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AbstractIn this paper three iterative methods are studied: preconditioned GMRES with ILUpreconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of theincompressible Navier-Stokes equations in general coordinates. Robustness and e�ciency ofthe three methods are investigated and compared. Numerical results show that the secondmethod is very promising.



1 IntroductionIn this paper we investigate three iterative methods for the solution of the incompressibleNavier-Stokes equations discretized by a �nite volume method on a staggered grid in generalcoordinates.The resulting algebraic equations are solved by using a pressure correction scheme [3],which at each time step gives rise to two systems of equations: one for the momentum equa-tions and one for the pressure equation. These systems are usually very large, and in general,the matrices are non-symmetric. For the solution of such non-symmetric large problems,GMRES type methods ([5],[7],[9]) are popular. They are robust and have relatively good rateof convergence. Multigrid methods, have developed rapidly during the past decade. For in-formation on multigrid, see [2] and [11]. Multigrid methods are very suitable for solving largesystems of equations resulting from discretization of partial di�erential equations. Multigridmethods are e�cient and are able to solve problems to the accuracy of truncation error atO(N) computational cost, where N is the number of unknowns.It is desirable that a method is both robust and e�cient. A method is robust if it canbe applied to a large class of problems, and a method is e�cient if it needs little CPU time(in comparison with other methods, of course). The original GMRES method, introducedin [5], is relatively expensive, since CPU time per iteration and memory grow as the num-ber of iterations increases. An e�ective way to improve performance of iterative methodsis preconditioning. Some investigations on the improvement of performance of GMRES bypreconditioning can be found in, for example, [9] and [10]. Another variant, called GMRESR,is proposed in [7]. This method uses GMRES twice in an inner loop and an outer loop, withthe inner loop providing a good search direction for the outer. With this method, one caneasily use a di�erent preconditioner at each iteration. The performance of GMRESR is inves-tigated in [7] and [8] by numerical experiments. Results show that GMRES with ILU typepreconditioners and GMRESR are satisfactorily robust and e�cient. GMRES type methodscan be rather easily implemented on vector computers, because most of the arithmetic op-erations concerned in these methods are matrix-vector multiplications, vector updates andinner products. So numerical experiments show that preconditioned GMRES type methodshave satisfactory e�ciency. For multigrid methods, the performance depends highly on theperformance of smoothers. Often simple smoothers are e�cient but not robust, whereas com-plicated smoothers are not easily e�ciently implemented on vector computers, but are robust.For di�cult problems, as for example Navier-Stokes in general coordinates, simple smootherslike those of point Jacobi type often fail. Therefore complicated smoothers like ILU shouldbe used. However, vectorization and parallelization potential of such smoothers is not great.It is observed that with re�nement of grids, GMRES type methods become less e�cient, asthe number of iterations required increases. But multigrid methods, as long as they work,preserve the property of computational cost proportional to O(N). This fact suggests that acombination of GMRES type methods with multigrid methods could give good results.The combination can be realized through GMRESR, in which the inner loop is replacedby a multigrid method.In this paper, three methods are studied numerically and compared, which are a precon-ditioned GMRES method (Method 1), the GMRESR method with a multigrid method as its1



