
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 19-04

Determining water speed of ships: Establishing the delivered
power needed as a function of the ship’s speed in relation to

the water

M. Atsma and C. Vuik

ISSN 1389-6520

Reports of the Delft Institute of Applied Mathematics

Delft 2019

Copyright 2019 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands. Start report

Contents

Preface v

1 Introduction 1

2 Physics behind the problem 3
2.1 Dimensional analysis . 3

3 Solving methods 5
3.1 Mean of Means Method . 5
3.2 Iterative Method . 7
3.3 Direct Method . 10
3.4 Least squares fitting methods . 11

3.4.1 Trust Region Reflective . 11
3.4.2 Levenberg-Marquardt . 12

4 Measurements 15
4.1 Example plots . 18
4.2 Measurement Noise . 20
4.3 Finding situations where the Iterative Method beats the Direct

Method . 22
4.3.1 Strict Double Runs. 22
4.3.2 Small range of 𝑉 . 22
4.3.3 Less than enough values for the Direct Method 23

4.4 Theoretical data. 24
4.5 Major problem with the Iterative Method for low Power Settings 27
4.6 Effectiveness of one step of Mean of Means 30

5 Conclusion 33
References. 34

A Python Code 35
A.1 Main . 36
A.2 Formulas. 41
A.3 PracData . 50
A.4 TheoData . 51

iii

Preface

This report describes the research that started with the research of Floris Buwalda
and continued with the work of Michaël Mersie. We will mostly work with Numerical
Mathematics to find a function that expresses the power that needs to be delivered
in terms of the ship’s desired speed in relation to the water. In order to keep up
with the digital age where contracts and transactions are calculated to fractions of
cents, it is essential that this function is as accurate as possible.

We would like to take this opportunity to thank Hans Huisman and MARIN for
their time and for contributing necessary data to this research.

v

1
Introduction

With the rise of computers, the calculations in the economy are becoming more and
more accurate. In this multiple decimal economy, ships have been left behind, even
though they play a major role in it. In many cases, a classical method is still used to
calculate the power consumption needed for a certain speed. In this dissertation,
we will discuss this method and newer ones.

Previously, Floris Buwalda[1] and Michaël Mersie[2] have studied this subject
and made some improvements. We will aim to explain, and work on, the accuracy
of these newer methods. In addition, we will bring up problems that the classical
method has, which is eliminated by Mersie’s new method.

The main questions we will answer in this report are the following:

• Are there certain situations in which the Iterative Method is better than the
Direct Method?

• Does an iteration of the Mean of Means Method reliably stop the Iterative
Method from diverging?

This report has the following structure. After an introduction of the physics of
the problem in Section 2 we give an overview of solution methods in Section 3.
We combine the methods with measurements to see which method has the best
properties. This research is reported in Section 4. Conclusions are given in Section
5, whereas the appendix contains the used Python Code.

1

2
Physics behind the problem

A ship traveling through water at a constant speed experiences resistance forces
that should add up to equal the force that the engine produces. These forces come
from both water and air. The total ’still water’ resistance can be divided into three
fundamental components as shown by Van Manen and Oossanen [3]:

• The frictional resistance, 𝑅 = 𝑆𝜌𝑉 , where

𝑆 : wet frontal area of the ship in [𝑚]

𝜌 : water density in [𝑘𝑔𝑚]

𝑉 : ship’s velocity relative to the flow in [𝑚𝑠]

• The wave-making resistance, represented by the dimensionless Froude num-
ber, 𝐹𝑟 = √ , where

𝑉 : relative velocity of the ship in [𝑚𝑠]

𝐿 : waterline length of the ship in [𝑚] 1

𝑔 : gravitational acceleration of 9.81𝑚𝑠

• The eddy making resistance, which, according to Tupper [4], is 10-15% of
the hull resistance and thus not critical.

2.1. Dimensional analysis
A dimensional analysis can be done to determine an intuitive insight of what the
function of the total resistance 𝑅 will look like. This means that instead of a value,

3

2

4 2. Physics behind the problem

we express variables in their characteristic terms (time 𝑇, mass 𝑀, and length
𝐿), then use these expressions to determine how many times we should multiply
certain terms with each other, as in the end we want to have the same power of
characteristic terms on both sides of the equation.

Tupper [4] states that the contributing factors are the density, 𝜌, viscosity, 𝜇,
and the static pressure in the fluid, 𝑝, as well as the velocity, 𝑉, the length of the
ship, 𝐿, and the gravitational accelleration, 𝑔. Thus, we get that the resistance is
some formula of those constants, i.e.

𝑅 = 𝑓(𝐿, 𝑉, 𝜌, 𝜇, 𝑔, 𝑝) (2.1)

The characteristic terms for these variables are

𝑅 ∶ 𝑀𝐿𝑇 𝜌 ∶ 𝑀𝐿 𝜇 ∶ 𝑀𝐿𝑇 𝑔 ∶ 𝐿𝑇
According to Tupper, this can then be written as

𝑅 = 𝜌𝑉 𝐿 [𝑓 (𝜇
𝜌𝑉𝐿) , 𝑓 (

𝑔𝐿
𝑉) , 𝑓 (𝑝

𝜌𝑉)] (2.2)

Thus, the following non-dimensional ratios are important:

• Resistance coefficient: 𝑅𝑐 =

• Reynold’s number: 𝑅𝑒 =
A low Reynold’s number indicates laminar flow, while a high Reynold’s number
indicates turbulence.

• Froude number: 𝐹𝑟 = √
This represents the ratio of the flow inertia to the external field. Vessels with
the same Froude number produce the same wake, even if their size and shape
are different.

• Euler number: 𝐸𝑢 =
This characterises the energy losses in the flow. A frictionless flow corre-
sponds to a flow with an Euler number equal to 1.

So from the dimensional analysis we gather that the resistance comes from
certain dimensionless quantities. Therefore, other than knowing the frictional re-
sistance is a function of these 𝑅𝑐, 𝑅𝑒, 𝐹𝑟, and 𝐸𝑢, we do not gain more knowledge.

3
Solving methods

A speed trial is when a ship sails either in the exact direction of the wind, or in its
exact opposite direction. It must also sail on a predetermined power setting, for a
certain amount of time. Lastly, there should be limited wind, waves, and currents,
and it should ideally be free from hindrance of small boats and commercial traffic.
The speed trial is split up into smaller time fragments (all equal, with a minimum of
10 minutes) that we will call ”Runs”. At the end of a run, wherever the ship is at that
time will be the starting point for the next Run, after the ship has turned around— to
sail in the reciprocal direction — and reset the power setting. Any deviances in the
power setting that occur during a Run are not adjusted, as fluctuations are worse
for the accuracy of the measurement than slight deviations in the power settings
are. The term ”Double Run” is used to group two successive Runs in opposite
directions. Each Run will result in averaged values that can be used in calculations:

• The timestamp, 𝑡, when a Run has taken place is the time halfway through
the Run.

• The delivered power, 𝑃, of a Run is the average power delivered during the
Run.

• The ground speed of a Run — that is to say the speed of the ship in relation
to its geographical position, and not in relation to the water — is the average
ground speed of the Run

There are different ways to use this data to determine the speed of the ship. Dis-
cussed are the Mean of Means, Iterative, and Direct methods.

3.1. Mean of Means Method
With the Mean of Means method, we take the data of all the Runs and take the
average of successive Runs. These new averages have 1 less data point than the

5

3

6 3. Solving methods

Starting values Mean of Means value
6

> 5.5

5 > 5.75

> 6 > 5.875

7 > 6

> 6
5

Table 3.1: Small example of a Mean of Means calculation

previous values. We repeat this until there is only one value left. This is the Mean
of Means. An illustrative example can be seen in Table 3.1.

This computation can be expressed in a single formula. If we have 𝑛 values
for the averaged measured speeds 𝑉 , then the Mean of Means value 𝑉 can be
expressed as

𝑉 = 1
2 ∑(𝑛 + 1𝑖 − 1)𝑉. (3.1)

If the speed of the current, 𝑉 , is constant during the speed trial, one can see how
every Double Run the contribution of the current will cancel out. Unfortunately, one
could see how the deviations can become too big when it takes a ship over an hour
to turn around. Therefore, we rely on an 𝑛-th degree polynomial approximation of
𝑉 (𝑡). Thus we can say

𝑉 (𝑡) =∑𝑎 𝑡 (3.2)

for some numbers (𝑎).
Mersie shows that we then need (at least) 𝑛+2 Runs, and he notes that usually

𝑛 is chosen to be 2, 3 or 4. This is because the longer the speed trial takes, the
less accurate the polynomial approximation of 𝑉 becomes.

If we assume 𝑉 to be the actual speed of the ship, 𝑉 , to be the measured
ground speed of the 𝑖th Run, and Δ𝑡 to be the time each Run takes, then

𝑉 , = 𝑉 ± 𝑉 , (3.3)

= 𝑉 + (−1) ∑𝑎 (𝑖Δ𝑡) (3.4)

because the contribution of the current speed changes sign when the ship sails in
opposite directions1.

1Note that an -th degree polynomial function can be shifted to the right or left without changing its
degree. Thus we can make sure that the value of () corresponds to the current speed contribution
at the halfway mark of the th Run (as that is defined to be the timestamp of the Run).

3.2. Iterative Method

3

7

By substituting (3.4) in (3.1) and working it out we get

𝑉 = 1
2 ∑ [(𝑛 + 1𝑖 − 1) [𝑉 + (−1) ∑𝑎 (𝑖Δ𝑡)]]

= 𝑉 + 1
2 ∑[𝑎 Δ𝑡 ∑(𝑛 + 1𝑖 − 1) (−1) 𝑖]

= 𝑉 + 1
2 ∑[𝑎 Δ𝑡 ⋅ 0]

= 𝑉 .

(3.5)

3.2. Iterative Method
To improve this approximation of the tides, the Iterative Method has been devel-
oped. In this method, we consider the tidal current in a more accurate form. Floris
Buwalda [1] has previously improved the form that was set by ISO [5] into the
following

𝑉 (𝑡) = 𝑉 , ⋅ cos (2𝜋𝜏) + 𝑉 , ⋅ sin (2𝜋𝜏) + 𝑉 , ⋅ 𝜏 + 𝑉 , (3.6)

where

𝑉 (𝑡) : current speed on time 𝑡 in [𝐿𝑇] ;

𝜏 : the dimensionless variable given for 𝑡𝑇 ;

𝑡 : time in [𝑇];

𝑇 :
period of the dominant tidal consituent in units of time, [𝑇],
namely 12 hours, 25 minutes, and 12 seconds;

𝑉 , , 𝑉 , , 𝑉 , , 𝑉 , : unknown constants.

The unknown constants here are named as such so that they represent the
contributions to the speed of the current. The second letter in the subscript corre-
sponds to, respectively, the cosine, sine, linear time, and a constant (0). With
the Iterative Process we will then try to approximate these unknown constants.

