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Chapter 1

Introduction

Culgi — pronounce as ‘tsjulgi’ — is a company specialised in computational
chemistry. The company develops software, also called Culgi, for the modelling
of soft matter, e.g. liquids, colloids and polymers. Models which distinguishes
single atoms of molecules and mutual force between atoms are used to inves-
tigate the structure of molecules. On a slightly coarser scale the dynamics of
single molecules or a small cluster are simulated, for instance to study the inter-
action between different types of molecules or the structure in steady state. On
a mesoscopic scale molecules are modelled as a continuum, which allows com-
putation on larger domains at the cost of a less accurate model. The software is
used, among others, by pharmacuetical and petroleum industries, for example
as an aid for laboratory research.

One of the models incorporates the steady incompressible Stokes equations
for the computation of a velocity field. The velocity field is used in a time in-
tegration method and computed every time step. Currently, the linear Stokes
equations are solved using a non-linear equation solver. The purpose of this
report is to give an overview of efficient solution techniques for the Stokes equa-
tions. Furthermore, the performance of the current implementation is investi-
gated and compared with a Krylov subspace method.

The report is divided into five parts. Chapter 2 presents a brief derivation of
the Stokes equations out of the Navier-Stokes equations and defines the bound-
ary conditions used for the molecular modelling. Chapter 3 is an overview of
solution techniques for general matrices, focussed on Krylov subspace meth-
ods. Chapter 4 presents several solution techniques based on subsystems of the
Stokes equations. In Chapter 5 test problems are defined and the current imple-
mentation of the Stokes solver is investigated. In Chapter 6 the future research
is formulated.
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Chapter 2

Problem definition

In Section 2.1 the a model for molecular dynamics is presented. Section 2.2
describes the Navier-Stokes equations. In Section 2.3 the Stokes equations are
derived from the Navier-Stokes equations. In Section 2.4 the Stokes equations
are discretised using finite differences on a staggered grid. Finaly, Section 2.5
defines the specific boundary conditions for the molecular dynamics.

notation

2.1 Molecular dynamics

One of the models implemented in Culgi describes the dynamic behaviour of
a mixture of molecules using a density field. Each molecule type i is assigned
a density field ρi. The total density of the mixture (ρi)i) is constant. Every
molecule type has a certain viscosity νi. The local viscosity of the fluid is
approximated by the sum of the viscosities νi weighted by the local densities ρi,
ν = νiρi.

The dynamics of the molecules, or actually densities, are computed by an
evolution equation which uses a for instance a convection diffusion process. The
result is a density field per molecule type which is variable in time, ρi(~x, t). The
evolution equation requires a velocity which is computed by the incompressible
Stokes equations, discussed below.

2.2 The Navier-Stokes equations

The dynamics of fluids can be described by classical conservation laws, in par-
ticular conservation of mass, momentum and energy. While fluids consist of
particles — anything from small molecules to large polymers — they are mod-
elled as a continuous medium, i.e. quantities such as velocity and density are
everywhere defined. This assumption is called the continuum hypothesis.
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The conservation of mass, written as a partial differential equation, is given
by

∂ρ

∂t
+ (ρuα),α = 0, (2.1)

where ρ is the local density of the fluid and uα the velocity in direction α. This
equation is also called the continuity equation.

A flow is incompressible if the density (in the neighbourhood) of each particle
does not change in time. Put differently, as particles travel, the accompanying
density travels along. The continuity equation for incompressible flow is given
by

uα,α = 0. (2.2)

Note that incompressible flow does not imply that the density is constant in
space.

The conservation of momentum is given by

∂ρuα
∂t

+ (ρuαuβ),β = −p,α + 2

(
ν

(
eαβ −

1

3
∆δαβ

))
,β

+ ρf bα. (2.3)

where p is the pressure, ν the viscosity, ~f b is the body force — force acting
on a particle —, eαβ = 1

2 (uα,β + uβ,α) the rate of strain tensor and ∆ = eαα.
The incompressible form is obtained by applying the incompressible continuity
equation (2.2),

ρ
∂uα
∂t

+ ρuα,βuβ = −p,α + (ν (uα,β + uβ,α)),β + ρf bα. (2.4)

The steady incompressible form of the momentum equation

ρuα,βuβ = −p,α + (ν (uα,β + uβ,α)),β + ρf bα. (2.5)

2.3 The Stokes equations

In case of viscous flow, the inertia term in the momentum equation may be
neglected. For the steady incompressible form (2.5) this simplification leads to
the following linear equation.

(ν (uα,β + uβ,α)),β − p,α = −ρf bα. (2.6)

Together with the incompressible continuity equation (2.2), these equations are
called the Stokes equations.

It is convenient to reformulate the Stokes equations into a dimensionless
form. For this, the position ~x, velocity ~u and the density ρ are made dimen-
sionless as follows,

~x′ =
~x

~x0
, ~u′ =

~u

u0
, ρ′ =

ρ

ρ0
. (2.7)
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Applying these quantities to the Stokes equations (2.6) and division by ρ0u0x0
yields

1

ρ0u0x0

(
ν
(
u′α,β + u′β,α

))
,β
− x0
u20ρ0

p,α = −x0
u20
ρ′f bα

′
, (2.8)

where (spatial) derivatives are now with respect to the dimensionless ~x′. Leaves

the transformation of the pressure p, the bodyforce ~f b and the viscosity ν,

p′ =
px0
u20ρ0

, ~f b
′

=
~f bx0
u20

, ν′ =
ν

ρ0u0x0
. (2.9)

The dimensionless Stokes equations are given by(
ν′
(
u′α,β + u′β,α

))
,β
− p′,α = −ρ′f bα

′
. (2.10)

By assumption the bodyforce acts only on molecules of the same type, hence

for every molecule type i there is a ~f bi . The Stokes equations are slightly modified
to incorporate the different forces as follows,(

ν′
(
u′α,β + u′β,α

))
,β
− p′,α = −ρ′if biα

′
, (2.11)

where ρi is the density of molecule type i. Note that the density of all molecules
together is simply the sum of the densities of molecule types, ρ = (ρi)i.

2.4 Discretisation

The Stokes equations (2.6) are discretised using finite difference methods on an
equidistant staggered grid. The domain is partitioned into cubes, all of the same
size. The pressure and viscosity nodes are located at the center of the cubes.
The velocity nodes are centered at the faces of the cubes, such that the direction
of the velocity coincides with the normal of the face, e.g. the x-velocity node is
located at the center of the plane facing the x-direction. Figure 2.1 shows a two
dimensional representation of the staggered grid.

Let ũαi , p̃j , ν̃j represent the discrete counterparts of uα, p, ν at grid points i
and j. The next node (of the same type) in direction α is denoted by i+α. For
example, let α be the x-direction. Then ũαi+α is the velocity node to the right
of ũαi and p̃i+α/2 is the pressure in between. See also Figure 2.2.

Let i be a grid point centered at a velocity node ũα. The following equation
is an approximation for (2.6)

N
(

(νuα,β),β

)
i
+N

(
(νuα,β),β

)
i
−N (p,α)i = −

(
f̃ b
)α
i
, (2.12)

where N (·)i stands for the numerical approximation of · at position i. The
derivative of the pressure at i in direction α is approximated by the first order
central approximation around i:

N (p,α)i = h−1
(
p̃i+α

2
− p̃i−α2

)
, (2.13)
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ux-node

uy-node

p, ν-node

Figure 2.1: Slice of the three dimensional staggered grid.

i i+ α

i+ γ
i+ α/2

i+ α/2 + γ/2

i+ α/2 + γ

uα-node

uγ -node

p, ν-node

Figure 2.2: Stencil centered around a uα-node, α 6= γ.
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where h is the (dimensionless) grid size.

N
(

(νuα,β),β

)
i

= h−1
∑
β

(
ν̃i+β/2N (uα,β)i+β/2 − ν̃i−β/2N (uα,β)i−β/2

)
.

