is required for the mid-range or high frequency modes of the fine
grid operator,

• Equation (4.12) which is necessary for the low frequency modes.

These heuristics form the basis of the non-Galerkin approach.

Algorithm

The non-Galerkin method consists of two complementary parts: Compute sparsity algorithm
and Lumping algorithm. The non-zero pattern NNG for ANG is found by the Compute spar-
sity algorithm. It utilizes a drop tolerance in order to guaranty satisfaction of Equation (4.8).
The second part of the non-Galerkin method, the Lumping process, performs the elimination
of entries in AG based on the sparsity pattern NNG. It targets the heuristic stated in Equation
(4.12) for the near null space of A.

1A more general version of the non-Galerkin algorithm, i.e. the near null space contains more than constant
vector, is outside the scope of this thesis. This generalization and the corresponding algorithm are discussed
in [15].

Master of Science Thesis E.D. Wobbes

58 Problem Description and Solution Strategies

Compute sparsity

To compute the sparsity pattern, two processes are combined. One of the processes initializes
the minimal sparsity pattern, while the other process targets the heuristic for mid-range and
high frequency eigenmodes. The scheme can be found in Algorithm 5.
The minimal sparsity pattern is created using the prolongation operator P and the fine grid
discretization matrix A. It is defines as

N̄NG = {(i, j) such that
(
P TI AP + P TAPI

)
ij
6= 0}, (4.13)

where PI is the injection operator between the coarse and fine grids. A very straightforward
example of an injection matrix is presented in Example 4.2.

Example 4.2. Let the fine grid be comprised of three variables. AMG stores this components
in a vector:

[
1 2 3

]T
. Suppose that on the coarse grid, the third variable is removed. Thus,

on the coarse level, we have
[
1 2

]T
. The injection matrix PI corresponding to this hierarchy

is shown in Equation (4.14).

PI

[
1
2

]
=

1
2
0

 with PI =

1 0
0 1
0 0

 . (4.14)

The minimal sparsity pattern in Equation (4.13) preserves the important entries of AG, inde-
pendent of their magnitude [15]. If it was based on the on the classical strength-of-connection
operator the entries with small magnitude would be removed.

N̄NG is improved by the non-Galerkin method in order to target the heuristic. Let the set of
neighbours of i in NNG be given by

NNGi = {j such that (i, j) ∈ NNG}.

After the pattern NNG is initialized as the pattern of AG, the algorithm removes the entries
from NNG operating row by row. It start with entries with the smallest magnitude and
proceeds until further elimination would violate

2
∑

j 6=NNGi

|aGij | ≤ γ
∑
j

|aGij |. (4.15)

Equation (4.15) represents the heuristic from Equation (4.8). The factor of 2 compensates
for the maximum change made to AG when dropping an entry and lumping its value to the

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 59

allowed neighbours [15].

Algorithm 5: Compute sparsity.
Data: AG, P, PI

1 NNG ← ∅
2 for (i, j) such that aGij 6= 0 do
3 NNG ← NNG ∪ {(i, j)}
4 end
5 for i to nrows(AG) do
6 Initialize set K: Km is index of mth smallest magnitude off-diagonal nonzero in row i
7 for m = 1 to |K| do
8 NNGi ← NNGi\Km

9 if 2
∑
j 6=NNGi |a

G
ij | ≤ γ

∑
j |aGij | then

10 continue
11 else
12 NNG ← NNG ∪Km

13 break
14 end
15 end
16 end
17 for (i, j) such that

(
P TI AP + P TAPI

)
ij
6= 0 do

18 NNG ← NNG ∪ {(i, j)}
19 end
20 return NNG

Lumping

Let the non-Galerkin operator be comprised of entries aNGij . The lumping algorithm begins
by initializing ANG as a copy of AG. After that, each entry aNGij that is not in NNG is
removed from ANG. A fraction of the value of aNGij is added to each of j’s strongly connected
neighbours in row i. This is done to preserve the row sum of the Galerkin matrix as required
by the heuristic in Equation (4.12). The lumping procedure uses as input the strength-of-
connection matrix, S, the Galerkin coarse grid operator, AG and the non-Galerkin sparsity
pattern NNG. The neighbours of j in S are defined as

NSj = {k such that sjk 6= 0},

where sjk is an element of S.
Subsequently, we find set U , which represents the strong connections of j shared by the
nonzero pattern of row i. The neighbours of the eliminated aNGij , to which its value should
be lumped, are stored in U . If no strong neighbours are found, i.e. U = ∅, aNGij is lumped to
the diagonal.
Finally, the algorithm symmetrizes ANG. Since this operation affects the row sums, it is

Master of Science Thesis E.D. Wobbes

60 Problem Description and Solution Strategies

followed by a row preserving procedure. The scheme is shown in Algorithm 6.

Algorithm 6: Lumping.
Data: AG, S,NNG

1 ANG ← AG
2 for i to nrows(ANG) do
3 for j such that aNGij 6= 0 do
4 if j /∈ NNGi then
5 U ← NSj ∩NNGi

6 if U = ∅ then
7 aNGii ← aNGii + aNGij
8 else
9 U ← U\{i}

10 σ =
∑
k∈U |sjk|

11 for k ∈ U do
12 aNGik ← aNGik + (|sjk|/σ)aNGij
13 end
14 end
15 aNGik ← 0
16 end
17 end
18 end
19 ANG ← 0.5

(
ATNG +ANG

)
20 for i = 1 to nrows(ANG) do
21 aNGii ← aNGii +

∑
j a

G
ij −

∑
j a

NG
ij

22 end
23 return ANG

Non-Galerkin within INTERSECT

It Chapter 5, is shown that the operators within INTERSECT are generally not symmetric
and, hence, not SPD. There is no previous related work that considers the application of the
non-Galerkin algorithm to not SPD matrices. Despite this fact, the non-Galerkin method
was implemented within INTERSECT. Since the simulator makes no assumptions about the
symmetry of the coarse grid operators, the symmetrization step (line 19 to line 22) within the
Lumping algorithm was not included in the code. Furthermore, based on some experiments,
the value of γ in Algorithm 5 was set to 0.03.

Modified Non-Galerkin

The analysis of the coarse grid operators, provided in Chapter 5, reveals that the non-Galerkin
matrices typically satisfy most of the M-matrix properties. More precisely, the non-Galerkin
operators generally contain a number of positive off-diagonal entries, but frequently satisfy

E.D. Wobbes Master of Science Thesis

4-2 Solution Strategies 61

the remaining properties stated in Definition 3.5 and Definition 3.6.

Algorithm 7: Modified lumping, INTERSECT version.
Data: AG, S,NNG

1 ANG ← AG
2 for i to nrows(ANG) do
3 for j such that aNGij 6= 0 do
4 if j /∈ NNGi then
5 U ← NSj ∩NNGi

6 if U = ∅ then
7 aNGii ← aNGii + aNGij
8 else
9 U ← U\{i}

10 σ =
∑
k∈U |sjk|

11 for k ∈ U do
12 aNGik ← aNGik + (|sjk|/σ)aNGij
13 end
14 end
15 aNGik ← 0
16 end
17 end
18 for l such that l 6= i and aNGil 6= 0 do
19 if aNGil > 0 then
20 aNGii ← aNGii + aNGil
21 aNGil ← 0
22 end
23 end
24 end
25 return ANG

The importance of the M-matrix properties for the non-Galerkin algorithm is supported by
several observations. Firstly, being an M-matrix guarantees the convergence of the basic itera-
tive methods [41]. Secondly, AMG was originally designed for the M-matrices [6]. Therefore,
the use of coarse grid operators with the M-matrix properties should be beneficial for the
algorithm. Finally, M-matrices belong to the more general class of monotone matrices, i.e.
matrices with nonnegative inverses. In [22], it is pointed out that the use of monotone matri-
ces considerably improves the performance of the Multiscale Finite Volume method, which is
closely related to two-grid AMG.

In the light of provided arguments, we remove the positive off-diagonal entries in order to
enforce as many M-matrix properties as possible. To preserve the row sums, as required by
the non-Galerkin method, the values of eliminated entries are lumped to the diagonal. We
note that this process can change the effect of the non-Galerkin method on the high and
mid-range frequency modes, because it increases the sparsity of the operators.
The elimination of the positive off-diagonal entries is implemented within INTERSECT as a
part of the Lumping algorithm. The modified lumping procedure used within INTERSECT
is presented in Algorithm 7.

Master of Science Thesis E.D. Wobbes

Chapter 5

Results

This chapter consists of three parts: the description of the test cases, the results obtained
with the aggressive coarsening and the results generated by the non-Galerkin method.
In Section 5-1 we discuss the test cases in terms of the dimensions, active cells, fluid model
and time discretization. In addition, an in-depth analysis of two small and two large test
cases is provided.

In Section 5-2 and Section 5-3, we investigate the results by studying:

• Algebraic complexity: see Definition 3.14.

• Geometric complexity: see Definition 3.13.

• Time steps: the total number of time steps required to complete the simulation.

• Non-linear iterations: the number of non-linear iterations in the simulation.

• Linear iterations: the number of iterations used to solve the linear systems generated
by the non-linear solver.

• Average number of linear iterations per time step: the total number of linear iterations
divided by the total number of time steps.

• Linear solver time: the amount of time needed to solve the linear systems.

• Linear iteration time: the linear solver time divided by the total number of linear
iterations.

• CPU time: the overall computational time required to complete the simulation.

These parameters are discussed only if they are relevant to the simulation. For instance, the
average number of linear iterations per time step is computed, only if the number of time
steps required for the algorithms is different.

Master of Science Thesis E.D. Wobbes

64 Results

For the standard non-Galerkin approach without heuristics, we also provide a detailed de-
scription of the results obtained for two small cases.

Section 5-2 describes the performance of INTERSECT with an aggressive coarsening strategy.
It includes serial and parallel results. Aggressive coarsening was implemented by coupling IN-
TERSECT with SAMG. Since SAMG is considered as a black box, the discussion is restricted
to the complexities and performance analysis of the method.
In Section 5-3, the influence of the non-Galerkin method on the simulator is studied. The
performance statistics are provided only for sequential runs, because the method was not
implemented in parallel.

5-1 Test Cases

Active cells Dimensions Fluid model Implicitness
Number of

Number of active
phases components

2,250 15× 15× 10 Black Oil Isothermal Fully Implicit 4 4
576 24× 1× 24 Black Oil Isothermal Fully Implicit 4 4
63 1× 7× 9 Black Oil Isothermal Fully Implicit 3 3

1,639 20× 15× 8 Compositional AIM IMPES 3 9Isothermal

2,528 9× 9× 4 Compositional AIM IMPES 3 10Isothermal
1,000 10× 10× 10 Black Oil Isothermal Fully Implicit 3 3

389,559 154× 91× 35 Compositional AIM IMPES 3 13Isothermal
348,809 238× 192× 114 Black Oil Isothermal Fully Implicit 3 3

348,811 238× 192× 114 Compositional AIM IMPES 3 8Isothermal

1,722,780 18× 1126× 85 Compositional Thermal Fully Implicit 3 3with steam permitted

164,944 not a ‘box’ Compositional Thermal Fully Implicit 3 3with steam permitted

Table 5-1: General properties of the test cases.

