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Solution of the discretized incompressible Navier-Stokes

equations with the GMRES method

C. Vuik

Abstract

We describe some experiences using iterative solution methods of GMRES type to solve

the discretized Navier-Stokes equations. The pressure equation is solved with full GMRES

combined with a suitable preconditioner. The diagonally scaled momentum equations are

solved by GMRES(m), a restarted version of GMRES.

1 Introduction

In [Van Kan et al., 1991] a numerical discretization of the incompressible Navier-Stokes equa-

tions in general curvilinear co-ordinates is treated. In this paper we present some experiences

with an iterative solution method, GMRES, applied to these equations. We start with a

description of our test problem. In Section 3 we present time measurements of relevant parts

of the solution method. The solution of the pressure equation is discussed in Section 4. In

the given test problem it appears that GMRES should be combined with a preconditioner to

obtain a fast iterative method. Finally, in Section 5, we use GMRES to solve the momentum

equations. We show that a correct scaling of the equations is important. Furthermore, we

describe a termination criterion, which is combined with the GMRES method. We end this

paper with conclusions in Section 6.

2 Statement of the problem

In this section we specify the incompressible Navier-Stokes equations and outline the dis-

cretization of these equations in time and space. Subsequently, we describe the geometry and

initial and boundary conditions for a test problem, which is used in the remainder of this

paper.

We consider the ow of an incompressible uid in a two dimensional con�guration. In [Van

Kan et al., 1991] the Navier-Stokes equations, which can be used to describe this ow, are

formulated in general co-ordinates. For the sake of simplicity we describe these equations in

Cartesian co-ordinates:
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together with the incompressibility condition
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and appropriate initial and boundary conditions. In these equations u

i

is the component of

the velocity of the uid in x

i

-direction, p is the pressure and Re is a parameter called the

Reynolds number.

In the time discretization, �nite di�erences are used. In this test problem we use an equidistant

time discretization. We note that the discretization described in [Van Kan et al., 1991] is not

necessarily equidistant. For a given positive integer N we de�ne k = T=N . In the following

v

n

denotes the numerical approximation of v(nk). Using the pressure correction method [Van

Kan, 1986] we obtain the following equations:
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and, �nally,

u

n+1

i

= û
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For the discretization in space the physical domain is mapped onto a rectangle (computational

domain). Combining this co-ordinate transformation with �nite volumes on a staggered grid

in the computational domain we obtain a space discretization of the equations (3), (4) and

(5). The operator div.grad in the pressure equation (4) is discretized by div

h

.grad

h

, where

the same operators div

h

and grad

h

are used in the discretization of the momentum equations

(3). For more details we refer to [Van Kan et al., 1991].

The resulting equations can be divided into two linear systems. The �rst system, the mo-

mentum equations, is a discretized version of (3), whereas the second system, the pressure

equation, is a discretized version of (4). The space discretization is such that it is possible to

implement algorithms, for building the matrices and solving the systems of equations, which

are suitable for vector and parallel computers.

In the remainder of this paper we consider one test problem, which describes the ow through

a curved channel. Our experiments with this problem give valuable insight into the behavior

of GMRES solving the pressure and the momentum equations. The physical domain of the

problem is displayed in Figure 1. Initially, the velocities are equal to zero. The boundary con-

ditions are: a parabolic velocity pro�le, with the maximal velocity equal to one, on the inow

boundary (Boundary 1), a no slip condition on Boundary 2 and 4 and the normal stress and

tangential velocity given on the outow boundary (Boundary 3). We chose Re = 500; T = 0:3

and N = 2. For the space discretization the two squares (see Figure 1) are divided into 16�16

�nite volumes, whereas the curve is divided into 16� 32 �nite volumes. The total number of

�nite volumes is 16� 64 = 1024.

3 CPU time measurements

In this section some timing results are given. First of all we consider two simple loops

and measure the megaoprate on three di�erent computers. Thereafter, we determine the

megaoprate of some typical routines used in the solution of the discretized Navier-Stokes

equations.