(2.14)
The derivatives uα,β are again approximated by a first order central scheme:

N (uα,β)i+β/2 = h−1
(
ũαi+β − ũαi

)
. (2.15)

N
(

(νuβ,α),β

)
i

= h−1
∑
β

(
ν̃i+β/2N (uβ,α)i+β/2 − ν̃i−β/2N (uβ,α)i−β/2

)
,

(2.16)
where the derivatives uβ,α are approximated by a first order central scheme:

N (uβ,α)i+β/2 = h−1
(
ũβi+β/2+α/2 − ũ

β
i+β/2−α/2

)
. (2.17)

Note that the viscosity at i+ β/2 is not available if β 6= α. Four point average:

ν̃i+β/2 =
ν̃i+α/2 + ν̃i−α/2 + ν̃i+α/2+β + ν̃i−α/2+β

4
(2.18)

2.5 Boundary conditions

One is often interested in the behaviour of molecules, the miscibility of different
molecules and the phases which result from the demixing of molecules, on a
scale comparable to the size of the molecules. Simulating, for instance, a whole
reactor where polymers are created is infeasible, simply because a grid with
the necessary detail would be enormous. Therefore, only a small portion of
the whole domain is simulated. Since this subdomain lacks real boundaries
it is natural to assume that the fluid is periodic in the neighbourhood of the
subdomain.

Let Ω be the three dimensional (sub)domain under investigation, Ω = [0, s1]×
[0, s2]×[0, s3], where ~s is the (dimensionless) size of the domain. The periodicity
written in condensed form,

~u(~x+ ~n~s) = ~u(~x), p(~x+ ~n~s) = p(~x), (2.19)

where nα ∈ {0, 1}, hence (~n~s)α ∈ {0, sα} corresponds to no translation or a
translation in direction α by sα.

Certain phenomena, such as stirring in a mixture or the behaviour of a flow
near a solid wall, may be approximated by a imposing a velocity difference
between two opposite sides of Ω. Due to the periodicity this is equivalent to
imposing a velocity profile onto the whole domain in the following way. Let
~ushear be the velocity difference between the sides xα = 0 and xα = sα. The
shear velocity in direction α should equal zero, ushearα = 0. The periodicity for
the velocity becomes

~u(~x+ ~n~s) = ~u(~x) + nγδαγ~u
shear(~x), (2.20)
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velocity profile t=0

molecules A

molecules B

t>0

domain

Figure 2.3: Foo

where δαγ is one if α = γ and zero otherwise.

The evolution equation computes the distribution of molecules after some
time t under influence of the velocity computed by the Stokes equations, in
which the shear velocity is incorporated. The time integration influences the
periodicity in a way which is perhaps best explained with an illustration. Figure
2.3 shows a square domain filled with two types of molecules, A and B. The
molecules repel each other to some extent and form a so called laminar phase.
The evolution equation computes the densities of the different molecules at some
time t > 0 given the velocity profile shown in the figure. The vertical phases are
slanted a little. From this follows that the periodicity is in some sense shifted.

Pouring this phenomenon into a mathematical equation yields the following
periodicity for the velocity

~u
(
~x+ ~n~s+ nαt~u

shear
)

= ~u(~x) + nγδαγ~u
shear(~x), (2.21)

and for the pressure

p
(
~x+ ~n~s+ nαt~u

shear
)

= p(~x). (2.22)
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Chapter 3

Solution techniques for
general matrices

In this chapter various techniques are described for solving

Ax = b (3.1)

where A is a real n× n-matrix and x, b vectors in Rn.

In the most crude sense, there are two types of methods for solving a sparse
linear system Ax = b. First, one could use a direct method, adapted to benefit
from the sparsity of A.

Secondly, there are iterative methods, which generate a sequence of approx-
imate solutions (xk)k to Ax = b. Iterates are usually obtained by updating the
previous vector with a matrix-vector product involving A or an approximation
of A.

Iterative methods have several advantages over direct methods. While direct
methods give the exact solution of a system — at least using exact arithmetic
— iterative methods enable one to obtain an approximate solution with a con-
trollable accuracy. Besides, iterative methods can benefit from an initial guess.
This is, for example, very useful when a time dependent system is solved with
relatively small time derivatives. And iterative methods are in general more
suited for sparse matrices.

Section 3.1 describes basic iterative methods. The more advanced Krylov
subspace methods are described in Section 3.2. Section 3.3 presents a brief intro-
duction into preconditioning. The last section describes the deflation method.

3.1 Basic iterative methods

A large class of iterative methods is based on solving a system using a (good)
approximation of matrix A, say M , and a right hand side wich corrects for
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the difference between A and M . To be more precise, matrix A is split into a
nonsingular matrix M and a matrix N , A = M −N , and the system

Mxk+1 = Nxk + b, (3.2)

is solved iteratively. This method is consistent with the original system. Indeed,
if x solves Ax = b, then Mx = Nx+Ax = Nx+ b. However, not every splitting
will lead to a convergent process independent of the initial guess.

To investigate the convergence, consider the iteration matrix G = M−1N =
I −M−1A. Substituting G for M and N in (3.2) gives

xk+1 = Gxk + f, (3.3)

where f = M−1b. The absolute error after k iterations is given by

xk −A−1b = Gxk−1 + f −A−1b = G(xk−1 −A−1b) = Gk(x0 −A−1b). (3.4)

From this follows that the iteration converges for any initial guess and right
hand side if and only if the spectral radius of G is less than one, or equivalently,
if all eigenvalues of G lie inside the unit circle.

This result leads to the question: what is a good splitting? The total compu-
tational time is determined by the number of iterations, and as such the required
accuracy, and the amount of work per iteration. As stated above, the rate of
convergence is proportional to the spectral radius of G = M−1N , which, in turn,
is a measure for equality of A and M . As an extreme example — not really
iterative though — consider A = M ; then G = 0 and the method converges in
a single iteration.

The amount of work per iteration is in most cases dominated by solving
a system involving matrix M . Setting M equal to the identity matrix yields
Richardson’s iteration, discussed in the next section.

3.1.1 Richardson’s iteration

One of the simplest iterative schemes for solving Ax−b is Richardson’s iteration,
given by

xk+1 = xk + αk(b−Axk), (3.5)

where αk is a possibly constant scalar. This corresponds to a splitting of A =
Mk −Nk with Mk = I/αk and Nk = I/αk −A.

The coefficients αk determine the rate of convergence. For simplicity, assume
all αk are constant for every iteration, α1 = α2 = · · · = αk.

Convergence for this method is guaranteed for any initial guess x0 and any
right hand side b if the modules of all eigenvalues of the iteration matrix G =
I − αA are less than one (Section 3.1), or equivalently,∣∣∣∣ 1α − λα

∣∣∣∣ < ∣∣∣∣ 1α
∣∣∣∣ ∀λ ∈ σ(A). (3.6)
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From this follows immediately that all eigenvalues should be located in either the
(strict) positive or the (strict) negative half plane. When matrix A is symmetric,
this amounts to A being definite.

The optimal choice for α, without regard of initial guess and right hand
side, is found by minimising the general convergence factor, which is equal to
the spectral radius of G (Section 3.1). In case A is symmetric and, as required
for convergence, definite, then all eigenvalues are real and the optimal value for
1/α lies in the middle of the biggest and smallest eigenvalue of A (Saad 1996),

αopt = arg min
α

ρ(I − αA) =
2

λmax + λmin
. (3.7)

Problems: Rate of convergence can be very slow if there are both small and
large eigenvalues. Estimating eigenvalues may be expensive, but is required for
a good aproximation of the optimal α. Sensitivity of α near optimal value for
large eigenvalues.

3.1.2 Steepest descent

The determination of the coeffient(s) α in Richardson’s iteration is troublesome
due to the need for possibly accurate estimations of eigenvalues. There is,
however, a more elegant way for positive symmetric definite matrices which
calculates an αk — the variable is nonconstant per iteration — using a single
matrix-vector multiplication.

The method of steepest descent is based on the minimisation of the function

φ(x∗) = ‖x∗ −A−1b‖2A = (x∗ −A−1b)TA(x∗ −A−1b), (3.8)

of which the minimum solves the system Ax = b. By setting the gradient of φ
equal to zero, one can see that this is indeed true. The minimisation is done
iteratively. Assume k iterations are performed and the current approximate
solution is xk. At this point the gradient of φ is determined, which can be
viewed as the (negative) direction of steepest descent at xk. The next iterate
is formed by traveling a certain distance, say αk, in the direction of steepest
descent,

xk+1 = xk − αk∇φ(xk) = xk + αk(b−Axk). (3.9)

Upto now, this is simply Richardson’s iteration with nonconstant αk. The
distances αk are chosen such that φ is minimised along the line from xk towards
steepest descent,

αk =
〈rk, rk〉l2
〈Ark, rk〉l2

. (3.10)

The absolute error of iteration k > 0 is bounded by (Saad 1996)

‖dk‖A = ‖A−1b− xk‖A ≤
λmax − λmin

λmax + λmin
‖dk−1‖A = g‖dk−1‖A, (3.11)

where ‖ · ‖A is the A-norm defined by ‖y‖2A = yTAy. Since A is symmetric
positive definite, all eigenvalues are positive, hence g < 1 and dk is strictly
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smaller than the previous error. Applying the equation subsequently proves
convergence,

‖dk‖A ≤ gk‖d0‖A → 0 as k →∞. (3.12)

However, if the spectral condition number κ = λmax/λmin is large, then the rate
of convergence

g =
κ− 1

κ+ 1
(3.13)

is close to one and convergence may be very slow.