Table 5-1 presents eleven test cases. In row 1 to 6 we have small cases, in the remaining
rows we have large cases. The name of a case in the upcoming discussion will be based on its
number of active cells. This number is equal to the number of rows in the pressure matrix
A∗pp from Equation (2.15), because for each active cell there is exactly one pressure equation.
The dimensions correspond to the total number of cells in the x-, y- and z-direction. Table
5-1 contains several examples where the number of active cells is lower than the number of
cells suggested by the dimensions. In those cases, the domain includes a number of inactive
cells. Furthermore, according to the table, the 2528-case has only 324 cells. This is caused
by local grid refinement, which is shown in Figure 5.1.

E.D. Wobbes Master of Science Thesis

5-1 Test Cases 65

Figure 5.1: Local grid refinement of the 2528-case.

The difference between the black oil and compositional models is described in Section 2-2-2.
We further distinguish between isothermal and thermal models with steam allowed. For the
black oil cases, the number of active components is equal to the number of phases, because
each component can exist only in one phase. If the compositional model is used, the number
of active components can exceed the number of phases.
The fully implicit and AIM IMPES time discretization are defined in Section 2-2-2.

5-1-1 Mathematical Analysis

To offer a broad overview of the mathematical properties of the cases, two black oil and two
compositional cases of different size categories have been selected, i.e. 2250-, 1639-, 389559-
and 348809-case. The coarse level operators of the small cases will be used for an in-depth
matrix analysis later in this chapter. The fine grid matrices of the four selected cases are
studied in term of symmetry, sparsity and M-matrix properties.

Symmetry

The pressure matrices of the selected cases are symmetric in structure and non-symmetric in
value. Thus, they do not satisfy the requirements for being SPD matrices. Nevertheless, all
eigenvalues of the 2250-case matrix are positive.

Sparsity

All operators are remarkably sparse. The sparsity patterns are illustrated in Figure 5.2.

2250-case: The matrix contains only 14,460 non-zero entries. This implies that only 0.29%
of all entries is not equal to zero. The sparsity pattern, shown in Figure 5.2a, reveals that
the model includes only the fluxes between the neighbouring cells.

1639-case: Approximately 0.36% of the entries are non-zero entries.

389559-case: From more than 1.5 · 1011 entries of A∗pp only 0.0017% are not equal to zero.

Master of Science Thesis E.D. Wobbes

66 Results

348809-case: The matrix contains 2,162,891 non-zero entries. This corresponds with 0.0018%
of the total number of entries.

M-matrix Properties

According to Definition 3.5 and Definition 3.6, the pressure matrices of the 2250-, 1639- and
389559-case are M-matrices.
The off-diagonal entries of the pressure matrix of the 348809-case are negative, whereas the
main diagonal is positive. Furthermore, A∗pp is irreducible, but is not diagonally dominant.
Therefore, it does not satisfy all requirements of Definition 3.6. Since the inverse matrix of
the pressure matrix cannot be calculated due to the size of the problem, it is not possible to
determine whether the matrix is an M-matrix.

(a) 2250-case.

(b) 1639-case.

(c) 389559-case.

(d) 348809-case.

Figure 5.2: Sparsity patterns of the selected cases.

E.D. Wobbes Master of Science Thesis

5-2 Aggressive Coarsening 67

5-2 Aggressive Coarsening

5-2-1 Serial: Aggressive Coarsening without Heuristics

In this section, we compare the results obtained with the aggressive coarsening strategy
without heuristics with the results generated by INTERSECT with similar settings.

Algebraic and Geometric Complexity

(a) Algebraic. (b) Geometric.

Figure 5.3: The decrease in algebraic and geometric complexities due to the use of aggressive
coarsening. Delta shows the reduction. The total height of a bar denotes the complexity obtained
with the Galerkin method, whereas the green part represents the complexity obtained with ag-
gressive coarsening. The complexity of the cases corresponding to the gray bars is equal to one,
when aggressive coarsening is applied. The height of the gray bars indicates the complexity with
the Galerkin method.

The algebraic complexity is strongly reduced by aggressive coarsening (see Figure 5.3a). The
gray bars correspond to the cases for which the algebraic complexity with aggressive coarsen-
ing is equal to one. According to Definition 3.14, this implies that no multigrid hierarchy is
constructed by the aggressive coarsening approach. With other words, the coarse grid solver
is applied to the fine grid problem.
For the remaining cases the algebraic complexity is less than 1.5. Thus, the total number of
non-zero entries on the coarse levels is at least a factor two lower than the number of non-zero
entries on the fine level. This can be explained by looking at the multigrid hierarchy. The
aggressive coarsening method does not only increase the sparsity of the coarse grid operators,
it also decreases the number of coarse levels. For example, for the 389559-case 12 coarse grid
levels are constructed by INTERSECT, this number is reduced to 3 by aggressive coarsening.
This is shown in Figure C.1. The described reduction leads to an extremely low number of
non-zero entries, and therefore to significantly low algebraic complexities.

Figure 5.3b demonstrates the geometric complexity. Analogous to the algebraic complexity,
the gray bars correspond to the cases for which the geometric complexity is equal to one. As
before, this is caused by the fact that no coarse grids are constructed.

Master of Science Thesis E.D. Wobbes

68 Results

The geometric complexity of the other cases is reduced from 1.6-1.8 to 1.3 or lower values.
Although the aggressive coarsening strategy efficiently reduces the number of coarse grid vari-
ables, the strong decrease in the geometric complexity is mainly caused by the low number
of coarse grid levels.

Remark 9. In this chapter, the algebraic and geometric complexities are based on the data
after the first linear iteration of the simulation. It has been observed that in terms of com-
plexities the performance of the AMG method stays almost unchanged during the whole
simulation, independent of the applied strategy.

Simulation Results

Small cases

For all small cases except the 63-case, the number of time steps and the number of non-linear
iterations does not change when standard coarsening is replaced by aggressive coarsening.
For the 63-case, the number of time steps increases from 29 to 31, whereas the number of
linear iterations changes from 100 to 105.

Remark 10. For the small cases, the overall CPU time is extremely low and, therefore, cannot
be used as an appropriate tool to measure the performance of the algorithms. For this reason,
in this chapter the time of the small cases is not taken into account.

Figure 5.4a illustrates the total number of the linear iterations. It reveals that for the majority
of the small cases aggressive coarsening substantially increases the number of linear iterations.
Although the increase in the number of linear iterations is comparatively limited for the 1639-
case, it adds more than 30% to the number of linear iterations generated with the standard
Galerkin method. As shown in the figure, for the black oil 1000-case the number of iterations
remains unchanged. The increase in the number of linear iterations is a predictable result,
because the system becomes less accurate when aggressive coarsening is applied.

Large cases

Contrary to the small cases, aggressive coarsening has an impact on the number of time steps
for the large cases. The results are summarized in Table C-1. The maximum decrease of 2%
is for the 348809-case, whilst the maximum increase of 21% is for the 1722780-case.

The non-linear statistics are provided in Table C-2. The table reveals that for the 1722780-
case the increase is maximal (46%). The maximum decrease of 0.2% corresponds to the
164944-case.

The result for the 1722780-case match the expectations for the aggressive coarsening strategy.
Since the system becomes less accurate, the non-linear solver requires more iterations to
converge. In addition, the time step is frequently reduced to improve the convergence. It
is more difficult to interpret a slight decrease in the number of time steps or in the number
of non-linear iterations. The change in the number of time steps, which obviously leads to
a different number of non-linear iterations, can be caused by one of the time step selection
criteria.

E.D. Wobbes Master of Science Thesis

5-2 Aggressive Coarsening 69

(a) Small cases. (b) Large cases.

Figure 5.4: Number of linear iterations with the Galerkin and aggressive coarsening method.

Figure 5.4b illustrates the number of linear iterations. Analogously to the small cases, the use
of aggressive coarsening leads to an increase in the number of linear iterations. The increase
varies between 20% and 45%.
The total time spent in the linear solver is shown in Figure 5.5. Aggressive coarsening no-
ticeably reduces the linear solver time for the 389559-, 348811- and 164944-case. Considering
the increase in the number of linear iterations, this implies that the time of an iteration is
reduced. For the 164944-case, the time decrease is a remarkable phenomenon, because no
coarse grids are constructed at least at the beginning of the simulation. Furthermore, the
increase in the linear solver time of the 348809-case is negligible. In contrast to the other
cases, for the largest 1722780-case the use of aggressive coarsening causes significant growth
of the linear solver time.

Figure 5.5: Total simulation time and linear solver time with Galerkin and aggressive coarsening
methods. The total bar length is equal to the total simulation time, whereas the bottom part
denotes the linear solver time.

Master of Science Thesis E.D. Wobbes

70 Results

In addition to the linear solver time, Figure 5.5 provides an overview of the total simulation
time. For the 389559- and 348811-case the time gained by aggressive coarsening within the
linear solver is reduced by the time required for the linearization. This can be seen as a direct
consequence of the increase in the number of liner iterations.
For the 348809-case, the time rise caused by the linear solver is increased by the linearization
time. Since the number of non-linear iterations for this case is lower when the Galerkin
method is replaced by the aggressive coarsening strategy, this is an unexpected result.1
The difference in the total execution time of the 1722780-case originates from the increase in
the linear solver time and the growth of the number of non-linear iterations.
For the 164944-case, the difference in the total time is greater than the difference in the linear
solver time, because less non-linear iterations are required when aggressive coarsening is used.

5-2-2 Serial: Aggressive Coarsening with Heuristics

In this section, we describe the results of aggressive coarsening with the standard INTER-
SECT heuristics. There are two main reasons for including heuristics. Firstly, heuristics form
a standard part of INTERSECT, because their use considerably decreases the computational
time of the most cases. Secondly, the aggressive coarsening results can be optimized by a
suitable choice of the frequency of a complete or partial setup.
Since the heuristics are included to reduce the computational time, the focus of this section
is on the large cases (see Remark 10).

Obviously, the use of heuristics has no influence on the algebraic and geometric complexities
after the first linear iteration. Due to the choice of the setup frequency within INTERSECT
and Remark 9, we assume that the effect on the other liner iterations is negligible.

Simulation Results

Large cases

For the Galerkin and aggressive coarsening approach, there is no clear correlation between
the use of heuristics and the number of steps or the number of non-linear iterations. However,
with the standard INTERSECT heuristics, the aggressive coarsening strategy requires more
non-linear iterations than the Galerkin method. The corresponding statistics are provided in
Table C-1 and C-2.

The reduced update of the coarse grid matrices leads in general to an increase in the number of
linear iterations. For the most cases the increase is smaller than 1%, whereas the maximum
increase is approximately 42%. Only for the 1614944-case with the Galerkin coarse grid
operators, the number of linear iterations is reduced when the heuristics are applied. The
decrease is 1.4%.