Eventually, we want to figure out the relation between the delivered power
(𝑃) and the ship’s speed relative to the water (𝑉). Firstly, it is assumed that the
following relation holds:

𝑃(𝑉) = 𝑎 + 𝑏 ⋅ (𝑉) (3.7)

3

8 3. Solving methods

or equivalently:

𝑉 = (𝑃(𝑉) − 𝑎𝑏)

1
𝑞

(3.8)

but we do not know what these 𝑎, 𝑏 and 𝑞 are.
By ISO’s standards [5], a minimum of 4 Double Runs is needed. It will become

clear why that is shortly. So that is 8 Runs. The power setting 𝑃 for both Runs of
a Double Run should be nearly equal. The power setting of the different Double
Runs should be spread between 65% and 100% [6]. When we average the 𝑃 and
𝑉 of each Double Run, it will result in a (𝑃, 𝑉) pair for each Double Run. Thus, we
will have 4 (𝑃, 𝑉) pairs, where 𝑃 is a function of 𝑉 as stated in (3.7).

Then, a ’least squares’ fitting method is used on these 4 value-input-pairs to the
function (3.7). This fitting will determine an approximation of 𝑎, 𝑏, and 𝑞, and thus
a first approximation of the power/speed function is made. These are 3 variables
that need to be fitted. As we will see later, in (3.6) we even have 4 unknown
constants. One might now understand why a minimum of 4 Double Runs has been
set.

Now, we have an initial approximation of the power/speed function. However,
the 𝑉 in these pairs that this fitting was based on, do not yet account for the
current as given by (3.6). The problem there is that we also do not have the values
for 𝑉 , , 𝑉 , , 𝑉 , , and 𝑉 , . So, we develop an iterative process to improve this
approximation step by step. This will be done until our calculated Power is close
enough to the measured Power.

We now need to consider for which constants the values are certain, and which
ones depend on the formulas. Certain are the following:

• 𝑃 , , because the ship delivered a certain amount of power, which has been
measured.

• 𝑉 , , the measured ground speed of Double Run 𝑖, because we have GPS.

• 𝑡 , the timestamp of Double Run 𝑖
And the rest can only be determined by approximating the formulas.

To better follow the steps we will be taking, please refer to Figure 3.1.
The first step is to take the current 𝑉 , , 𝑎, 𝑏, and 𝑞, and set a value to 𝑃 by

formula (3.7). These are now the values of 𝑃 according to our found variables.
Next, we check if these 𝑃 are close enough to the actual delivered power 𝑃 , , by
the error function

𝐸 =∑(𝑃(𝑉) − 𝑃 ,) (3.9)

where 𝑖 is the index of the Double Run, 𝑃(𝑉) the Delivered Power according to the
current approximation of formula (3.7), and 𝑃 is the actually delivered power with
a number of corrections.

3.2. Iterative Method

3

9

4 tuples
(𝑉 , 𝑃 , 𝑡)

𝑃 = 𝑎+𝑏⋅(𝑉 ,)
Fitting 𝑉 , and 𝑃 , pairs to
𝑃(𝑉) = 𝑎 + 𝑏 ⋅ (𝑉)

to find 𝑎, 𝑏, 𝑞

Check stop condition
𝐸 = ∑ (𝑃 − 𝑃 ,)

𝑉 , =
𝑞√ ,

𝑉 , = 𝑉 , ± 𝑉 ,
Fitting 𝑉 , and 𝑡 pairs to

𝑉 = 𝑉 , cos (2𝜋𝜏)+𝑉 , sin (2𝜋𝜏)+𝑉 , 𝜏+𝑉 ,
to find 𝑉 , , 𝑉 , , 𝑉 , , 𝑉 ,

𝑉 , = 𝑉 , cos (2𝜋𝜏) + 𝑉 , sin (2𝜋𝜏) + 𝑉 , 𝜏 + 𝑉 ,

𝑉 , = 𝑉 , ± 𝑉 ,

Figure 3.1: A visual representation of the Iterative Method. Note that in the green, rectangled nodes
we set new values to variables; in the blue, rounded nodes we fit a function; and the stop condition is
checked in the red, hexagonal node.

If we are not close enough yet, we set an intermediate value of 𝑉 , by formula
(3.8) and our current values of 𝑃 , 𝑎, 𝑏, and 𝑞. With this intermediate value we can
calculate an intermediate value of 𝑉 , with 𝑉 , = 𝑉 , ± 𝑉 , , because we know 𝑉 ,
for certain and we have just created 𝑉 , . We set this per Single Run, as the ± here
depends on whether the ship is going up or downstream.

This 𝑉 , gives us a value for the current speed during the Run taking place at
time 𝑡 . With these values, we make a fitting of function (3.6) to find values for
𝑉 , , 𝑉 , , 𝑉 , , and 𝑉 , . This step will give us a complete (approximated) function
of the current speed 𝑉 according to time 𝑡.

With this function, we can set a value to 𝑉 , by only having to insert the times-
tamp 𝑡 of the Run. The function value of 𝑉 , gives us a new value for 𝑉 , with the
function 𝑉 , = 𝑉 , ± 𝑉 , .

Now we are back to where we started, where we have values for 𝑉 , , and the
measured values for 𝑃 , . So we can once again make a fitting of function (3.7) to
find new values for 𝑎, 𝑏, and 𝑞. This, in turn, gives us new — hopefully improved
— values for the function value of 𝑃 . Once again, we reach the stop condition to
check if our error is small enough now.

The Iterative Process means that we stay in this loop until the error is small
enough. This, however, also raises a problem: will the method even converge?
In fact, the existence of a limit of this Method has yet to be proven. Therefore,
we assume that it exists. Additionally, even if the error converges to some value,
it might not converge to 0. Luckily, any converging sequence is also a Cauchy

3

10 3. Solving methods

sequence. So we can look at two consecutive values of the error function, and
check if that difference is small enough instead. So when |𝐸 − 𝐸 | < 10 , we
stop, which means we have come close to the limit of the error value2.

Another ”ambiguity” problem is the choice for the initial conditions. For any non-
linear ”least squares” fitting, we first need to estimate the correct values, regardless
of the method. It has not yet been explored how the current estimate using the
Mean of Means Method affects the fittings.

Lastly, there are various non-linear least squares fitting methods that can be
used. Two methods, the Trust Region Reflective and the Levenberg-Marquardt
Method, are explored later.

3.3. Direct Method
The Direct Method makes use of substitution, so we do not have to keep updating
two different function approximations, and instead only need to do one fitting. We
substitute (3.6) into (3.3), which we then substitute into (3.7) to get the following
expression

𝑃(𝑉 , 𝜏) = 𝑎 + 𝑏 [𝑉 ± (𝑉 , cos (2𝜋𝜏) + 𝑉 , sin (2𝜋𝜏) + 𝑉 , 𝜏 + 𝑉 ,)] (3.10)

where

𝑉 : ground speed of the ship in [𝑚𝑠] ;

𝜏 : dimensionless time, i.e. 𝜏 = 𝑡
𝑇 ;

𝑎, 𝑏, 𝑞, 𝑉 , , 𝑉 , , 𝑉 , , 𝑉 , : unknown constants to be fitted.
For 𝑛 Double Runs we have 2𝑛 Single Runs. So, we get the following system of
equations

𝑃𝑃𝑃(𝑉𝑉𝑉 ,𝜏𝜏𝜏)=
⎡
⎢
⎢
⎣

𝑃
𝑃
⋮
𝑃

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎 + 𝑏 [𝑉 , ± (𝑉 , cos (2𝜋𝜏) + 𝑉 , sin (2𝜋𝜏) + 𝑉 , 𝜏 + 𝑉 ,)]
𝑎 + 𝑏 [𝑉 , ± (𝑉 , cos (2𝜋𝜏) + 𝑉 , sin (2𝜋𝜏) + 𝑉 , 𝜏 + 𝑉 ,)]

⋮
𝑎 + 𝑏 [𝑉 , ± (𝑉 , cos (2𝜋𝜏) + 𝑉 , sin (2𝜋𝜏) + 𝑉 , 𝜏 + 𝑉 ,)]

⎤
⎥
⎥
⎥
⎦

(3.11)

In this system, we have 7 constants that need to be fitted. That means that we need
at least 4 Double Runs (which makes for 8 Runs), so that we have enough equations
in our system. This also lines up with ISO’s previously mentioned standard. It
also means that the initial guesses need to be reasonably close to the true values.
However, the advantage is that the power settings do not need to be the same
anymore for the two Runs in a Double Run. And in addition, we need only to do
one fitting.
2The value is chosen to be reasonably small, but also large enough to be above computer precision.

3.4. Least squares fitting methods

3

11

3.4. Least squares fitting methods
There are several methods to do a least squares fitting. In this paper we will
consider and compare two popular ones: Levenberg-Marquardt, and Trust Region
Reflective. Before we elaborate more on these methods individually, we note what
they try to achieve.

Let 𝑓 be a non-linear function of 𝑥𝑥𝑥 and 𝛽𝛽𝛽, where 𝛽𝛽𝛽 is 𝑛-dimensional. In our
case we have 𝑥𝑥𝑥 = [𝑉 , 𝜏], and 𝛽𝛽𝛽 = [𝑎, 𝑏, 𝑞, 𝑉 , , 𝑉 , , 𝑉 , , 𝑉 ,]. Given are 𝑚 tuples of
input and output, (𝑥𝑥𝑥 , 𝑦), where 𝑦 is what should be the result of 𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽). A least
squares fitting method then tries to find a 𝛽𝛽𝛽 such that we get as close to the real
function 𝑓 as possible. Thus, it minimises the sum of squares

𝑆(𝛽𝛽𝛽) =∑(𝑦 − 𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽)) . (3.12)

3.4.1. Trust Region Reflective
The idea of the Trust Region Methods is explained clearly by Conn, Gold, and Toint
(2000) [7] that the function that needs to be minimised — in our case 𝑆(𝛽𝛽𝛽) — can
be approximated with 𝑞(𝛽𝛽𝛽), where 𝑞 is a much simpler function. Let 𝛽𝛽𝛽 be our first
guess for 𝛽𝛽𝛽 . We approximate 𝑆 with 𝑞, but we only trust this approximation 𝑞 on a
neighbourhood of 𝛽𝛽𝛽 , which is called the Trust Region. By using this approximation
of 𝑞(𝛽𝛽𝛽), we can look for a 𝛽𝛽𝛽 where 𝑆(𝛽𝛽𝛽) is smaller than 𝑆(𝛽𝛽𝛽).

We start with 𝛽𝛽𝛽 , and compute 𝑆(𝛽𝛽𝛽). We make a model that we trust on a
certain region, 𝑁 , around 𝛽𝛽𝛽 , where we approximate 𝑆 with 𝑞. With this model we
can predict a point 𝛽𝛽𝛽∗ ∈ 𝑁 where

𝑞(𝛽𝛽𝛽∗) < 𝑞(𝛽𝛽𝛽) (3.13)

holds. We then compute 𝑆(𝛽𝛽𝛽∗) and see if (3.13) also holds for 𝑆. If indeed we have
𝑆(𝛽𝛽𝛽∗) < 𝑆(𝛽𝛽𝛽), (3.14)

then we may confirm 𝛽𝛽𝛽 = 𝛽𝛽𝛽∗ and repeat the process. If (3.14) does not hold, then
we trusted the approximation 𝑞 too much, thus we reduce the size of 𝑁 , and then
predict a new point 𝛽𝛽𝛽∗.