inner loop (Method 2) and a multigrid method (Method 3). The outline of this paper is asfollows. In section 2, the discrete systems are discussed. The three iterative methods aredescribed in section 3. Section 4 deals with test problems and presents results. Finally, insection 5 we draw conclusions.2 The Discrete Systems2.1 The Discrete SystemsWe consider the discrete systems resulting from �nite volume discretization of the incompress-ible Navier-Stokes equations in general boundary �tted coordinates on a standard staggeredgrid. For details about our discretization method, see [4], [6] and [12]. With the so-called�-method for time discretization, we obtain the following discrete systems:Vn+1 �Vn�t + �Q0(Vn+1) + �Gpn+1 + (1� �)Q0(Vn) + (1� �)Gpn= �Bn+1 + (1� �)Bn; (2.1)DVn+1 = 0 (2.2)for the momentum equations and the continuity equation, respectively. Here V and p arediscrete grid functions, representing velocity components and pressure. The variable t is thetime. The superscripts indicate the time level, and �t is the time interval. The parameter �is in [0,1]. The operator Q0 is nonlinear, and is linearized, for instance for a typical nonlinearterm (V U)n+1 in Q0 at time level n+ 1 by using Newton's method:(V U)n+1 = V n+1Un + V nUn+1 � (V U)n: (2.3)This gives Q0(Vn+1) = Q1Vn+1 +Q2(Vn) (2.4)with Q1 linear and both Q1 and Q2 calculated at time level n. Central di�erencing is usedin space discretization.2.2 The Pressure Correction SchemeThe system of equations (2.1) and (2.2) is solved by using the pressure correction method [3],as follows. Let us denote a generic system to be solved byAx = b: (2.5)First the momentum equations are solved. So (2.5) withA = 1�t I+ �Q1; x = V�;b = �Bn+1 + (1� �)Bn + 1�tVn � �Q2(Vn)� (1� �)Q0(Vn)�Gpn (2.6)2



is solved to give V�, which is an intermediate result for the velocity. Then the pressureequation, which is derived from the momentum equations and the continuity equation, issolved: A = �DG; x = pn+1 � pn; b = �DV��t : (2.7)Now pn+1 is obtained. Vn+1 is easily computed from V� and pn+1 by means ofVn+1 �V��t = �G(pn+1 � pn): (2.8)In our numerical experiments, the parameter � will be �xed at 1, which leads to the backwardEuler method.3 Algorithms3.1 GMRES with ILU PreconditioningIf the linear equation system to be solved is represented as (2.5), then the original GMRESalgorithm with restart after every m iterations is denoted as GMRES(m) and is given by:Algorithm GMRES(m)beginChoose: m, initial xrestart = :false:10 r = b�Axr = krkif (not.restart) r0 = rif (r=r0 > tol) thenu1 = r=rfor 1 � j � m doc = Aujuj+1 = cfor 1 � i � j dohi;j = cT � uiuj+1 := uj+1 � hi;juiodhj+1;j = kuj+1kuj+1 := uj+1=hj+1;jodx := x+Umym : ym minimizes kre1 � �Hmyk, y 2 Rmrestart = :true:goto 10end ifend Algorithm GMRES(m) 3



Here, Um is a matrix whose columns consist of the l2-orthonormal basis fu1;u2; � � � ;umg,�Hm is an (m + 1) � m matrix whose non-zero elements are hi;j for i = 1; 2; � � � ; m+ 1 andj = 1; 2; � � � ; m. e1 is the �rst column of the (m + 1) � (m + 1) identity matrix. tol is theaccuracy tolerance factor. How to compute ym such that ym minimizes kre1� �Hmyk, y 2 Rmis described in [5], where also practical implementation of the algorithm is discussed. So wedo not get into further details. When incorporating preconditioning, GMRES(m) solves thepreconditioned system A0x = b0 (3.1)instead of (2.5), where A0 = C�1A and b0 = C�1b, with C being the preconditioner. TheRILU preconditioning (cf. [9],[10]) is used, combining the ILUD preconditioning with theMILUD preconditioning for the momentum equations and the standard ILU preconditioningwith the MILU preconditioning for the pressure equation, as follows:for the momentum equations, RILUD = �ILUD + (1� �)MILUD; (3.2)for the pressure equation, RILU = �ILU + (1� �)MILU: (3.3)The ILUD preconditioner is constructed as follows:1. C = LD�1U;2. diag(L) = diag(U) = D;3. the o�-diagonal parts of L and U = the o�-diagonal parts of A;4. diag(LD�1U) = diag(A).MILUD is obtained by using4a. the sum of the row elements of LD�1U = the sum of the row elements of A.instead of the last line for ILUD. The standard ILU preconditioner is obtained by requiring1. C = LU;2. diag(L) = I;3. the non-zero structure of L+U = the non-zero structure of A;4. the non-zero part of A = the corresponding non-zero part of LUWe have MILU by replacing the 4-th line for standard ILU by4a. the non-zero o�-diagonal part of A = the corresponding non-zero o�-diagonal part ofLU; 4