3.2 Krylov subspace methods

An important class of iterative solution techniques is based on the idea that the
solution of the problem Ax = b can be approximated by a polynomial of A,

A−1b ≈ p(A)b. (3.14)

If there is a good initial guess available, then the equivalent system A(x−x0) =
b−Ax0 = r0 can be solved. Usually, the approximation is obtained by means of
an iterative process. Starting with a polynomial of zero degree, every iteration
a degree is added to this polynomial to increase the accuracy. Doing so, the
approximate solution after m iterations is given by

xm = x0 + pm−1(A)r0, (3.15)

where pm−1 is a polynomial of degree m−1 or less. The generated approximate
solutions are contained in the affine subspace x0 +Km(A, r0), where Km(A, r0)
is the Krylov subspace defined by

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}. (3.16)

When there is no ambiguity, Km(A, r0) is simply denoted by Km.

The search space for the exact solution is Rn. It is possible that the Krylov
subspace can not become this big, which poses a problem when the exact so-
lution is not contained in any Krylov subspace. However, it will be proved in
the next section that this cannot happen. For the moment assume the dimen-
sion of the m-th Krylov subspace Km is m, and the vectors v1, . . . , vm form a
basis of Km. Let Vm be the n × m-matrix whose columns are precisely these
basis vectors. The approximate solution xm can be written in terms of a vector
ym ∈ Rm as

xm = x0 + Vmym, (3.17)

and the residual b−Axm as

rm = r0 −AVmym. (3.18)
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r0

AKm

Lm

AVmym

Figure 3.1: Illustration of a projection method onto the Krylov subspace: the
initial residual r0 is projected onto the Krylov subspace Km orthogonal to the
subspace of constraints Lm.

3.2.1 Projection method

This leaves the question how to choose the approximate solution xm or, equiva-
lently, vector ym. In a projection method the approximate solution is determined
by constraining the residual rm to be orthogonal to Lm ⊂ Rn, the subspace of
constraints,

rm = r0 −AVmym ⊥ Lm. (3.19)

In order to obtain a unique ym, Lm should be of dimension m and such that
every nonzero vector f ∈ AKm is not orthogonal to L. The result is a projection
of the initial residual r0 onto the subspace AKm orthogonal to the subspace of
constraints Lm, illustrated in Figure 3.1.

The following theorem and corollary prove that a projection method onto
the Krylov subspace eventualy finds the exact solution.

Theorem 3.1 (breakdown). If the Krylov subspace Km+1 is equal to Km, then
the approximate solution xm ∈ Km, obtained by a projection method, solves
Ax = b, at least using exact arithmetic.

Proof. Assume the m-th and m+1-th Krylov subspaces are equal, Km = Km+1.
The approximate solution xm ∈ Km can be written as a linear combination of
the vectors r0, Ar0, . . . , A

m−1r0. Premultiplying xm by A yields a linear com-
bination of Ar0, A

2r0, . . . , A
mr0, hence Axm ∈ Km+1 = Km. But the residual

r0 ∈ Km by construction. The constraint (3.19) implies r0 = Axm and rm = 0.
In other words, xm solves the problem Ax = b.

The following corollary is an immediate consequence.

Corollary 3.2 (exact solution). The approximate solution xn ∈ Kn(A, r0) ob-
tained by a projection method is the exact solution of the problem Ax = b, where
A is n× n-dimensional, at least using exact arithmetic.

Proof. This follows from Theorem 3.1 and the fact that every Krylov subspace
is contained in Rn.
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r0

L = AK
Aδ

Figure 3.2: Illustration of the projection method when L = AK: Aδ is the
orthogonal projection of the initial residual r0 onto L.

3.2.2 Projection of the initial residual

In this section the special case Lm = AKm is investigated, where A is an arbi-
trary invertible matrix. A projection method constrains the residual rm to be
orthogonal to the subspace of constraints Lm,

rm = r0 −AVmym ⊥ AKm. (3.20)

Since the columns of Vm span Km and ym searched in Rm, the vector AVmym
is essentially the orthogonal projection of r0 into the subspace AKm. This is
illustrated in Figure 3.2. Furthermore, the approximate solution is the result of
the minimisation of residual two-norm over y ∈ Rm,

ym = arg min
y∈Rm

‖r0 −AVmy‖2. (3.21)

3.2.3 Projection of the initial error

In this section the special case L = K in combination with a symmetric and
positive definite matrix A is investigated. Let d0 = x − x0 be the initial error
and dm = x− xm the error of the approximate solution.

The projection process constrains the residual rm to be orthogonal to K.
This is equivalent to

〈r0 −AVmym, vj〉 = 0 ∀1 ≤ j ≤ m. (3.22)

Since A is symmetric and positive definite, it defines an innerproduct denoted
by 〈·, ·〉A. Substituting this innerproduct into (3.22) gives

〈d0 − Vmym, vj〉A = 0 ∀i ≤ j ≤ m. (3.23)

Vector Vmym can be viewed as the A-orthogonal projection of the initial error
d0 onto subspace Km. Furthermore, this is equivalent to the minimisation

ym = arg min
y∈Rm

‖d0 − Vmy‖A, (3.24)

where ‖ · ‖A is the norm defined by ‖z‖A =
√
〈z, z〉.
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3.2.4 Full orthogonalisation method

The full orthogonalisation method is an orthogonal projection method onto the
Krylov subspace Km. It constructs an orthonormal basis for Km, which is used
to transform the constraint (3.19) into a relatively easy to solve matrix vector
problem involving an upper Hessenberg matrix.

Outline of the method

The objective is to determine an orthonormal basis v1, . . . , vm for the Krylov
subspace Km, such that the first j vectors span Kj , for all j ≤ m. Note that
this uniquely determines the vectors v1, . . . , vm and implies v1 = r0/‖r0‖2. Of
course, one could simply apply a Gram-Schmidt orthogonalisation and normal-
isation to the defining vectors of the Krylov subspace, r0, Ar0, . . . , A

m−1r0, but
it turns out to be more convenient to use the vectors r0, Av1, Av2, . . . , Avm−1.
This leads to the recurrence

hj+1,jvj+1 = Avj −
j∑
i=1

〈Avj , vi〉
〈vi, vi〉

vi = Avj −
j∑
i=1

hijvi, (3.25)

where hj+1,j is chosen such that the resulting vector vj+1 is normal, ‖vj+1‖2 = 1.
This procedure is called Arnoldi’s method. The following theorem proofs that
the resulting set {v1, . . . , vm} indeed spans the Krylov subspace Km.

Theorem 3.3. The vectors v1, . . . , vm obtained by setting v1 = r0/‖r0‖2 and
applying (3.25) form an orthonormal basis of the Krylov subspace Km.

Proof. The proof is by induction. The theorem clearly holds for j = 1. Assume
the theorem holds for all integers i ≤ j. Then vi ∈ Ki and vi can be written
as qi−1(A)r0, where qi−1 is a polynomial of degree i− 1. Observe that the next
vector vj+1 becomes

hj+1,jvj+1 = Aqj−1(A)r0 −
j∑
i=1

hijqi−1(A)r0, (3.26)

hence vj+1 can be written as qj(A)r0 with qj a polynomial of degree j. Besides,
vj+1 is orthonormal to Kj , which concludes the proof.

Denote by Vm the n ×m-matrix whose columns are the vectors v1, . . . , vm
and by Hm the m ×m upper Hessenberg matrix consisting of the coefficients
hij ,

Hm =


h11 h12 . . . h1,m−1 h1m
h21 h22 . . . h1,m−1 h2m

h32 . . . h1,m−1 h3m
. . .

