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Chapter 1

Introduction

1.1 About Corus

Corus is a leading international metal company which combines world renowned
expertise with local service. The headquarters are in London, with four divisions
and operations worldwide. The company has manufacturing operations in many
countries, with major plants in the UK, the Netherlands, Germany, France,
Norway and the USA. In addition, a network of sales offices and service centres
spans the globe. The shares are listed on the London, New York and Amsterdam
stock exchanges.

In 2004 Corus generated a turnover of £9.3 billion and produced 19 million
tonnes of steel and delivered over 0.6 million tonnes of aluminium. At the end
of December 2004 Corus had 48,300 employees.

From October 2003 Corus has been structured into four main divisions: Strip
Products, Long Products, Aluminium and Distribution and Building Systems.

Corus was formed on 6th October 1999, through the merger of British Steel
and Koninklijke Hoogovens.1

1.2 Heat treatments and homogenization

The production of aluminium is a complicated process that requires many steps
before the semi-finished product is ready for use in its applications. The base
material for aluminium production is bauxite. By means of the Bayer process
a material called alumina can be extracted from the bauxite. Next, an electrol-
ysis process called the Hall-Héroult process is used to extract so-called primary
aluminium from the alumina2. This aluminium is cast into ingots for subse-
quent remelting or more usually into cylindrical extrusion billets or rectangular
rolling slabs. Ingots are used to produce cast products like engine blocks. Ex-
trusion billets are pushed through shape dies to give an extruded profile used,
for example, in structures while rolling slabs are hot rolled and usually cold

1Source: www.corusgroup.com.
2Since the electrolysis process requires an extraordinary amount of energy (anywhere from

12.8 to 15.5 kWh/kg), aluminium can also be recycled at 5% of the cost of production from
bauxite.
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rolled into sheet, plate or foil used, for example, for facade panels or packaging
applications.

Since these applications vary from lawn furniture to engine blocks and from
food containers to armoured plating, it is obvious that the diversity in quality
requirements is quite high. Therefore, constant effort is put into finding better
aluminium alloy compositions and processing techniques to meet these ever-
increasing demands.

The qualitative properties of aluminium depend on a number of things, but
we will only focus on the local compositions of an alloy specimen. Our main
tool for influencing these compositions is the heat treatment: a combination of
heating and cooling operations timed and applied to a metal or alloy in the solid
state in a manner that will produce desired mechanical properties.

One specific type of heat treatment is the so-called homogenization process.
After casting, the ingot/billet/slab may contain precipitates and a supersatu-
rated phase (see also paragraph 2.1.4). To relieve the material of these inhomo-
geneities, the material is heat treated. Several metallurgical processes can take
place during this homogenization process:

• Dissolution of precipitates present as isolated particles or as segregation
layers on grain boundaries.

• Precipitation of new particles due to the “surplus” of alloying elements
present in the supersaturated phase.

• Shape change of precipitates that can not completely dissolve.

1.3 Problem formulation

Traditionally, finding good heat treatments for aluminium is a process of trial
and error. Often, multiple experiments have to be carried out to determine
the effects of a certain heat treatment. Although mathematical models can
probably not eliminate the need for physical experiments, they can help reduce
the number of experiments required to determine the optimal heat treatment
for a certain alloy. Therefore in the past several models have been developed in
order to describe the processes that take place during a heat treatment. Some
of these models were able to model particle dissolution of a single precipitate
inside a grain, and others modeled the kinetics of a particle size distribution
function with the use of classical nucleation theory. In this study an effort is
made to combine diffusion and classical nucleation theory in one mathematical
model. The main questions are

• How, and to what extent does nucleation influence particle dissolution?

• Conversely, in what way does particle dissolution influence nucleation?

In this study, the subject of interest is the mathematical modelling of heat treat-
ments of metal alloys in general, and homogenization of aluminium in particular.

1.4 Thesis outline

This study was performed to gather the basic knowledge required to solve the
problem described above. In the next chapter some important materials science
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topics will be discussed. Chapter 3 will summarize the mathematical laws that
will be used to describe the phenomena as presented in Chapter 2. As will
be shown later, the particle dissolution problem is a special one in the field of
mathematics. Some of its properties will be discussed in Chapter 4. After that
will we continue by describing the methods to solve the previously described
problems using a digital computer in Chapter 5. In Chapter 6 some results
produced by these methods will be compared to the results of the original im-
plementations of the respective algorithms. Finally, the directions in which to
proceed in the second part of the study are outlined in Chapter 7.



Chapter 2

Preliminaries in materials
science

This chapter contains a condensed view of the concepts and principles in thermo-
dynamics and kinetics necessary for the creation of the homogenization model.
Most of the material found in this chapter is explained in Porter and Easterling
[1981] in much more detail. This book is recommended to everyone interested
in the subject of phase transformations in metals. The work of Callister [1999]
serves as a good general introduction to materials science.

2.1 Basic concepts in thermodynamics

2.1.1 Phase transformations

To understand the concepts of phase transformations we need to know what a
phase is. According to Callister [1999], a phase is “a homogeneous portion of
a system that has uniform physical and chemical characteristics”. If more than
one phase is present in a system, each one will have its own distinct properties
and a boundary separating the phases will exist across which there will be a
discontinuous and abrupt change in physical and/or chemical characteristics.
This boundary is commonly referred to as the interface and in the case of a
phase transformation it is allowed to move.

2.1.2 Equilibrium

The reason a phase transformation occurs is because the initial state of the
material under investigation is unstable. The stability of a system is determined
by its Gibbs free energy. The Gibbs free energy of a system is defined as

G = H − TS,

with
H = E + PV,

in which E is the internal energy of the system, P is the pressure, V is the
volume, T the temperature in Kelvin, and S is the entropy of the system. The

6
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Figure 2.1: Aluminium-Copper phase diagram.

internal energy is the sum of the total kinetic and potential energy present in
the system. Entropy is a measure of the randomness of the system.

A system is in equilibrium if it is in its most stable state. The laws of
thermodynamics dictate that at constant temperature and pressure a closed
system is in stable equilibrium if it has the minimum amount of Gibbs free
energy, i.e. the Gibbs free energy has attained a global minimum. We say
that a system is in metastable equilibrium if the Gibbs free energy is at a local
minimum. In theory all metastable systems will transform into a stable state
given enough time. A system that is neither stable nor metastable is said to
be unstable. Unstable states are only realized for very short periods of time
when the system is reorganizing itself to one of the stable or metastable states.
Phase transformations occur because the system always tries to attain the lowest
energy state. Therefore any transformation that decreases the Gibbs free energy
is allowed. Note that through the use of only thermodynamics no claims can
be made about the time it takes for metastable states to transform into stable
states.