4b. the diagonal elements ofU are modi�ed such that for a row, the sum of the row elementsof LU = the sum of the row elements of A.Details about GMRES combined with preconditioning and applications to the solution ofthe incompressible Navier-Stokes equations can be found in [9] and [10]. In our experiments,m = 20 and � = 1 for the momentum system and m = 40 and � = 0:975 for the pressuresystem.3.2 GMRESR with MultigridThe GMRESR algorithm introduced in [7] allows us to use various and di�erent precondi-tioners at each iteration and is given by:Algorithm GMRESRbeginChoose: tol, initial xr = b�Axk = �1comment Outer iteration10 r = krkif (k = �1) r0 = rif (r=r0 > tol) thenk = k + 1comment Inner iteration is in the procedure Cuk = C(A; r)ck = Aufor 0 � i � k � 1 do� = cTi � ckck := ck � �ciuk := uk � �uiodck := ck=kckkuk := uk=kckk� = cTk � rx := x+ �ukr := r� �ckgoto 10end ifend Algorithm GMRESRC(A; r) is the preconditioning procedure, which is to be replaced by any algorithm that givesan approximation for the solution, with r as the right-hand side. Here, it is a call to a linearmultigrid algorithm, and gives uk as return. Clearly, as k increases, the memory requiredincreases. So in [7], the truncated GMRESR algorithm is suggested, or better still the so-called min � variant of truncated GMRESR ([8]). Here, we use the truncated GMRESRalgorithm (trunclast version, see [8]), which is given here for completeness:5



Algorithm Truncated GMRESRbeginchoose nt, tol, initial xr = b�Axk = �1comment Outer iteration10 r = krkif (k = �1) r0 = rif (r=r0 > tol) thenk = k + 1k1 = mod(k; nt) + 1comment Inner iteration is in the procedure Cuk1 = C(A; r)ck1 = Auif (k � nt) thenis = k � nt + 1elseis = 0end iffor is � i � k � 1 dok2 = mod(i; nt) + 1� = cTk1 � ck2ck1 := ck1 � �ck2uk1 := uk1 � �uk2odck1 := ck1=kck1kuk1 := uk1=kck1k� = cTk1 � rx := x+ �uk1r := r� �ck1goto 10end ifend Algorithm Truncated GMRESRIn this algorithm, the vectors from the last nt � 1 outer iterations are used. This truncatedGMRESR algorithm is the algorithm used in our numerical experiments. The number nt = 15(which, however, is not exceeded in our experiments, meaning that in this case the truncatedGMRESR is equivalent to full GMRESR).3.3 The Linear Multigrid AlgorithmThe linear multigrid algorithm called in GMRESR is as follows. The F-cycle is used, with onepre- and one post-smoothing. The smoother performs an alternating Jacobi line smoothing,which consists of one horizontal line iteration followed by one vertical line iteration. The6