Now the question that remains is how we determine this 𝑞, and how exactly we
find a point in 𝑁 that minimises 𝑞. This creates a subproblem. The Python SciPy
library refers to Branch, Coleman, and Li (2000) [8], where they define 𝜓 (𝑠) —
the equivalent of our 𝑞(𝛽𝛽𝛽) — as follows:

𝜓 (𝑠) ≝ 𝑠 ∇𝑓 + 12𝑠 (∇ 𝑓 + 𝐷 diag(∇𝑓)J 𝐷)𝑠, (3.15)

where 𝐷 is a scaling matrix. Then 𝑠, or in our case 𝛽𝛽𝛽∗ can be found by the following
minimisation subproblem:

min
∈ℝ

{𝜓 (𝑠) ∶ ‖𝐷 𝑠‖ ≤ Δ } (3.16)

So now that we have the 𝑞 and the means to find 𝛽𝛽𝛽∗. We then keep finding new
𝛽𝛽𝛽 until convergence is reached.

3

12 3. Solving methods

3.4.2. Levenberg-Marquardt
The Levenberg-Marquardt method is explained by Lourakis (2005) [9], and is only
equipped to find a local minimum. It is an iterative process, and the user must
provide an initial guess for 𝛽𝛽𝛽, say 𝛽𝛽𝛽 . If there is only one minimum, any guess, like
𝛽𝛽𝛽 = (1, 1, ..., 1) is good. If, however, there are more local minima, then one must
provide the method with a guess that is close to the global minimum.

We want to update this 𝛽𝛽𝛽 to 𝛽𝛽𝛽 = 𝛽𝛽𝛽 +𝛿𝛿𝛿. We need to know which 𝛿𝛿𝛿 to choose.
For this, we first take the linearisation of 𝑓:

𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽 +𝛿𝛿𝛿) ≈ 𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽) + J 𝛿𝛿𝛿. (3.17)

where J is the Jacobian of 𝑓 with respect to 𝛽𝛽𝛽

J = 𝜕𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽)
𝜕𝛽𝛽𝛽 . (3.18)

Substituting (3.17) into (3.12) gives

𝑆(𝛽𝛽𝛽 +𝛿𝛿𝛿) ≈∑(𝑦 − 𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽) − J 𝛿𝛿𝛿) . (3.19)

To be better able to solve this, we pose it in vector notation. For that, first note the
following notation

𝑦𝑦𝑦 = [𝑦 , ..., 𝑦] (3.20)
J = [J , ...,J] (3.21)

𝑓𝑓𝑓(𝛽𝛽𝛽) = [𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽), ..., 𝑓(𝑥𝑥𝑥 ,𝛽𝛽𝛽)] . (3.22)

With this, we can write (3.19) as

𝑆(𝛽𝛽𝛽 +𝛿𝛿𝛿) ≈ ‖𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽) − J𝛿𝛿𝛿‖
= [𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽)] [𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽)] − 2[𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽)] J𝛿𝛿𝛿 + 𝛿𝛿𝛿 J J𝛿𝛿𝛿.

(3.23)

Now, 𝑆(𝛽𝛽𝛽) has its minimum at a zero gradient with respect to 𝛽𝛽𝛽, thus we take
the derivative of 𝑆(𝛽𝛽𝛽 +𝛿𝛿𝛿) from (3.23), then set it to zero. This gives

(J J)𝛿𝛿𝛿 = J [𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽)]. (3.24)

This is where Levenberg comes in. He made a damped version of this equality, mak-
ing his method an average between the Gauss-Newton algorithm and the gradient-
descent. Using I as the identity matrix and 𝜆 as an adjustable constant, Levenberg
says we should solve the following instead of (3.24):

(J J+ 𝜆I)𝛿𝛿𝛿 = J [𝑦𝑦𝑦 −𝑓𝑓𝑓(𝛽𝛽𝛽)]. (3.25)

If the gradiant of 𝑆 is high, we can keep the value of 𝜆 low to stay closer to the
Gauss-Newton algorithm. If it does not decrease enough, we can use this addition
of 𝜆 by giving it a higher value, thus getting closer to the gradient-descent direction.

3.4. Least squares fitting methods

3

13

One last addition from Fletcher [10] helps avoid slow convergence in the direc-
tion of small gradient. Instead of the identity matrix I we use diag(J J).

Now that we have discovered the 𝛿𝛿𝛿 needed to make 𝛽𝛽𝛽 we start the process over
with the new 𝛽𝛽𝛽 . We keep going, until either 𝛿𝛿𝛿 or 𝑆(𝛽𝛽𝛽) − 𝑆(𝛽𝛽𝛽 +𝛿𝛿𝛿) is sufficiently
small. Then 𝛽𝛽𝛽 is considered to be 𝛽𝛽𝛽 — the optimal solution.

4
Measurements

In this chapter we investigate the difference between the errors in the Iterative
Method and the Direct Method, as well as the two different least squares fitting
methods we explain in 3.4. We start with explaining what needs to be simulated,
and then show the results of those simulations. After that, we will show the com-
parisons between the methods and the least squares methods in various situations.

We are given some existing model test data. These model tests are performed
in a towing tank, without additional wave or wind resistance. We have six different
simulations from this data. All six simulations have the same function of the current
and the same non-dimensional time vector, namely:

𝛽𝛽𝛽 = (
1.5
1.3
0.8
1.5
) , 𝜏𝜏𝜏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0
0.07
0.12
0.18
0.26
0.33
0.38
0.47
0.52
0.62

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

(4.1)

As you can see from 𝜏𝜏𝜏, there are 10 measurements in every simulation. The
(𝑃𝑃𝑃,𝑉𝑉𝑉) tuples are listed in Tables 4.1-4.6.

15

4

16 4. Measurements

𝑃 𝑉 ,
(kW) (kts)

1 5225 14
2 5225 14
3 6728 15
4 6728 15
5 8716 16
6 8716 16
7 11503 17
8 11503 17
9 11503 17
10 11503 17

Table 4.1: Data tuples
of simulation 1.1

𝑃 𝑉 ,
(kW) (kts)

1 2313 11
2 3035 12
3 4018 13
4 5225 14
5 6728 15
6 8716 16
7 9987 16.5
8 9987 16.5
9 11503 17
10 11503 17

Table 4.2: Data tuples
of simulation 1.2

𝑃 𝑉 ,
(kW) (kts)

1 34713 24
2 34713 24
3 40478 25
4 40478 25
5 47305 26
6 47305 26
7 55599 27
8 55599 27
9 65932 28
10 65932 28

Table 4.3: Data tuples
of simulation 2.1

𝑃 𝑉 ,
(kW) (kts)

1 32141 23.5
2 34713 24
3 37483 24.5
4 40478 25
5 43737 25.5
6 47305 26
7 51238 26.5
8 55599 27
9 60466 27.5
10 65932 28

Table 4.4: Data tuples
of simulation 2.2

𝑃 𝑉 ,
(kW) (kts)

1 1699 12
2 1699 12
3 2094 13
4 2094 13
5 2554 14
6 2554 14
7 3525 15
8 3525 15
9 5262 16
10 5262 16

Table 4.5: Data tuples
of simulation 3.1

𝑃 𝑉 ,
(kW) (kts)

1 1483 11.5
2 1699 12
3 1896 12.5
4 2094 13
5 2296 13.5
6 2554 14
7 2939 14.5
8 3525 15
9 4304 15.5
10 5262 16

Table 4.6: Data tuples
of simulation 3.2

4

17

A few notations and abbreviations which are used in this chapter:

Notation Definition
MN Measurement Noise
IT Iterative Method, using Trust Region Reflective
IL Iterative Method, using Levenberg-Marquardt
DT Direct Method, using Trust Region Reflective
DL Direct Method, using Levenberg-Marquardt

𝐸 The error function of the Power √ ∑ (𝑃(𝑉 , –𝑃)

𝐸 The error function of Current Speed √ ∑ (𝑉 (𝜏)–𝑉 ,)
𝐸 , 𝐸 of IT
𝐸 , 𝐸 of IL
𝐸 , 𝐸 of DT
𝐸 , 𝐸 of DL
𝐸 , 𝐸 of IT
𝐸 , 𝐸 of IL
𝐸 , 𝐸 of DT
𝐸 , 𝐸 of DL

4

18 4. Measurements

4.1. Example plots
To get an idea of the effectiveness of the methods, we use a visual result. In Figures
4.1-4.8, we show the result of fitting the data of simulation 1.2. Though differences
between the two least squares fitting methods are not clear in these images, those
between the Iterative Method and the Direct Method definitely are.

Each image has three perspectives. For now, we plot just the actual data points.
The inclusion of noise and inaccuracies in the measurements will be covered in
Chapter 4.2. In addition to the data points, the approximation of the function is
plotted. Every image shows either 𝑉 (𝜏) or 𝑃(𝑉). The differences being the Method
(Iterative or Direct) and the Fitter (Trust Region Reflective or Levenberg-Marquardt).

Figure 4.1: () with IT fitting. Figure 4.2: () with IL fitting.

Figure 4.3: () with DT fitting. Figure 4.4: () with DL fitting.

We note that the 𝑉 (𝜏) fitting of the Direct Method is clearly much better than that
of the Iterative Method. A very slight difference can be seen in the 𝑃(𝑉) functions
in figures 4.5-4.8, though it is not clear from the plot which one is better.

4.1. Example plots

4

19

Figure 4.5: () with IT fitting. Figure 4.6: () with IL fitting.

Figure 4.7: () with DT fitting. Figure 4.8: () with DL fitting.

4

20 4. Measurements

4.2. Measurement Noise
As you see in the data, the measurements are exact. E.g., in Table 4.1, we see
that the same power settings in subsequent rows correspond to exactly the same
ship speed. Similarly, in the previous figures, we see that there are only ”exact”
data points, yet no ”measured” data points. In reality, there will be noise in the
measurements. Thus, we have to introduce this noise. It is more likely that the
measurement is close to reality, and less likely that the measurement is far away
from reality. A distribution that does this is the normal distribution.

We will add the noise to the real data points, thus we let the mean of the noise
be 0. For the standard deviation, we need to have different values for 𝑃, 𝑉 and 𝑡,
as they are of different magnitudes. If we let the standard deviation be of the
maximum error, 99.73% of the errors we create will be smaller than the maximum
error. The other .27% are outliers, which can also happen in real life. The maximum
errors are:

• 𝑃: according to Hans Huisman, the maximum error is desired to be 25 kW.

• 𝑉 : the maximum error is 0.05 kts.

• 𝑡: the maximum error is 36 seconds. That means that the maximum error for
𝜏 is actually .

When we include Measurement Noise, we run every simulation 1,000 times,
and then take an average over the error values 𝐸 and 𝐸 . We do this, because
the magnitude of the errors should depend on the magnitude of the Measurement
Noise. The results are shown in Tables 4.7-4.12 below for the six different simula-
tions.

In these results we can see that clearly the Measurement Noise makes some
difference in the error that is produced. Michaël Mersie has noted that the biggest
contributer to the error is the Measurement Noise in 𝑉 .