Most loops used in the GMRES method (to be described in Section 4) are vector updates and

inner products. Such loops are suitable for vector and parallel computers. We measure the

megaoprate of such a loop, in order to compare the performance of the computers, which

are used in our department.

vector update: a(i) = b(i) + c � a(i); i= 1; :::; 1000.

In the following sections we use GMRES combined with an ILU preconditioner. This precon-

ditioner makes use of recursions. It is known that recursions are bad for the performance of

vector and parallel computers. To check this we also present time measurements for the loop:

recursion: a(i) = b(i) + c � a(i� 1); i = 1; :::; 1000.

We use the following computers: HP 9000-845, Alliant FX/4, and Convex C240. The �rst has
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only one scalar processor, whereas the second and the third consist of four parallel vector pro-

cessors. The results are given in Table 1, where the operations +, �, and � are each counted

as one oating point operation (op). These results suggest that the vector update runs in

HP Alliant 1 CPU Alliant 4 CPU Convex 1 CPU

vector update 2.2 2.4 5.5 10

recursion 2.2 0.83 0.83 2.6

Table 1: Megaoprates

vector speed and the megaoprate of this loop shows an increase on parallel processors, but

as expected the recursion runs in scalar mode on all computers. Note that to get a fast solver

of the Navier-Stokes equations on vector machines it is important to use vectorizable loops

as much as possible.

operation CPU time (s) Megaoprate

construction of the system 0.12

matrix vector multiplication 0:78� 10

�2

8

vector update 0:49� 10

�3

10

inner product 0:33� 10

�3

16

diagonal preconditioning 0:44� 10

�3

Table 2: Computer time and megaoprates for parts of the algorithm to solve the momentum

equations

Table 2 shows some timing results on the Convex for typical parts of the solver, which is

used in the solution of the momentum equations. We emphasize that these results are only

used for comparison. On di�erent runs, deviations of 10% are observed. In the following

sections we compare two di�erent solution algorithms. The second di�ers from the �rst in

the following sense: the amount of vector updates decreases, whereas the amount of matrix

vector multiplications increases. For this comparison we note that the CPU time of a matrix

vector multiplication is comparable to the CPU time of 16 vector updates.

In Table 3 we give the results for the pressure equation.

The construction of the linear system is not included in Table 3, because in contrast to the

momentum equations, the pressure equation remains the same in every timestep (except for

the right-hand side). Note that the CPU time for the vector update and inner product in

Table 2 is two times the CPU time in Table 3. This agrees with the fact that the dimension

of the momentum equations is two times the dimension of the pressure equation. Finally, it

follows from Table 3 that the ILU preconditioner costs three times as much as one matrix

vector multiplication. This corresponds with the fact that ILU uses recursions. In the near

future a vectorizable variant of the ILU preconditioning will be implemented (see [Van der

4



operation CPU time (s) Megaoprate

matrix vector multiplication 0:27� 10

�2

8

vector update 0:24� 10

�3

11

inner product 0:15� 10

�3

16

diagonal preconditioning 0:24� 10

�3

ILU preconditioning 0:76� 10

�2

Table 3: Computer time and megaoprates for parts of the algorithm to solve the pressure

equation

Vorst, 1989]).

4 The pressure equation

In this section we start with a speci�cation of the discretized pressure equation. After that

we describe the GMRES method, which is used to solve this equation. We obtain valuable

insights from the convergence properties of full GMRES. However, full GMRES is expensive

with respect to computing time and memory requirements. A fast iterative method is obtained

by a combination of GMRES with a polynomial or an ILU preconditioner. We end the section

with a remark on the memory requirements of this iterative solution method.

The physical domain of our test problem is the curved channel of Figure 1. The computational

domain, which is used in the discretization of the pressure equation (4) is a rectangle, of which

the edges are parallel to the co-ordinate axes. The orientation of the computational domain

is such that n

1

� n

2

, where n

i

is the number of grid points in the x

i

-direction.