1The simulation was executed two times. Unfortunately, the simulation results, including the number
of non-linear iterations and linearization time, were different from each other. Both times the linearization
time was larger than expected based on the number of non-linear iterations. Therefore, it is unlikely that the
simulation was hindered by an external process, i.e. another process running simultaneously on the same node.
Probably, the time increase was caused by a memory leak or another software bug. However, the simulation
results of other cases were consistent.

E.D. Wobbes Master of Science Thesis

5-2 Aggressive Coarsening 71

Figure 5.6: Total simulation time and linear solver time with Galerkin and aggressive coarsening
methods with heuristics. The total bar length is equal to the total simulation time, whereas the
bottom part denotes the linear solver time.

Despite the increase in the number of non-linear iterations in some cases, the use of heuristics
reduces the total execution time. For both approaches, it substantially decreases the setup
time of the linear solver and, therefore, the total simulation time. The timings are shown in
Figure 5.6. Clearly, the Galerkin running time is lower than the aggressive coarsening time.
The time difference originates from the linear solve and linearization stage. For the aggressive
coarsening strategy, the linearization time is larger, because more non-linear iterations are
required. Indubitably, the choice of heuristics for aggressive coarsening should be investigated
more extensively.

5-2-3 Parallel: Aggressive Coarsening with Heuristics

In this section, the parallel results of aggressive coarsening are compared with those of IN-
TERSECT. The heuristics are included, because the reduction of setup frequency leads to
a considerable time decrease for both strategies. The main part of the computations was
performed on 32 processors. For the investigation of scalability additional simulations on 4,
8 and 16 processors were executed.
Since communication is the main issue of the parallel runs, the focus of this section is on
the linear solver time, total simulation time and scalability of the large cases. Unfortu-
nately, the application of aggressive coarsening in parallel consistently caused problems with
the 1614944-case. The simulation was ‘freezing’ after several hours of computations for an
unknown reason. Therefore, the case is not included in the upcoming discussion.

Simulation Results

Large cases

The number of time steps and non-linear iterations of the parallel simulations can be found
in Table C-1 and Table C-2, respectively. There is no clear correlation between the use of
aggressive coarsening and the number of time steps or the number of non-linear iterations.

Master of Science Thesis E.D. Wobbes

72 Results

The number of linear iterations is shown in Figure 5.7a. Clearly, aggressive coarsening requires
more linear iterations than standard coarsening. This implies that the convergence of the
linear solver can be hindered to some degree by the aggressive coarsening strategy.

(a) Number of linear iterations. (b) Total and linear solver time.

Figure 5.7: Number of linear iterations, and total and linear solver time for parallel simulations
on 32 processors with the Galerkin and aggressive coarsening approach.

The linear solver and total time are demonstrated in Figure 5.7b. In parallel the linear solver
time with aggressive coarsening is substantially higher than the Galerkin linear solver time.
Therefore, the total execution time is significantly increased when standard coarsening is
replaced by aggressive coarsening. The difference in the total time is additionally risen by
the linearization time.

With regard to the standard Galerkin method, the performance of the aggressive coarsening
strategy in parallel is obviously poorer than its performance in the serial runs. The time in-
crease may be explained by the fact that the coarsest level systems constructed by aggressive
coarsening are significantly larger than the Galerkin systems. Hence, due to low scalability
of Gauss elimination [36], which is used by SAMG, the coarse grid solution can require more
time.
Furthermore, additional time can originate from the application of the subdomain block-
ing scheme. It is not clear to what extent the behaviour of the subdomain blocking within
SAMG is different from the PMIS coarsening within INTERSECT. Although it is not diffi-
cult to trace the PMIS steps, it is unfeasible to obtain more information about the coarsening
within SAMG.
Another possible reason of the time growth is the fact that the heuristics are not optimized
for aggressive coarsening. However, it is unlikely that the difference in the linear solver time
shown in Figure 5.7b can be completely reduced by a decrease in the setup frequency.
Finally, the application of long range interpolation, which is assumed to be efficient for serial
computations, leads to communication beyond neighbouring processors [12]. Clearly, this may
reduce the effectiveness of the matrix storage structure and, therefore, increase the execution
time.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 73

Figure 5.8: Scalability of the 389559-case with the standard Galerkin and aggressive coarsening
strategy.

For the 389559-case, we also present the results for the strong scalability. The linear solver
and total time of the simulations on 4, 8, 16 and 32 processors is provided in Figure 5.8.
Independent of the number of cores, the liner solver and total time of standard coarsening is
lower than the aggressive coarsening time.
In terms of scalability, the Galerkin results are very positive. Obviously, the number of cores
is not large enough to illustrate the consequences of the communication issue.
The reduction of the linear solver and total time is clear when the number of processor cores
is increased from 4 to 8 and subsequently to 16. However, when the number of processors
is risen to 32, the linear solver time becomes higher than the linear solver time on 16 cores.
This is probably caused by a communication issue. Despite the increase of time required for
the solution of linear systems, the total running time of the simulation on 32 cores is slightly
lower than that on 16 cores.

5-3 Non-Galerkin

5-3-1 Serial: Standard Non-Galerkin without Heuristics

Here, we discuss the standard non-Galerkin method implemented without heuristics. We
compare it to the Galerkin method within INTERSECT with equivalent settings.

Algebraic and Geometric Complexity

The effect of the non-Galerkin algorithm on the operator and grid complexity is demonstrated
in Figure 5.9a and 5.9b, respectively.
In general, while maintaining the geometric complexity, the non-Galerkin algorithm signifi-
cantly reduces the algebraic complexity. For example, the operator complexity of the 389559-
case is reduced from 3.180 to 2.568, while the geometric complexity increases from 1.729 to
1.730.

Master of Science Thesis E.D. Wobbes

74 Results

(a) Algebraic. (b) Geometric.

Figure 5.9: The influence of the non-Galerkin algorithm on the algebraic and geometric com-
plexity with respect to the Galerkin method. Delta illustrates the difference in the complexities
obtained with the Galerkin and non-Galerkin approach. In Figure (a) the decrease in the algebraic
complexity is demonstrated. The total bar height represents the operator complexity when the
Galerkin method is applied. The blue part of a bar shows the complexity obtained with the non-
Galerkin approach. Figure (b) demonstrates the increase in the geometric complexity due to the
non-Galerkin method. The total bar heights denotes the grid complexity with the non-Galerkin
algorithm. The red part shows the complexity obtained with the Galerkin method.

For the compositional 164944-case, the decrease in the algebraic complexity is maximal: from
4.043 to 2.432. The reduction comes at the expense of a negligible increase of the grid com-
plexity from 1.928 to 1.933.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 75

Level Galerkin Non-Galerkin
variables # non-zero entries # variables # non-zero entries

0 389559 2645561 389559 2645561
1 192215 2771355 192215 2510780
2 61809 1761463 61868 1061441
3 20334 826104 20315 386902
4 6352 286620 6461 126501
5 2026 84174 2163 40513
6 752 25528 815 14064
7 304 7888 316 4565
8 119 2245 139 1760
9 55 743 61 558
10 22 158 27 173
11 10 50 16 60
12 4 8 11 33
13 8 20

Table 5-2: The number of variables and non-zero entries on each AMG level of the 389559-case
obtained with the Galerkin and non-Galerkin method.

The algebraic complexity does not improve in the 1000-case. This can be explained by the
fact that for this model the Galerkin approach requires an exceptionally low number of coarse
levels and few non-zero off-diagonal entries. More precisely, the AMG method with Galerkin
coarse grids constructs three coarse levels with no non-zero off-diagonal entries on the coarsest
level. The application of the non-Galerkin method leads to the same AMG hierarchy. For
this reason, the geometric complexity remains unchanged as well.

The in-depths analysis of the non-Galerkin coarse grids reveals that the increase in the ge-
ometric complexity originates from the coarsest levels, where the non-Galerkin algorithm
preserves more variables than the Galerkin approach.
Moreover, the number of non-zero elements on the coarsest levels generated by non-Galerkin
is usually higher than that of Galerkin. This implies that the decrease in the algebraic com-
plexity, usually originating from the first three/four coarse levels, is slightly diminished by
the coarser levels.

The number of points and non-zero entries for the 389559-case for each level of the V-cycle
can be found in Table 5-2. We note that starting from level 4, the non-Galerkin algorithm
repeatedly generates more variables than the Galerkin method. Furthermore, it requires one
additional coarse level and produces more non-zero elements than Galerkin after level 9. This
reinforces the observation that the coarsest levels slightly reduce the difference in the algebraic
complexity arising from the preceding levels.

Simulation Results

Small cases

Master of Science Thesis E.D. Wobbes

76 Results

For the small cases, the number of time steps and non-linear iterations are not changed when
the non-Galerkin method is applied instead of the standard Galerkin technique. The total
number of linear iterations required for these cases is illustrated in Figure 5.10a. For one of the
black oil cases, the 2250-case, the use of the non-Galerkin algorithm leads to a distinguishable,
but not large increase in the number of linear iterations. Interestingly, for a more complicated
compositional case with a greater number of active cells, the 2528-case, the number of linear
iterations is slightly lower when non-Galerkin is used. In addition, the non-Galerkin method
performs satisfactory for the 1000-case which contains a local grid refinement.

(a) Small cases. (b) Large cases.

Figure 5.10: Number of linear iterations with the Galerkin and non-Galerkin coarse grids.

Large cases

For the large cases, the number of time steps differs for the Galerkin and non-Galerkin algo-
rithms (see Table C-3). For the 389559-case, the increase due to the use of the non-Galerkin
coarse grids is maximal, 12.6%. Contrary to the other large cases, the 348809-case requires a
lower number of time steps with non-Galerkin.

The number of non-linear iterations of the simulations with the Galerkin and non-Galerkin
algorithms can be found in Table C-4. According to the statistics, the non-Galerkin method
increases the number of non-linear iterations for all the large cases except the 348809-case.
The maximal increase is 28.8%.

The number of linear iterations is demonstrated in Figure 5.10b. For the 389559-case and
164944-case, this number increases considerably. We note that both cases are compositional.
In addition, the 389559-case has many active components, while the 164944-case includes
steam components.

The difference in the number of time steps and non-linear iterations implies that the linear
solver faces a different number of problems, depending on the coarse grid operators. Therefore,
assuming that the growth in the number of linear iterations is gradual, it can be useful to
consider the number of linear iterations per time step. We present Figure 5.11 and Figure
C.2a that show the typical behaviour of the linear solver in terms of iterations and the average
number of linear iterations per time step.
Figure 5.11 demonstrates the cumulative number of linear iterations as a function of time for

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 77

Figure 5.11: Cumulative number of linear iterations of the 389559-case with Galerkin and non-
Galerkin methods.

the 389559-case. It verifies that the increase in the number of linear iterations is a global
phenomenon. Thus, it is reasonable to look at the average number of linear iterations per time
step, provided in Figure C.2a. The figure shows that while the application of non-Galerkin
results in a distinguishable increase in the number of linear iterations per time step for the
389559-case, it hardly affects the other four cases. Thus, in terms of iterations the performance
of the linear solver stays approximately unchanged when various Galerkin operators are used.