One more notable thing about these results are Tables 4.11 and 4.12. Here
we see that the Iterative Method has some problems. We will discuss this in more
detail in Chapter 4.5.

With MN Without MN
𝐸 , 26.7065 15.6631
𝐸 , 27.1978 15.6631
𝐸 , 25.8026 15.3523
𝐸 , 25.1198 15.3523
𝐸 , 0.0113 0.0005
𝐸 , 0.0111 0.0005
𝐸 , 0.0117 0.0011
𝐸 , 0.0117 0.0011

Table 4.7: Different Errors with and
without Measurement Noise, simula-
tion 1.1

With MN Without MN
𝐸 , 92.1023 90.1089
𝐸 , 91.7498 90.1090
𝐸 , 58.0959 56.1560
𝐸 , 58.4677 56.1560
𝐸 , 0.0623 0.0606
𝐸 , 0.0617 0.0606
𝐸 , 0.0222 0.0180
𝐸 , 0.0225 0.0180

Table 4.8: Different Errors with and
without Measurement Noise, simula-
tion 1.2

4.2. Measurement Noise

4

21

With MN Without MN
𝐸 , 99.1648 72.9193
𝐸 , 95.5980 72.9196
𝐸 , 92.1038 68.3025
𝐸 , 91.0626 68.3025
𝐸 , 0.0116 0.0018
𝐸 , 0.0115 0.0018
𝐸 , 0.0118 0.0032
𝐸 , 0.0119 0.0032

Table 4.9: Different Errors with and
without Measurement Noise, simula-
tion 2.1

With MN Without MN
𝐸 , 98.6985 76.3623
𝐸 , 97.7673 75.5234
𝐸 , 87.9344 66.9800
𝐸 , 87.0323 66.9800
𝐸 , 0.0156 0.0096
𝐸 , 0.0152 0.0094
𝐸 , 0.0138 0.0078
𝐸 , 0.0139 0.0078

Table 4.10: Different Errors with and
without Measurement Noise, simula-
tion 2.2

With MN Without MN
𝐸 , 695.2947* 668.0375*
𝐸 , N.A. N.A.
𝐸 , 36.7763 36.2230
𝐸 , 36.9183 36.2230
𝐸 , 0.9495* 0.7073*
𝐸 , N.A. N.A.
𝐸 , 0.0334 0.0296
𝐸 , 0.0333 0.0296

Table 4.11: Different Errors with and
without Measurement Noise, simula-
tion 3.1.
Results marked with a * are only aver-
aged over 10 simulations, as they took
way too long.

With MN Without MN
𝐸 , 322.0079* 290.8738*
𝐸 , N.A. N.A.
𝐸 , 56.7570 56.3135
𝐸 , 56.3456 56.3135
𝐸 , 0.0119* 0.6709*
𝐸 , N.A. N.A.
𝐸 , 0.0690 0.0672
𝐸 , 0.0688 0.0672

Table 4.12: Different Errors with and
without Measurement Noise, simula-
tion 3.2.
Results marked with a * are only aver-
aged over 10 simulations, as they took
way too long. Results for IL are not
strictly Levenberg-Marquardt, as that
gives errors described in chapter 4.5

4

22 4. Measurements

4.3. Finding situations where the Iterative Method
beats the Direct Method

Firstly, let us look back at the experimental data in Tables 4.7-4.12. At first glance
it seems that the Direct Method is better.

We see that in the error values of the 𝑃-function, the Direct Method performs
better in all the simulations. Most margins are small (less than a factor of 2),
but some are significant. However, in simulations 1.1 and 2.1, we notice that the
Iterative Method produces a smaller error for the 𝑉 -function. The margin here is
approximately a factor of 2.

We now ask ourselves what simulations 1.1 and 2.1 have in common. Addition-
ally, can we reproduce this or are these the only instances where this happens?
For this we create theoretical data in Chapter 4.4. There, we first explain what the
data in the tables means, and how it is made.

4.3.1. Strict Double Runs
Simulation data 1.1 and 2.1 both have strict Double Runs. Every second Run is
strictly the same speed and power as the one before. We can easily reproduce this.
For this, let us look at Tables 4.13, 4.15, and 4.17. These three simulations work
with strict Double Runs. However, only Table 4.17 portrays what we are looking for:
the Iterative Method performing better for 𝑉 . Therefore, even if strictly Double
Runs is a deciding factor, it is not the only one.

We note that 4.15 and 4.17 both have the same 𝛽𝛽𝛽. Thus, this is not the deciding
factor. We also note that 4.13 and 4.15 have the same values for 𝑎, 𝑏, 𝑞, and 𝑉𝑉𝑉 ,
while 4.17 has different values here. Thus, it is possible that the cause of a better
performance in 𝐸 from the Iterative Method is either the combination of 𝑎, 𝑏, and
𝑞, or the specifics of 𝑉𝑉𝑉 .

We note that Table 4.17 uses a lower value for 𝑎 and a higher value for 𝑞 than
the other two Tables do. Additionally, the range of the speeds 𝑉 is smaller in this
Table than in the other two.

This latter hypothesis is backed up by the experimental data. The difference
between the minimum and maximum 𝑉 in simulation 1.1 and 2.1 is merely 3 and
4, respectively, while it is a little more for the other simulations.

4.3.2. Small range of 𝑉
To test this hypothesis, we make Table 4.21, where 𝑉 ranges from 15 to 17.25,
while it does not contain Double Runs. We also consider Table 4.20, where 𝑉
ranges from 15 to 18, due to Double Runs.

In Table 4.21 we see that the Iterative Method performs badly compared to the
Direct Method when using Trust Region Reflective, and actually fails when using
Levenberg-Marquardt. This failure point is explained in Chapter 4.5.

In Table 4.20, however, we see that the Iterative Method outperforms the Direct
Method in its approximation of 𝑉 (𝜏). In addition to that, it even outperforms the
Direct Method in its approximation for 𝑃(𝑉) when using Trust Region Reflective —
and nearly so when using Levenberg-Marquardt.

4.3. Finding situations where the Iterative Method beats the Direct Method

4

23

This invalidates the theory that a small range for 𝑉 would cause the Iterative
Method to perform better than the Direct Method, but strengthens the theory that
Double Runs do.

4.3.3. Less than enough values for the Direct Method
We take a look at one more way in which the Iterative Method can beat the Direct
Method. Remember from Chapter 3 that the Iterative Process performs two distinct
least-squares fits per iteration: once to find 3 unknown variables (𝑎, 𝑏, and 𝑞), and
once to find 4 unknown variables (𝑉 , , 𝑉 , , 𝑉 , , and 𝑉 ,). The Direct Method
performs one single least-squares fit to find all 7 unknown variables.

The inherent problem that a set of equations with 𝑛 unknown variables is that
you need at least 𝑛 equations to solve. Since Levenberg-Marquardt uses a linear
solver in one of its steps, this problem will transfer. Therefore, if we have only 4
(𝑃, 𝑉 , 𝜏)-tuples, the Direct Method does not have enough equations for the number
of unknown variables. Thus, using Levenberg-Marquardt will not work there. Trust
Region Reflective does accept less equations than its number of unknown values,
though.

A way to circumvent this problem is to copy the exact data points we have,
thereby doubling the (𝑃, 𝑉 , 𝜏)-tuples we have. This extra data does not hold any
new information, however, so we look at its effectiveness in Tables 4.22 and 4.23.

Firstly, we note that even though we expected the Iterative Method to succeed
with only 4 data points (Table 4.22), it somehow converges to an extremely bad
approximation. That said, we compare this Table to Table 4.23 and see that copying
the data actually helps a lot. Although once in a while the Measurement Noise is just
too weird for the Levenberg-Marquardt Method to converge, it seems that overall
it should be possible to use this technique in case it is needed. Finally, the Direct
Method actually still performs better than the Iterative Method.

4

24 4. Measurements

4.4. Theoretical data
The following tables are the results of simulations with theoretical data — as op-
posed to experimental data. The data is created as follows:

• We take the values for 𝑉 , then use our chosen 𝑎, 𝑏, and 𝑞 to calculate the 𝑃.

• We use our chosen 𝛽𝛽𝛽 as the constants in the function 𝑉 (𝜏). With this we
calculate 𝑉 at all the measurement points.

• We make 𝑉 from 𝑉 and 𝑉 .

• Noise is added to 𝜏𝜏𝜏, 𝑃, and 𝑉 . This is all that is provided to the solvers.

The resulting tables give the Errors produced by the solvers, differentiating be-
tween using the Iterative Method or the Direct Method, as well as whether we use
Levenberg-Marquardt or Trust-Region Reflective.

Each table has different values for 𝑉𝑉𝑉 , 𝛽𝛽𝛽, and 𝑎, 𝑏, and 𝑞. These are all docu-
mented in the table captions.

Iterative Direct
𝐸 , 8.2467 6.5992
𝐸 , 8.5789 6.5363
𝐸 , 0.0199 0.0183
𝐸 , 0.0198 0.0179

Table 4.13: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

. ; . ; . .
(. , . , . , .)
(, , , , , , , , ,).

Iterative Direct
𝐸 , 9.4404 6.6977
𝐸 , 9.3705 6.5552
𝐸 , 0.0261 0.0189
𝐸 , 0.0258 0.0187

Table 4.14: The average errors produced by both
the Iterative and the Direct Method over 1000 sim-
ulations with Measurement Noise. Using the fol-
lowing data:

. ; . ; . .
(. , . , . , .)

(, . , , . , , , , , . , , .).

Iterative Direct
𝐸 , 8.4236 6.7674
𝐸 , 8.2175 6.6064
𝐸 , 0.0203 0.0184
𝐸 , 0.0202 0.0184

Table 4.15: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

. ; . ; . .
(. , . , . , .)
(, , , , , , , , ,).

Iterative Direct
𝐸 , 9.6632 6.6621
𝐸 , 9.6398 6.8921
𝐸 , 0.0262 0.0195
𝐸 , 0.0262 0.0187

Table 4.16: The average errors produced by both
the Iterative and the Direct Method over 1000 sim-
ulations with Measurement Noise. Using the fol-
lowing data:

. ; . ; . .
(. , . , . , .)

(, . , , . , , , , , . , , .).

4.4. Theoretical data

4

25

Iterative Direct
𝐸 , 33.3171 31.5166
𝐸 , 33.2816 32.0342
𝐸 , 0.0113 0.0119
𝐸 , 0.0117 0.0117

Table 4.17: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, , , , , , , , ,).

Iterative Direct
𝐸 , 7.8006 7.7742
𝐸 , 7.7583 7.5855*
𝐸 , 0.0167 0.0165
𝐸 , 0.0163 0.0162*

Table 4.18: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, . , , . , , . , , . , , .).

* The DL Method here diverges once every
100-400 times. These numbers represent the
times that it converges.

Iterative Direct
𝐸 , 10.3475** 7.4966
𝐸 , N.A. 7.3785*
𝐸 , 0.0187** 0.0188
𝐸 , N.A. 0.0190*

Table 4.19: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, , , . , . , . , , , , .).