2.1.3 Phase diagrams

The relations between temperature, alloy composition and phase are most easily
represented as a phase diagram. An example of such a phase diagram is shown
in Figure 2.1. On the horizontal axes we see composition, on the vertical axes
temperature. A lot of information can be deduced from these diagrams. We can
deduce which phases are present, the composition of the phases and the phase
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amounts. See Callister [1999] for more information.

2.1.4 Metastable solutions

The rules described above are valid only for situations in which thermodynamic
equilibrium is maintained at all times. In practice this will rarely be the case.
If we cool an alloy very rapidly we will see that there will not be enough time
for the atoms to reorganize themselves to Cu-rich precipitates. The lower tem-
perature will reduce the rate at which the elements restructure themselves by
several orders of magnitude. In practice this means that the alloy is essentially
frozen into a state of supersaturation; the material consists of only an Al-rich
phase that contains more copper than could be dissolved in thermodynamic
equilibrium. Because of the low temperature this state can be maintained al-
most indefinitely. This dramatic decrease in activity in the material can be
explained by the temperature dependence of the diffusion coefficient (see also
Section 2.3).

2.2 Material structure

An aluminium specimen is not a continuous, homogeneous volume of material.
In fact it consists of billions of microscopic grains (see Figure 2.2). These grains
are the subject of our investigation. We assume that the compositions of neigh-
bouring grains are close to identical and that no concentration gradients exist
between these grains. Therefore we will assume that no material is exchanged
between grains.

2.3 Diffusion

One of the most fundamental processes that controls the transfer of components
through the system is diffusion. There are two common mechanisms by which
atoms can diffuse through a solid. Which of these mechanisms actually occurs
depends on the type of site occupied in the lattice.

2.3.1 Substitutional diffusion

The first mechanism involves the movement of an atom from a normal lattice
position to an adjacent vacant lattice site. Because the vacancy and the atom
substitute positions this mechanism is named substitutional diffusion. For ob-
vious reasons it is also known as vacancy diffusion. It is clear that the rate
at which substitutional diffusion occurs is directly related to the number of
vacancies present in the material.

2.3.2 Interstitial diffusion

Interstitial diffusion occurs when the atoms of the solute are small in comparison
with the atoms of the solvent. This means that solute atoms can reside in
between solvent atoms, i.e. at the interstitial positions (hence the name). Since
the interstitial atoms are smaller, they can travel through the lattice much
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Figure 2.2: Scanning Electron Microscopy (SEM) images of an aluminium alloy
that has been gallium etched to reveal its grain structure. Image from website
of the National Physical Laboratory, Teddington, Middlesex, UK.

easier. Therefore interstitial diffusion is usually much faster than substitutional
diffusion.

2.3.3 Diffusion in dilute solutions

We can imagine that interstitial (solute) atoms can travel trough the lattice
without altering the solvent concentration levels; interstitial diffusion does not
require the solvent atoms to change positions. For substitutional diffusion this
is no longer the case; movement of solute atoms to one side usually involves
movement of solvent atoms to the other. Fortunately, according to Porter and
Easterling [1981] in sufficiently dilute solutions we may assume a constant sol-
vent concentration level. According to Porter and Easterling [1981], this implies
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we may use Fick’s second law to model the diffusion process.

Figure 2.3: Interstitial and substitutional diffusion. Image source: Callister
[1999].

2.4 Interphase interfaces

2.4.1 Gibbs-Thomson effect

We have seen that multiple phases of an alloy can co-exist in a piece of material.
Often the crystal structures of these phases are not identical. The difference in
crystal structure puts an extra strain on the inner phase. The most important
consequence is that the Gibbs free energy inside the enclosed phase is raised.
By utilizing the lever rule1 we see that this results in a higher solubility at
the matrix-precipitate interface. We call this phenomenon capillarity or the
Gibbs-Thomson effect.

2.4.2 Interface migration

As a particle dissolves, its volume decreases; the interface will migrate inbound.
Let us consider a B-rich particle inside an Al-rich grain. When the particle
dissolves, B-atoms must cross the interface from the B-rich phase to the Al-
rich phase. We call this the interface reaction. Once this atom has crossed
the interface, the concentration of B in the Al-rich phase close to the interface
has increased. In order to sustain the dissolution process the B-atoms need to
move away from the interface to make room for new B-atoms. We call this
the long-distance diffusion process. According to Vermolen [1998] the rate of
dissolution in aluminium alloys is in practice governed by the long-distance

1Equilibrium between two phases requires that each component has the same chemical
potential in each phase. The chemical potential can be obtained by extrapolating the tangent
to the free energy curve to the sides of the molar energy diagram (hence, the ‘lever rule’). See
Chapter 1 of Porter and Easterling [1981] for more details.
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diffusion process. This means that at the interface the components will be
mixed according to thermodynamic equilibrium.

2.5 Nucleation

If a solid is heated or cooled to a temperature where the current phase is no
longer stable, a driving force for a phase transformation exists. One type of
phase transformation is the formation of precipitates. One might expect that
the material would spontaneously transform to the new, more stable phase.
This is, however, not the case; all precipitation phenomena start by the forma-
tion of very small particles, or nuclei, of the new phase. This process is called
nucleation. Two different types of nucleation can be distinguished. We have
heterogeneous nucleation, which occurs at defects (i.e. local imperfections in
the material). Homogeneous nucleation occurs when no such imperfections are
present. Because heterogeneous nucleation can destroy a defect –and release the
increased free energy caused at such a defect– the net energy required for hetero-
geneous nucleation is lower than for homogeneous nucleation. Therefore almost
all nucleation in solids occurs heterogeneously. More extensive information on
nucleation theory can be found in Porter and Easterling [1981].



Chapter 3

Modeled homogenization
phenomena

As we have discussed before, we know that the aluminium ingot or billet con-
sists of microscopic grains. A schematic overview of such a grain is shown in
Figure 3.1. The grain consists of several alloying elements. By far, the most

Figure 3.1: Schematic view of an aluminium grain.

common element will be aluminium since we are investigating aluminium alloys.
In addition, several other alloying elements will be present in the grain. Some
of these impurities are put in on purpose to improve the material characteristics
of the alloy. Others are contaminants that are simply unavoidable. We will
assume in our model that the concentration of aluminium is much larger than
that of any of the other alloying elements.

The main problem -and the one under investigation- is that the alloying
elements are not homogeneously distributed over the grain. The largest part
of the grain is structured in the form of an aluminium-rich phase which is also
referred to as the solvent phase. In this phase the concentration of aluminium is

12
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–as the name suggests– relatively high, and the concentration of other elements
is relatively low.

Now the grain also contains secondary phases that are low on aluminium
and rich on other components. In the center of the grain we have a secondary
phase in the shape of a (micrometer scale) precipitate that consists mainly of
non-aluminium alloying elements. This particle will be referred to as a primary
particle.