The average time of a linear iteration is illustrated in Figure C.2b. In comparison to the
Galerkin method, the additional time of 1.05s and 1.30s is required per iteration of the
389559- and 1722780-cases, respectively. Although for the 348809- and 348811-cases, the
additional time is lower, it corresponds with almost 50% of the linear iteration time when the
Galerkin method is used. Since the non-Galerkin method reduces the density of the largest
coarse grid matrices, the time increase is a direct result of the non-Galerkin setup.
From the increase in the number of linear iterations and the time per linear iteration, it
follows that non-Galerkin raises the linear solver time. The linear solver data is included in
Figure 5.12.

For all cases, the total simulation time is increased when the non-Galerkin method is applied.
As mentioned above, the increase in time arises mainly from the setup phase, that consists
of the construction of the injection matrix, the sparsity pattern calculation and the lumping
procedure. In Figure 5.13 we summarize all sources for the increase in the linear solver time
for the 389559-case.
In addition to the setup stage, the time increase is caused by the additional linearization
steps. For the 389559-case, the linearization originates from the non-linear iterations and
contributes 26% to the rise of the total execution time.
The injection matrix is a part of the input of the Compute Sparsity procedure. Contrary
to the other input components, the injection matrix is not built during the standard AMG
iteration with Galerkin coarse grid operators. The construction of this matrix requires less
than 1% of the time difference between the Galerkin and non-Galerkin simulation for the
389559-case.

The sparsity pattern calculation corresponds with approximately 51% of the total time differ-

Master of Science Thesis E.D. Wobbes

78 Results

Figure 5.12: Total simulation time and linear solver time with Galerkin and non-Galerkin meth-
ods. The total bar length is equal to the total simulation time, whereas the bottom part denotes
the linear solver time.

ence. As shown in Figure 5.13, we distinguish between the minimal pattern calculation and
the remainder of the Compute Sparsity algorithm. The minimal pattern calculation requires
two multiplications of three large sparse matrices. The matrix multiplication is an expensive
procedure within INTERSECT, therefore, approximately 36% of the increase in the total
time consists of the minimal pattern calculation.
The remaining 23% of the time difference is spent in the lumping algorithm, which combines
the Galerkin coarse grid matrix with the non-Galerkin sparsity pattern, while maintaining
the row sums.
It is interesting to note that for the 348809-case, the computation of the minimal pattern
requires 54% of the time growth. In addition, a significant amount of time is spent on the
lumping procedure and the remainder of the sparsity pattern calculation (see Figure C.3). As
explained above, the non-Galerkin leads to a reduction in the number of non-linear iterations
for this case, therefore, no extra linearization steps are performed.

Case Analysis

In this secion, we describe the results obtained for the 2250- and 1639-case in detail. The
analysis is performed in terms of

• solution for the cell pressure,

• sparsity of the coarse grid operators,

• symmetry of the coarse grid operators,

• M-matrix properties of the coarse grid operators,

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 79

Figure 5.13: Sources of the total time growth due to the use of the non-Galerkin coarse grid
operators, the 389559-case.

• spectrum of the preconditioned pressure matrix.

2250-case

Solution after 1 V-cycle

We compare the solution for the cell pressure with the non-Galerkin coarse grid operators to
the solution provided by INTERSECT after one V-cycle. Figure 5.14 illustrates the solution
after the first V-cycle within the first non-linear iteration. It follows from the figure, that the
difference between the solutions is extremely subtle. The calculations show that the maximum
norm of the error is equal to 2.9× 10−6.

Figure 5.14: Solution for the cell pressure after one V-cycle.

Sparsity Six coarse grid levels are constructed by AMG with the Galerkin operators for the

Master of Science Thesis E.D. Wobbes

80 Results

(a) Second coarse level. (b) Fifth coarse level.

Figure 5.15: Sparsity patterns. In Figure (a), the blue dots form sparsity pattern of the non-
Galerkin operator, whereas the combination of the blue and red dots represents the sparsity of
the Galerkin operator. In Figure (b), the red dots correspond to the Galerkin sparsity pattern,
while the combination of the blue and red dots without squares shows the sparsity pattern of the
non-Galerkin operator.

2250-case. Although the non-Galerkin method preserves this number, it increases the number
of variables starting from the fourth coarse grid level. This is demonstrated in Figure C.4a.
Certainly, this is a minor drawback, because the size of the problems on the coarsest levels is
very low, i.e. there are less than thirty variables for both methods.
A direct consequence of the problem growth is the inability of non-Galerkin to increase the
sparsity of the matrices on the coarsest levels. Therefore, just as in the 389559-case, the non-
Galerkin performance in terms of matrix density is inconsistent. Nevertheless, the method
efficiently increases the sparsity on the first three coarse levels, which are more relevant for
the reduction of communication. For instance, on the third coarse level the density decrease
is more than 53%. The number of non-zero elements per level is shown in Figure C.4b.
Figure 5.15a and Figure 5.15b illustrate the sparsity patterns on the second and fifth coarse
level, respectively. Clearly, the non-Galerkin method successfully increases the sparsity of the
operator on the second coarse level, but fails to do so on the fifth coarse level.

Symmetry

The Galerkin coarse grid operators are symmetric in structure and non-symmetric in value
for the whole hierarchy of the first V-cycle. Since the symmetrization step is not included in
the INTERSECT implementation of the Lumping algorithm, the non-Galerkin matrices are
not symmetric. More precisely, the non-Galerkin operators are non-symmetric in value, but
are symmetric in structure on all levels, except the second and third coarse level.

M-matrix properties

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 81

Figure 5.16: The sparsity patterns of the Galerkin and non-Galerkin operators. The negative and
positive off-diagonal entries are shown in red and black, respectively. The first row is formed by the
Galerkin operators starting from the second coarse level. The second row shows the non-Galerkin
operators on the same levels.

(a) After the first linear iteration. (b) After the tenth linear iteration.

Figure 5.17: The approximated spectrum of the pressure matrix preconditioned by one AMG
V-cycle with the Galerkin and non-Galerkin coarse grid operators.

The non-Galerkin coarse grid operators preserve the M-matrix properties of the Galerkin
operators. On the first coarse grid, the operators are irreducibly diagonally dominant, have
positive diagonal entries and negative off-diagonal entries. Thus, they are M-matrices by
Definition 3.5.
Starting from the second coarse level the operators contain positive off-diagonal entries and,
therefore, do not satisfy the requirements for being an M-matrix. Although the non-Galerkin
approach decreases the number of positive off-diagonal entires from 50 to 29 on the second
coarse level compared to Galerkin, it repeatedly creates more positive off-diagonal entries
on the remaining levels. The positions of the positive off-diagonal entries of Galerkin and
non-Galerkin coarse grid operators are presented in Figure 5.16.

Spectrum

Master of Science Thesis E.D. Wobbes

82 Results

From Theorem B.5 and Section 2-3-4 it follows that the spectrum of the preconditioned
pressure matrix is important for the convergence of FGMRES. Therefore, in this section
we compare the eigenvalues of the pressure matrix preconditioned by one AMG V-cycle with
Galerkin coarse grid operators to those preconditioned by one AMGV-cycle with non-Galerkin
hierarchy. In Appendix B-4 it is explained that Ritz values are approximations of the desired
eigenvalues. For this reason, we describe the spectrum of a preconditioned pressure matrix
by calculating 1,000 Ritz values.

The eigenvalues of the original pressure matrix lie between 8.2 and 3.3 × 103. The approx-
imated eigenvalues after the first and tenth linear iterations are illustrated in Figure 5.17a
and Figure 5.17b, respectively.

Remark 11. Since we expect the original pressure matrix and the pressure matrix used in the
tenth linear iteration to be very similar, we assume that the eigenvalues of the latter matrix
are close to those of the original pressure matrix.

The figures demonstrate that the Galerkin and non-Galerkin methods affect the spectra of
the pressure matrices in a similar manner. In Figure 5.17a, the majority of the real parts
of the Galerkin eigenvalues (more than 87%) is clustered around one, while the remaining
eigenvalues are close to zero. In Figure 5.17b, for only 110 Galerkin eigenvalues the real parts
is clearly separated from one. Although the distribution of the non-Galerkin eigenvalues is
slightly different, the above facts also hold for the non-Galerkin method.

It should be noted that the preconditioned pressure matrix is only a part of the system precon-
ditioned by the CPR preconditioner, obtained after the application of the Schur complement.
Therefore, the presence of the eigenvalues with the real part close to zero does not directly
imply that the CPR preconditioner performs poorly for the 2250-case.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 83

1639-case

Solution after 1 V-cycle

As in the 2250-case, we consider the cell pressure after the first linear iteration of the simula-
tion. The solution for the cell pressure obtained with the non-Galerkin approach is remarkably
similar to the solution provided by the Galerkin method (see Figure 5.18). The maximum
norm of the error equals 3.0× 10−13.

Figure 5.18: Solution for the cell pressure after one V-cycle.

Sparsity

Regarding the sparsity and the number of levels, the performance of the non-Galerkin algo-
rithm for this case is exceptionally high. The method constructs seven coarse levels, whereas
the Galerkin hierarchy constists of eight coarse levels. Although, starting from level 3, the
non-Galerkin algorithm preserves more variables, its number of non-zero elements is lower
than that of the Galerkin algorithm. On the first and second coarse level, non-Galerkin re-
duces the number of non-zero entries by slightly less than 35% and 45%, respectively (see
Figure 5.19a and Figure 5.19b). The number of variables and non-zero entries per level is
provided in Figure C.5a and Figure C.5b, respectively.

Symmetry

All Galerkin and non-Galerkin coarse grid operators are symmetric in structure and non-
symmetric in value.

M-matrix properties

At the first coarse grid level, the Galerkin approach yields a matrix with a positive main
diagonal. The inverse of this matrix is entrywise positive. Furthermore, the majority of the
off-diagonal entries is negative: there are only four positive values. The non-Galerkin operator
on the first coarse level contains negative off-diagonal entries, positive diagonal entries, and
is irreducibly diagonally dominant. This implies that the non-Galerkin method transforms
the Galerkin matrix into an M-matrix.

Master of Science Thesis E.D. Wobbes

84 Results

(a) First coarse level. (b) Second coarse level.

Figure 5.19: Sparsity patterns. The blue dots form sparsity pattern of the non-Galerkin operator,
whereas the blue and red dots form the sparsity of the Galerkin operator.

On the coarser grids the operators do not satisfy the requirements for being M-matrices,
independent of the approach. First of all, they contain positive diagonal and off-diagonal
entries. In addition, some entries of the inverse matrices are negative. Interestingly, on the
second coarse level, the number of positive off-diagonal entries generated by non-Galerkin is
lower than that produced by the Galerkin method. However, on the remaining levels the
number of positive off-diagonal entries comprising the Galerkin matrices is higher.

Spectrum

For this case we present the results after the first linear iteration, as the distribution of the
Ritz values after the tenth linear iteration is extremely similar to the distribution shown in
Figure 5.20. The figure includes 1,000 approximated eigenvalues.