* The DL Method here diverges once every
100-400 times. These numbers represent the
times that it converges.
** The IL Method here diverges over half the
time. The number here, therefore, represents
the average of only 5 simulations where it did
converge.

Iterative Direct
𝐸 , 8.5049 8.7105
𝐸 , 8.4218 8.3927*
𝐸 , 0.0199 0.0202
𝐸 , 0.0198 0.0200*

Table 4.20: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, , , , , , ,).

* The DL Method here diverges once every
10-400 times. These numbers represent the
times that it converges.

Iterative Direct
𝐸 , 8.9136* 6.9738
𝐸 , N.A.** 7.0785
𝐸 , 0.0208* 0.0172
𝐸 , N.A.** 0.0175

Table 4.21: The average errors produced by both the Iterative
and the Direct Method over 1000 simulations with Measure-
ment Noise. Using the following data:

; . ; . .
(. , . , . , .)
(, . , . , . , , . , . , . , , .).

* This number is averaged over only 9 simulations, as they
took way too long, and one diverged.
** The IL Method here diverges every time, and thus does not
produce results. See Chapter 4.5

4

26 4. Measurements

Iterative Direct
𝐸 , 9230.2713 111.9914
𝐸 , 9230.2713 N.A.*
𝐸 , 4.9987 0.1889
𝐸 , 5.0010 N.A.*

Table 4.22: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, , ,).
(, . , . , .).

* The DL Method here does not have enough
values to solve, thus produces no result.

Iterative Direct
𝐸 , 289.3705 72.2452
𝐸 , 288.9065** 111.0208*
𝐸 , 0.4275 0.1151
𝐸 , 0.4282** 3.8168*

Table 4.23: The average errors produced by
both the Iterative and the Direct Method over
1000 simulations with Measurement Noise.
Using the following data:

; . ; . .
(. , . , . , .)
(, , , , , , ,).
(, . , . , . , , . , . , .).

* The DL Method here diverges once every
50-300 times. These numbers represent the
times that it converges.
** The IL Method here diverges once every
1-100 times. These numbers represent the
average of 500 simulations where it did not
diverge.

4.5. Major problem with the Iterative Method for low Power Settings

4

27

4.5. Major problem with the Iterative Method for low
Power Settings

Reconsidering Figure 3.1, we focus on the first step after checking the stop condi-
tion. In this step, we set intermediate values for the ship’s speed, 𝑉 , , using the
given 𝑃 , and the latest values for 𝑎, 𝑏, and 𝑞.

At first glance, it seems like the logical way to calculate 𝑉 — simply the inverse

function of 𝑃(𝑉), namely 𝑉 = 𝑞√ , . However, since the Iterative Method tries

to improve the values for 𝑎, 𝑏, and 𝑞 step by step, it is possible that we quickly get
to an iteration where the value for 𝑎 can exceed the lowest value of 𝑃 , . This leads
to taking a root of a negative number, which does not produce real values. As the
output has to be a speed, we do expect a real value.

Thus, we need a way to avoid the value of 𝑎 exceeding min (𝑃 ,). One way is
to set an upper bound on the values that can be guessed. Trust Region Reflective
supports this, while Levenberg-Marquardt do not support bounds. Therefore, as
soon as 𝑎 will exceed min (𝑃 ,), we should switch over to Trust Region Reflective.

However, when trying to implement this, 𝑞 will sometimes get bigger than 3000.
This means that we would also have to set a bound on 𝑞. All this hints at the fact that
the Iterative Method does not reliably converge. The only way to make it converge
is to set bounds that conform to the expectations we have from the physics. These
bounds lead to an Error that can get over 20 times bigger than the Error given by
the Direct Method. See Table 4.24.

𝐸 , 788.7327
𝐸 , 37.5844
𝐸 , 1.0328
𝐸 , 0.0382

Table 4.24: Showing the big error in low Power settings for
the Iterative Method. Simulation 3.1. The constants in the
function are (, , , , , , ,) = (3.9, 0.9, 0.6, -0.2).

This can also be seen in figures 4.9 and 4.11. To compare, see the fit from the
Direct Method of the same simulation in figures 4.10 and 4.12. Before we analyze
it, let us first describe the figures.

In Figure 4.9 we see a plot of the delivered power, as a function of the ship’s
speed. The blue dots represent the real data points. The red crosses represent
the data points with Measurement Noise added to it. There we also see how small
this Measurement Noise really is. Lastly, the black line is 𝑃(𝑉) with 𝑎, 𝑏, and 𝑞 as
found by the solver (Iterative Method, in this case).

Next, in Figure 4.11 we see multiple plots. All of them plot speed as a function
of time. The blue dots represent the real speed of the current over time, where the
yellow line is the approximation of this 𝑉 -function, as found by the solver. The red
crosses represent the ship’s speed relative to the ground, with Measurement Noise.
The reason that it zigzags is because every other Run, the ship sails with or against

4

28 4. Measurements

Figure 4.9: A visual representation of ()
with the found constants by the Iterative
Method from simulation 3.1.

Figure 4.10: A visual representation of ()
with the found constants by the Direct Method
from simulation 3.1.

Figure 4.11: A visual representation of (),
(), and () with the found constants by

the Iterative Method from simulation 3.1.

Figure 4.12: A visual representation of (),
(), and () with the found constants by

the Direct Method from simulation 3.1.

the current. This means that when the current increases the ship’s speed in one
Run, it decreases it in the next. Lastly, the red dots are the real values of the ship’s
speed, 𝑉 . The solver approximates this by adding 𝑉 and 𝑉 appropriately. That is
why the green line, which is the approximation, is close when its approximation for
𝑉 is close, and wrong when its approximation for 𝑉 is wrong.

This illustrates the downside of the Iterative Method. In the good cases, bounc-
ing back and forth between adjusting the constants in either the 𝑃-function or the
𝑉 -function improves both, little by little. In the bad cases like this one, however,
a bad adjustment to one will make the adjustment for the other even worse. We
see in Figure 4.11 that the 𝑉 function is fitted quite horribly. This, in turn, ruins
the calculated 𝑉 . The effect of this is seen in Figure 4.9, where the values of 𝑉
that are used are too low to accurately estimate the constants in the 𝑃-function.
We might say the calculations diverge.

This emphasises the effectiveness of the Direct Method. As there are no more

4.5. Major problem with the Iterative Method for low Power Settings

4

29

loose steps, but only one coherent Least Squares problem over the entire system
of equations, the calculations do not influence other calculations to diverge. We
see this in the fact that where the Iterative Method crashes with an error, the Direct
Method gives an answer in little time.

4

30 4. Measurements

4.6. Effectiveness of one step of Mean of Means
In this section we evaluate how effective it is for the Iterative Method to start off
with one step of Mean of Means before the first iteration. We can divide the values
for 𝑉 up in pairs of subsequent values, then set 𝑉 of both values in the pair to the
average of the two. Visually, this means that we do the following

Given values Approximated
for 𝑉 values for 𝑉
𝑉 , (1)

> Average (1) <
𝑉 , (1)

𝑉 , (2)
> Average (2) <

𝑉 , (2)

⋮ ⋮

instead of setting 𝑉 , according to 3.1, in the first iteration. In Tables 4.25-4.30
we see the effectiveness this has on the Simulation data.

Note that the Iterative Method did not have problems with Simulation data 1.1,
1.2, 2.1, and 2.2. The first four Tables therefore give us insight into whether an
instance of Mean of Means increases efficiency of the Iterative Method. We see
that this is most definitely the case. Although we are talking about milliseconds per
simulation, the instance of Mean of Means greatly decreases the time it takes to
complete the Process - even to less than a third of the time.

This alone, however, is not enough reason to implement this. For every ship that
does a speed trial - and takes a few hours to do this - we save a few milliseconds
in approximating its 𝑃(𝑉)-function. However, it can be noted that - though the
margin is small - the Iterative Method also benefits from an instance of Mean of
Means by improving or approximately equaling all its errors. Well, all errors except
𝐸 , for Simulation data 2.1.

So, the evidence seems to suggest that if the Iterative Process does converge,
then it converges faster when an instance of Mean of Means is used before the first
iteration.

In the last two Tables, we observe the effect on diverging Iterative Processes.
For Simulation data 3.1 in Table 4.29 we see that Trust Region Reflective produced
enormous errors, and Levenberg-Marquardt does not even produce any values.
Neither of these problems are solved by introducing an instance of Mean of Means
to the process. For Simulation data 3.2 in Table 4.30 we observe the same thing.

4.6. Effectiveness of one step of Mean of Means

4

31

MoM No MoM
𝐸 , 22.7002 22.7538
𝐸 , 22.8320 22.8807
𝐸 , 0.0112 0.0113
𝐸 , 0.0111 0.0113
Average loops 𝑇 8.044 9.363
Average loops 𝐿 8.056 9.397
Time 𝑇* 296.2 345.6
Time 𝐿* 54.5 68.9

Table 4.25: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 1.1.
* Average time per simulation in milliseconds.

MoM No MoM
𝐸 , 76.3366 76.8503
𝐸 , 76.1294 76.3996
𝐸 , 0.0627 0.0635
𝐸 , 0.0619 0.0629
Average loops 𝑇 20.120 22.465
Average loops 𝐿 20.102 22.372
Time 𝑇* 244.5 299.8
Time 𝐿* 81.8 96.2

Table 4.26: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 1.2.
* Average time per simulation in milliseconds.

MoM No MoM
𝐸 , 114.0469 112.8976
𝐸 , 112.9890 115.6962
𝐸 , 0.0116 0.0118
𝐸 , 0.0115 0.0116
Average loops 𝑇 13.830 18.980
Average loops 𝐿 13.583 19.026
Time 𝑇* 577.2 1862.7
Time 𝐿* 105.8 296.1

Table 4.27: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 2.1.
* Average time per simulation in milliseconds.

MoM No MoM
𝐸 , 129.2512 131.2432
𝐸 , 127.7448 129.3305
𝐸 , 0.0156 0.0157
𝐸 , 0.0151 0.0152
Average loops 𝑇 20.318 25.819
Average loops 𝐿 19.994 26.139
Time 𝑇* 760.0 2337.0
Time 𝐿* 138.2 354.9

Table 4.28: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 2.2.
* Average time per simulation in milliseconds.

MoM No MoM
𝐸 , 381.7553 378.7258
𝐸 , N.A.** N.A.**
𝐸 , 0.9371 0.9656
𝐸 , N.A.** N.A.**
Average loops 𝑇 49.980 59.22
Average loops 𝐿 N.A.** N.A.**
Time 𝑇* 5771.0 6714.0
Time 𝐿* N.A.** N.A.**

Table 4.29: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 3.1.
* Average time per simulation in milliseconds.
** The IL Method here diverges every time,
and thus does not produce results.

MoM No MoM
𝐸 , 396.7838 324.4158
𝐸 , N.A. N.A.
𝐸 , 1.1161 0.5603
𝐸 , N.A. N.A.
Average loops 𝑇 366.9*** 384.4**
Average loops 𝐿 N.A. N.A.
Time 𝑇* 34130*** 35340**
Time 𝐿* N.A. N.A .