momentum equations are smoothed in a decoupled way, i.e., the alternating line smoothingis applied sequentially to the momentum equation in successive directions. Variables areupdated after each line Jacobi iteration with damping:x := x+ !�x; (3.4)where ! is an underrelaxation factor. Now we restrict ourselves for brevity temporarily totwo dimensions. The coarsest grid in the numerical experiments is �xed at 2 � 2 and exactsolution is obtained by using a direct solver. The underrelaxation factor ! is taken to be 0:7for both the momentum equations and the pressure equation.Coarse grid equation systems are formulated by using Galerkin coarse grid approximation(GCA): Al = RAl+1P; bl = Rbl+1; (3.5)where l is the grid level index, which is 1 for the coarsest grid, and R and P are the restric-tion and prolongation operators. The momentum equations (2.6) in two dimensions can berepresented by  A11 A12A21 A22 ! V1V2 ! =  b1b2 ! (3.6)and the pressure equation by A33p = b3: (3.7)Therefore, Galerkin coarse grid approximation is carried out from grid level l+1 to grid level las follows:  A11(l) A12(l)A21(l) A22(l) ! =  R1A11(l+1)P1 R1A12(l+1)P2R2A21(l+1)P1 R2A22(l+1)P2 ! ; (3.8) b1(l)b2(l) ! =  R1b1(l+1)R2b2(l+1) ! (3.9)for the momentum equations andA33(l) = R3A33(l+1)P3; b3(l) = R3b3(l+1) (3.10)for the pressure equation. An algorithm is presented in [16] for e�cient implementation ofGCA for systems of equations. The restriction operators R1 and R2 use the so-called hybridinterpolation, which, for example for R1, takes place by using the adjoint of bilinear interpo-lation for V1 in direction 1 but the adjoint of piecewise constant interpolation in direction 2.R3 uses the adjoint of piecewise constant interpolation. The prolongation operators P1, P2and P3 use bilinear interpolations for V1, V2 and p. Near boundaries, R and P need tobe modi�ed. For restriction operators, we use Dirichlet boundary conditions. But for pro-longation operators, we employ Neumann boundary conditions. These prolongations andrestriction are also applied to the prolongation of coarse grid corrections and the restrictionof residuals. See [15] for more detailed descriptions of transfer operators.When the multigrid algorithm is used as the inner loop in GMRESR (Method 2), onlyone multigrid iteration (one F-cycle) is performed. When it is used as a multigrid solver(Method 3), the maximum number of cycles is limited to 20.7



4 Numerical Experiments4.1 Test ProblemsFour test problems are considered, which are the square driven cavity problem with uniformand non-uniform grids, the skewed driven cavity problem and the L-shaped driven cavityproblem, as illustrated in �gure 4.1. For convenience, we refer to these problems as Problem 1,Problem 2, Problem 3 and Problem 4, respectively. These problems give rise to di�erentdi�culties. We study these problems for two Reynolds numbers Re = 1, 1000, three timeintervals �t = 0:0625, 0:125, 0:25, and three grid sizes 32�32, 64�64, 128�128. The numberof time steps is 40. Solution at each time step terminates if the ratio of the residual norm tothe initial residual norm krk=kr0k < tol, where tol = 10�4 for the momentum equations andtol = 10�6 for the pressure equation. Computations are performed on an HP 730 workstation.4.2 ResultsTables 4.1{4.4 give the total CPU time tt, the CPU times tv and tp spent on the solution of themomentum equations and the pressure equation, respectively, and the numbers of iterationskv and kp at the �nal time step. For Method 1 (GMRES), the number of iterations is thenumber of GMRES iterations; for Method 2 (GMRESR with multigird), it is the number ofGMRESR iterations; for Method 3 (multigrid), it is the number of Multigrid iterations. Alsopresented are the reduction factors �v and �p, which for Method 2 are the reduction factorsof the multigrid algorithm in the last GMRESR iteration at the �nal time step, and forMethod 3 are the reduction factors of the multigrid algorithm in the last multigrid iterationat the �nal time step, for the solution of the momentum equations and the pressure equation,respectively. CPU time is given in seconds. Note that tt 6= tv + tp, because tt includesgeneration of matrices and some other things. The CPU time spent on the computation ofGCA is not counted in tv and tp, and is small and negligible. In the columns for tt, `d' meansthat the method does not converge. A number following a `d' indicates the time step whenthe computation is broken down. These numbers with a star `�', indicate that the limit ofnumber of iterations is reached before the accuracy requirement krk=kr0k < tol is satis�ed,but the corresponding methods still work.We �rst discuss e�ciency. On the 32�32 grids, Method 1 is the fastest one. Method 2 andMethod 3 are approximately equivalent. On the 64�64 grids, Method 2 becomes competitivewith Method 1. Method 3 now is the slowest. On the 128 � 128 grids, Method 2 turns tobe the most e�cient one in most of the cases. Method 3 surpasses Method 1 in many cases.As grids are re�ned, computational cost for Method 1 grows signi�cantly, since the numberof iterations needed to solve the pressure equation is largely increased. Method 3 can keepabout a factor of 4 increasement of computational cost from a coarse grid to the next �negrid, which conforms the multigrid theory that computational cost is proportional to O(N).Method 2 is somewhat superior to Methods 1 and 3, combining the advantages of the twomethods. Method 2 also seems to have O(N) computational complexity, and needs less CPUtime than Method 1 in most cases and than Method 3 in almost all cases, on the 128� 128grids. The solution of the pressure equation consumes most of CPU time in Method 1, while8