We use a lexicographical ordering of the grid points, so the di�erence between the indices of

neighboring grid points equals 1 in the x

1

-direction and n

1

in the x

2

-direction. The structure

of the matrix P 2 IR

(n

1

n

2

)�(n

1

n

2

)

used in the discretized pressure equations is given in Figure 2.

In this version of the discretization the matrix P is not symmetric [Van Kan et al., 1991; p.

44]. For a discretization of (4) such that the resulting matrix P is symmetric we refer to [Van

Kan, 1991].

In this paper we solve the pressure equation Px = b using the GMRES(m) method (see [Saad

& Schultz, 1986]). In the GMRES method the vector z

k

is chosen such that

z

k

= arg min

z2K

k

(P ;r

0

)

k b� P (x

0

+ z) k

2

; (6)

where r

0

= b� Px

0

and the Krylov subspace K

k

(P ; r

0

) is de�ned by

K

k

(P ; r

0

) = span fr

0

; Pr

0

; ::::; P

k�1

r

0

g. In the following experiments we always take x

0

=

(0; :::; 0)

T

. After m iteration steps the method restarts using x

m

= x

0

+ z

m

as start vector.

For an implementation of this method we refer to [Saad & Schultz, 1986] and [Van der Vorst,

1989].
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GMRES(50)

Using the insights given in [Huang & Van der Vorst, 1989] we choose the integer m 2 [5; 50]

as large as possible with respect to memory requirements. In this example there are 16�64 =

1024 grid points, and it turns out to be possible to take m equal to 50. After 1220 iterations

and 17 seconds CPU time on the Convex we obtain k r

1220

k

2

= k r

o

k

2

� 10

�6

. This is a bad

result, which motivates us to analyse the convergence behavior of the GMRES method in this

application. To facilitate comparison we specify the amount of work and memory in Table 4.

Full GMRES

In the following experiment we solve the pressure equation with full GMRES, so the GMRES

method is not restarted. It appears that k r

184

k

2

= k b k

2

� 10

�6

. This is a better result

with respect to computing time but now the amount of required memory is (too) large (see

Table 4).

Although full GMRES uses too much memory in this application, the results of this experi-

ment give valuable information. From the local convergence behavior (see Figures 3 and 4)

it appears that in the �rst hundred iterations the residual remains nearly the same. Taking

into account the analysis of the convergence behavior of GMRES given in [Huang & Van

der Vorst, 1989] and [Van der Vorst & Vuik, 1991] we conclude that it takes more than 100

iterations before the Ritz values approximate the eigenvalues, which results in a super linear

convergence behavior of GMRES in a later phase. This explains that restarting GMRES is a

bad idea in this application, because if we choose m less than 100, GMRES is only linearly

convergent, and the reduction factor is nearly 1. This agrees with the results obtained with

GMRES(50).

Polynomial Preconditioning

From these experiments it follows that a preconditioner is necessary to get an acceptable

computing time and a reasonable amount of memory required. Since a polynomial precondi-

tioner has good vectorization properties we start with such a preconditioner. In [Nachtigal,

Reichel & Trefethen, 1990] and [Saylor & Smolarski, 1990] a combination of GMRES with a

polynomial preconditioner is presented.

Using GMRES combined with a polynomial preconditioner we can not expect to need fewer

matrix vector products than using full GMRES, because GMRES has the minimal residual

property (6). So the main purpose of a polynomial preconditioner is to lower the number of

vector updates and inner products, and the number of memory required.