...
...

hm,m−1 hmm

 . (3.27)

The orthonormalisation (3.25) results in a system of equations using Vm and
Hm,

AVm = VmHm + hm+1,mvm+1e
T
m, (3.28)
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where em is the last canonical basis vector in Rm. This equations is very useful
for transforming the constraint (3.19) into a small and relatively easy to solve
problem. First, recall that the initial residual r0 is a scalar multiple of the first
basis vector v1, hence r0 can be written as Vme1‖r0‖2, where e1 is the first
canonical basis vector in Rm. Applying this and equation (3.28) to the residual
rm yields

rm = r0 −AVmym = Vm(‖r0‖2e1 −Hmym)− hm+1,mvm+1e
T
mym. (3.29)

Since the subspace of constraints Lm = Km is spanned by the vectors v1, . . . , vm,
the constraint rm ⊥ Lm (3.19) is equivalent to

Hmym = ‖r0‖2e1. (3.30)

If y solves this equation, then the residual follows easily from (3.29) and (3.30),

rm = −hm+1,m(eTmy)vm+1. (3.31)

Solving equation (3.30) is still not trivial. Fortunately, there is an easy
way to transform the upper Hessenberg matrix Hm into a triangular matrix.
Consider the first two rows of Hm,

Hm|[1,2]×[1,m] =

[
h11 h12 . . . h1m
h21 h22 . . . h2m

]
. (3.32)

Element (1, 2) can be nullified by premultiplying these rows with a 2×2 rotation
matrix G1,

G1 Hm|[1,2]×[1,m] =

[
h′11 h′12 . . . h′1m
0 h′22 . . . h′2m

]
= H ′|[1,2]×[1,m] , (3.33)

thereby changing the first two rows, but leaving all other rows of Hm intact.
This process is called Givens rotation. Subsequently applying Givens rotations
to (3.30) yields a triangular system,

Umym = ‖r0‖2Qme1, (3.34)

where Qm represents all Givens rotations G1, . . . , Gm−1, and Um = QmHm is
the upper triangular matrix resulting from Hm. For details and the derivation
of the correct Givens matrices to obtain a triangular system, see Golub and
Van Loan (1996).

Analysis

The only possibility of breakdown is in Arnoldi’s method, when a vector vj is
zero. Normalisation of the vector is not possible and the method stops. By
Theorem 3.1, the approximate solution at this point turns out to be the exact
solution, hence this is a form of lucky breakdown.

The orthonormalisation process uses all previously obtained basis vectors to
generate a new one. For big systems and large Krylov subspaces this requires
a large amount of memory and every iteration the amount of work increases.
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There are several ways to address this problem. The method can be repeated
several times with a ‘small’ Krylov subspace until accuracy is reached (Restarted
FOM). Or one could apply incomplete orthogonalisation by truncating the or-
thonormal basis — all except the k last orthonormal vectors are thrown away
— (Incomplete Orthogonalisation Process). Both methods require less memory
than FOM, but lost the optimality property.

3.2.5 Generalised minimal residual method

The generalised minimal residual method is a projection method onto the Krylov
subspace Km orthogonal to Lm = AKm. As in FOM, GMRES uses Arnoldi’s
method to construct an orthonormal basis of Km.

Outline of the method

GMRES also uses Arnoldi’s method for the generation of an orthonormal basis
of the Krylov subspace Km. Due to the choice of the subspace of constraints,
the projection process is equivalent to the minimisation of the residual norm

ym = arg min
y∈Rm

‖r0 −AVmy‖2. (3.35)

For this method it is more convenient to write (3.28) as

AVm = Vm+1H̄m, (3.36)

where H̄m is defined by

H̄m =



h11 h12 . . . h1,m−1 h1m
h21 h22 . . . h1,m−1 h2m

h32 . . . h1,m−1 h3m
. . .

...
...

hm,m−1 hmm
hm+1,m


. (3.37)

Using (3.36) the residual rm can be written as

rm = r0 −AVmym = r0 − Vm+1H̄mym = Vm+1(βe1 − H̄m+1ym). (3.38)

Finally, since the columns of Vm+1 are orthonormal, the minimisation of the
residual becomes

ym = arg min
y∈Rm

‖βe1 − H̄m+1y‖2. (3.39)

This minimisation is a least-squares problem with m+ 1 equations.

Equation (3.39) can be transformed into a triangular system with m equa-
tions by applying Givens rotations to H̄m+1, discussed in Section 3.2.4. For
details and implementations, see Saad (1996).
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Analysis

As in FOM, the GMRES method may suffer from breakdown in Arnoldi’s
method. However, the breakdown leads to an exact solution, hence will not
be a problem. The approximate solution obtained by GMRES is the result of
minimising the residual in a certain space. This optimality property is useful
for analysing the convergence of the method.

As a consequence of using Arnoldi’s method, GMRES shares some problems
with FOM. The amount of memory and computations increases each iteration.
One of the remedies is restarting the method after m iterations again and again
until convergence is achieved, denoted by GMRES(m). This allows easy control
over the amount of memory and effort. However, the optimality property is lost
and the convergence may become very slow since the super linear convergence
starts only after a couple of iterations.

3.2.6 Generalised conjugate residual method

The generalised conjugate residual method (Eisenstat, Elman, and Schultz 1983),
GCR for short, is a projection method on Km orthogonal to Lm = AKm, hence
mathematicaly equivalent to GMRES. While FOM and GMRES construct an
orthonormal basis of the Krylov subspace, GCR builds a basis {p0, . . . , pm−1}
such that all Api are orthogonal, i.e. all pi are ATA-orthogonal. These search
directions pi are conjugated residuals, i.e. ri A

TA-orthogonalised to all previous
search directions.

The computation of a new basis vector pm involves the current residual rm,
all previously computed vectors p0, . . . , pm−1 and theirAmultiplesAp0, . . . , Apm−1.
Although the latter set of vectors can be computed on the fly from the former,
the repeated computation of these matrix vector products is considered too
expensive. Therefore, both sets of vectors are simply stored, which doubles
the amount of memory compared to GMRES. Furthermore, the computational
effort is slightly higher than GMRES as well, despite the storage of all Api.

One could choose to drop the optimality property in favour of memory con-
sumption by applying incomplete orthogonalisation. A trivial way to do this,
is truncation of the basis vectors: only the last k computed basis vectors are
stored and used for the orthogonalisation. Contrary to FOM and GMRES, this
requires little change to the algorithm.

3.2.7 GMRES recursive

The GCR method builds an approximate solution in the Krylov subspace by
the following recurrence,

xk+1 = xk + αkpk, (3.40)

where the αk’s are chosen such that the residual,

rk+1 = rk − αkApk, (3.41)
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is minimised in two-norm. Assume, contrary to/in contrast with GCR, the
search vectors pk are free to choose. Since the residual should be minimised,
a good search direction is such that Apk approximates rk. Indeed, choosing
pk = A−1rk solves the problem immediately, but this merely shifts all effort
into the computation of pk.

The above idea has lead to GMRES recursive (Vorst and Vuik 1994), GM-
RESR for short. This method consists of two nested solvers. The main solver
is basicly GCR, modified to allow arbitrary (to be conjugated) search direction
uk instead of rk. If neccessary, one could choose to truncate GCR to limit the
amount of memory and work.

The search directions uk are obtained by approximating Au = rk with GM-
RES. It can be shown that the convergence of the GCR loop does not improve
if the accuracy of uk is higher than the required accuracy of the approximate
solution. In addition, the number of iterations of GMRES loop is usually limited
by some constant m. The optimal choice of this constant is a trade-off between
memory and work.

3.2.8 Minimum residual method

Minimum residual method (Paige and Saunders 1975), MINRES for short, is
a projection method onto the Krylov subspace Km orthogonal to Lm = AKm.
Only for symmetric matrices A.

Arnoldi’s method constructs an orthonormal basis {v1, . . . , vm} of the Krylov
subspace Km and a matrix Hm which reconstructs Am out of Vm = [v1, . . . , vm].
By construction Hm is upper Hessenberg. If matrix A is symmetric then so is
Hm = V TmAVm. But this implies that Hm is tridiagonal and equation (3.25) sim-
plifies to a recurrence using only the last two obtained basis vectors. Arnoldi’s
method simplified for symmetric matrices is called Lanczos algorithm and ma-
trix Hm is renamed to Tm,

Tm =


α1 β2
β2 α2 β3

. . .
. . .

. . .

βm−1 αm−1 βm
βm αm

 . (3.42)

Matrix Tm is easily transformed into a lower triangular matrix L̄m by ap-
plying a series of Givens rotations Gi,i+1 to every pair of concurrent columns i
and i+ 1,

L̄m = TmG1,2 · · ·Gm−1,m = TmQ
T
m, (3.43)

where QTm is the product of all rotations. Since all Givens rotations are orthog-
onal, equation (3.43) defines the LQ-decomposition of Tm.