Additionally, we have another phase at the outer edge of the grain. This
segregation layer consists of particles that have formed after casting during
the cooling process. These particles need not have the same composition as
the precipitate in the centre. We will refer to these precipitates as secondary
particles.

During the heat treatment very small (nanometer scale) precipitates develop
because of the nucleation process. We will call these tertiary particles.

3.1 Primary and secondary particle dissolution

The goal of the homogenization process is to (partly) dissolve the primary
and/or secondary particles in order to improve the material properties of the
alloy. Below it will be demonstrated how the theory from the previous chapter
is applied in order to model this dissolution process. For the construction of our
model, the following a-priori assumptions are made.

1. The concentration of alloying components is “low”.

2. Diffusion only takes place inside the Al-rich phase. Precipitate phases are
diffusion-free.

3. Precipitates are assumed to be of uniform, stoichiometric composition.

We will consider an aluminium alloy which contains Np non-aluminium com-
ponents. We need to model diffusion in the solvent phase only and we will
designate this region with Ω(t). Note that since we have to deal with moving
boundaries, the solvent phase geometry depends on time.

3.1.1 Component transfer inside the Al-rich phase

The alloying elements travel through the Al-rich phase under the influence of
diffusion. Some alloying elements move more easily than others, so each is
controlled by its own diffusion equation. Hence, for every p ∈ P = {1, . . . , Np}

∂cp(x, t)
∂t

= ∇ · (Dp(T )∇cp(x, t)) for x ∈ Ω(t), t ∈ (0,∞), (3.1)

where

cp = the solute concentration at position x and time t,

Dp = the diffusion coefficient of alloying element p.

According to Callister [1999] we may approximate the diffusion coefficient using
the following formula

Dp(T ) = D0,p exp
(
−Qd,p

RT

)
, (3.2)
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where

D0,p = a temperature-independent pre-exponential,
Qd,p = the activation energy for diffusion,

R = the gas constant,
T = absolute temperature.

3.1.2 Initial condition

Before we can say anything about the kinetics of the particle dissolution, we
must choose a starting situation. The Al-rich phase geometry at the start time
is referred to as Ω(0). We use the following initial condition to define the
concentration profile in the Al-rich phase at the beginning of our simulation:

cp(x, 0) = c0(x) for x ∈ Ω(0). (3.3)

3.1.3 Boundary conditions

We have now defined how matter is transported through the Al-rich phase, but
we have yet to define what happens at the boundaries of our system. As said
before, all the action takes place inside the grain, without any interaction with
neighbouring grains. So if no segregation layer is present (anymore), a no-flux
condition is governing component transfer at the grain boundary. Assuming
precipitation nor dissolution is taking place at the boundary we conclude that
this type of boundary does not move. On the other hand, if a segregation
layer is present at the grain boundary or a precipitate is present in the centre
of the grain, these secondary phases will most likely attempt to dissolve or
grow. This results in a net movement of the interfaces separating the Al-rich
phase from the secondary phases. Since we assume that diffusion only takes
place within the solvent phase, these interfaces are effectively the boundaries
of our problem, hence we need to define boundary conditions for them. Since
they are moving, handling them will be somewhat more complex than for fixed
boundaries. Moving boundaries are written as S(t), fixed boundaries are written
as Γ. S(0) represents the position of the boundary at t = 0.

Fixed boundaries

We assume that during homogenization the grain size does not change. This
means that no matter is exchanged with neighbouring grains at any time. Since
this type of boundary does not move, we will call these fixed boundaries. This
gives raise to the Neumann condition

∂cp(x, t)
∂n

= 0 for x ∈ Γ, t ∈ (0,∞). (3.4)

The n is defined as the normal unit vector pointing out of Ω(t).

Moving boundaries

A different type of boundary occurs at the interface that separates the phases in
the grain. As a secondary phase releases the atoms inside it, the volume of this
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phase decreases. We need to account for this process in our model. We assume
that the dissolution process is diffusion-controlled, hence we assume that the
material is always at its thermodynamic equilibrium at the solvent/precipitate
phase interface. This means that our boundary condition is

cp(x, t) = csol
p (x, t) for x ∈ S(t), t ∈ (0,∞). (3.5)

Since we assume that the particle is, and remains stoichiometric (cpart
p con-

stant for every p ∈ P ), we can use the Gibbs free energy of the stoichiometric
compound to obtain∏

p∈P

(
csol
p (x, t)

)mp = K(T ) for x ∈ S(t), t ∈ (0,∞). (3.6)

Here mp represents the multiplicity of the component in the stoichiometric com-
pound. K(T ) is called the solubility product; it determines to what extent the
different components can be dissolved in the solvent phase. Stoichiometry means
that the composition of the secondary phase will remain the same. The balance
of atoms leads to the following equation

vn(x, t) =
Dp

cpart
p − csol

p (x, t)
∂cp

∂n
(x, t) for x ∈ S(t), t ∈ (0,∞). (3.7)

The moving boundary problem given by Equations (3.1)–(3.7) is known as a
Stefan problem. More information about the mathematical properties of such
a problem can be found in Section 4.

3.2 Tertiary particle precipitation

The creation of secondary particles proceeds in three stages: nucleation, growth
and coarsening. In reality all three of these processes can take place inside the
material at the same time. We will assume that the following holds:

1. All nucleation is of the heterogeneous type.

2. Precipitates are assumed to be of uniform composition. If temperature
changes give raise to a change in composition, this change will happen
instantaneously i.e. the precipitates are in thermodynamic equilibrium at
all times.

3. All particles are assumed spherical.

4. A “steady-state diffusion field” is assumed around the particles, i.e. Fick’s
first law of thermodynamics applies.

5. Soft impingement does not occur. Diffusion fields of particles do not in-
teract. This implies a dilute concentration of solute.

3.2.1 Nucleation

According to Russel [1970], to predict the number of nuclei that are produced
heterogeneously in a system we may use

J = J0 exp
(
−∆G∗

het

RT

)
exp

(
−Qd

RT

)
, (3.8)
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where

J0 = a numerical constant,
∆G∗

het = the energy barrier for nucleation.

If the effect of elastic coherency strains can be ignored (i.e. the increase of
Gibbs free energy in the particle due to misfit strain), then according to Myhr
and Grong [2000]

∆G∗
het =

(A0)3

(RT )2 (ln(Cm/Ce))
2 , (3.9)

where

A0 = a value related to the energy barrier for nucleation,

Cm = the mean solute concentration in the solvent phase,
Ce = the equilibrium solute concentration at the interface.