In this paragraph we describe a preconditioner, where the polynomial is adapted in every

iteration. We get the idea for this preconditioner from the EN method as given in [Eirola &

Nevanlinna, 1989] and analysed in [Vuik & Van der Vorst, 1990]. In the EN method one ap-

proximates P

�1

in every iterate by the polynomial (I � P ). We propose to approximate P

�1

by a polynomial of higher degree, which is obtained by a call of full GMRES. The resulting
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method, which we denote by GMRES

2

is given as follows (compare [Vuik & Van der Vorst,

1991]):

1. u

0

= H

0

r

0

= k PH

0

r

0

k

2

; c

0

= Pu

0

; k = 0;

x

1

= x

0

+ u

0

c

T

0

r

0

and r

1

= r

0

� c

0

c

T

0

r

0

;

2. while k r

k+1

k

2

> eps do k := k + 1,

c

(0)

k

= PH

k

r

k

; u

(0)

k

= H

k

r

k

�

i

= c

T

i

c

(i+1)

k

; c

(i+1)

k

= c

(i)

k

� �

i

c

i

; u

(i+1)

k

= u

(i)

k

� �

i

u

i

; i = 0; :::; k� 1;

c

k

= c

(k)

k

= k c

(k)

k

k

2

; u

k

= u

(k)

k

= k c

(k)

k

k

2

,

x

k+1

= x

k

+ u

k

c

T

k

r

k

and r

k+1

= r

k

� c

k

c

T

k

r

k

,

end.

In this algorithm H

k

r

k

denotes the solution of the system Py

k

= r

k

with mpost iterations of

full GMRES.

Application of GMRES

2

with mpost = 10 gives k r

18

k

2

= k b k

2

� 10

�6

. Since in every

iteration of GMRES

2

we use 11 matrix vector products we obtain the solution with 198 ma-

trix vector products. Comparing this with GMRES(50) and full GMRES we conclude that

GMRES

2

has a favorable convergence behavior in this application.

It follows from Table 4 that the number of vector updates and inner products shows a consid-

erable reduction, with respect to full GMRES. These observations explain the large reduction

of the computing time.

With respect to memory requirements we note that using m iterations of GMRES

2

we need

2m+ mpost vectors in memory. In this experiment m = 18 and mpost=10 so we need 46

vectors in memory, which is comparible with GMRES(50).

Note that both aims of polynomial preconditioning are achieved: reduction of the vector

updates and inner products and a reduction of the memory required. The extra cost of this

approach, 14 extra matrix vector multiplications, is negligible.

Application of GMRES

2

with mpost=15 or 20 gives comparable results. So the e�ciency of

the algorithm is not very sensitive to variation of mpost.

ILU preconditioning

Another successful preconditioning technique is to construct an Incomplete LD

�1

U Decom-

position of P and to solve the system LD

�1

UPx = LD

�1

Ub instead of Px = b (see [Meyerink

and Van der Vorst, 1977] and [Van der Vorst, 1981]. To implement this preconditioning we

use the following rules to obtain L;D and U [Van der Vorst, 1981]:

(a) diag (L) = diag (U) = D;

(b) the o�-diagonal parts of L and U are equal to the corresponding parts of P ;
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(c) diag (LD

�1

U) = diag (P ).

method matvec vector inner memory CPU time (s) precondition

update product vectors Convex matvec

GMRES(50) 1220 35000 35000 50 17 0

Full GMRES 184 17000 17000 184 7.2 0

GMRES

2

198 1386 1224 46 1.2 0

ILU 53 1405 1405 53 1.2 53

MILU(� = 0:95) 31 481 481 31 0.6 31

Table 4: The amount of work, memory, and CPU time

Note that this preconditioning needs only one extra vector in memory to store the diagonal

matrix D.

Combination of the ILU preconditioner with full GMRES gives k r

53

k

2

= k r

0

k

2

� 10

�6

.

The resulting computing time and memory requirements are comparable with GMRES

2

(see

Table 4). Note that in contrast to GMRES

2

we have not yet implemented a vectorizable

version of the ILU preconditioning. Using such a version the computing time should be less

than the computing time using GMRES

2

.

MILU preconditioning

Finally we use the MILU preconditioning speci�ed in [Gustafsson, 1978]. In this precondition-

ing the construction of D is such that the rowsum of LD

�1

U equals the rowsum of P . In the

following experiments we use an average of the ILU and the MILU preconditioner [Axelsson

& Lindskog, 1986], [Van der Vorst, 1989]. The ILU preconditioner corresponds with � = 0,

whereas the MILU preconditioner corresponds with � = 1.