a. b.
c. d.Figure 4.1: The four test problems and the 32�32 grids: a. The square driven cavity problem;b. The non-uniform square driven cavity problem; c. The skewed driven cavity problem; d.The L-shaped driven cavity problem 9



in Methods 2 and 3, solution of the momentum equations is more expensive than the pressureequation. With larger time step �t, the solution of the momentum equations needs moretime. For Method 2, the number of (outer) iterations for the solution of the pressure equationis almost independent of �t and grid size. Method 2 is faster than Methods 1 and 3 on �negrids. Method 2 is a method to accelerate Method 3, and is indeed faster than Method 3.For the pressure Method 2 is signi�cantly faster than Method 1. It might be worthwhile touse Method 2 for the pressure and Method 1 for the momentum, when the Reynolds numberis large.Now we discuss robustness. Method 3 has more cases in which it fails than the othertwo methods. It is known that even if an operator on the �nest grid has the K-matrixproperty, which is necessary for good smoothing, it gradually looses the property on coarsergrids under GCA (cf. [13],[14],[17]). Furthermore, because of central di�erencing, diagonaldominance disappears when the time step and the Reynolds number are too large, which alsodeteriorates smoothing. With this Jacobi line smoother, Method 3 is not very robust. Butwhen it is incorporated with GMRES, yielding Method 2, robustness is improved very much;Method 2 is of the same robustness as Method 1. Although Method 2 has 4 failure cases andMethod 1 has 6, it is hard to say now which one is the most robust. It is surprising that whenthe inner loop of Method 2, which uses Method 3 with only one cycle, fails (� > 1), Method 2still sometimes works rather well, within the 40 time steps used, and the number of outeriterations is smaller than for Method 1. It seems that the low Reynolds number cases areharder to solve for Method 1, but for Method 3, the high Reynolds number cases are harder.Both the high and low Reynolds number cases become easier for Method 2, combining theadvantages of Method 1 and Method 3.5 ConclusionsThree iterative solution methods, namely GMRES with ILU preconditioning, GMRESR com-bined with multigrid and a multigrid method, are applied to solve the incompressible Navier-Stokes equations in general curvilinear coordinates. Their e�ciency and robustness are inves-tigated numerically for four test problems. On coarser grids, Method 1 is the most e�cient.With grid re�nement, it is surpassed by Method 2, and also by Method 3 in many cases.Method 2 is most e�cient on larger grids. Method 1 and Method 2 are equally robust.Method 3 is less robust one.Computing time are reported for a scalar machine. On vector computers, the conclusionsfor e�ciency may be di�erent, because, as pointed out earlier, Method 1 has greater potentialof vectorization than Method 3 and therefore than Method 2 as well. A subject of futureresearch is whether for Method 1 the gain from increasing computation speed can compensatethe loss due to the signi�cant growth of number of iterations as the grid gets �ner. ForMethod 3, we used a rather weak smoother. If we use more powerful smoothers such as ILU,its robustness will certainly be improved. Another bene�t from using smoothers like ILUis the reduction factor can be reduced. However, for the reasons stated before, more timeis needed to carry out one iteration, which deteriorates e�ciency. So whether applicationof more powerful smoothers can be made e�cient while enhancing robustness is another10