The eigenvalues of the original pressure matrix range between 8.5×105 and 2.6×107. When the
Galerkin operators are applied, the number of the Ritz values, which are close to zero, is equal
to 274. The non-Galerkin algorithm slightly shifts some of the approximated eigenvalues, but
does not change the main properties of the distribution.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 85

Figure 5.20: The approximated spectrum of the pressure matrix preconditioned by one AMG
V-cycle with the Galerkin and non-Galerkin coarse grid operators after the first linear iteration.

5-3-2 Serial: Standard Non-Galerkin with Heuristics

In this section, the performance of the non-Galerkin method with the INTERSECT heuristics
is described. The results are compared to those of the standard non-Galerkin algorithm
without heuristics and Galerkin algorithm with heuristics. As in the section about aggressive
coarsening, the linear solver and total time of the large cases form the main subject. In
addition, the non-Galerkin performance with slightly different heuristics is discussed.

Simulation Results

Large cases

The number of time steps rises, when the heuristics are included in the non-Galerkin algo-
rithm. This is shown in Table C-3. The increase is possibly caused by a slower convergence
of the Newton-Raphson method.

The number of non-linear iterations is presented in Table C-4. According to the table, the
Galerkin algorithm with heuristics requires a lower number of non-linear iterations than the
non-Galerkin method with standard INTERSECT heuristics. At the same time, there is no
clear correlation between the non-Galerkin versions in terms of non-linear iterations.

Furthermore, the number of linear iterations increases by 2%− 28%, when the non-Galerkin
algorithm with heuristics is applied instead of Galerkin with the same settings. However,
the non-Galerkin algorithm with heuristics requires in general more linear iterations than the
non-Galerkin method without heuristics.

The time required for the linear solver decreases for all cases when the frequency of the AMG
setup is reduced. For the most cases, the extra linearization time due to the increase in

Master of Science Thesis E.D. Wobbes

86 Results

the number of non-linear iterations is outweighed by the reduction of the linear solver time.
However, for the 348809-case the increase in the number of non-linear iterations of the non-
Galerkin algorithm prevents the decrease of the total simulation time. In fact, the heuristics
have a negative effect on the non-Galerkin total time for this case.

Figure 5.21: Total simulation time and linear solver time with Galerkin and non-Galerkin methods
with heuristics. The total bar length is equal to the total simulation time, whereas the bottom
part denotes the linear solver time.

The timings of the non-Galerkin and Gaerkin methods with heuristics are demonstrated
in Figure 5.21. Obviously, the heuristics are more favourable for the Galerkin approach.
Therefore, we made an attempt to improve the non-Galerkin time by performing the complete
setup less frequently. Unfortunately, the effect was opposite: there was a clear-cut increase
in the non-Galerkin linear solver and total simulation time compared to the non-Galerkin
method with the standard INTERSECT heuristics.

5-3-3 Serial: Modified Non-Galerkin without Heuristics

Inspired by the matrix properties of the 2250-case coarse grid matrices in Section 5-3-1, a
modified version of the non-Galerkin method was implemented. We compare its performance
to INTERSECT and to the standard non-Galerkin method without heuristics.

Algebraic and Geometric Complexity

The difference in the complexities of the modified and standard non-Galerkin algorithm are
very limited. For the small 576-, 63- and 1000-case, the complexities are unchanged, because
the coarse grid operators of these cases contain no positive off-diagonal entries.
Generally, the replacement of the undesired off-diagonal values decreases the algebraic com-
plexity by approximately 1.5%. This implies that the complexity is substantially improved
in comparison with the Galerkin method. For the 1722780-case, the decrease is exceptionally
large, almost 25%.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 87

The effect of the modifications on the geometric complexity of standard non-Galerkin seems
arbitrary. The geometric complexity can be slightly higher, lower or remain completely un-
changed. The differences in the geometric complexity are not higher than 0.5%.

Simulation Results

Small cases

To describe the simulation statistics of the modified non-Galerkin method, we compare them
to the results produced by the Galerkin algorithm. According to statistics, the modified
method has no influence on the number of time steps and it changes the number of non-linear
iterations only for the 63-case. The observed decrease is one iteration.

(a) Small cases. (b) Large cases.

Figure 5.22: Number of linear iterations with the Galerkin and modified non-Galerkin coarse
grids.

The number of linear iterations is illustrated in Figure 5.22a. There are no changes for the
1000-case and the increase for the 1639- and 2528-case is negligible. For the remaining three
cases the difference is noticeable: the increase for the 576-case is 40%. From the previous
results follows that for the 2250-, 576- and 63-case the modified version also significantly
increases the number of linear iterations compared to the standard non-Galerkin approach.

Large cases

The number of time steps needed for the modified non-Galerkin method is presented in Table
C-3. The maximal increase of approximately 35 % with respect to Galerkin approach is
observed for the 389559-case. At the same time, the decrease for the 348809- and 164944-case
is very limited (less than 1%).

In general, the new method requires more non-linear iterations than the Galerkin method.
For the 359559-case the increase is approximately 43%. The 164944-case is an exception,
because its number of non-linear iterations is reduced by the modified version. The statistics
can be found in Table C-4.

Master of Science Thesis E.D. Wobbes

88 Results

The number of linear iterations increases for all cases except the 164944-case. However, the
duration of a linear iteration is reduced when the Galerkin operators are replaced by the non-
Galerkin operators with negative off-diagonal entries. Therefore, when the difference in the
number of linear iterations is not too large, the linear solver time of the modified non-Galerkin
is lower than the Galerkin linear solver time. This is shown in Figure 5.23a.

(a) Galerkin. (b) Standard non-Galerkin.

Figure 5.23: Total simulation time and linear solver time of the modified non-Galerkin method
compared to the Galerkin and standard non-Galerkin method. The total bar length is equal to
the total simulation time, whereas the bottom part denotes the linear solver time.

The total simulation time is significantly reduced for the thermal 1722780- and 164944-case.
In addition, a small decrease is observed for the 348811-case. On the other hand, the CPU
time of the 389559- and 348809-case increases when the modified non-Galerkin algorithm
is used instead of the Galerkin method. The increase originates from the linear solver and
linearization time. Since the number of non-linear iterations increases considerably for the
389559-case, the contribution of the linearizaion time exceeds the difference caused by the
linear solver.
Analogously, for the 348811-case, the time gained within the linear solver is reduced due
to the increase in the number of non-linear iterations. Contrary to the other cases, for the
164944-case the linearization is profitable when the modified non-Galerkin algorithm is used.
This is benefit is caused by the low number of non-linear iterations.

It is important to note that the modified non-Galerkin algorithm improves the results of the
standard non-Galerkin method in terms of linear solver and total time. This is illustrated in
Figure 5.23b.

E.D. Wobbes Master of Science Thesis

5-3 Non-Galerkin 89

Case Analysis

2250-case

Solution after 1 V-cycle

The modified non-Galerkin method approximates the Galerkin solution very accurately. The
maximum norm of the error is equal to 3× 10−6.

Sparsity

For the 2250-case, seven coarse grid levels are constructed when the modified non-Galerkin
method is applied. Recall that for the Galerkin and standard non-Galerkin method, only six
coarse levels are generated. On the common levels, the number of variables of the standard
and modified non-Galerkin approach coincide (see Figure C.4a). This implies that due to the
coarsest level the geometric complexity of the modified system is slightly higher. However,
regarding the algebraic complexity, the method is more favourable than the standard non-
Galerkin. The number of non-zero entries per level is illustrated in Figure C.4b.

Symmetry

Although, the modified version of non-Galerkin produces non-symmetric operators on the first
six coarse levels, the matrix corresponding to the coarsest grid is symmetric. By analogy with
the standard non-Galerkin method, the operators obtained with the modified algorithm are
non-symmetric in structure and value on the second and third coarse levels. The remaining
operators are symmetric in structure.

M-matrix properties

All coarse grid operators generated by the modified non-Galerkin method satisfy the M-
matrix properties. The robustness of this result is not straightforward, since the modified
matrices can substantially differ from the non-Galerkin matrices after the multiplication with
the restriction and interpolation operators.

Spectrum

The modified non-Galerkin algorithm hardly affects the spectrum of the preconditioned pres-
sure matrix. With regard to the Galerkin method, it slightly shifts the Ritz values (see Figure
C.6a).

1639-case

Solution after 1 V-cycle

The cell pressure solution is almost unchanged by the modified non-Galerkin method. The
maximum norm of the error equals 3× 10−13.

Sparsity

For the modified version of the non-Galerkin algorithm, seven coarse levels are constructed
by the AMG setup. Starting from the second coarse level, the modified version gradually
reduces the number of non-zero entries of the non-Galerkin method (see Figure C.5b). The
effect on the sparsity pattern of the non-Galerkin matrices is shown in Figure 5.24.

Symmetry

Master of Science Thesis E.D. Wobbes

90 Results

(a) Third coarse level. (b) Fourth coarse level

Figure 5.24: Sparsity patterns. The blue dots form sparsity pattern of the modified non-Galerkin
operator, whereas the combination of the blue and red dots represents the sparsity of the standard
non-Galerkin operator.

On the first, fifth and sixth coarse levels, the modified operators are symmetric in structure
and non-symmetric in value. On the seventh level, the matrix is symmetric, because it is a
diagonal matrix. The remaining matrices are non-symmetric in vaue and structure.

M-matrix properties

We already know that the non-Galerkin method transforms the Galerkin matrix into an M-
matrix on the first grid, but fails to improve the properties of the matrices on coarser grids. As
expected, the modified non-Galerkin method generates operators with positive diagonal and
negative off-diagonal entries on all levels. In addition, the modified matrices have entrywise
positive inverses. Thus, the operators of the modified algorithm are M-matrices.

Spectrum

The spectrum of the Galerkin operator is hardly affected by the modified non-Galerkin algo-
rithm. The approximated eigenvalues are illustrated in Figure C.5b.

E.D. Wobbes Master of Science Thesis

Chapter 6

Conclusions

Both aggressive coarsening and the non-Galerkin algorithm are successfully applied to the
AMG algorithm in INTERSECT. Generally, aggressive coarsening shows high performance
for serial runs, but is less effective when a parallel machine is used. The non-Galerkin method
has not been tested for parallel simulations, but its serial results are very promising.
In the remaining part of this section, we draw further conclusions from the results, stated in
Chapter 5, and present suggestions for future research.

6-1 Aggressive Coarsening

Typically, the application of aggressive coarsening leads to a slower convergence of the linear
solver, compared to the standard approach. This holds for both serial and parallel simulations.
For serial runs without heuristics, aggressive coarsening frequently reduces the time required
for a linear iteration. Thus, under the condition that the number of linear iterations is not
extremely high, the linear solver time is reduced.