The number of iterations of MILU combined with full GMRES such that k r

i

k

2

= k r

0

k

2

�

10

�6

is given in Table 5 for di�erent choices of �. From Table 4 it appears that this method,

with � = 0:95, is optimal with respect to the amount of work, required memory and com-

puting time. In this application combination of MILU and polynomial preconditioning gives

only a small reduction of the computing time and memory requirements.

� 0 0.9 0.925 0.95 0.98 1

iterations 53 33 32 31 40 48

Table 5: Number of iterations for di�erent �

8



Memory requirements

From these experiments, it appears that GMRES combined with MILU preconditioning needs

31 vectors in memory. This is a large amount of memory with respect to the memory require-

ments of for instance CGS [Sonneveld, 1989]. However, the momentum equations are built

every timestep so the memory required to store and solve the momentum equations can be

used to solve the pressure equations. In Section 5 we shall show that the momentum matrix

consists of 13 vectors, which are twice as long as the vectors used in the pressure equations.

So, we do not need much extra memory to solve the pressure equations using full GMRES

combined with a MILU preconditioner.

5 The momentum equations

In this section we specify the momentum equations. An application of full GMRES shows

that the momentum matrix is "nearly" singular. It appears that this is a consequence of a

wrong scaling of the equations. We show that a diagonally scaled version of the momentum

matrix has much better properties. Thereafter we discuss some termination criteria. Finally,

the section is conluded by some experiments with the GMRES(m) method.

The discretized momentum equations (see equation (3)) are denoted by Mx = b, where M 2

IR

(2n

1

n

2

)�(2n

1

n

2

)

and x; b 2 IR

2n

1

n

2

. The structure of the matrixM is given in Figure 5. From

equation (3) it follows that the matrix M depends on the space- and the time-discretization,

the Reynolds number and the velocity of the uid in the preceding timestep. This implies

that, in general, M is di�erent in every timestep, therefore in the following the momentum

matrix in the n

th

timestep is denoted by M

n

. From our experiments it appears that M

1

x = b

can be solved with a small number of GMRES iterations. In order to give an explanation, we

note that the initial condition and the choice of Re imply that M

1

is approximately equal to

a scalar times the identity matrix. It is known that GMRES converges fast for such a linear

system. Since it appears that the convegence behavior of GMRES applied to M

n

x = b is

more or less the same for every n � 2, we consider the system M

2

x = b in the remainder of

this section.

Full GMRES

As in Section 4 we apply full GMRES to the momentum equations to obtain insights into

its convergence properties. To solve M

2

x = b we start GMRES with x

0

= 0 and stop when

k r

i

k

2

� 10

�8

. In this experiment GMRES satis�es the stopping criterion after 135 iterations.

The converge history is given in Figure 6. Note that the convergence stagnates from iteration

50 until iteration 70. To obtain more insight into this stagnation phase we calculate the Ritz

values, which are plotted in the Figures 7, 8 and 9. From these �gures and the analysis given

in [Van der Vorst & Vuik, 1991] we conclude the following: It appears from Figure 9 that there

is a "small" eigenvalue, which means that its modulus is small with respect to the moduli of

the other eigenvalues. Initially, the component in the corresponding eigenvector is small so

there is no "small" Ritz value in Figure 7 and the convergence is fast (see Figure 6). However,

9



in the stagnation phase the process discovers that there is a "small" eigenvalue (Figure 8).

After iteration 70 the "small" Ritz value is converged (Figure 9) and GMRES converges as if

the "small" eigenvalue is absent, which corresponds with the reults given in [Van der Vorst

& Vuik, 1991].