A projection method requires the residual rm to be orthogonal to the sub-
space of constraints Lm. This is equivalent to

V TmA
2Vmym = V TmAr0. (3.44)
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Applying (3.28) of Arnoldi’s method and (3.43) to the matrix on the left hand
side gives

V TmA
2Vm = L̄mL̄

T
m + β2

m+1eme
T
m = LmL

T
m. (3.45)

where Lm differs from L̄m only in the lower right element. They can be related
by a scaling matrix Dm = diag(1, . . . , 1, cm), L̄m = DmLm. The constraint
(3.44) becomes

LTmym = β1DmQme1 = tm, (3.46)

where it is used that Lm is nonsingular and β1 = ‖r0‖2.

There is no need to compute and store matrix Qk. Instead, the right hand
side tm can be constructed by iteratively applying the Givens rotations to e1.
Finally, the approximate solution xm is computed by by solving xm = VmL

−T
m tm

iteratively.

3.2.9 Conjugate gradient method

The conjugate gradient method is one of the best Krylov subspace methods for
solving large sparse systems Ax = b where A is symmetric positive definite. It
is equivalent to the full orthogonalisation method in the sense that they both
share the same Krylov subspace and the subspace of constraints, hence they
generate the same approximate solution using exact arithmetic. However, due
to the symmetry and definitness of A various simplifications can be made. As
a consequence, the required memory per iteration is fixed and the residual and
approximate solution are continously updated.

Outline of the method

The conjugate gradient method constructs iteratively a basis p0, . . . , pm for the
Krylov subspace such that all vectors are A-orthogonal. The approximate solu-
tion after m + 1 iterations can uniquely be written as a linear combination of
these basis vectors,

xm+1 = x0 +

m∑
j=0

αjpj = xm + αmpm, (3.47)

and the residual is given by the recurrence

rm+1 = rm − αmApm. (3.48)

The coefficients αj will be determined by constraining the residual to be orthog-
onal to the Krylov subspace Km+1. Assume the vectors r0, . . . , rm, obtained in
previous iterations, are orthogonal and span Km+1. Then rm is orthogonal to
Km by assumption and Apm is orthogonal to Km. This leaves one equation to
determine coefficient αm,

rm − αmApm ⊥ rm. (3.49)

Note that rm+1 is obtained using only the last residual, rm, and the last search
direction, pm. Besides, the residual rm+1 is A-orthogonal to Km — to see this,
compute the inproduct of (3.48) with any rj , j < m.
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Theorem 3.4. TODO

Proof. Assume {p0, . . . , pm} is a set of A-orthogonal vectors with p0 = r0 and
such that the first j vectors span the j + 1-th Krylov subspace Kj+1(A, r0), for
all j ≤ m. The last vector of this set, pm, is of course contained in Km+1, hence
can be written as a linear combination of r0, . . . , A

mr0. Multiplying pm to the
left by A yields a linear combination of the vectors Ar0, . . . , A

m+1r0 ∈ Km+2.
However, Apm ⊥ Km by assumption. Hence span{rm, Apm}⊕Km = Km+2.

Since rm+1 is a linear combination of rm, Apm ∈ Km+2 ∩ K⊥m and rm+1

orthogonal to rm, it extends the orthogonal basis {r0, . . . , rm} to Km+2. Hence,
this vector can also be used to generate the next search vector pm+1. As noted
earlier, rm+1 is already A-orthogonal to Km. Leaves the A-orthogonalisation
with pm:

pm+1 = rm+1 + βmpm ⊥ Apm. (3.50)

It turns out that the coefficients αm and βm can be written as

αm =
‖rm‖2
‖pm‖2A

, (3.51)

and

βm =
‖rm+1‖2
‖rm‖2

. (3.52)

For a derivation, see Saad (1996, pp. 177–178)

Analysis

The conjugate gradient method is a remarkably simple method for solving a
matrix vector problem. The amount of memory and work per iteration is fixed
and in theory the exact solution is guaranteed in n iterations, where n is the
size of matrix A. Furthermore, it can be shown that CG stops in at most
k iterations where k is the number of distinct eigenvalues of A. In practice,
rouding errors will spoil the orthogonality of the basis vectors and the optimality
is lost. Besides, the number of iterations needed to complete the method is in
many cases too large.

The convergence of CG is in theory linear and depends on the condition
number of the matrix. However, in many cases the convergence becomes more
than linear after a couple of iterations. This is behaviour is called superlinear
convergence and is a consequence of eliminating the extreme eigenvalues.

3.3 Preconditioners

The efficiency of all methods discussed above depend heavily on the distribution
of eigenvalues of matrix A. In general, the methods exhibit high convergence
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rates when the eigenvalues are tightly clustered. For instance, the rate of con-
vergence of the conjugate gradient method is inversely related or bounded by
the spectral condition number,

κ =
λmax

λmin
. (3.53)

To be more precise, the error after m iterations is bounded by (Saad 1996)

‖x− xm‖A ≤ 2

(√
κ− 1√
κ+ 1

)m
‖x− x0‖A, (3.54)

where x is the solution of Ax = b.

The condition of the system or the distribution of eigenvalues can be im-
proved by multiplicating the system with some invertible matrix M , yielding
a new system with the same solution and — by proper construction of M —
favourable properties. There are three ways to create such a system: by left
preconditioning

M−1Ax = M−1b, (3.55)

right preconditioning

AM−1y = b, Mx = y, (3.56)

or a combination.

The inverse of M should be cheap, or at least cheaper than the inverse of
A, since M−1 is used every iteration of the iterative method. Furthermore the
spectral radius of I−M−1A or I−AM−1 should be small. To see this, consider
the splitting A = M − N and recall that the rate of convergence of a basic
iterative method depends on the spectral radius of I − M−1A (Section 3.1).
These properties are the same as for the basic iterative methods Indeed, every
basic iterative method originating from a matrix splitting A = M − N can be
used as a preconditioner. As such, the basic iterative method is used as an
accelerator for a Krylov subspace method, or vice versa.

Probably the most simple preconditioner is diagonal scaling, M = diag(A).
The computational cost and memory requirements are minimal to zero. More
advanced preconditioners are based on incomplete LU or Cholesky decomposi-
tions of A. The decompositions are for example such that the sparsity structure
of the matrix is maintained.

3.4 Deflation

Let A be a symmetric positive definite matrix, possibly preconditioned. Recall
that the approximate solution of a Krylov subspace method can be written as

x̃ = x0 + V y, (3.57)

where the columns of V form a basis for the Krylov subspace K and y is chosen
such that the residual

r = r0 −AV y, (3.58)
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is orthogonal to some subspace L.

Now consider the following extension to the approximate solution x̃,

x̃ = x0 + V y + Zk, (3.59)

with residual
r = r0 −AV y −AZk. (3.60)

Here, Z is a matrix whose columns are linearly independent. These columns can
be viewed as an augmentation of the Krylov subspace and are called deflation
vectors. Applying the same constraint on the residual as used for the derivation
of Krylov subspace methods like FOM — the subspace of constraints is equal
to the subspace of deflation vectors col(Z) — yields r ⊥ Z and

ZTAZk = ZT (r0 −AV y). (3.61)

Since A is symmetric positive definite ZTAZ is non-singular and the residual
may be written as a projection of the ‘original’ residual (3.58),

r = P (r0 −AV y), (3.62)

where P is the projection defined by

P = I −AZ(ZTAZ)−1ZT . (3.63)

It is easy to verify that P is a projection by calculating the square of P . Using
this projection the approximate solution is split in the following way,

x̃ = (I − PT )x̃+ PT x̃. (3.64)

The first term of the right hand side

(I − PT )x = Z(ZTAZ)−1ZTAx = Z(ZTAZ)−1ZT b, (3.65)

is an equation independent of the Krylov subspace and can be computed imme-
diately. Using the identity APT = PA, the second term of (3.64) is found by
computing

PAx̂ = Pb, (3.66)

and premultiplying the solution x̂ with PT ,

PT x̃ = PT x̂. (3.67)
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Chapter 4

Solution techniques for
saddle point problems

The Stokes equations belong to the familly of saddle point problems, which are
characterised by the following block structure

A =

[
F BT

B

] [
u
p

]
=

[
f
0

]
, (4.1)

where F is an n × n matrix and B an m × n matrix. In case of the Stokes
equations F is symmetric positive definite and B is of full rank. For reference,
the Stokes problem consists of the following subsystems: a velocity subsystem

Fu+BT p = f, (4.2)

and a pressure subsystem
Bu = 0. (4.3)

In Section 4.1 the Schur complement matrix is derived and several approxi-
mations are discussed. Section 4.2 presents two direct methods for solving the
saddle point system. In Section 4.3 iterative methods and preconditioners are
discussed.