Unfortunately, for parallel runs, the effect produced by aggressive coarsening on the linear
iteration time is opposite. This can be caused by unsuitable heuristics. However, it has been
noticed that the solver, obtained by the coupling of INTERSECT with SAMG, is poorly
scalable. Hence, the time rise can also originate from a communication issue. We provide
several plausible reasons for the increase in communication among the processor cores.
Firstly, the extensive data exchange can arise due to a low number of coarse levels, which
usually leads to a large number of non-zero entries on the coarsest level. Since Gauss elimi-
nation is not highly scalable, this can cause a significant increase in the linear solver time.
Secondly, the behaviour of the subdomain blocking may substantially differ from that of the
PMIS algorithm. If the coarsening scheme selects many variables on the subdomain bound-
aries, the exchange of large data sets is inevitable.
Thirdly, the interplay between INTERSECT and SAMG may negatively affect parallel sim-
ulations, if extremely large data sets have to be transfered.
Finally, aggressive coarsening requires the use of long range interpolation, which is assumed

Master of Science Thesis E.D. Wobbes

92 Conclusions

to be efficient for serial computations, but leads to communication beyond neighbouring pro-
cessors [12]. Obviously, this should reduce the effectiveness of the matrix storage structure
used in SAMG and, therefore, increase the execution time.
Clearly, the increase in the linear solver time can result from the combination of some or all
factors presented above.

In general, the rise of the total time due to aggressive coarsening is additionally driven by the
time required for the linearization.

6-2 Non-Galerkin

The results, obtained with the non-Galerkin method for serial simulations, are promising for
parallel runs. As shown in Chapter 5, the density of the coarse grid grid operators is effectively
reduced by the algorithm. In addition, the number of linear iterations, that is necessary for
the non-Galerkin approach, is very limited.

The increase in the total execution time, associated with the algorithm, is caused by the
non-Galerkin setup phase and, to some extent, by the additional linearization time. The
computation of the minimal sparsity pattern within the lumping process proves to be the
most expansive component of the non-Galerkin setup. The high costs arise from one of the
standard functions in INTERSECT, the multiplication of three sparse matrices of large size.

The modified non-Galerkin method improves the M-matrix properties of the non-Galerkin
coarse grid operators. The investigation of the modified coarse level operators of two small
cases reveals that the matrices satisfy all M-matrix properties. More importantly, the appli-
cation of the algorithm decreases the linear solver and total time of the standard non-Galerkin
algorithm. In terms of time, the performance of the modified non-Galerkin method is fre-
quently higher than that of the standard Galerkin method without heuristics.

6-3 Future Research

Further research on both aggressive coarsening and non-Galerkin solution strategies is highly
recommended.

The proper implementation of aggressive coarsening, as an optional part of the coarsening
scheme, should allow an in-depth analysis of the algorithm’s behaviour with regard to pres-
sure equations. In addition, it should prevent the inconsistencies in the performance observed
with the INTERSECT - SAMG solver.
Another interesting question, which has not been explored in this thesis, is the actual ag-
gressiveness of the coarsening. From the results in Chapter 5 follows that the investigated
approach eliminates the majority of the coarse grid levels, creating low complexities at the
expense of the accuracy. The aggressiveness can be adapted by replacing A1 coarsening by
a less aggressive version, such as A2 coarsening. In addition, the number of coarse levels on
which aggressive coarsening is applied can be reduced to one.

To study the influence of the non-Galerkin algorithm on the communication pattern, the par-
allel version of the code should be created. However, some experiments can be performed with

E.D. Wobbes Master of Science Thesis

6-3 Future Research 93

the existing serial implementation. First of all, the current choice of γ in the Compute spar-
sity algorithm (Algorithm 5) is based on the experiments with one case. Therefore, additional
investigation of the effect of this parameter on the performance of the non-Galerkin method
is required. Furthermore, the obtained results reveal that on the coarsest levels the Galerkin
algorithm can be more efficient than the non-Galerkin approach. Thus, the restriction of the
number of levels, to which the non-Galerkin method is applied, may be used to optimize the
structure of the AMG hierarchy.
Undoubtedly, the modified non-Galerkin algorithm requires further theoretical and experi-
mental research. The fact that enforcing the absence of the positive off-diagonal entries in
the coarse grid matrices seems to outweigh the principles of the construction of the non-
Galerkin sparsity pattern, should be closely investigated.

In Chapter 5, we noted that the use of heuristics improves the performance of both solution
strategies. However, the reduction of the linear solver and total execution time, associated
with aggressive coarsening and the non-Galerkin method, was smaller than that for of the
Galerkin approach. For this reason, we suggest further optimization of the heuristics for
aggressive coarsening and the non-Galerkin algorithm.
Finally, future research can be conducted on the technique, that combines the non-Galerkin
method with the aggressive coarsening strategy, in order to reduce the communication between
processors.

Master of Science Thesis E.D. Wobbes

94 Conclusions

E.D. Wobbes Master of Science Thesis

Appendix A

Well Modeling

Within INTERSECT we distinguish between three types of wells: producer, injector and
observer wells [35]. Each well communicates with the grid cells of the reservoir through
at least one well-to-cell connection, also known as connecting reservoir cell. A well-to-cell
connection represents the flow path between the well and a single reservoir cell.

Producer wells

Producer wells are used for producing oil to the surface. If the current reservoir conditions
do not allow oil production, e.g. if the pressure in the connecting reservoir cells is below a
certain limit, the producer wells should be closed.

Injector wells

The purpose of the injector wells is to inject fluids into the reservoir. The injection stream
describes the composition of the fluid injected from the surface and should be defined for each
injector well. Similarly to the producer wells, the injector wells are closed if no fluid can be
injected at the current reservoir conditions.

Observer wells

Contrary to producer an injector wells, the observer wells do not exchange fluids with the
reservoir. They are used to allow convenient access to particular properties inside the con-
necting reservoir grid cells.

Wells are modeled by means of segments. A segment is analogous to a grid cell, except that
it corresponds to a part of wellbore rather than the reservoir. Throughout the segment, the
properties and composition of the fluid mixture are uniform.
For more details on the well modeling we refer to [35].

Master of Science Thesis E.D. Wobbes

96 Well Modeling

E.D. Wobbes Master of Science Thesis

Appendix B

Krylov Subspace Methods

In order to introduce Krylov subspace methods, we consider the main idea behind the basic
iterative methods.

Equation (2.14) can be rewritten as Mu = Nu + f , where M is a nonsingular matrix and
N = M−A. Therefore, at step k+1 of a basic iterative method, the numerical approximation
of u, denoted by v is equal to

vk+1 = M−1
(
Nvk + f

)
=
(
I −M−1A

)
vk +M−1f = vk +M−1rk, (B.1)

where rk = f −Avk.
Developing the iterations, we find

v0,

v1 = v0 + (M−1r0),
v2 = v1 + (M−1r1)

= v0 +M−1r0 +M−1
(
f −Av0 −AM−1r0

)
= v0 + 2M−1r0 −M−1AM−1r0,

...

It follows that

vi ∈ v0 + span{M−1r0,M−1A
(
M−1r0

)
, . . . ,

(
M−1A

)i−1
(M−1r0)}.

Definition B.1. For A defined by Equation (2.14) and v ∈ Rn, a Krylov subspace of dimen-
sion m (m < n) is defined as

Km(A,v) = span{v, Av, . . . , Am−1v}.

Master of Science Thesis E.D. Wobbes

98 Krylov Subspace Methods

Thus, a vi obtained by a basic iterative method is an element of v0 + Ki(M−1A,M−1r0).
Unlike the basic iterative methods, Krylov methods do not have iteration matrix M . They
approximate the solution by minimizing the residual over the corresponding Krylov subspace.
Since FGMRES utilizes the Arnoldi method, we introduce Arnoldi first and then describe the
FGMRES algorithm.

B-1 Arnoldi

The Arnoldi method transforms matrix A to an upper Hessenberg matrix by orthogonal sim-
ilarity transformations.

Definition B.2. Matrix H ∈ Cn×n is an upper Hessenberg matrix if it has zero entries below
the first subdiagonal:

H =

h1,1 h1,2 h1,3 · · · h1,n−3 h1,n−2 h1,n−1 h1,n
h2,1 h2,2 h2,3 · · · h2,n−3 h2,n−2 h2,n−1 h2,n

0 h3,2 h3,3 · · · h3,n−3 h3,n−2 h3,n−1 h3,n
0 0 h4,3 · · · h4,n−3 h4,n−2 h4,n−1 h4,n
...

...
...

...
...

0 0 0 · · · 0 hn−1,n−2 hn−1,n−1 hn−1,n
0 0 0 · · · 0 0 hn,n−1 hn,n

.

Definition B.3. If X ∈ Cn×n is nonsingular, then the map A 7→ XAX−1 is called the simi-
larity transformation of A.

Definition B.4. A similarity transformation is called orthogonal if X−1 = X∗.

Thus, to fully reduce matrix A ∈ Cn×n to Hessenberg form by orthogonal similarity transfor-
mations, a matrix Q should be created such that

A = QHQ∗, (B.2)

where H is a Hessenberg matrix and Q∗ is the Hermitian conjugate of Q.
Clearly, Equation (B.2) is equivalent to

AQ = QH. (B.3)

Since n is assumed to be large, computing fully reduction is generally out of question and
only a part of the system AQ = QH is considered. Let m < n and Qm represent the n×m
matrix whose columns are equal to the first m columns of Q:

Qm =
[

q1 | q2 | ... | qm
]
. (B.4)

E.D. Wobbes Master of Science Thesis

B-1 Arnoldi 99

Then the new system can be stated as

AQm = Qm+1H̃m, (B.5)

where the Hessenberg matrix H̃m is the (m+ 1)×m upper-left section of H. That is,

H̃m =

h1,1 · · · h1,m
h2,1 · · · h2,m

.
hm+1,m

 .

Thus, the mth column of AQm can be written as

Aqm = h1,mq1 + · · ·+ hm,mqm + hm+1,mqm+1. (B.6)

Equation (B.6) is equivalent to

qm+1 = Aqm −
∑m
i=1 hi,mqi

hm+1,m
. (B.7)

The recursive computation of the columns of the matrix Q in this manner is known as Arnoldi
iteration. This iteration is simply the modified Gram-Schmidt iteration (see [39]) that imple-
ments (B.7). The method is outlined in Algorithm 8.

Algorithm 8: Arnoldi
Data: q1 is an arbitrary n-vector such that ||q1||2 = 1.

1 for i = 1,2, . . . , m do
2 w = Aqi
3 for j = 1, . . . , i do
4 hj,i = (w,qj)
5 w = w− hj,iqj
6 end
7 hi+1,i = ||w||2
8 if hi+1,i = 0 then break
9 qi+1 = 1

hi+1,i
w

10 end

The Arnoldi process can also be seen as a computation of an orthogonal projections onto
Km(A, r0).

Definition B.5. A general projection method for solving the linear system Au = f is a
method that seeks an appropriate solution v from v0 + K of dimension m by imposing the
following condition:

f −Av ⊥ L,

where L is a subspace of dimension m.

Master of Science Thesis E.D. Wobbes

100 Krylov Subspace Methods

Regarding the projection onto the Krylov space, the most important properties of the Arnoldi
process are stated below.

Proposition B.1. Under the assumption that Algorithm 8 does not break down before the m-
th step, the vectors {q1,q2, . . . ,qm} form an orthonormal basis of the Krylov space Km(A, r0).