Combining the last two equations gives us

J = J0 exp

[
−
(

A0

RT

)3( 1
ln(Cm/Ce)

)2
]

exp
(
−Qd

RT

)
. (3.10)

3.2.2 Growth rate

As mentioned at the start of this paragraph, particle growth/dissolution is gov-
erned by a steady-state diffusion field. This means that the rate at which the
radius of a spherical particle with radius r grows, is given by

v =
dr

dt
=

Cm − Ci

Cp − Ci

D

r
, (3.11)

in which Ci is the interface solute concentration and Cp is the particle solute
concentration. Because the particles are very small we must take capillarity into
account, hence

Ci = Ce exp
(

2σVm

rRT

)
, (3.12)

in which σ is the interface energy and Vm is the molar volume of the particle. We
can deduce the critical radius (i.e. the radius at which a particle neither grows
nor shrinks) from the above equations by solving v(r) = 0. We now obtain

r∗ =
2σVm

RT
(ln (Cm/Ce))

−1
. (3.13)

For r < r∗ we have v < 0, so a particle smaller than the critical radius will be
unstable and dissolve. On the other hand, for r > r∗ we have v > 0 and thus a
particle larger than the critical radius will grow.

3.2.3 Coarsening

The coarsening stage is handled naturally by the described nucleation model.
As the solvent phase is depleted of solute and the concentration decreases, the
critical radius will increase. This results in smaller particles dissolving and the
larger ones growing. We do not need to make any special arrangements in our
model to accommodate this behaviour.
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3.2.4 Particle size distribution

Even in a volume as small as a grain, a very large number of nuclei can form.
This means that it is not feasible to solve a diffusion equation for all the parti-
cles present in a single grain. Hence we will need to simplify our model a little.
Our primary tool in reducing the workload is the particle size distribution. This
approach is based on the numerical framework in Myhr and Grong [2000]. In-
stead of tracking each particle individually, we track classes of particles that are
of the same size. The particle size distribution ϕ is defined as follows1

# particles/m3 with rmin ≤ particle radius ≤ rmax =
∫ rmax

r=rmin

ϕ(r, t) dr. (3.14)

The flow of particles through the size classes can be modeled as a convection
problem. Using the continuity equation we can show that the size distribution
is controlled by the differential equation

∂ϕ

∂t
= −∂(ϕv)

∂r
+ S. (3.15)

In this formula, v is the growth rate as defined above, and S is a source term
due to the nucleation of new particles. We note that because of the dependence
of v on Cm, and the dependence of Cm on ϕ (see below), the above equation is
in fact nonlinear (in ϕ).

Since we are dealing with a convection problem that contains only outflow
boundaries, we do not need to define any boundary conditions; only an initial
condition is necessary.

3.2.5 Balance of mass

It is obvious that for every amount of material added to a particle when it grows,
an equal amount of material is removed from the solvent phase. Application of
a mass balance results in the equation

Cm = C0 − (Cp − Cm)
∫ ∞

r=0

4
3
πr3ϕ dr. (3.16)

3.2.6 Particle volume fraction

The volume occupied by the nuclei in relation to the total volume is called the
particle volume fraction and can be written as

f =
C0 − Cm

Cp − Cm
. (3.17)

1In Myhr and Grong [2000], the number of particles in a size class is tracked instead of the
particle density.



Chapter 4

Stefan problems

The special class of moving boundary problems are commonly called Stefan
problems. To gain some insight in the properties of this type of problems we
will investigate the standard Stefan problem from a mathematical point of view.
Vermolen [1998] contains some interesting results. We will demonstrate some
important properties of the Stefan problem. For demonstration purposes we
will use a simplified version of Equations (3.1–3.7).

The transport of the second phase in a finite matrix, G(t) = (S(t),M) with
S(t) the moving boundary and M the fixed boundary, is described by:

∂c(r, t)
∂t

= D
∂2c(r, t)

∂r2
∀r ∈ G(t), t ∈ (0, tmax) (4.1)

in which c(r, t) is continuous, and has continuous derivatives with respect to t

and r. Also ∂c(r,t)
∂t is continuous with a continuous derivative with respect to r.

On the interface S(t) we assume a constant Dirichlet condition, represented by:

c(S(t), t) = csol ∀t ∈ (0, tmax). (4.2)
At the other boundary, M , we have a homogeneous Neumann condition:

∂c(M, t)
∂r

= 0 ∀t ∈ (0, tmax). (4.3)

The initial concentration is known and is given by the constant c0:

c(r, 0) = c0 ∀r ∈ G(0). (4.4)

The interface between the second phase and the primary phase, S(t), moves due
to the balance of mass, and this yields:∫ M

r=0

c(r, t) dr = cpart · S(t) +
∫ M

r=S(t)

c(r, t) dr = c ·M, (4.5)

where c represents the average concentration. If Equation (4.3) holds, c is
constant and it can be proved by differentiation of Equation (4.5) and using
Equation (4.1), that Equation (4.5) is equivalent to

dS(t)
dt

=
D

cpart − csol

∂c(S(t), t)
∂t

. (4.6)

Either of Equations (4.5) and (4.6) may be used to determine the position of
the free boundary.

18
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4.1 Maximum principle

The maximum principle is a well-known result in the study of parabolic differ-
ential equations. A proof of this property is given in Protter and Weinberger
[1967]. Without proof, we will give the following result.

Proposition 4.1.1. The global extremes of a solution to the diffusion equation
must occur either at the boundaries S1, S2 or at t = 0.

4.2 Equivalence of integral and differential form
of Stefan condition

Proposition 4.2.1. Only if the Neumann boundary condition at M is homo-
geneous, then Equations (4.5) and (4.6) are equivalent.∫ M

r=0

c(r, t) dr = cpartS(t)+
∫ M

r=S(t)

c(r, t) dr = c·M ⇔ dS(t)
dt

=
D

cpart − csol

∂c(S(t), t)
∂r

with c the average concentration. The intermediate value theorem for integrals
postulates that c ∈

(
minr∈(0,M) c(r, t),maxr∈(0,M) c(r, t)

)
.

Proof. The first part of the proposition will be proved first. Differentiation of
Equation (4.5) with respect to time, while using that c = constant, yields

cpart dS(t)
dt

+
d

dt

∫ M

r=S(t)

c(r, t) dr =

cpart dS(t)
dt

+
dS(t)

dt

d

dS(t)

∫ M

r=S(t)

c(r, t) dr +
∫ M

r=S(t)

∂c(r, t)
∂t

dr = 0. (4.7)

As the derivative of an integral with respect to the boundary equals the value
of the integrand at the boundary, we obtain

(cpart−csol)
dS(t)

dt
= −

∫ M

r=S(t)

∂c(r, t)
∂t

dr = −D

∫ M

r=S(t)

∂2c(r, t)
∂r2

dr = D
∂c(S(t), t)

∂r
.