4.1 Approximating the Schur complement

Block Cholesky decomposition of A

A = LDLT =

[
I

BF−1 I

] [
F

S

] [
I F−1BT

I

]
, (4.4)

where S is the Schur complement defined by

S = −BF−1BT . (4.5)
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The Schur complement S is in general dense, hence it is too expensive to
create and store this matrix. Instead, a system with (4.5) is solved using a
matrix-free solver, i.e. a solver which only requires the matrix vector product
with S, not the matrix S itself. A product with the Schur complement is
expensive, since it requires two matrix vector products and one matrix inverse.
Furthermore, the Schur complement may be ill-conditioned (Benzi, Golub, and
Liesen 2005). Preconditiong a system with S can improve the convergence.

Assume the composition of the diffusion matrix F and the gradient matrix
BT can be approximated by the gradient matrix BT and some other invertible
matrix Fp, to be determined.

FBT ≈ BTFp (4.6)

This approximation will be justified shortly. Premultiplication of (4.6) with
BF−1 and postmultiplication with F−1p yields

BBTF−1p ≈ BF−1BT = −S. (4.7)

Note that BBT is equal to a Laplace matrix and can be easily solved using a
Poisson solver. Both matrices BBT and Fp are square and small compared to
the three matrices in (4.5). The inverse of the approximation of S requires one
Poisson solve and one matrix multiplication.

4.1.1 Constant viscosity

What is a good approximation of the Schur complement? Consider again the
product of the diffusion operator F and the gradient operator G,

(FGp)α = 2(νp,αβ),β . (4.8)

First, assume the viscosity is constant. Equation (4.8) simplifies to

(FGp)α = 2νp,αββ = (2νp,ββ),α = G(2νG∗G)p. (4.9)

This implies an operator Fp = 2νG∗G, or in discrete terms Fp = 2νBBT . This
choice of Fp shows that the Schur complement is determined by a scaled identity
matrix,

S = −2BBT (BBT )−1ν−1 = −2ν−1I. (4.10)

4.1.2 Pressure convection diffusion

(FGp)α = 2(νp,αβ),β = 2(νp,β),βα − 2(ν,αp,β),β = G(2G∗νGp)− 2(ν,αp,β),β .
(4.11)

Neglecting the second term yields an operator Fp = 2G∗νG, which is very similar
to F . The neglected term indicates that the approximation is at least accurate
for slowly varying viscosity. When used as a preconditioner, this approach is
called the pressure convection diffusion method.
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4.1.3 Least-squares commutator

The above choice of Fp is made intuitively. The least-squares commutator pre-
conditioner defines Fp in a more formal way by minimising the commutator, i.e.
FBT and BTFp,

Fp = arg min
F̂p

∥∥∥FBT −BT F̂p∥∥∥
2
. (4.12)

This yields Fp = −(BBT )−1BFBT and the Schur complement is approximated
by

S ≈ −(BBT )(BFBT )−1(BBT ). (4.13)

Convergence is improved by applying scaling matrices M1 and M2 in the fol-
lowing way,

S ≈ −(BM−22 BT )(BM−22 FM−11 BT )−1(BM−11 BT ). (4.14)

In Rehman (2010) the scaling matrices are chosen to be M1 = M2
2 = diag(F ). In

terms of work this approximation is more expensive than the pressure convection
diffusion method.

4.2 Direct methods

4.2.1 Schur complement reduction

Premultiplying (4.1) with the inverse of the block lower triangular matrix L
gives [

F BT

S

] [
u
p

]
=

[
f

−BF−1f

]
. (4.15)

Now the pressure p can be solved independently of the velocity u. Applying
back substitution yields the pressure subsystem,

− Sp = BF−1BT p = BF−1f, (4.16)

and the velocity subsystem,

Fu = f −BT p. (4.17)

As noted earlier, a system with the Schur complement S is solved using
a matrix-free solver. Alternatively, (4.16) can be solved using a generalised
least-squares method (Benbow 1999). Equation (4.16) is equivalent to

find p ∈ Rm such that qTF−1(BT p− f) = 0 ∀q ∈ row(B), (4.18)

where row(B) is the subspace of columns of B. By assumption F is symmetric
positive definite, hence F−1 is SPD as well and defines an inner product 〈·, ·〉F−1

by 〈v, w〉F−1 = vTF−1w. Substituting the inner product in (4.18) yields

find p ∈ Rm such that
〈
q,BT p− f

〉
F−1 = 0 ∀q ∈ row(B). (4.19)
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Since pTB ∈ row(B), BT p is the F−1-orthogonal projection of f onto row(B).
This implies that p is the result of the minimisation of BT p− f in F−1-norm,

p = arg min
p∗∈Rm

‖BT p∗ − f‖F−1 . (4.20)

This system can be solved using a generalisation of the least-squares method,
LSQR(F−1) (Benbow 1999).

Numerical experiments in Benbow (1999) show that solving (4.20) with
LSQR(F−1) needs less iterations to acchieve a certain accuracy than MINRES
applied to (4.16), if the Schur complement S is ill conditioned. If the inverse
of F is relatively cheap, than the LSQR(F−1) approach is faster in time than
MINRES.

4.2.2 Null space method

The pressure subsystem (4.3) constrains the velocity u to the kernel or null
space of B, u ∈ ker(B). By assumption B is a full rank m×n-matrix, hence the
kernel is of dimension n−m. Let {z1, . . . , zn−m} be a basis for the ker(B), then
the velocity u can be written as a linear combination of these basis vectors,

u = Zv, (4.21)

where Z = [z1, . . . , zn−m] and v ∈ Rn−m. This representation automatically
satisfies equation (4.3).

Substituting (4.21) for u in (4.2) yields

FZv +BT y = f. (4.22)

Note that the rows of B are orthogonal to the kernel of B. The orthogonal
projection of (4.22) onto ker(B) reduces (4.22) to a system without pressure y,

projker(B)

(
FZv +BT p

)
= projker(B) (FZv) = projker(B) f. (4.23)

Since the columns of Z span the kernel of B, this is equivalent to

ZTFZv = ZT f. (4.24)

By assumption, matrix F is symmetric positive definite, hence ZTFZ is SPD
as well. The pressure y is found by solving (4.22) using the solution v of (4.24).

By assumption, matrix B represents a discrete divergence operator on a
rectangular or cubic domain with periodic boundary conditions — ignoring the
shifting of boundaries here. Hence, an orthogonal basis z1, . . . , zn−m is eas-
ily constructed by considering fourier modes. Let φj be a fourier mode with
frequency kjα in direction α,

φj = exp(2πixαk
j
α). (4.25)

Applying the divergence operator to φj yields

φjα,α = 2πikjα1αφ
j = 0 ⇐⇒ kjα1α = 0. (4.26)
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where 1α = 1.

A special choice of basis vectors leads to a very simple system to be ‘solved’
for the velocity u. Let z1, . . . , zn−m be an F -orthogonal basis of ker(B). Then
ZTFZ is a diagonal matrix and the velocity u is simply given by

u = (ZTFZ)−1ZZT f =

n−m∑
j=1

〈f, zj〉
〈zj , zj〉F

zj . (4.27)

This is easily transformed into an iterative scheme where the basis vectors are
constructed one by one until a desired accuracy is reached,

uj+1 = uj +
〈f, zj+1〉

〈zj+1, zj+1〉F
zj+1. (4.28)

4.3 Iterative methods and preconditioners

Consider the splitting of A,
A =M−N . (4.29)

This splitting leads to the following stationary iteration (Wesseling 2010, Section
7.6) [

uk+1

pk+1

]
=

[
uk
pk

]
+M−1

([
f
0

]
−A

[
uk
pk

])
. (4.30)

A good splitting results in a matrix M which is cheap to invert (implicitly)
and, at the same time, close to A in some sense.

The same splitting can be used to precondition the original system and solve
using a Krylov subspace method. Preconditioner

M−1A
[
u
p

]
=M−1

[
f
0

]
or postconditioner/right-preconditioner

AM−1
[
u′

p′

]
=

[
f
0

]
, M−1

[
u′

p′

]
=

[
u
p

]

4.3.1 Schur method

Using the block Cholesky decomposition (4.4) the saddle point problem (4.1)
can be written as

(LD)LT
[
u
p

]
=

[
f
0

]
. (4.31)

Applying block forward subsitution using LD and block backward subtitution
using LT solves the problem. This involves solving subsystems with matrices
F and S. The accuracy of the final solution depends on the accuracy used in
solving the subsystems. In general, solving subsystems with the same accuracy
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as desired for the final solution is not enough (Rehman 2010, Chapter 8). Choos-
ing the right accuracy to reach a decent solution while keeping work as low as
possible may be difficult.