subject of future research. It might pay o� to use di�erent methods for the pressure and themomentum.Method 2 is very promising. Our future research, therefore, will pay equal attention toMethod 2.AcknowledgementThe authors would like to thank their colleagues C.W. Oosterlee and E. Brakkee for help ingenerating the grids and for useful discussions.
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Table 4.1: Problem 1: the total CPU time tt, the CPU times tv and tp, the numbers ofiterations kv and kp at the �nal time step, and the reduction factors �v and �p of the multigridalgorithm in the last iteration at the �nal time stepRe = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 18 7, 4 13,17 13 2, 5 4,17� .125 19 8, 4 15,17 14 3, 5 6,1832 .25 20 9, 5 16,17 15 4, 5 8,1664 .0625 141 68, 41 21,25 85 15, 41 6,26� .125 154 84, 42 24,25 88 18, 42 7,2664 .25 171 99, 42 29,26 94 25, 41 10,25128 .0625 1405 820,463 31,45 669 97,455 7,45� .125 1635 1044,467 40,45 730 142,470 11,50128 .25 1811 1218,467 49,47 811 232,460 18,50Method 232 .0625 62 33, 12 3, 4 .0908,.0495 59 31, 12 4, 4 .145,.0486� .125 64 35, 12 4, 4 .137,.0512 73 44, 12 5, 4 .269,.042332 .25 65 35, 12 4, 4 .126,.0525 91 60, 12 7, 4 .348,.047664 .0625 228 131, 44 4, 4 .131,.0523 241 143, 44 4, 4 .257,.0456� .125 228 131, 44 4, 4 .139,.0539 274 170, 44 5, 4 .355,.046964 .25 226 131, 44 4, 4 .145,.0554 309 205, 44 6, 4 .360,.0511128 .0625 948 573,197 4, 4 .140,.0553 938 562,197 3, 4 .158,.0444� .125 948 571,197 4, 4 .150,.0565 1023 676,197 4, 4 .261,.0464128 .25 949 572,197 4, 4 .162,.0574 1050 703,197 5, 4 .250,.0500Method 332 .0625 63 37, 14 4, 5 .128,.0592 56 29, 14 3, 5 .135,.0690� .125 67 40, 14 4, 5 .152,.0607 111 84, 14 9, 5 .540,.070932 .25 70 43, 14 5, 5 .188,.0617 188 161, 14 20*, 5 .993,.070464 .0625 252 162, 52 5, 5 .184,.0617 278 189, 52 5, 5 .451,.0702� .125 258 168, 52 5, 5 .202,.0619 452 363, 52 12, 5 .666,.067564 .25 266 176, 52 5, 5 .221,.0620 689 600, 52 20*, 5 .806,.0643128 .0625 1099 725,224 5, 5 .218,.0619 968 595,223 3, 3 .159,.0617� .125 1147 774,224 5, 5 .232,.0617 1191 821,220 6, 5 .408,.0637128 .25 1162 788,224 6, 5 .252,.0616 1352 978,223 7, 5 .434,.066212