Table 4.30: The effect of performing one it-
eration of Mean of Means before starting the
Iterative Process. Simulation data 3.2. The
shown averages are only from 10 simulations,
as they took too long.
* Average time per simulation in milliseconds.
** The time cap for 35 seconds per simulation
had been reached every time (*** except for
one time). This happens when the Iterative
Method is diverging.

5
Conclusion

To conclude, we review everything we have found in this dissertation.
First, we found that the Direct Method in most cases outperforms the Iterative

Method. However, there are some specific cases where the Iterative Method is
better in some areas than the Direct Method. We notice that when the speed trial
consists only of Double Runs, and the difference between the minimum 𝑉 and max-
imum 𝑉 is small, that the Iterative Method will likely have a better approximation
of 𝑉 (𝜏) than the Direct Method has. In one of those cases, it also had a better
approximation of 𝑃(𝑉).

The question must therefore be asked, which of these is more important? A
better approximation of 𝑉 (𝜏), or a better approximation of 𝑃(𝑉). The answer is
left to the user to decide. Note, however, that unless the aforementioned conditions
are met, it is likely that the Direct Method will give a better approximation for both
𝑉 (𝜏) and 𝑃(𝑉) than the Iterative Method will.

We even see that the Direct Method’s problem of needing more data points
can be circumvented by just duplicating the data you already have, and it will still
outperform the Iterative Method. Why this happens is not yet clear, thus it might
be useful to study this more in later research. It can still be discovered in which
situations it does work, and in which it does not.

From our research it follows that the reason for the Iterative Method’s unsta-
bleness does not apply to the Direct Method. Since the Direct Method optimises all
unknown constants at the same time, instead of in two groups, it eliminates a path
of divergence that the Iterative Method suffers from.

Lastly we observed that, for the Iterative Method, there is a clear advantage
of performing an instance of Mean of Means in the first iteration. If the Iterative
Method would already converge, the instance of Mean of Means reduces the number
of iterations needed. This, in turn, reduces the time the whole process takes. And
the error values do not suffer for it.

If, however, the Iterative Method diverges, it may still do so when performing
an instance of Mean of Means.

33

34 References

In our data we have slightly touched upon the differences of using Levenberg-
Marquardt or Trust Region Reflective. It seems that for the Direct Method, in gen-
eral the errors are smaller when using Levenberg-Marquardt. However, it is also
more prone to diverging, while Trust Region Reflective is quite stable. It could be
interesting for a follow-up research to find out why this might be the case.

References
[1] F. Buwalda, Analysis of methods for determining ship speed during a

sea trial, BSc Thesis (TU Delft, http://resolver.tudelft.nl/uuid:
e7d5f3b6-324e-42ae-af94-7be1b5a0a83f, 2016).

[2] M. Mersie, Determination of water speeds of ships, BSc
Thesis (TU Delft, http://resolver.tudelft.nl/uuid:
b9ff7017-647e-47f4-88c5-189d2c433268, 2017).

[3] J. D. van Manen and P. van Oossanen, Principles of Naval Architecture, Volume
II: Resistance, Propulsion and Vibration, edited by E. V. Lewis (The Society of
Naval Architects and Marine Engineers, 1988).

[4] E. C. Tupper, Introduction to Naval Architecture (Butterworth Heinemann,
1996).

[5] ISO15016: Ships and marine technology — Guidelines for the assessment of
speed and power performance by analysis of speed trial data (ISO and ITTC,
2015).

[6] G. Strasser, K. Takagi, S. Werner, U. Hollenbach, T. Tanaka, K. Yamamoto, and
K. Hirota, A verification of the ITTC/ISO speed/power trials analysis, Journal
of Marine Science and Technology 20 (2015), 10.1007/s00773-015-0304-7.

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods (Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000).

[8] M. A. Branch, T. F. Coleman, and Y. li, A subspace, interior, and conjugate gra-
dient method for large-scale bound-constrained minimization problems, SIAM
Journal on Scientific Computing 21 (1999), 10.1137/S1064827595289108.

[9] M. I. Lourakis et al., A brief description of the levenberg-marquardt algorithm
implemented by levmar, Foundation of Research and Technology 4, 1 (2005).

[10] R. Fletcher and United Kingdom Atomic Energy Authority, Modified Marquardt
Subroutine for Non-Linear Least Squares., Tech. Rep. (Theoretical Physics Di-
vision, Atomic Energy Research Establishment, 1971).

http://resolver.tudelft.nl/uuid:e7d5f3b6-324e-42ae-af94-7be1b5a0a83f
http://resolver.tudelft.nl/uuid:e7d5f3b6-324e-42ae-af94-7be1b5a0a83f
http://resolver.tudelft.nl/uuid:b9ff7017-647e-47f4-88c5-189d2c433268
http://resolver.tudelft.nl/uuid:b9ff7017-647e-47f4-88c5-189d2c433268
http://dx.doi.org/10.1007/s00773-015-0304-7
http://dx.doi.org/10.1007/s00773-015-0304-7
http://dx.doi.org/10.1137/S1064827595289108
http://dx.doi.org/10.1137/S1064827595289108

A
Python Code

The following are the 4 different python files that were used to obtain the data in
this dissertation. The files can also be downloaded directly from Google Drive at
http://bit.ly/MAtsmaBEPPython for ease.

35

http://bit.ly/MAtsmaBEPPython

A

36 A. Python Code

A.1. Main
from Formulas import *
from PracData import *
from TheoData import *
import matplotlib as mpl
import matplotlib.pyplot as plt

Global constants. These are the only things that need changing
in order to get different kinds of results.
simulations = 1000
timeLimit = 3500 # time limit in seconds of all

simulations combined using Iterative Method
chosen_simulation_data = 1 # 1-6 is Practical data;

7+ is Theoretical data
MoM = 0 # Whether a Mean of Means should be

done on VG for the Iterative Method
first_guess_for_abq = [1000, 2, 3]
first_guess_for_vcConstants = [1., 1., 1., 1.]
vcCorrect = [1.5, 1.3, 0.8, 1.5]
method = 0 # 0 for Levenberg-Marquadt, 1 for Trust-Region Reflective
canBound = 0 # Whether or not changing to TRR with bounds is allowed
DIRECTorITERATIVE = 0 # 0 for direct, 1 for iterative
NoiseOnP = 1 # To set Measurement Noise
NoiseOnVG = 1 # on the different variables.
NoiseOnTAU = 1 # 0 for no noise, 1 for noise.

Don't change
timeLimit /= float(simulations)
method = ['lm', 'trf'][method]
DIRECTorITERATIVE = ['direct', 'iterative'][DIRECTorITERATIVE]

sim_numbers = [1.1, 1.2, 2.1, 2.2, 3.1, 3.2]
sim_numbers += [”Theoretical situation ” + str(i)

for i in range(1,20)]
sim_name = sim_numbers[chosen_simulation_data-1]

if chosen_simulation_data <= 6:
allP = pracP
allV = pracV
tau = pracTau

else:
allP = theoP
allV = theoVS
chosen_simulation_data -= 6
tau = theoTau[chosen_simulation_data-1]

A.1. Main

A

37

Main
if __name__=='__main__':

print ”Starting main.”

Solve sample data
Real data. User doesn't get this.
P = allP[chosen_simulation_data-1]
VS = allV[chosen_simulation_data-1]
VC = TAUtoVC(tau, *vcCorrect)
sLeftRight = np.array([(-1)**i for i in range(len(VS))])
VG = VSandTAUandVCCONSTtoVG(VS, sLeftRight, tau, vcCorrect)

Do 1000 simulations with this data
startTime = time.time()
results = [[None]*7]*simulations
prints = 1
for simulation in range(simulations):

Some helpful prints for myself
simStartTime = time.time()
if ((simulations < 10) or

(simulation%(simulations/10) == 0) or
((simStartTime-startTime)/40 > prints)):
if simulation != 0:

print ”Done”, simulation, ”simulations in”,
print round(simStartTime-startTime, 1), ”seconds.”
prints += 1

Adding measurement noise. This is what the user gets.
VG_MN, P_MN, tau_MN = MakeNoise(VG, NoiseOnVG, P,

NoiseOnP, tau, NoiseOnTAU)

First guess
abq0 = [el for el in first_guess_for_abq]
vcConst0 = [el for el in first_guess_for_vcConstants]

Find best values
if DIRECTorITERATIVE=='iterative':

try:
res = IterativeMethod(abq0, vcConst0, P_MN, VG_MN,

tau_MN, method=method, MoM=MoM,
epsilon=10e-3,
timeLimit=timeLimit,
canBound=canBound)

except:

A

38 A. Python Code

print ”\nLast sim was”, simulation
results = results[:simulation-1]
break

elif DIRECTorITERATIVE=='direct':
try:

res = DirectMethod(abq0, vcConst0, P_MN, VG_MN,
tau_MN, method=method)

except RuntimeWarning:
print ”\nLast sim was”, simulation
results = results[:simulation-1]
break

abq1, vcConst1, EP, loops = res

Calculating the real error on P function
CalcP = VStoP(VS, *abq1)
EPReal = Error(CalcP, P)

Calculating error on VC function
VC_BasedOnConstants = TAUtoVC(tau, *vcConst1)
EVC = Error(VC_BasedOnConstants, VC)

Store best values
simDuration = time.time()-simStartTime
results[simulation] = [abq1, vcConst1, EP, EVC,

loops, simDuration, EPReal]

print ”Done all”, simulations, ”simulations in”,
print round(time.time()-startTime, 1), ”seconds.”

Processing results
resultsarr = np.array(results)
abqAll = resultsarr[:, 0]
vcConstAll = resultsarr[:, 1]
EPAll = resultsarr[:, 2]
EPaverage = EPAll.sum()/len(EPAll)
EVCAll = resultsarr[:, 3]
EVCaverage = EVCAll.sum()/len(EVCAll)
loopsAll = resultsarr[:, 4]
loopsAverage = float(loopsAll.sum())/len(loopsAll)
simDurationAll = resultsarr[:, 5]
totalDuration = time.time()-startTime
EPRealAll = resultsarr[:, 6]
EPRealAverage = EPRealAll.sum()/len(EPRealAll)

A.1. Main

A

39

Only non-diverging results
EPconv = []
EPRconv = []
EVCconv = []
for i in range(len(EPAll)):

if EPAll[i]<30 and EPRealAll[i]<30 and EVCAll[i]<0.05:
30 and 0.05 are chosen arbitrarily;
they should differ per dataset, and here merely
offer just some insight into the following data

EPconv.append(EPAll[i])
EPRconv.append(EPRealAll[i])
EVCconv.append(EVCAll[i])

if len(EPconv)>0:
EPconv = np.array(EPconv)
EPRconv = np.array(EPRconv)
EVCconv = np.array(EVCconv)
EPcAv = EPconv.sum()/len(EPconv)
EPRcAv = EPRconv.sum()/len(EPRconv)
EVCcAv = EVCconv.sum()/len(EVCconv)

else:
EPcAv = ”None”
EPRcAv = ”None”
EVCcAv = ”None”