To overcome this problem, an iterative method is suggested in Rehman
(2010, Chapter 8), where all subsystems are solved using an arbitrary accu-
racy, say ε, possibly lower than required for the final solution. This can be
written as the splitting with matrix M given by

MSchur =

[
F̃

B S̃

] [
I F̃−1BT

I

]
(4.32)

where the tildes mean that corresponding subsystems should be solved with
accuracy ε. One iteration of (4.30) with MSchur requires the solution of three
subsystems,

F̃ u∗ = f − Fuk −BT pk, (4.33)

S̃(pk+1 − pk) = −B(uk + u∗), (4.34)

and
uk+1 = uk + u∗ − F̃−1BT p∗. (4.35)

The most expensive part of the Schur method is (4.34). Solving a system with
the Schur complement S takes several matrix vector products with S. Every
product with S requires the solution of a subsystem with F .

In Rehman (2010, Chapter 8) the Schur method is tested on the Stokes
equations, where all subsystems are solved with the same accuracy as required
for the final solution. For the isoviscous case, one iteration is sufficient to reach
the final accuracy. When the viscosity is variable, then depending on the vis-
cosity contrast an extra iteration is required. The number of iterations needed
to solve the Schur complement system (4.34) is almost independent of grid size
and Reynolds number.

4.3.2 SIMPLE

In the Schur method, every iteration a system with the Schur complement S is
solved. As noted earlier, the Schur complement is not constructed, but solved
implicitly using a matrix-free solver, which only uses the matrix vector product
with S. This product, however, requires the inverse of F . The Semi-Implicit
Method for Pressure-Linked Equations, SIMPLE for short, approximates the
inverse of F by the inverse of the diagonal of F .

Applying the approximation of F−1 to A = (LD)LT yields a splitting with
matrix M given by

MSIMPLE = LSIMPLEUSIMPLE =

[
F

B −BF̃−1BT
] [
I F̃−1BT

I

]
, (4.36)

where F̃ = diag(F ) the diagonal of F . As in the Schur method, a system with
MSIMPLE is to be solved by applying block forward subsitution using the first
matrix, LSIMPLE and backward substitution using the second matrix, USIMPLE.
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This yields equations similar to (4.33)–(4.35), however, the simplifications result
in much less work.

The convergence of SIMPLE as an iterative method is slow. Faster conver-
gence can be achieved when SIMPLE is used as a preconditioner for a Krylov
subspace method. However, the rate of convergence depends on the grid size
and Reynolds number (Rehman 2010, Chapter 6).

4.3.3 SIMPLER

When SIMPLE is used as a preconditioner, the dependence on the Reynolds
number is removed by extending every iteration of SIMPLE in the following
way. Given the solution after k steps, uk and pk, an intermediate solution u∗,
p∗ is generated by solving a system similar to (4.36),

MT
SIMPLE

[
u∗ − uk
p∗ − pk

]
=

[
f
0

]
−A

[
uk
pk

]
, (4.37)

which is syntactic sugar for ‘apply forward substitution using UTSIMPLE and back-
ward substitution using LTSIMPLE.’ Then a SIMPLE step is appied to u∗ and
p∗,

MSIMPLE

[
uk+1 − u∗
pk+1 − p∗

]
=

[
f
0

]
−A

[
u∗
p∗

]
, (4.38)

resulting in uk+1 and pk+1.

This approach, called SIMPLER, doubles the amount of work per iteration
compared to SIMPLE. On the other hand, the iterative method will converge
faster. When used as a preconditioner, the first subsystem of (4.37) doesn’t
significantly improve convergence. The original SIMPLER method discards the
first subsystem by setting u∗ = uk. This leaves only the second subsystem of
(4.37),

BF̃−1BT y∗ = BF̃−1((F̃ − F )xk + f). (4.39)

The amount of work in solving one iteration of SIMPLER, (4.39) and (4.38),
is roughly 1.3 times the amount of work in solving one iteration of SIMPLE,
(4.36).

4.3.4 Block triangular preconditioner

Block triangular preconditioners have the following form,

Pt =

[
F̃ BT

S̃

]
, (4.40)

where F̃ and S̃ are approximations to F and S respectively. A simple choice for
F̃ is the diagonal of F . The Schur complement matrix may be approximated
by an identity matrix, S̃ = I.

The pressure convection diffusion preconditioner uses the exact matrix F and
the approximation for the Schur complement given in Section 4.1.2. Numerical
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experiments in Rehman (2010, Chapter 4) on a Navier-Stokes problem show
that the rate of convergence of a Krylov subspace method in combination with
the pressure convection diffusion preconditioner is independent of the mesh size.

The least-squares commutator preconditioner uses the approximation for the
Schur complement given in Section 4.1.3. Numerical experiments in Rehman
(2010, Chapter 4) show that the rate of convergence is mildly dependent on the
mesh size. However, this method converges faster than the pressure convection
diffusion preconditioner.
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Chapter 5

Current implementation

This chapter presents the current implementation for solving the Stokes equa-
tions (Section 5.1). In Section 5.2 two test problems are defined. Using one of
these problems the current implemtation is evaluated (Section 5.3). The results
are compared with a MINRES solver applied to the same test.

5.1 Algorithms

The steepest descent method, described in Section 3.1.2, is an iterative method
for solving linear systems. The same method is also suitable for the minimisation
of non-linear functions. Let φ : Rn → R be some non-linear function and x0
an arbitrary initual guess. The next iterate is searched, starting from x0, in
the direction of steepest descent, the gradient of φ, such that φ is minimised.
For linear systems the minimisation is simply determined by two inner products.
However, for non-linear functions the minimisation is done by literally searching
along the line of steepest descent for a point below a certain threshold, using a so
called line search method. The threshold is the value of φ of the previous iterate,
φ(xk−1), hence the line search method should return a new approximate solution
closer to the minimum of φ. The algorithm of the steepest descent method with
line search is given in Algorithm 5.1. Another method implemented in Culgi is
the closely related Polak-Ribi‘ere method (Algorithm 5.2).

A simple line search method works as follows. The steepest descent method
feeds the line search with a previous solution xk and a search direction dk. The
first candidate solution is located at xk+αdk, where α is initially a fixed number
or obtained from a previous line search. The function φ is evaluated for this
candidate solution. If the φ(xk + αdk) < φ(x), then the candidate solution is
accepted, xk+1 = xk + αdk. Otherwise α is divided by zero and the process is
repeated. This procedure is illustrated in Figure 5.1. The algorithm is given
in Algorithm 5.3. Another closely related line search method, implemented in
Culgi, is given in algorithm 5.4. Culgi two line search methods are implemented.

Culgi lacks support for matrices. The matrix vector product is computed
using various discrete operators, mimicing the analytical operators of the Stokes
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Algorithm 5.1: Steepest descent with line search

1 steepest descent(x0;n, ε, δ):

2 r0 := Ax0 − b
3 for k = 0, 1, 2, . . . , n:

4 xk+1 := line search(xk, rk)

5 rk+1 := b−Axk
6 if ‖rk+1‖∞ < ε or ‖rk‖∞ − ‖rk+1‖∞ < δ:

7 return xk+1

Algorithm 5.2: Polak-Ribière with line search

1 Polak-Ribière(x0;n, ε, δ):

2 r0 := Ax0 − b
3 d0 := r0

4 for k = 0, 1, 2, . . . , n:

5 xk+1 := line search(xk, dk)

6 rk+1 := b−Axk
7 if ‖rk+1‖∞ < ε or ‖rk‖∞ − ‖rk+1‖∞ < δ:

8 return xk+1

9 βk := max

(
0,
〈rk+1, rk+1 − rk〉

〈rk, rk〉

)
10 dk+1 := rk+1 + βkdk
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Figure 5.1: Illustration of a line search method. The function f , to be minimised,
is evaluated at some initial point, the first guess. Since this point is above the
threshold, this guess is rejected. The second guess is in the middle of xk and
the previous guess. The third guess is below the threshold and is accepted as
the new approximate solution, xk+1.