Where does this "small" eigenvalue come from? In the discretization the Dirichlet boundary

conditions are included as equations in the system M

2

x = b. However, these extra equations

are not scaled with respect to the other ones. As a result of this the main diagonal elements

in these equations, which are equal to one, di�er a factor 10

3

to 10

4

with the other nonzero

main diagonal elements. To get rid of these "small" eigenvalues we propose the following

approaches:

1. do not include the Dirichlet boundary conditions as extra equations,

2. take the start vector x

0

such that it already satis�es the extra equations,

3. scale the momentum equations with the inverse of the nonzero main diagonal elements.

In the following paragraphs we analyse these approaches in more detail.

Approach 1

The convergence should be better without the extra equations. However, since it is not easy

to implement this in our discretization we have not experimented with this approach.

Approach 2

This approach is the same as approach 1 in the sense that the extra equations, and thus

the "small" eigenvalues, no longer inuence the convergence behavior of GMRES. From an

experiment we obtain k r

112

k

2

� 10

�8

. So this approach saves 25 iterations. The local

convergence behavior is given in Figure 10. Note that there is no stagnation phase (compare

Figure 6). Calculation of the Ritz values, which are plotted in Figure 11, shows that "small"

Ritz values are absent.

Approach 3

It is known ([Saad & Schultz, 1986] and [Huang & Van der Vorst, 1989]) that the convergence

of GMRES depends on the convex hull of the eigenvalues. After the scaling of the equations we

expect that all eigenvalues are clustered around one, which implies that the extra equations

do not inuence the convergence of GMRES. Since k r

0

k

2

depends on the scaling of the

equations, GMRES is stopped after the ratio of the norm of the i

th

residual and the initial

residual is the same as for the original process. Using this stopping criterion and starting

with x

0

= 0, GMRES stops after 107 iterations. The local convergence behavior is more or

less the same as that given in Figure 10. In Figure 12 we plot the Ritz values of GMRES

combined with diagonal scaling. Note that the eigenvalue equal to one, which comes from the

Dirichlet boundary condition, is inside the convex hull of the eigenvalues, as expected, so it

does not inuence the convergence of GMRES.
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A termination criterion

A good termination criterion is important for iterative solution methods. In this paragraph

we discuss the following criteria:

� k r

k

k

2

� eps

The main disadvantage of this criterion is that it is not scaling invariant.

� k r

k

k

2

= k r

0

k

2

� eps

This criterion is scaling invariant, however, the number of iterates is independent of

the initial estimate x

0

. This is a drawback because we expect that after some time the

solution of the foregoing timestep is a good starting solution.

� k r

k

k

2

= k b k

2

� eps

This is a good stopping criterion.

� K

2

(A) k r

k

k

2

= k b k

2

� eps, where K

2

(A) is the condition number of A.

This is the best termination criterion. From the inequality

k x � x

k

k

2

k x k

2

� K

2

(A)

k r

k

k

2

k b k

2

it follows that

kx�x

k

k

2

kxk

2

� eps. However, in general, K

2

(A) is not known. To obtain an

estimate for K

2

(A) we propose to calculate the singular values of R

k

2 IR

(k+1)�k

. R

k

is

de�ned in [Saad & Schultz, 1986; p. 861]. An underestimate of K

2

(A) is given by the

ratio �

(k)

1

=�

(k)

k

where �

(k)

1

is the largest and �

(k)

k

is the smallest singular value of R

k

.

In Figure 13 we plot the estimate from full GMRES applied to the original momentum equa-

tions. Note that initially the estimate is small but after 50 iterations the estimate increases

to 10

4

. This corresponds with the results given in Figure 6.

In Figure 14 we give the estimate from full GMRES combined with a diagonal scaling of the

momentum equations. This estimate remains small. Furthermore, it appears that after a

small number of iterations the di�erence between the estimate and its �nal value is rather

small. This motivates us to use the following termination strategy in the diagonal scaled

momentum equations:

if k = 10 calculate the estimate

^

K

2

(

�

A) = �

(10)

1

=�

(10)

10

,

if k < 10 then

stop when k r

k

k

2

= k b k

2

� eps

else

stop when

^

K

2

(A) k r

k

k

2

= k b k

2

� eps

endif

The time to estimate

^

K

2

(A) is less than 0.006 s CPU time on the CONVEX. Comparing this

with Table 2 we conclude that this overhead is negligible.
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GMRES(m) with diagonal scaling