(4.8)
In the last step, the homogeneous Neumann condition has been used. If the
Neumann condition were not homogeneous, then a term with the concentration
gradient at M has to be added. For the case of a homogeneous Neumann
condition at M it has been proved that Equation (4.5) implies Equation (3.7).
The steps in the proof are equivalences, if and only if there is a homogeneous
Neumann condition at M .

4.3 Ill-posed Stefan problems

The Stefan problem can not always be solved reliably. The first problem we
observe is when the interface concentration is equal to the particle concentration,
i.e. cpart

p = csol
p,k(t). Then we can no longer derive the interface movement from

Equation (3.7). The second issue occurs when the initial matrix concentration
is equal to the particle concentration. Both observations can be proved by use
of the following proposition:
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Proposition 4.3.1. The problem as constituted by Equations (4.1)–(4.5) has
no real solution if

(
cpart − c0

) (
cpart − csol

)
< 0.

Proof. Equations (4.1)–(4.5) imply a homogeneous Neumann boundary con-
dition at M . Suppose that a solution exists for equations. From Proposi-
tion 4.2.1 follows that Equations (4.5) and (4.6) are equivalent. Equation (4.5)
may be written as:

∫M

r=0
c(r, t) dr = c · M . As

(
cpart − c0

) (
cpart − csol

)
<

0 ⇔ (c0 < cpart < csol) ∨ (csol < cpart < c0), we first consider the case that
(c0 < cpart < csol). From the maximum principle of the diffusion equation fol-
lows that for this case ∂c(S(t),t)

∂r < 0. Since cpart < csol, it follows that dS(t)
dt > 0.

Considering t = 0, we have for the global mass: S0 · cpart +(M −S0) · c0 = c ·M .
For t = dt, we have for the global mass:

S(dt) · cpart +
∫ M

r=S(dt)

c(r, t) dr

= S(0) · cpart + (S(dr)− S(0)) · cpart +
∫ M

r=S(dt)

c(r, t) dr

= S(0) · cpart +
∫ M

r=S(0)

c(r, t) dr

From the maximum principle of the diffusion equation follows c(r, t) ≥ c0 and
from c(r, t) = cpart > c0 for r ∈ (S0, S(dt)) it is clear that

S(0) · cpart +
∫ M

r=S(0)

c(r, t) dr > S(0) · cpart +
∫ M

r=S(0)

c(r, 0) dr = c ·M,

implying that Equations (4.5) and (4.6) are not equivalent. The problem with
(c0 < cpart < csol) and a homogeneous Neumann condition at M does not
have a real solution. A similar proof can be given to show that for the case
(csol < cpart < c0) no real solution exists. Then we can show that S(dt) · cpart +∫M

r=S(dt)
c(r, t) dr < M · c.



Chapter 5

Numerical solution methods

Now that we have constructed a model of the homogenization process, we would
like to see how we can apply it to a test problem. We have to approximate the
solution by using a numerical method. As usual, no one-size-fits-all solution
exists and we need to decide in what way we will calculate our desired solution.

5.1 Geometry

Before we can start solving the problem, we need to define the geometry. We
will perform all calculations on a cylindrical or spherical geometry. A schematic
overview of the cylindrical geometry is shown in Figure 5.1. Switching between
cylindrical and spherical geometries is trivial by the use of a geometric param-
eter a. In the center we can see the primary precipitate and at the edge we see
the segregation layer. We can use the symmetry of this geometry to reduce the
Stefan problem to a one-dimensional moving boundary problem.

Figure 5.1: Schematic view of a grain in cylindrical geometry. Primary and
secondary particles are present as well.

21
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5.2 Primary and secondary particle dissolution

To solve the one-dimensional Stefan problem we will use the moving mesh
method described in Vermolen [1998]. The outline for our algorithm is as fol-
lows:

1. Compute the concentration profiles solving the nonlinear problem given
by Equations (3.1)–(3.7),

2. Predict the positions of S1 and S2 at the new time-step: S1(t + ∆t) and
S2(t + ∆t), using Equation (3.7),

3. Redistribute the grid such that S1(t+∆t) and S2(t+∆t) are nodal points,

4. Return to step 1.

5.2.1 Discretisation of the interior region

We need to solve a diffusion equation for every component in our system, but
for brevity the dependence on p is not shown in the equations below, so where
you see cj

i , please read cj
p,i. To reduce our continuous problem to a system of

linear equations, we use the finite volume method as follows. We start by taking
Equation (3.1):

ra ∂c

∂t
=

∂

∂r

{
Dra ∂c

∂r

}
.

Integrating on both sides with respect to space and time gives∫ tj+1

tj

∫ rj+1
i+ 1

2

rj+1
i− 1

2

ra ∂c

∂t
drdt =

∫ tj+1

tj

∫ rj+1
i+ 1

2

rj+1
i− 1

2

∂

∂r

{
Dra ∂c

∂r

}
drdt.

Left hand side

∫ tj+1

tj

∫ rj+1
i+ 1

2

rj+1
i− 1

2

ra ∂c

∂t
drdt =

∫ tj+1

tj

∂

∂t

∫ rj+1
i+ 1

2

rj+1
i− 1

2

rac drdt

≈
∫ tj+1

tj

∂

∂t

[(
rj+1
i

)a (
rj+1

i+ 1
2
− rj+1

i− 1
2

)
c
(
rj+1
i , t

)]
dt

≈
(
rj+1
i

)a (
rj+1

i+ 1
2
− rj+1

i− 1
2

) [
c
(
rj+1
i , tj+1

)
− c

(
rj+1
i , tj

)]
Using Taylor’s theorem we approximate

c
(
rj+1
i , tj

)
≈ c

(
rj
i , t

j
)

+
(
rj+1
i − rj

i

) ∂c

∂r

(
rj
i , t

j
)

≈
(
rj
i , t

j
)

+
(
rj+1
i − rj

i

) c
(
rj
i+1, t

j
)
− c

(
rj
i−1, t

j
)

rj
i+1 − rj

i−1

.
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Right hand side

∫ tj+1

tj

∫ rj+1
i+ 1

2

rj+1
i− 1

2

∂

∂r

{
Dra ∂c

∂r

}
drdt

=
∫ tj+1

tj

Dra ∂c

∂r

∣∣∣∣(r
j+1
i+ 1

2
,t)

(rj+1
i− 1

2
,t)

dt

=
∫ tj+1

tj

[(
Dra ∂c

∂r

)(
rj+1

i+ 1
2
, t
)
−
(

Dra ∂c

∂r

)(
rj+1

i− 1
2
, t
)]

dt

≈
[(

Dra ∂c

∂r

)(
rj+1

i+ 1
2
, tj+1

)
−
(

Dra ∂c

∂r

)(
rj+1

i− 1
2
, tj+1

)] (
tj+1 − tj

)
,

in which(
Dra ∂c

∂r

)(
rj+1

i+ 1
2
, tj+1

)
= D(rj+1

i+ 1
2
, tj+1)

(
rj+1

i+ 1
2

)a ∂c

∂r
(rj+1

i+ 1
2
, tj+1)

≈ D(rj+1

i+ 1
2
, tj+1)

(
rj+1

i+ 1
2

)a c(rj+1
i+1 , tj+1)− c(rj+1

i , tj+1)

rj+1
i+1 − rj+1

i

and(
Dra ∂c

∂r

)(
rj+1

i− 1
2
, tj+1

)
= D(rj+1

i− 1
2
, tj+1)

(
rj+1

i− 1
2

)a ∂c

∂r
(rj+1

i− 1
2
, tj+1)

≈ D(rj+1

i− 1
2
, tj+1)

(
rj+1

i− 1
2

)a c(rj+1
i , tj+1)− c(rj+1

i−1 , tj+1)

rj+1
i − rj+1

i−1

.