Printing useful stuff

print ”\nSimulation was”, sim_name
print ”vcConstants were”, vcCorrect
print ”VS was”, VS
print ”P was”, P
print ”NoiseOnP”, NoiseOnP
print ”NoiseOnVG”, NoiseOnVG
print ”NoiseOnTAU”, NoiseOnTAU
print ”Method was”, DIRECTorITERATIVE
print ”Least squares was”, method
if DIRECTorITERATIVE=='iterative':

print ”MoM”, MoM
print ”Self-reported average EP is”, EPaverage
print ”Average EVC is”, EVCaverage
print ”Real average EP is”, EPRealAverage
print ”Average number of loops was”, loopsAverage

print ”\nEPcAv, EPRcAv, EVCcAv:”
print EPcAv, EPRcAv, EVCcAv

A

40 A. Python Code

Example plot
taus = np.arange(tau_MN[0], tau_MN[-1], .001)
VCs = TAUtoVC(taus, *vcConst1)
VC1 = TAUtoVC(tau_MN, *vcConst1)
VS1 = VGandLRandVCtoVS(VG_MN, sLeftRight, VC1)
VSs = np.arange(VS1[0], VS1[-1], .001)
Ps = VStoP(VSs, *abq1)

plt.figure(1)
plt.plot(tau, VS, 'ro', label=”VS real”)
plt.plot(tau, VC, 'bo', label=”VC real”)
plt.plot(tau, VG, 'k', label=”VG real”)

if NoiseOnVG and NoiseOnTAU:
plt.plot(tau_MN, VG_MN, 'rx',

label=”VG(tau), both with MN”)
elif NoiseOnVG and not NoiseOnTAU:

plt.plot(tau_MN, VG_MN, 'rx',
label=”VG(tau), with MN on VG”)

elif not NoiseOnVG and NoiseOnTAU:
plt.plot(tau_MN, VG_MN, 'rx',

label=”VG(tau), with MN on tau”)

plt.plot(taus, VCs, 'y', label=”VC approx. after solving”)
plt.plot(tau_MN, VS1, 'g', label=”VS approx. after solving”)

plt.legend()
plt.xlabel(”Time (dimensionless)”)
plt.ylabel(”Speed (knots)”)

plt.figure(2)
plt.plot(VSs, Ps, 'k', label=”P on VS after solving”)
plt.plot(VS, P, 'bo', label=”real P on VS”)
if NoiseOnP:

plt.plot(VS, P_MN, 'rx', label=”MN P on VS”)

plt.legend()
plt.xlabel(”Ship Speed VS (knots)”)
plt.ylabel(”Power P (kWh)”)

plt.show()

A.2. Formulas

A

41

A.2. Formulas
import time
import numpy as np
from scipy.optimize import least_squares as ls
import warnings
warnings.filterwarnings('error')

Global constants
T_C = 12*3600 + 25*60 + 12 # Time of a tide in seconds
pi = np.pi
small = 10**(-4)
timeLimit = 2000/10 # Time limit of one whole Iterative

Method in seconds

Functions
cos = np.cos
sin = np.sin

def residual(beta, function, input_value, output_value):
”””This function takes an estimate (beta) for the constants

in a function (function), and returns the difference between
the given output_values and the calculated output based on the
input_values and the aforementioned beta and function.”””

return output_value - function(input_value, *beta)

def VStoP(V_S, a, b, q):
”””We have established that P(V_S)=a+b*(V_S)^q

This function takes V_S, a, b, q, and returns P.
Also accepts array for V_S.”””

try:
return a+b*(V_S**q)

except:
print ”\nWe have an error with VStoP”
print ”a:”, a
print ”b:”, b
print ”q:”, q
print ”VS:”, V_S
return a+b*(V_S**q)

def PtoVS(P, a, b, q):
”””Same as VStoP but the other way around.

Also accepts array for P.”””
try:

return ((P-a)/float(b))**(1./q)
except Warning:

A

42 A. Python Code

print ”\n\n”+”-”*30 + ”WE HAVE A WARNING!!” + ”-”*30+”\n\n”
print P, a, b, q

def TtoTAU(t):
”””Takes the time in seconds (t), and returns the

dimensionless value for time (tau), based on the global T_C.
Also accepts array for t.”””

return t/float(T_C)

def TAUtoVC(tau, VCcos, VCsin, VCt, VC0):
”””When given the dimensionless value for time (tau),

this function returns the speed of the current (V_C).
Also need the constants VCcos, VCsin, VCt, VC0.
Also accepts array for tau.”””

return (VCcos*cos(2*pi*tau) + VCsin*sin(2*pi*tau)
+ VCt*tau + VC0)

def VGandVSandLRtoAVCandLR(VG, VS, sLeftRight):
”””This function takes the Ground Speed (VG), the Ship Speed

(VS) and the direction the ship is sailing in (sLeftRight,
either -1 or +1). Then returns a tuple with the absolute
value of the Speed of the Current and the direction of
the current (either -1 or +1).”””

VC = VG-VS
if VC<0:

This means the ship's speed is greater than its measured
ground speed. Therefore, the current is working against
us in this Run. Thus, the direction of the current is
the opposite of that of the ship.
cLeftRight = -sLeftRight
VC = -VC # for absolute value.

else:
This means the ship's speed is less than its measured
ground speed. Therefore, the current is working with
us in this Run. Thus, the direction of the current is
is the same as that of the ship.
cLeftRight = sLeftRight

return VC, cLeftRight

def VGandVSandLRtoAVCandLRarr(VGarr, VSarr, sLeftRightarr):
”””Same as VGandVStoAVCandLR but for arrays as inputs.

Also accepts singular numbers instead of arrays.”””
VCarr = VGarr-VSarr
cLeftRightarr = sLeftRightarr*np.sign(VCarr)
return abs(VCarr), cLeftRightarr

A.2. Formulas

A

43

def AVCandLRtoVC(AVC, cLeftRight):
”””Takes the absolute value of VC (AVC), and whether VC

is going left or right (cLeftRight, -1 or +1), then
returns VC to the right. So if VC is going left, this
returns negative VC. Also accepts arrays as inputs.”””

return AVC*cLeftRight

def VGandVSandLRtoVC(VG, VS, sLeftRight):
”””Takes VG and VS and whether the ship goes right or

left (-1 or +1), then returns VC.
Accepts both arrays or singular numbers.”””

if type(VG) == np.ndarray:
AVC, cLeftRight = VGandVSandLRtoAVCandLRarr(VG, VS,

sLeftRight)
else:

AVC, cLeftRight = VGandVSandLRtoAVCandLR(VG, VS,
sLeftRight)

return AVCandLRtoVC(AVC, cLeftRight)

def VCtoAVCandLR(VC):
”””Takes VC and returns a tuple with its absolute value

and whether it is going left or right (-1 or +1).
ONLY ACCEPTS ONE NUMBER (no array).”””

if np.sign(VC) != 0:
return abs(VC), np.sign(VC)

else:
return 0., 1.

def VCtoAVCandLRarr(VC):
”””Same as VCtoAVCandLR, but for VC is an array.

ONLY ACCEPTS ARRAY.”””
vals = np.array(VC)
signs = np.sign(VC)
vals = vals*signs
for i in range(len(signs)):

if signs[i]==0:
signs[i]==1.

return vals, signs

def VGandLRandAVCandLRtoVS(VG, sLeftRight, AVC, cLeftRight):
”””Takes VG and AVC and the directions of the ship and the

current (-1 or +1), then returns VS.
Also accepts arrays as inputs.”””

If the ship and the current go in the same direction,

A

44 A. Python Code

then AVC should be subtracted from VG to get VS.
In this case, sLR and cLR have the same sign, thus
multiply to +1.
#
If the ship goes against the current,
then AVC should be added to VG to get VS.
In this case, sLR and cLR have opposite signs, thus
multiply to -1.
#
Therefore, we can always subtract sLR*cLR the value of AVC
return VG - sLeftRight*cLeftRight*AVC

def VGandLRandVCtoVS(VG, sLeftRight, VC):
”””Takes VG and whether the ship goes left or rigpht, and

VC, then returns VS. Also accepts arrays as inputs.”””
if type(VC) == np.ndarray:

AVC, cLeftRight = VCtoAVCandLRarr(VC)
else:

AVC, cLeftRight = VCtoAVCandLR(VC)
return VGandLRandAVCandLRtoVS(VG, sLeftRight, AVC, cLeftRight)

def VSandLRandVCtoVG(VS, sLeftRight, VC):
”””Takes VS and whether the ship goes left or right (-1 or +1),

and VC, then returns VG. Also accepts arrays as inputs.”””
return abs(sLeftRight*VS + VC)

def VSandLRandAVCandLRtoVG(VS, sLeftRight, AVC, cLeftRight):
”””Takes VS, AVC (absolute value of VC), and whether the ship

and current goes left or right (-1 or +1), then returns VG.
Also accepts arrays as inputs.”””

return (VS + sLeftRight*cLeftRight*AVC)

def VSandTAUandVCCONSTtoVG(VS, sLeftRight, tau, vcConst):
”””Takes VS and whether the ship goes left or right (-1 or +1),

and tau and the constants in the VC function, then
constructs VC and uses that to return VG.”””

VC = TAUtoVC(tau, *vcConst)
if type(VC) == np.ndarray:

AVC, cLeftRight = VCtoAVCandLRarr(VC)
else:

AVC, cLeftRight = VCtoAVCandLR(VC)
VG = VSandLRandAVCandLRtoVG(VS, sLeftRight, AVC, cLeftRight)
return VG

def FuncToError(beta, function, inputs, outCorrect):

A.2. Formulas

A

45

”””This function takes a function (function) and the guess
for its constants (beta), then calculates the error function
E = sum((realOutput_i - calculatedOutput_i)^2) based on
the input values (inputs) and the real outputs (outCorrect)”””

Sum = 0
for i in range(len(inputs)):

Sum += (residual(beta,function,inputs[i],outCorrect[i]))**2
return Sum

def Error(calculated, real):
”””Takes calculated values and real values, then returns

the error the same way that FuncToError does, except
instead of the function and input, this function
requires the the already calculated values.
ONLY TAKES ARRAYS.”””

return np.sqrt(((calculated-real)**2).sum()/float(len(real)))

def VGtoVSbyMoM(VG):
”””Takes an array of VG, then averages two adjacent

values and returns an array where both those
values are their average.”””

VS = [None]*len(VG)
for i in range(len(VG)/2):

vs = (VG[2*i] + VG[2*i + 1])/2.
VS[2*i] = vs
VS[2*i + 1] = vs

return np.array(VS)

def Iteration(abq, vcConst, realParr, VGarr, sLeftRightarr, tauarr,
method='lm', MoM=False, canBound=True):

”””Does one iteration according to the scheme in the report.
Assumes that the error function has just been dissatisfied,
loops all the way to calculating the new P array. Only takes
arrays as inputs. Returns the new estimate for abq and vcConst,
and the arrays of VS and P according to these constants.”””

Assume error condition has just been denied. Follow scheme.