From the local convergence behavior of full GMRES (Figure 10) we expect that GMRES(m)

is a good iterative method. In Table 6 we give some experiments with eps = 10

�5

and

di�erent choices of m. In these experiments k r

0

k

2

= 0:92 and k b k

2

= 2.

m iterations matvec vector inner memory k r k

2

CPU time (s)

update product vectors CONVEX

53 53 53 1431 1431 53 0.44 �10

�5

1.24

20 55 57 520 520 20 0.37 �10

�5

0.72

10 55 60 263 263 10 0.44 �10

�5

0.67

5 57 68 144 144 5 0.51 �10

�5

0.62

3 62 82 100 100 3 0.63 �10

�5

0.69

Table 6: The amount of work, memory, and CPU time

If k = min(10; m) we calculate the estimate

^

K

2

(A). This implies that

^

K

2

(A) is less for m = 5

(

^

K

2

(A) = 3:4) and m = 3 (

^

K

2

(A) = 2:9) than for m � 10 (

^

K

2

(A) = 4:2). Since this estimate

is used in the stopping criterion we expect larger norms of the �nal residual if m is less than

10 (see Table 6). It follows from Table 6 that if m decreases the amount of vector updates

and inner products decreases, whereas the amount of matvec's increases. We observe from

m = 10 and m = 3 that the decrease in computing time with respect to the vector updates

and inner products is equal to the increase in computing time with respect to the matrix

vector multiplications (compare Table 2, which implies that the costs of one matvec is equal

to the cost of ten vector updates and inner products). Finally, we note that for the optimal

choice (m = 5) the required number of vectors in memory is rather small. For m less than 6

the required memory is comparable with the required memory of CGS [Sonneveld, 1989].

6 Conclusions

In this paper we have described properties of GMRES-type iterative methods to solve a dis-

cretization of the Navier-Stokes equations. Our experiments consist of two parts: in the �rst

part we solve the pressure equation and in the second part we solve the momentum equations.

Solving the pressure equation we note that only full GMRES gives a good iterative solution

method. Restarting destroys the superlinear convergence behavior of GMRES [Van der Vorst

& Vuik, 1991]. From these results it follows that a preconditioning is necessary to obtain

reasonable computing time and memory requirements. It appears that polynomial precon-

ditioning and (M)ILU preconditioning give good results. The required memory used in full

GMRES combined with a MILU preconditioner is available because the memory required to

store the momentum matrix can be used. Note that the momentum matrix is built anew

every timestep.
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Full GMRES applied to the momentum equations reveals that the scaling of the equations

as originally given is unfavorable. Diagonal scaling of the matrix gives much better results.

A termination criterion is proposed such that the norm of the relative error in the solution

vector is less than a prescribed accuracy. Using diagonal scaling and this termination crite-

rion we present results of some experiments with GMRES(m). It appears that a small m is

su�cient, which implies that only a small amount of extra memory is required. This amount

is comparable with the amount of memory used in the CGS method.
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Figure 1: The physical domain of the test problem

Figure 2: The pressure matrix P
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Figure 3: Full GMRES

Figure 4: Full GMRES
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Figure 5: The momentum matrix M , where nu = n

1

:n

2

Figure 6: Full GMRES
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Figure 7: Ritz values after 30 iterations

Figure 8: Ritz values after 50 iterations

18



Figure 9: Ritz values after 70 iterations

Figure 10: Full GMRES without the inuence of the Dirichlet boundary condition
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Figure 11: Ritz values after 112 iterations without the inuence of the Dirichlet boundary

conditions

Figure 12: Ritz values after 107 iterations of GMRES combined with a diagonal scaling
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Figure 13: The estimate of the condition of M obtained from full GMRES

Figure 14: The estimate of the condition of M obtained from full GMRES combined with a

diagonal scaling
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