For our convenience we will introduce the shorthand notations

cj
i = c(rj

i , t
j),

Dj
i = D(rj

i , t
j).

We now get the following set of equations:

(
rj+1
i

)a (
rj+1

i+ 1
2
− rj+1

i− 1
2

)(
cj+1
i − cj

i − (rj+1
i − rj

i )
cj
i+1 − cj

i−1

rj
i+1 − rj

i−1

)

=

(
Dj+1

i+ 1
2

(
rj+1

i+ 1
2

)a cj+1
i+1 − cj+1

i

rj+1
i+1 − rj+1

i

−Dj+1

i− 1
2

(
rj+1

i− 1
2

)a cj+1
i − cj+1

i−1

rj+1
i − rj+1

i−1

)
(tj+1 − tj).

By reordering the terms we get an expression of the form

αj+1
i−1 cj+1

i−1 + αj+1
i cj+1

i + αj+1
i+1 cj+1

i+1 = βj+1
i ,
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in which

αj+1
i,i−1 = −

Dj+1

i− 1
2

(
rj+1

i− 1
2

)a

rj+1
i − rj+1

i−1

(5.1)

αj+1
i,i =

Dj+1

i+ 1
2

(
rj+1

i+ 1
2

)a

rj+1
i+1 − rj+1

i

+
Dj+1

i− 1
2

(
rj+1

i− 1
2

)a

rj+1
i − rj+1

i−1

+

(
rj+1
i

)a (
rj+1

i+ 1
2
− rj+1

i− 1
2

)
tj+1 − tj

(5.2)

αj+1
i,i+1 = −

Dj+1

i+ 1
2

(
rj+1

i+ 1
2

)a

rj+1
i+1 − rj+1

i

(5.3)

βj+1
i =

(
rj+1
i

)a (
rj+1

i+ 1
2
− rj+1

i− 1
2

)
tj+1 − tj

(
cj
i +

rj+1
i − rj

i

rj
i+1 − rj

i−1

(
cj
i+1 − cj

i−1

))
. (5.4)

This equation holds for all 1 ≤ i ≤ n− 1.

5.2.2 Boundary conditions

We have found a set of equations that describe the diffusion of material inside
the matrix. Now we need to define what happens on the boundaries.

Moving boundaries

Boundary conditions of the type of Equation (3.5) are easy to implement. All
we need to do is eliminate the unknown by substituting the prescribed value in
the discretisation derived in Equations (5.1)–(5.4), i.e. we substitute

cj+1
0 = csol

p,1,

and/or

cj+1
n = csol

p,2,

depending on which side the moving boundary is at.

Fixed boundaries

Implementing the fixed boundaries, which have a condition as prescribed in
Equation (3.4), is a little less straight-forward. Multiple approaches are possible.
In the present case we will implement this type of boundary condition by adding
a virtual point just beyond each boundary. Using the discrete version (according
to finite differences) of Equation (3.4), we get

cj+1
1 − cj+1

−1

rj+1
1 − rj+1

−1

= 0

and/or

cj+1
n+1 − cj+1

n−1

rj+1
n+1 − rj+1

n−1

= 0,

again depending on which side the fixed boundary is at. We substitute this into
Equations (5.1)–(5.4) to obtain the discrete equations for i = 0 or i = n.
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5.2.3 Solving the nonlinear problem

What we have done above looks simple enough, but what we did not mention was
that in the case of a moving boundary we do not know the value of csol

p,k = cj+1
p,k as

of yet. We need Equations (3.6) and (3.7) to determine this value. Because this
is a nonlinear problem we proceed as follows. We assume two moving boundaries
are present

1. Take a “good” first guess for cj+1
p,0 and cj+1

p,n .

2. Using the current estimates for cj+1
p,0 , cj+1

p,n and Sj+1
k , and the cj

i and Sj
k

from the previous time step, we can calculate the new concentration pro-
files for each component, as well as the concentration gradients at the
boundaries.

3. Now we have enough information to do a Newton-Raphson step and obtain
a (hopefully) better approximation for cj+1

p,0 and cj+1
p,n .

4. Continue with step 1 until the desired accuracy is reached.

5.2.4 Moving the boundary

As soon as we have found a set of component solubilities that satisfy all equa-
tions, we may proceed with moving the boundaries. Here, we take an explicit
approach and use a discretized version of Equation (3.7) to determine the new
position Sj+2

k .

5.3 Tertiary particle precipitation

For solving the nucleation problem we will use a finite volume method for the
transport equation. First order upwind differencing will be used to approximate
the fluxes at the cell boundaries. The algorithm can be outlined as follows (see
also Myhr and Grong [2000]):

1. Calculate the nucleation rate, mean matrix concentration and velocity
field from ϕ(t−∆t), using Equations (3.10), (3.16) and (3.11).

2. Perform one implicit Euler time step for Equation (3.15) to find ϕ(t).

3. Calculate and store statistics (e.g. volume fraction, mean radius etc.).

4. Repeat from step 1 until at end time.

5.3.1 Discretisation of the interior region

In order to solve the nucleation problem we need a discretized version of Equa-
tion (3.15). As mentioned before, due to the interdependence of ϕ, v and Cm,
this is a nonlinear problem. Therefore we will only solve ϕ implicitly; Cm and
v will be determined from the previous time step. We start by taking Equa-
tion (3.15):

∂ϕ

∂t
= −∂(ϕv)

∂r
+ S
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Integrating both sides with respect to space and time gives∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

∂ϕ

∂t
dr dt = −

∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

∂

∂r
(ϕv) dr dt +

∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

S dr dt.