Algorithm 5.3: Simple line search, illustrated by Figure 5.1

1 line search(xk, dk;m,α):

2 rk := b−Axk
3 for j = 0,−1,−2, . . . ,−m+ 1:

4 if ‖rk − α2jAdk‖∞ < ‖rk‖∞:
5 return xk + α2jdk

6 return xk + α2−mdk

equations. The boundary conditions are imposed by adding grid points outside
the domain to all vectors, velocity, pressure, viscosity, et cetera, and applying
the periodicity to these enlarged vectors using the definitions of Section 2.5.

5.2 Test problems

5.2.1 Simulation of an oil droplet in water

The first test problem is a mixture of oil and water. In initial state, the oil is
suspended as a droplet (sphere) in the center of the domain (see Figure 5.2). Oil
and water repel each other, hence the initial state is close to equilibrium. Fur-
thermore, both oil and water have different viscosity coefficients. The sharpness
of the interface between oil and water is controlled by adjusting the diffusion rate
of oil and water and the amount of repulsion. These coefficients are of course
determined by nature, however, for the sake of testing any choice of coefficients
is allowed.
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Algorithm 5.4: Armijo line search

1 line search(xk, dk;m,α):

2 rk := b−Axk
3 for j = 0,−1,−2, . . . ,−m+ 1:

4 if ‖rk − α2jAdk‖22 < (1− α2j10−4)‖rk‖22:
5 return xk + α2jdk

6 return xk + α2−mdk

.

Figure 5.2: Volume rendering of an oil droplet suspended in water under influ-
ence of a shear velocity after several time steps. Red means a high oil density
and transparant/blue a low density. Since the sum of densities of water and
oil is constant, blue implies a high density of water. The velocity is displayed
on a plane at the center of the domain. Inside the oil droplet the velocity is
circulating, which shows that the oil droplet rotates in time.
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5.2.2 Diblock copolymer blend

The second test problem is a mixture of polymers, consisting of molecules of
some type A and B. The polymers are created in a reaction process where all
molecules of any type may react with each other, forming a (small) polymer
AA, AB or BB. These newly formed polymers are able to react with other
molecules and polymers, creating longer and longer chains.

Since molecules of type A and B repel each other, A-molecules are more
likely to react with other A-molecules and the same is true for B. After a
while, a polymer may look like AAABAABABBBBABBB. There is a clear
distinction between an A-part and a B-part, which is typical for all polymers in
this reaction. This phenomenon leads to the approximation of all these polymers
by AAAAAAAABBBBBBBB, conveniently written as A8B8.

The end of the above described reaction process is the beginning of the test
problem. The initial phase is a chaotic configuration of the polymers. The A-
tails of the polymers tend to cluster due to the repulsion of B. This choactic
clustering is clearly visible in Figure 5.3. Under influence of a shear velocity
other configurations become favourable. Laminar phases may occur, where the
polymers are nicely ordered in planes, or cylindrical phases, whereA-tails cluster
in cylinders while the B-tails fill the surrounding space.

5.3 Numerical results

The first test problem is used to investigate the Polak-Ribière method with
Armijo line search, together refered to as NLE solver, non-linear equation solver.
The number of outer iterations (Polak-Ribiére) is limited by 10000, the number
of line search iterations by 5 and the previous α is used (multiplied by two) as
a first guess for the line search method. The same tests are performed using a
MINRES solver. The evolution equation is not used in these tests. All tests are
performed with the dimensionless viscosity for water equal to 1 and stopping
criterion ‖rk‖∞ < 10−3. A two dimensional box is simulated as a three dimen-
sional box with one grid cell in the third dimension. The initial guess for the
velocity is equal to a linear shear velocity, the pressure is simply chosen zero.

Table 5.1 lists the number of iterations needed by the solvers to find a so-
lution for different grid sizes, when the dimensionless oil viscosity is 10. The
MINRES solver is outperforms the NLE solver for every grid size. For both
methods the number of iterations depends on the grid size.

Table 5.2 lists the number of iterations needed by the solvers to find a so-
lution for different oil viscosities. The grid size is 32 in each direction. Again,
the MINRES solver is superior to the NLE solver. For large viscosity contrasts,
ratio between oil and water viscosity, the NLE solver fails to converge.

Figure 5.4 shows the residual norm versus the number of iterations for a
three dimensional box with 64 grid points in every direction and an oil viscosity
of 10. This figure shows that increasing the accuracy for the NLE solver will
have a great impact on the number of iterations.
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.

Figure 5.3: A typical snapshot of the initial stages of microphase separation in
a symmetric A8B8 polymer blend. Red means a high density of A molecules,
while the transparant/greenish parts indicate a high density of B molecules.
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Table 5.1: Number of iterations used by the solvers for the simulation of an oil
droplet suspended in water, where oil has dimensionless viscosity 10.

box type box size NLE NLE l.s. MINRES

iter. tot. iter. iter.

2d 16 346 695 63

32 1176 2354 172

64 2798 5598 359

128 3446 6894 504

3d 16 363 729 99

32 1083 2169 269

64 2293 4589 558

128 4411 8825 770

Table 5.2: Number of iterations used by the solvers for the simulation of an oil
droplet suspended in water, where the box has 32 grid points in each direction.

box type oil viscosity NLE NLE l.s. MINRES

iter. tot. iter. iter.

2d 10.0 1176 2354 172

20.0 2524 5051 248

40.0 4986 9976 343

100.0 did not converge 498

1000.0 did not converge 1225

3d 10.0 1083 2169 269

20.0 2115 4234 472

40.0 4505 9015 676

100.0 did not converge 1057

1000.0 did not converge 2974
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Figure 5.4: Residual norm versus number of iterations k for the simulation of an
oil droplet suspended in water on a three dimensional grid with 64 grid points
in every direction

When the Stokes equations are used as a part of the evolution equation, the
solvers converge much faster for all iterations after the first one, due to the use
of the previous solution as an initial guess (Table 5.3). Note that the number of
iterations for the MINRES solver is limited to 5000. The last line of the table
contains two evolution steps where the MINRES solver reached this limit.
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Table 5.3: Number of iterations used by the MINRES solver for the computation
of the velocity field in the first five evolution (evo.) steps.

box type oil viscosity number of iterations

evo. 1 evo. 2 evo. 3 evo. 4 evo. 5

2d 10.0 359 88 32 25 1

100.0 1484 80 1 62 1

1000.0 3900 12 8 9 10

3d 10.0 558 27 25 1 1

100.0 3043 3 5 5 75

1000.0 5000 5000 671 1 1
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Chapter 6

Future research

As mentioned in the previous chapter, the Culgi software package lacks support
for operations with sparse matrices. This limits the possible solution techniques,
such as incomplete factorisations and the promising Schur method. The first
method chosen for future research is the block triangular preconditioner supple-
mented with a deflation method. The second method which will be investigated
is the null space method. The implementation of these methods in the Culgi
software package should be feasible.

The block triangular preconditioner uses approximations for the Laplace-like
matrix F and the Schur complement S. The most simple approximations are
the diagonal of F and an identity matrix for the Schur complement. However,
there are many variants, some of which are feasible to implement in Culgi. The
choice of these approximations is subject of further investigation.

The deflation method is only briefly discussed in this report. Further re-
search is necessary for the details regarding the implementation. The choice of
deflation vectors is very important for the efficiency of the method. As noted in
the previous chapter, large viscosity contrasts have a severe implication on the
rate of convergence. Deflation vectors based on these viscosity contrasts may
enhance the convergence.

The null space method depends on the availability of a basis for the null
space of the divergence operator B. For periodic boundaries without shifting
due to a shear velocity (see Section 2.5) an analytical basis for the null space
can be formulated based on Fourier modes. Wether such an analytical basis can
be constructed for shifting boundaries is a topic for further research. Further-
more, it is yet unclear if the null space can compete with preconditioned Krylov
subspace methods if such a basis exists.

As noted in the previous chapter, the very first computation of the Stokes
equations, in absence of a previous solution, requires many iterations compared
to the subsequent solves. It might be useful to develop a good initial solution
to speed up the first computation. Furthermore, if the previous solution is
used as initial guess for the next time step, then it might be useful to apply
a convection step using the previously obtained velocity, if such an update is
cheap and accurate.
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From the numerical results in the previous chapter follows that the grid size
and viscosity contrast influence the rate of convergence of MINRES. Further-
more, it is expected that the sharpness of the interface between molecules also
plays a role in the rate of convergence. The research into the methods defined
above should reflect on these convergence issues. The test problems defined in
the previous chapter are suitable to investigate all these issues.
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