Set VS' based on MoM, or real P and current a, b, q
if MoM:

VSarr = VGtoVSbyMoM(VGarr)
else:

VSarr = PtoVS(realParr, *abq)

if type(VSarr)!=np.ndarray:
print realParr, abq

A

46 A. Python Code

for vs in VSarr:
if vs<0:

print ”Here we have some negative VS:”
print VSarr

Set VC' based on VG and VS'
VCarr = VGandVSandLRtoVC(VGarr, VSarr, sLeftRightarr)
Fit VC function
vcConstNew = ls(residual, vcConst, method=method,

args=(TAUtoVC, tauarr, VCarr)).x
Set VC based on function
VCarr = TAUtoVC(tauarr, *vcConstNew)
Set VS based on VG and VC
VSarr = VGandLRandVCtoVS(VGarr, sLeftRightarr, VCarr)
Fit P function
if method=='lm':

abqNew = ls(residual, abq, method=method,
args=(VStoP, VSarr, realParr)).x

elif method=='trf':
if canBound:

abqNew = ls(residual, abq, method='trf',
bounds=((-np.inf),

(min(realParr), np.inf, 15)),
args=(VStoP, VSarr, realParr)).x

else:
abqNew = ls(residual, abq, method='trf',

args=(VStoP, VSarr, realParr)).x

Safeguard for 'a' too big
aBig = False
if abqNew[0]>min(realParr):

aBig = True
if aBig and canBound:

abqNew = ls(residual, abq, method='trf',
bounds=((-np.inf),

(min(realParr), np.inf, 15)),
args=(VStoP, VSarr, realParr)).x

Set calculated P according to a, b, q, and VS
calcP = VStoP(VSarr, *abqNew)

return abqNew, vcConstNew, calcP, VSarr

def IterativeMethod(abq0, vcConst0, realParr, VGarr, tauarr,
epsilon=small, timeLimit=timeLimit, method='lm',
MoM=False, canBound=True):

A.2. Formulas

A

47

”””Does the Iterative Method and returns the found constants,
as well as the self-reported error for P, and the number
of loops the process took.”””

Initialise
sLeftRightarr = np.array([(-1)**i for i in range(len(VGarr))])
calcP0 = VStoP(VGarr, *abq0)
Set error 1
EP1 = Error(calcP0, realParr)
Do first iteration
NewRes = Iteration(abq0, vcConst0, realParr, VGarr,

sLeftRightarr, tauarr,
method=method, MoM=MoM,
canBound=canBound)

abq1, vcConst1, calcP1, VSarr1 = NewRes
Set error 2
EP2 = Error(calcP1, realParr)

Loop until error converges
Set time limit
loopNo = 1
startTime = time.time()
while abs(EP1-EP2) > epsilon:

print ”Starting a loop!”
Stop prematurely
loopNo += 1
elapsedTime = time.time()-startTime
if loopNo > 10000:

print ”\nToo many loops. Stopped after”,
print elapsedTime, ”seconds.\n”
break

if elapsedTime > timeLimit:
print ”\nToo much time has elapsed. The time limit is”,
print ”set at”, timeLimit, ”seconds.”
break

Do the loop
EP1 = EP2
NewRes = Iteration(abq1, vcConst1, realParr, VGarr,

sLeftRightarr, tauarr, method=method,
canBound=canBound)

abq1, vcConst1, calcP1, VSarr1 = NewRes
EP2 = Error(calcP1, realParr)

return abq1, vcConst1, EP2, loopNo

A

48 A. Python Code

def Direct_VGandTAUtoP(abq_vcst0, VG, tau):
”””Takes the constants a,b,q,VCc,VCs,VCt,VC0, and VG and tau, then

directly calculates P from the combination of the formulas
P = a + b*VS^q and VS = VG +/- VC
Accepts arrays as inputs for VG and tau. Also accepts single
values for these as input, but note that VG must then
already contain its sign (-1 if going left, +1 for right).”””

a = abq_vcst0[0]
b = abq_vcst0[1]
q = abq_vcst0[2]
vccst0 = abq_vcst0[3:]

if type(VG)==np.ndarray:
P = np.zeros(len(VG))
for i in range(len(VG)):

VCi = TAUtoVC(tau[i], *vccst0)
VGi = ((-1)**i)*VG[i]
try:

P[i] = a + b*((abs(VGi - VCi))**q)
except:

print ”\n”+”-”*20+”Something Happened”+”-”*20+”\n”
print ”a:”, a
print ”b:”, b
print ”q:”, q
print ”VGi:”, VGi
print ”VCi:”, VCi
P[i] = a + b*((abs(VGi - VCi))**q)

else:
VC = TAUtoVC(tau, *vccst0)
P = a + b*((abs(VG - VC))**q)

return P

def residual_direct(beta, VGinput, TAUinput, realP):
”””Takes an estimate for the constants (beta), and the input

value(s) for VG and tau, and the real value(s) for P. Then
returns the difference between the calculated P and the
real P. Accepts both arrays for in- and outputs, as well as
single values for them.”””

Poutput = Direct_VGandTAUtoP(beta, VGinput, TAUinput)
return realP - Poutput

def DirectMethod(abq0, vcConst0, realParr, VGarr, TAUarr,
method='lm'):

”””Does the Direct Method.”””

A.2. Formulas

A

49

abq_vccst0_0 = list(abq0) + list(vcConst0)
try:

abq_vccst0_1 = ls(residual_direct, abq_vccst0_0,
args=(VGarr, TAUarr, realParr),
method=method).x

except RuntimeWarning:
print ”\n-------------More info-----------------\n”
print ”P:”, realParr
print ”VG:”, VGarr
print ”TAU:”, TAUarr
abq_vccst0_0[2] = abq_vccst0_0[2]/2
abq_vccst0_1 = ls(residual_direct, abq_vccst0_0,

args=(VGarr, TAUarr, realParr),
method=method).x

Pcalc = Direct_VGandTAUtoP(abq_vccst0_1, VGarr, TAUarr)
EP = Error(Pcalc, realParr)
abq1 = abq_vccst0_1[:3]
vcConst1 = abq_vccst0_1[3:]

return abq1, vcConst1, EP, 1

def MakeNoise(VG, NoiseOnVG, P, NoiseOnP, tau, NoiseOnTAU):
”””Takes three arrays (VG, P, tau) and puts Measurement Noise

on them, depending on whether they require it (NoiseOn*).
The noise is taken from a normal distribution with mean 0,
and standard deviation a third of the maximum error. These
maximum errors are:
0.05 knots for VG;
25 kWh for P;
36 seconds for TAU.”””

if NoiseOnVG:
VG_MN = VG + np.random.normal(scale=0.05/3, size=len(VG))

else:
VG_MN = VG

if NoiseOnP:
P_MN = P + np.random.normal(scale=25./3, size=len(P))

else:
P_MN = P

if NoiseOnTAU:
tau_MN = tau + np.random.normal(scale=TtoTAU(36)/3,

size=len(tau))
else:

tau_MN = tau

A

50 A. Python Code

return VG_MN, P_MN, tau_MN

A.3. PracData
import numpy as np

pracTau = [0, 0.07, 0.12, 0.18, 0.26, 0.33, 0.38, 0.47, 0.52, 0.62]
pracTau = np.array(pracTau)

P11 = [5225, 5225, 6728, 6728, 8716,
8716, 11503, 11503, 11503, 11503]

V11 = [14, 14, 15, 15, 16,
16, 17, 17, 17, 17]

P12 = [2313, 3035, 4018, 5225, 6728,
8716, 9987, 9987, 11503, 11503]

V12 = [11, 12, 13, 14, 15,
16, 16.5, 16.5, 17, 17]

P21 = [34713, 34713, 40478, 40478, 47305,
47305, 55599, 55599, 65932, 65932]

V21 = [24, 24, 25, 25, 26,
26, 27, 27, 28, 28]

P22 = [32141, 34713, 37483, 40478, 43737,
47305, 51238, 55599, 60466, 65932]

V22 = [23.5, 24, 24.5, 25, 25.5,
26, 26.5, 27, 27.5, 28]

P31 = [1699, 1699, 2094, 2094, 2554,
2554, 3525, 3525, 5262, 5262]

V31 = [12, 12, 13, 13, 14,
14, 15, 15, 16, 16]

P32 = [1483, 1699, 1896, 2094, 2296,
2554, 2939, 3525, 4304, 5262]

V32 = [11.5, 12, 12.5, 13, 13.5,
14, 14.5, 15, 15.5, 16]

P11 = np.array(P11)
V11 = np.array(V11)
P12 = np.array(P12)
V12 = np.array(V12)
P21 = np.array(P21)
V21 = np.array(V21)
P22 = np.array(P22)
V22 = np.array(V22)
P31 = np.array(P31)
V31 = np.array(V31)
P32 = np.array(P32)

A.4. TheoData

A

51

V32 = np.array(V32)

pracP = [P11, P12, P21, P22, P31, P32]
pracV = [V11, V12, V21, V22, V31, V32]

A.4. TheoData
import numpy as np
from Formulas import *

Set theoretical values

theoABQ = [[1050.5, 0.8, 2.9],
[1050.5, 0.8, 2.9],
[800, 0.08, 4.2],
[800, 0.06, 4.6],
[2500, 0.15, 4.7],
[1050.5, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9],
[2500, 0.8, 2.9]]

theoVS = [[11, 11, 15, 15, 19, 19, 23, 23, 27, 27],
[10, 12.5, 15, 17.5, 20, 20, 20, 22.5, 25, 27.5],
[17, 17, 18, 18, 18, 18, 19, 19, 20, 20],
[17, 17, 18, 18, 18, 18, 19, 19, 20, 20],
[17, 17, 18, 18, 18, 18, 19, 19, 20, 20],
[15, 16, 17, 18],
[15, 15.5, 16, 16.5, 17, 17.5],
[15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5],
[15, 15, 15, 15.5, 15.5, 15.5, 16, 16, 16, 16.5],
[15, 15, 16, 16, 17, 17, 18, 18],
[15, 15.25, 15.5, 15.75, 16, 16.25, 16.5, 16.75, 17, 17.25],
[16, 18, 20, 22],
[16, 18, 20, 22, 16, 18, 20, 22]]

theoTau = [0, 0.07, 0.12, 0.18, 0.26, 0.33, 0.38, 0.47, 0.52, 0.62]

Make other data from that
sLeftRight = np.array([1,-1]*5)

theoTau = [np.array(theoTau[:len(theoVS[i])])

A

52 A. Python Code

for i in range(len(theoVS))]
theoTau[12] = np.array([theoTau[12][i/2]

for i in range(len(theoVS[12]))])

theoP = [None]*len(theoVS)
for i in range(len(theoVS)):

theoVS[i] = np.array(theoVS[i])
theoP[i] = VStoP(theoVS[i], *theoABQ[i])

	Preface
	Introduction
	Physics behind the problem
	Dimensional analysis

	Solving methods
	Mean of Means Method
	Iterative Method
	Direct Method
	Least squares fitting methods
	Trust Region Reflective
	Levenberg-Marquardt

	Measurements
	Example plots
	Measurement Noise
	Finding situations where the Iterative Method beats the Direct Method
	Strict Double Runs
	Small range of VS
	Less than enough values for the Direct Method

	Theoretical data
	Major problem with the Iterative Method for low Power Settings
	Effectiveness of one step of Mean of Means

	Conclusion
	titleReferences

	Python Code
	Main
	Formulas
	PracData
	TheoData