Left hand side∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

∂ϕ

∂t
dr dt =

∫ tj+1

tj

∂

∂t

∫ r
i+ 1

2

r
i− 1

2

ϕ dr dt

≈
∫ tj+1

tj

∂

∂t

{
ϕ(ri, t)(ri+ 1

2
− ri− 1

2
)
}

dt

≈ (ϕ(ri, t
j+1)− ϕ(ri, t

j))(ri+ 1
2
− ri− 1

2
)

(5.5)

Right hand side

The right hand side of the equation consists of two terms. We will handle them
one by one. The convection term becomes∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

∂

∂r
(ϕv) dr dt =

∫ tj+1

tj

{
(ϕv)(ri+ 1

2
, t)− (ϕv)(ri− 1

2
, t)
}

dt

≈
(
(ϕv)(ri+ 1

2
, tj+1)− (ϕv)(ri− 1

2
, tj+1)

)
(tj+1 − tj).

(5.6)

And for the source term we get∫ tj+1

tj

∫ r
i+ 1

2

r
i− 1

2

S dr dt ≈
∫ tj+1

tj

S(ri, t)(ri+ 1
2
− ri− 1

2
) dt

≈ S(ri, t
j)(ri+ 1

2
− ri− 1

2
)(tj+1 − tj).

(5.7)

Now we introduce the following shorthand notations:

ϕj
i = ϕ(ri, t

j)

vj
i = v(ri, t

j)

vj

i+ 1
2

= v(
ri + ri+1

2
, tj)

(ϕv)j
i = ϕ(ri, t

j) · v(ri, t
j)

∆ri = ri+ 1
2
− ri− 1

2

∆tj+1 = tj+1 − tj

Using a first order upwind discretisation, we get

(ϕv)j+1

i+ 1
2

=

{
vj

i+ 1
2
ϕj+1

i , if vj

i+ 1
2
≥ 0

vj

i+ 1
2
ϕj+1

i+1 , otherwise

=
1
2

(
vj

i+ 1
2

+ |vj

i+ 1
2
|
)

ϕj+1
i +

1
2

(
vj

i+ 1
2
− |vj

i+ 1
2
|
)

ϕj+1
i+1

(5.8)
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Combining Equations (5.5), (5.6), (5.7) and (5.8) results in the following system
of equations.(
ϕj+1

i − ϕj
i

)
∆ri = −1

2
∆tj+1

[(
vj

i+ 1
2

+ |vj

i+ 1
2
|
)

ϕj+1
i +

(
vj

i+ 1
2
− |vj

i+ 1
2
|
)

ϕj+1
i+1

]
+

1
2
∆tj+1

[(
vj

i− 1
2

+ |vj

i− 1
2
|
)

ϕj+1
i−1 +

(
vj

i− 1
2
− |vj

i− 1
2
|
)

ϕj+1
i

]
+ Sj

i ∆ri∆tj+1,

which we can rewrite to

αj+1
i−1ϕj+1

i−1 + αj+1
i ϕj+1

i + αj+1
i+1ϕj+1

i+1 = βj+1
i ,

in which

αj+1
i−1 = − ∆t

2∆ri

(
vj

i− 1
2

+ |vj

i− 1
2
|
)

αj+1
i = 1 +

∆t

2∆ri

[(
vj

i+ 1
2

+ |vj

i+ 1
2
|
)
−
(
vj

i− 1
2
− |vj

i− 1
2
|
)]

αj+1
i+1 =

∆t

2∆ri

(
vj

i+ 1
2
− |vj

i+ 1
2
|
)

βj+1
i = ϕj

i + ∆tSj
i

As mentioned before, the values for vj

i− 1
2
, vj

i+ 1
2

and Sj
i are calculated from the

previous time step. When combining Equations (3.11) and (3.12), we get

vj
i =

Cj
m − Cj

e exp
(

2σVm

rj
i RT

)
Cp − Cj

e exp
(

2σVm

rj
i RT

) D

rj
i

From the mass balance (3.16), we get

Cj
m =

C0 − Cpf
j

1− f j

The volume fraction f j can be approximated by

f j =
∫ ∞

r=0

4
3
πr3ϕj dr

≈
∑

i

4
3
π(ri)3ϕ

j
i .

(5.9)

The source term S is related to the nucleation rate J in the following way

Sj
i =

{
Jj

∆ri
, if ri− 1

2
< 1.05× r∗ ≤ ri+ 1

2

0, otherwise.
(5.10)

The factor 1.05 is to give the new particles a chance to grow.
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5.3.2 Boundary conditions

Since we have a transport equation which has only outflow boundaries (v(0, t) <
0 and for 0 ≤ r∗ < r we have v(r, 0) > 0), we do not need to define boundary
conditions for them. We only need to give an initial condition for ϕ at t = 0.
This initial size distribution is given by the function ϕ0(r), so we demand that

ϕ(r, 0) = ϕ0(r).



Chapter 6

Test cases

6.1 Primary and secondary particle dissolution

We checked the working of the solver for the Stefan problem by comparing the
results of our solver to the results as presented in Vermolen [1998]. We will
be running the program in a spherical geometry, with the parameters shown
in Table 6.1. The concentration profile inside the grain is shown for various

Parameter Unit Value
DC m2/s 2 · 10−13

DB m2/s 1 · 10−13

c0
p % 0

cpart
p % 50

K - 1
M1 m 0
S1(0) m 7.5 · 10−7

M2 m 5 · 10−6

M2 − S2(0) m 2 · 10−8

# volumes - 500
∆t s 5

Table 6.1: Input parameters

times in Figures 6.1 to 6.4. At t = 5, we see that the concentration levels in
the solvent phase are rising. Strong concentration gradients make the particle
and segregation layers dissolve fast. At t = 10 the concentration in the solvent
phase has increased even more. As such, the concentration gradients at the
moving boundaries become less pronounced; the dissolution process is slowing
down. The segregation layer has almost dissolved. At t = 100 the segregation
layer is gone, and the primary particle continues to dissolve at a constant rate.
At t = 250, the concentration gradient at the remaining moving boundary
starts to increase due to the decreasing area of the particle. The dissolution
process speeds up again until the primary particle is dissolved. At t = 300 (not
shown) the concentration is constant throughout the grain. The material is now
homogeneous.