Proof: see (Proposition 6.4, [31]).

Proposition B.2. The Hessenberg matrices Hm = Q∗mAQm are the orthogonal projections
of A onto Km(A, r0) with the columns of Qm as basis.

Proof: see (Theorem 33.1, [39]).

B-2 GMRES

GMRES, which stands for generalized minimal residual, was proposed by Saad and Schultz
in 1986 in order to solve large, sparse and nonsymmetric (or non Hermitian) linear systems,
[33], [17]. It is a projection method with K = Km(A, r0) and L = AKm. The algorithm
approximates the exact solution of the linear system (2.14) by solving a least squares problem
at each step of the iteration. More precisely, at step m, it determines vector vm ∈ v0 +
Km(A, r0) that minimizes

||rm||2 = ||f −Avm||2.

Definition B.6. Km is the n×m Krylov matrix corresponding to Km(A, r0) if

Km =
[

r0 | Ar0 | . . . | Am−1r0
]
.

Obviously, the minimization problem can be rewritten as

||f −A(v0 +Kmy)||2

with y ∈ Cm.

From Proposition B.1 follows that

||f −A(v0 +Kmy)||2 = ||f −A(v0 +Qmy)||2,

where matrix Qm is defined by Equation (B.4).

Using Equation (B.5), the relation results in

||f −A (v0 +Qmy) ||2 = ||r0 −AQmy||2
= ||βq1 −Qm+1H̃my||2
= ||Qm+1

(
βe1 − H̃my

)
||2.

E.D. Wobbes Master of Science Thesis

B-2 GMRES 101

where β = ||r0||2, q1 = r0
β and e1 denotes the first unit vector in Rm+1.

The final simplification is based on the fact that Qm+1 is a unitary matrix:

||Qm+1
(
βe1 − H̃my

)
||2 = ||βe1 − H̃my||2 (B.8)

Thus, at step m Equation (B.8) is solved for y. After that the numerical solution is obtained:

vm = v0 +Qmy.

A description of GMRES algorithm is provided in Algorithm 9.

Algorithm 9: GMRES
Data: Initial guess v0.

1 Setup (m+ 1)×m zero-matrix H̃m

2 Compute r0 = f −Av0 and q1 = v0
||v0|| .

3 for i = 1,2, . . . , m do
4 w = Aqi
5 for j = 1, . . . , i do
6 hj,i = (w,qj)
7 w = w− hj,iqj
8 end
9 hi+1,i = ||w||2

10 if hi+1,i = 0 then m = i and break
11 qi+1 = 1

hi+1,i
w

12 end

13 Define Qm =
[

q1 | q2 | ... | qm
]
.

14 Compute vm = v0 +Qmym where ym minimizes ym = ||βe1 − H̃my||2.
15 if convergence then stop
16 v0 = vm and go to line 2.

The basic properties of the GMRES iteration are stated in Proposition B.3 and B.4.

Proposition B.3. Under the assumption that A is a nonsingular matrix, the GMRES algo-
rithm breaks down at step i, i.e. hi+1,i = 0, if and only if the approximate solution vm is exact.

Proof: see (Proposition 6.10, [31]).

Proposition B.4. For m = 1, 2, . . . , GMRES solves the following approximation problem
successively:

Find pm ∈ Pm = {polynomials p of degree ≤ m with p(0) = 1} such that

||pm(A)f ||2

Master of Science Thesis E.D. Wobbes

102 Krylov Subspace Methods

is minimized.

Proof: see (p.268-269, [39]).

From Proposition B.4 follows that ||rm||2 = ||pm(A)f ||2. Therefore, ||rm||2 ≤ ||pm(A)||2||f ||2.
Generally, the crucial factor that controls the size of this quantity is ||pm(A)||2. Thus, the
convergence of GMRES is usually determined by

||rm||2
||f ||2

≤ inf
pm∈Pm

||pm(A)||2.

Theorem B.5. Suppose that A is diagonalizable, satisfying A = V DV −1 for a diagonal
matrix D. At step m of the GMRES iteration, the residual satisfies

||rm||2
||f ||2

≤ inf
pm∈Pm

||pm(A)||2 ≤ κ(V) inf
pm∈Pm

||pm||D(A),

where D(A) is the set of eigenvalues of A, V is a nonsingular matrix of eigenvectors, and
||pm||D(A) = supz∈D(A) |pm(z)|.

B-3 Preconditioned GMRES

Using GMRES with a preconditioner can significantly improve convergence and robustness. A
preconditioner transforms the original system (2.14) into an equivalent system with the same
solution, while improving the properties important for iterative methods, e.g. the condition
number of the matrix. We distinguish between left and right preconditioning.

Left preconditioning: M−1Au = M−1f .
Right preconditioning: AM−1x̄ = f , x̄ = Mu.

The operator M should satisfy the following requirements:

• M−1z, where z ∈ Rn, should inexpensive to obtain,

• the eigenvalues of the preconditioned matrix should be clustered around 1.

In preconditioned GMRES, Arnoldi is invoked to create an orthonormal basis for the respec-
tive Krylov subspaces

Km(M−1A,M−1r0) = span{M−1r0,M−1AM−1r0, . . . ,
(
M−1A

)m−1
M−1r0},

Km(AM−1, r0) = span{r0, AM−1r0, . . . ,
(
AM−1

)m−1
r0}.

To construct a left preconditioned GMRES, we adjust Algorithm 9 as follows. The residual
r0 on line 2 is replaced by r0 = M−1 (f −Av0), while w on line 4 is changed to w = M−1Aqi.

E.D. Wobbes Master of Science Thesis

B-4 Ritz Values and Ritz Vectors 103

For right preconditioning, the residual becomes

r0 = f −Av0 = f −AM−1x̄0.

Thus, the initial residual can remain equal to f − Av0, whereas vm = v0 +Qmym has to be
multiplied by M−1 to obtain

vm = v0 +M−1Qmym.

To sum this up, we provide the algorithm for right-preconditioned GMRES.

Algorithm 10: Right-preconditioned GMRES
Data: Initial guess v0.

1 Setup (m+ 1)×m zero-matrix H̃m

2 Compute r0 = f −Av0 and q1 = v0
||v0|| .

3 for i = 1,2, . . . , m do
4 w̄i = M−1qi
5 w = Aw̄i

6 for j = 1, . . . , i do
7 hj,i = (w,qj)
8 w = w− hj,iqj
9 end

10 hi+1,i = ||w||2
11 if hi+1,i = 0 then m = i and break
12 qi+1 = 1

hi+1,i
w

13 end

14 Define Qm =
[

q1 | q2 | ... | qm
]
.

15 Compute vm = v0 +M−1Qmym where ym minimizes ym = ||βe1 − H̃my||2.
16 if convergence then stop
17 v0 = vm and go to line 2.

B-4 Ritz Values and Ritz Vectors

Definition B.7. Let Hm be given as in Lemma B.2. Then, the eigenvalues θi of Hm are
called Ritz values of A with respect to Km(A, r0).

Definition B.8. Let Hm and Qm be given as in Lemma B.2. If zi is an eigenvector of Hm

such that Hmzi = θizi and ||zi||2 = 1, then Qmzi is called a Ritz vector of A.

Ritz values and Ritz vectors are approximations of the actual eigenvalues of A. At each step
i of the Arnoldi iteration, the eigenvalues of the Hessenberg matrix are obtained using stan-
dard methods such as QR algorithm. Since m � n for a feasible computation, it cannot be

Master of Science Thesis E.D. Wobbes

104 Krylov Subspace Methods

expected that all eigenvalues of A will be computed by this process. In general, Ritz values
correspond to the extreme eigenvalues of A, i.e. eigenvalues near the edge of the spectrum of
A [39].

Remark 12. For the right preconditioned GMRES, Ritz values and Ritz vectors are approxi-
mations of the eigenvalues of M−1A.

E.D. Wobbes Master of Science Thesis

Appendix C

Results

C-1 Aggressive Coarsening

Figure C.1: The number of non-zero entries per level, the 389559-case.

Master of Science Thesis E.D. Wobbes

106 Results

Algorithm Case
389559 348809 348811 1722780 164944

Galerkin 1165 2337 3036 447 28418
Aggressive coarsening 1186 2290 3033 539 28397

Galerkin H 1173 2313 3148 465 28405
Aggressive coarsening H 1184 2287 3121 479 28399

Galerkin H P 1188 2293 3073 457 unknown
Aggressive coarsening H P 1213 2316 3022 450 unknown

Table C-1: Number of time steps with the Galerkin and aggressive coarsening method. H denote
a strategy with heuristics, while P corresponds to parallel simulations.

Algorithm Case
389559 348809 348811 1722780 164944

Galerkin 7296 5783 12701 1689 30820
Aggressive coarsening 7574 5742 12982 2465 30760

Galerkin H 7304 5668 13411 1767 30804
Aggressive coarsening H 7570 5712 15121 1944 30770

Galerkin H P 7454 5759 13860 1795 unknown
Aggressive coarsening H P 7904 5813 12785 1738 unknown

Table C-2: Number of non-linear iterations with the Galerkin and aggressive coarsening method.
H denotes a strategy with heuristics, while P corresponds to parallel simulations.

C-2 Non-Galerkin

E.D. Wobbes Master of Science Thesis

C-2 Non-Galerkin 107

Algorithm Case
389559 348809 348811 1722780 164944

Galerkin 1165 2337 3036 447 28418
Non-Galerkin 1312 2276 3090 456 28487
Galerkin H 1173 2313 3148 465 28405

Non-Galerkin H 1618 2308 3187 465 28494
Modified non-Galerkin 1582 2319 3208 463 28403

Table C-3: Number of time steps with the Galerkin and non-Galerkin coarse grids. H denotes a
strategy with heuristics.

Algorithm Case
389559 348809 348811 1722780 164944

Galerkin 7296 5783 12701 1689 30820
Non-Galerkin 9394 5626 13609 1778 31118
Galerkin H 7304 5668 13411 1767 30804

Non-Galerkin H 12683 5855 15230 1768 31068
Modified non-Galerkin 12678 5834 14695 1750 30779

Table C-4: Number of non-linear iterations with the Galerkin and non-Galerkin coarse grids. H
denotes a strategy with heuristics.

(a) (b)

Figure C.2: Linear solver statistics for the Galerkin and non-Galerkin methods: (a) average
number of linear iterations per time step, (b) average time of a linear iteration.

Master of Science Thesis E.D. Wobbes

108 Results

Figure C.3: Sources of the total time growth due to the use of the non-Galerkin coarse grid
operators, 348809-case.

(a) (b)

Figure C.4: AMG hierarchy, 2250-case: (a) number of variables, (b) number of non-zero ele-
ments.

E.D. Wobbes Master of Science Thesis

C-2 Non-Galerkin 109

(a) (b)

Figure C.5: AMG hierarchy, 1639-case: (a) number of variables, (b) number of non-zero ele-
ments.

(a) (b)

Figure C.6: The approximated spectrum of the pressure matrix preconditioned by one AMG
V-cycle with the Galerkin and modified non-Galerkin coarse grid operators after the first linear
iteration (a) for the 2250-case , (b) for the 1639-case.