29



CHAPTER 6. TEST CASES 30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−6

0

0.5

1

1.5

distance from grain center (m)

co
m

po
ne

nt
 c

on
ce

nt
ra

tio
n 

(m
as

s%
)

Figure 6.1: Particle dissolution at t = 5 s. The concentrations of elements B
and C are represented by the solid and dashed lines, respectively.
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Figure 6.2: Particle dissolution at t = 10 s.
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Figure 6.3: Particle dissolution at t = 100 s.
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Figure 6.4: Particle dissolution at t = 250 s.
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6.2 Tertiary particle precipitation

We test our derived nucleation model by comparing the results of our model
to the results as shown in Myhr and Grong [2000]. The used input values can
be found in Table 6.2. We will not attempt to reproduce all the results in

Parameter Unit Value
Cp wt% 64.3
C0 wt% 0.63
Cs wt% 970
D0 m2/s 2.2× 10−4

A0 J/mol 16220
j0 #/m3s 9.66× 1034

Qd J/mol 130000
Qs J/mol 47175
σ J/m2 0.2
Vm m3/mol 3.95× 10−5

Table 6.2: Input parameters

the aforementioned article. Instead we will only compare the results for the
isothermal heat treatment. In this situation, a piece of AA 6082 aluminium
alloy is held at a constant temperature of 180◦C for 107 seconds (≈ 115 days).
We assume no precipitation is present at the beginning of the heat treatment
thus the system is initially supersaturated. In Figures 6.5 to 6.9 the kinetics of
the system during the heat treatment are displayed. This example was chosen
because it is easy to identify the nucleation, growth and coarsening stages during
the heat treatment.

During the first 103 seconds of the treatment, we see that the number of
particles in the material climbs steadily (Figure 6.6). The particle volume frac-
tion (Figure 6.5) and matrix concentration (Figure 6.8) do not change however.
This indicates that during this time a lot of nuclei are added to the system, but
they do not significantly alter the alloy composition. This is confirmed by the
nucleation rate, which is high (Figure 6.9).

Next, we see that the mean particle radius (Figure 6.7) starts to increase.
At the same time, the mean matrix concentration starts to fall and the particle
volume fraction starts to rise rapidly. These effects are due to the growth phase
of the particles; nearly all particles are growing since their radius is larger than
the critical radius.

At t ≈ 2·104 the growth stops. As the material starts to attain its equilibrium
composition, we notice multiple effects. The nucleation rate drops sharply,
and the volume fraction as well as the matrix concentration start to stabilize.
Additionally, the number of particles in the system starts to drop, and the
mean and critical radius converge, but continue to increase. This is typical of
the coarsening stage; the larger particles grow at the expense of the smaller
ones, which are dissolving.
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Figure 6.5: Particle volume fraction
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Figure 6.6: Particle number density
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Figure 6.7: Mean radius (solid) and critical radius (dashed)
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Figure 6.8: Matrix concentration (solid) and equilibrium concentration (dashed)
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Figure 6.9: Nucleation rate
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Future work

Thusfar we have reviewed two separate models; one for the dissolution of the
primary and secondary particles, and one for the nucleation of tertiary particles.
The main goal of the project is to integrate these models to accommodate for
both effects simultaneously. To accomplish this, a number of additional steps
have to be taken:

• The nucleation model must be expanded to accommodate multi-component
systems.

• The nucleation model must be embedded in the Stefan problem.

• A parameter study will need to be carried out to get a feeling for the way
different parameters in the model influence the solutions.

• The resulting model will need to be tuned and validated with the use of
data acquired through lab experiments.

7.1 Multi-component nucleation

In the current state, the nucleation model can only handle situations for binary
systems. We will try to add multi-component support in the same way as we
did for the Stefan problem. That means we will assume stoichiometry for the
tertiary particles and demand that for each component the particle growth rate
(as defined in Equation (3.11)) is equal in value, and the interface concentra-
tions will have to satisfy an equation such as Equation (3.6). The situation is
slightly more complicated because we need to take the Gibbs-Thomson effect
into account as well.

7.2 Embedding the nucleation model

The integration of the models will be accomplished by adding a nucleation step
to the dissolution algorithm:

1. Compute the concentration profiles solving the non-linear problem given
by Equations (3.1)–(3.7),
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2. Apply a step of the nucleation model for each volume of the Stefan prob-
lem. The size distribution for each volume will be stored and a correction
will be applied to the concentrations in the Stefan problem volumes.

3. Predict the positions of S1 and S2 at the new time-step: S1(t + ∆t) and
S2(t + ∆t), using Equation (3.7),

4. Redistribute the grid such that S1(t+∆t) and S2(t+∆t) are nodal points,

5. Return to step 1.

If sufficient time is still available, we may attempt to couple the two models
more tightly.

7.3 Parameter study

In order to be able to tune the model intelligently, we need to have a good
understanding of the interactions of the various parameters with the solutions.
We hope to gain this insight by varying single parameters at a time and checking
the way each change alters the solution.

7.4 Tuning and validating the model

Many of the required parameters (e.g. diffusion coefficients, solubility products)
are not readily available. Experiments are necessary to determine the correct
input values. After these values are obtained, we need to check if the model
reproduces reality accurately.



Bibliography

William D. Callister, Jr. Materials science and engineering : an introduction.
John Wiley & Sons, Inc., fifth edition, 1999. 6, 8, 10, 13

O.R. Myhr and Ø. Grong. Modelling of non-isothermal transformations in alloys
containing a particle distribution. Acta materiala, 48:1605–1615, 2000. 16,
17, 25, 32

D.A. Porter and K.E. Easterling. Phase transformations in metals and alloys.
Van Nostrand Reinhold (International) Co. Ltd., 1981. 6, 9, 10, 11

M.H. Protter and H.F. Weinberger. Maximum principles in differential equa-
tions. Prentice-Hall, Englewood Cliffs, 1967. 19

K.C. Russel. Phase transformations. A.S.M., 1970. 15

Fred Vermolen. Mathematical Models for Particle Dissolution in Extrudable
Aluminium Alloys. PhD thesis, Delft University of Technology, 1998. 10, 18,
22, 29

38


	Introduction
	About Corus
	Heat treatments and homogenization
	Problem formulation
	Thesis outline

	Preliminaries in materials science
	Basic concepts in thermodynamics
	Phase transformations
	Equilibrium
	Phase diagrams
	Metastable solutions

	Material structure
	Diffusion
	Substitutional diffusion
	Interstitial diffusion
	Diffusion in dilute solutions

	Interphase interfaces
	Gibbs-Thomson effect
	Interface migration

	Nucleation

	Modeled homogenization phenomena
	Primary and secondary particle dissolution
	Component transfer inside the Al-rich phase
	Initial condition
	Boundary conditions

	Tertiary particle precipitation
	Nucleation
	Growth rate
	Coarsening
	Particle size distribution
	Balance of mass
	Particle volume fraction


	Stefan problems
	Maximum principle
	Equivalence of integral and differential form of Stefan condition
	Ill-posed Stefan problems

	Numerical solution methods
	Geometry
	Primary and secondary particle dissolution
	Discretisation of the interior region
	Boundary conditions
	Solving the nonlinear problem
	Moving the boundary

	Tertiary particle precipitation
	Discretisation of the interior region
	Boundary conditions


	Test cases
	Primary and secondary particle dissolution
	Tertiary particle precipitation

	Future work
	Multi-component nucleation
	Embedding the nucleation model
	Parameter study
	Tuning and validating the model