Master of Science Thesis E.D. Wobbes

110 Results

E.D. Wobbes Master of Science Thesis

Bibliography

[1] Antonelli, M., Chartier, T., Improving Algebraic Multigrid Efficiency For Immersed In-
terface Problems, International Journal of Pure and Applied Mathematics, Vol. 10(4),
365-385, 2004.

[2] Ashby, S., Falgout, R., A Parallel Multigrid Preconditioned Conjugate Gradient Algorithm
for Groundwater Flow Simulations, Nuclear Science and Engineering, Vol. 124(1), 145-159,
1996.

[3] Brandt, A., Algebraic Multigrid Theory: The Symmetric Case, Applied Mathematics and
Computation, Vol. 19, 23-56, 1986.

[4] Brandt, A., McCormick, S., Ruge, J., Algebraic Multigrid (AMG) for Automatic Multi-
grid Solutions with Application to Geodatic Computations, Technical report, Institute for
Computational Studies, Fort Coolins, CO, 1982.

[5] Brandt, A., McCormick, S., Ruge, J., Algebraic Multigrid (AMG) for Sparse Matrix Equa-
tions, In Evans, D., editor, Sparsity and Its Applications, Cambridge University Press,
1984.

[6] Briggs, W., Henson, V., McCormick, S., A Multigrid Tutorial, Second Edition, SIAM,
Philadelphia, 2000.

[7] Brualdi, R., Mellendorf, S., Regions in the Complex Plane Containing the Eigenvalues of
a Matrix, The American Mathematical Monthly, Vol. 101, 975-985, 1994.

[8] Coats, K., Thomas, L., Pierson, R., Compositional and Black Oil Reservoir Simulation,
SPE Reservoir Evaluation and Engineering, Vol. 1(4), 372-379, 1998.

[9] Chen, A., Huan, G., Ma, Y., Computational Methods for Multiphase Flow in Porous
Media, Computational Science and Engineering, SIAM, Philadelphia, 2006.

[10] Clees, T., AMG Strategies for PDE Systems with Applications in Industrial Semiconduc-
tor Simulation, Ph.D. dissertation, University of Cologne, Germany, 2005.

Master of Science Thesis E.D. Wobbes

112 Bibliography

[11] Darwish, M., Saad, T., Hamdan, Z., A High Scalability Parallel Algebraic Multigrid
Solver, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006,
P. Wesseling, E. Oñate, J. Périaux (Eds), TU Delft, The Netherlands, 2006.

[12] De Sterck, H., Yang, U., Heys, J., Reducing Complexity in Parallel Algebraic Multigrid
Preconditioners,SIAM Journal on Matrix Analysis and Applications, Vol. 27, 1019-1039,
2006.

[13] Dong, X., Cooperman, G., Scalable Task-Oriented Parallelism for Structure Based In-
complete LU Factorization, CoRR, abs/0803.0048 , 2008.

[14] Falgout, R., An Introduction to Algebraic Multigrid, Computing in Science and Engineer-
ing, Vol. 8(6), 24-33, 2006.

[15] Falgout, R., Schroeder, J., Non-Galerkin Coarse Grids for Algebraic Mutigrid, SIAM
Journal on Scientific Computing, Vol. 36 (3), 309-334, 2014.

[16] Foster, I., Designing and Building Parallel Programs,
http://www.mcs.anl.gov/∼itf/dbpp/, 1995.

[17] Frayssé, V., Giraud, L., Gratton, S., A Set of Flexible-GMRES Routines for Real and
Complex Arithmetics on High Performance Computers, ACM Transactions on Mathemat-
ical Software, Vol. 35(2), 2008.

[18] Gahvari, H., Baker, A., Schulz., M, Yang, U., Jordan, K., Gropp, W., Modeling the
Performance of an Algebraic Multigrid Cycle on HPC Patforms, Proceedings of the inter-
national conference on Supercomputing, ICS ’11, 172-181, New York, NY, USA, 2011.

[19] Gallier, J., The Schur Complement and Symmetric Positive Semidefinite (and Definite)
Matrices, http://www.cis.upenn.edu/∼jean/schur-comp.pdf, 2010.

[20] George, A., Liu, J., Computer Solution of Large Sparse Positive Definite Systems, En-
glewood Cliffs, N.J.: Prentice Hall, Inc., 1981.

[21] Golub,G., Van Loan, C., Matrix Computations, Third Edition, Johns Hopkins University
Press, Baltimore, MD, 1996.

[22] Hajibeygi, H., Wang, Y., Tchelepi, H., Monotone Multiscale Finite Volume Method for
Flow in Heterogeneous Porous Media, ECMOR XIV - 14th European Conference on the
Mathematics of Oil Recovery Catania, Sicily, Italy, 8-11 September, 2014.

[23] Henson, V., Yang, U., BoomerAMG: A Parallel Algebraic Solver and Preconditioner,
Applied Numerical Mathematics, Vol. 41, 155-177, 2002.

[24] Jenny, P., Lee, S., Tchelepi, H., Adaptive Fully Implicit Multi-scale Finite-volume Method
for Multi-phase Flow and Transport in Heterogeneous Porous Media, Elsevier, Journal of
Computational Physics, Vol. 217, 627-641, 2006.

[25] Joubert, W., Cullum, J., Scalable Algebraic Multigrid on 3500 Processors, Los Alamos
National Laboratory, Technical Report No. LA UR03-568, Submitted to Electronic Trans-
actions on Numerical Analysis, 2003.

E.D. Wobbes Master of Science Thesis

113

[26] Kaminsky, A., Big CPU, Big Data: Solving the World’s Toughest Compu-
tational Problems with Parallel Computing, Rochester Institute of Technology,
http://http://www.cs.rit.edu/∼ark/bcbd/, 2014.

[27] Krechel, A., Stüben, K., Operator Dependent Interpolation in Algebraic Multigrid, Pro-
ceedings of the Fifth European Multigrid Conference, Stuttgart, October 1-4, 1996, Lec-
ture Notes in Computational Science and Engineering, Vol. 3, Springer, Berlin, 1998.

[28] Notay, Y., An Aggregation-based Algebraic Multigrid Method,Electronic Transactions on
Numerical Analysis, Vol. 37, 123-146, 2010.

[29] Press, W., Teukolsky, S., Vetterling, W., Flannery, B., Numerical Recepies in C: The
Art of Scientific Computing, Second Edition, ISBN 0-521-43108-5, Cambridge University
Press, Cambridge, 1988-1992.

[30] Ruge, J., Stüben, K., Algebraic Multigrid (AMG), In McCormick, S. editor, Multigrid
methods, Frontiers in Applied Mathematics, Vol. 3, 73-130, SIAM, Philadelphia, 1987.

[31] Saad, Y., Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, Philadel-
phia, 2003.

[32] Saad, Y., A Flexible Inner-outer Preconditioned GMRES Algorithm, SIAM Journal on
Scientific Computing, Vol. 14, 461-469, 1993.

[33] Saad, Y., Schultz, M., GMRES: A Generalized Minimal Residual Algorithm for Solving
Non-symmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing,
Vol. 7, 856-869, 1986.

[34] SAMGp: Algebraic multigrid methods for systems,
http://www.scai.fraunhofer.de/samg.htm.

[35] Schlumberger, Chevron and Total, Intersect Technical Description, Version 2013.1, Hous-
ton, TX, 2013.

[36] Sibai, F., Performance modeling and analysis of parallel Gaussian elimination on multi-
core computers, Journal of King Sand University - Computer and Information Sciences,
Vol. 26, 41-54, 2014.

[37] Stüben, K., Algebraic Multigrid (AMG) An Introduction with Applications, In: Hack-
busch, U., Oosterlee, C., Schueller, A. (eds) Multigrid, Academic Press, San Diego, 2000.

[38] Stüben, K., Cless, T., Algebraic Multigrid Method (AMG) for the Efficient Solution of
Fully Implicit Formulations in Reservoir Simulation, SPE Reservior Simulation Sympo-
sium Houston Feb. 26-28, 2007.

[39] Trefethen, L., Bau, D., Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[40] Vassilevski, P., Yang, U., Reducing Communication in Algebraic Multigrid Using Additive
Variants, Numerical Linear Algebra with Applications, Vol. 21 (2), 275-296, 2014.

[41] Vuik, C., Lahaye, D., Scientific Computing (wi4201), Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Institute of
Applied Mathematics, the Netherlands, 2013.

Master of Science Thesis E.D. Wobbes

114 Bibliography

[42] Wienands, R., Yvneh, I., Collocation Coarse Approximation (CCA) in Multigrid, SIAM
Journal in Scientific Computing, Vol. 31, 3643-3660, 2009.

[43] Yang, U., On Long-range Interpolation Operators for Aggressive Coarsening, Numerical
Linear Algebra with Applications, Vol. 17, 453-472, 2010.

[44] Yang, U., Parallel Algebraic Multigrid Methods - High Performance Preconditioners, In
Numerical Solutions of Partial Differential Equations on Parallel Computers, Bruaset A.
and Tveito A. (eds.), Lecture Notes in Computational Science and Engineering, Spinger-
Verlag, 209-236, 2006.

E.D. Wobbes Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Motivation
	Scope
	Outline

	INTERSECT
	Simulator Framework
	Formulation
	Darcy's Law
	Governing Equation
	Thermodynamic Equilibrium
	Saturation and Mole Fraction Constraints
	Variables
	Black Oil Fluid Model

	Non-linear Solver
	Newton-Raphson
	Convergence Criteria
	Time Step Selection
	Linear Solver

	CPR
	Decoupling
	Second Stage: ILU

	Parallel Computing

	AMG
	Classical AMG
	Undirected Adjacency Graph
	Smoothing: Basic Iterative Methods
	Algebraic Smoothness
	Influence and Dependence
	Coarsening Heuristics
	Coarsening
	Interpolation
	Galerkin Operators
	Algorithm
	Convergence
	Costs of AMG

	Coarse Grid Selection
	Serial Coarsening Strategies
	Parallel Coarsening Strategies

	AMG within INTERSECT
	Heuristics

	Problem Description and Solution Strategies
	Problem Description
	Terminology
	Strong Scalability of AMG within INTERSECT

	Solution Strategies
	Aggressive Coarsening
	Non-Galerkin method

	Results
	Test Cases
	Mathematical Analysis

	Aggressive Coarsening
	Serial: Aggressive Coarsening without Heuristics
	Serial: Aggressive Coarsening with Heuristics
	Parallel: Aggressive Coarsening with Heuristics

	Non-Galerkin
	Serial: Standard Non-Galerkin without Heuristics
	Serial: Standard Non-Galerkin with Heuristics
	Serial: Modified Non-Galerkin without Heuristics

	Conclusions
	Aggressive Coarsening
	Non-Galerkin
	Future Research

	Appendices
	Well Modeling
	Krylov Subspace Methods
	Arnoldi
	GMRES
	Preconditioned GMRES
	Ritz Values and Ritz Vectors

	Results
	Aggressive Coarsening
	Non-Galerkin

	Back Matter