Table 4.2: Problem 2: the total CPU time tt, the CPU times tv and tp, the numbers ofiterations kv and kp at the �nal time step, and the reduction factors �v and �p of the multigridalgorithm in the last iteration at the �nal time stepRe = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v ; �pMethod 132 .0625 22 6, 9 12, 28 26 10, 9 17, 28� .125 22 6, 9 12, 29 39 23, 9 39, 2832 .25 21 6, 9 12, 28 d(18)64 .0625 189 52, 100 19, 58 184 63, 91 22, 51� .125 184 54, 100 20, 58 d(15)64 .25 186 58, 99 21, 58 d(4)128 .0625 2563 1022,1402 52,137 1617 340,1149 21,103� .125 2774 1211,1422 67,137 1859 573,1160 31, 96128 .25 3328 1745,1442 78,143 2201 898,1172 49,108Method 232 .0625 58 30, 16 3, 5 .0561,.0669 71 43, 16 4, 5 .364,.0737� .125 69 40, 16 4, 5 .175,.0693 90 62, 16 6, 5 .574,.069032 .25 68 39, 17 4, 5 .238,.0682 138 110, 16 12, 4 105,.082464 .0625 204 107, 60 3, 5 .0566,.0860 267 172, 58 4, 5 1.59,.0743� .125 203 106, 59 3, 5 .0572,.0819 516 423, 55 14, 4 1.65,.080264 .25 204 107, 60 3, 5 .0684,.0808 d(9)128 .0625 859 467, 243 3, 4 .0961,.0701 1767 1351, 266 8, 5 1.08,.0765� .125 882 467, 266 3, 5 .0963,.0781 d(9)128 .25 883 467, 266 3, 5 .0961,.0809 d(4)Method 332 .0625 53 26, 16 3, 6 .0770,.0949 113 86, 15 10, 5 .660,.0954� .125 d(6) d(9)32 .25 d(2) d(4)64 .0625 213 117, 57 4, 6 .110, .110 d(6)� .125 212 117, 57 4, 6 .110, .110 d(4)64 .25 212 117, 57 4, 6 .120, .110 d(3)128 .0625 931 527, 252 4, 6 .156, .128 d(6)� .125 930 527, 252 4, 6 .156, .127 d(4)128 .25 931 526, 253 4, 6 .156, .125 d(3)13



Table 4.3: Problem 3: the total CPU time tt, the CPU times tv and tp, the numbers ofiterations kv and kp at the �nal time step, and the reduction factors �v and �p of the multigridalgorithm in the last iteration at the �nal time stepRe = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 30 12, 11 20, 33 21 2, 12 4, 33� .125 31 13, 11 22, 33 21 3, 12 7, 3232 .25 32 14, 11 23, 32 23 5, 11 12, 3264 .0625 293 141,122 35, 69 161 17, 116 7, 65� .125 306 156,119 41, 69 169 23, 117 11, 5964 .25 309 159,117 44, 67 185 39, 117 19, 58128 .0625 d(1) 1677 130,1421 10,133� .125 d(1) 1758 195,1439 15,107128 .25 d(1) 1915 373,1415 28,120Method 232 .0625 83 36, 26 4, 9 .265,.326 69 27, 26 3, 9 .0586,.331� .125 80 36, 27 4, 9 .259,.291 79 32, 26 4, 9 .131,.29032 .25 80 36, 26 4, 9 .243,.294 89 43, 26 6, 9 .210,.30164 .0625 286 131,100 4, 9 .240,.302 252 99, 99 3, 9 .0642,.308� .125 286 132,100 4, 9 .214,.310 285 130, 99 4, 9 .138,.31464 .25 287 132,100 4, 9 .196,.350 291 131, 100 4, 9 .264,.343128 .0625 1217 598,470 4, 9 .200,.328 1250 613, 483 4, 9 .191,.313� .125 1217 597,469 4, 9 .189,.326 1209 594, 465 4, 9 .213,.307128 .25 1216 597,469 4, 9 .185,.310 1215 598, 468 4, 9 .209,.297Method 332 .0625 106 42, 51 6,20* .329,.519 83 23, 48 3, 17 .0607,.453� .125 106 43, 51 5,20* .283,.519 87 26, 49 4, 18 .149,.51632 .25 107 45, 50 5,20* .263,.519 97 36, 48 6, 17 .235,.51164 .0625 394 171,179 6,20* .297,.519 306 90, 177 3, 17 .0680,.497� .125 383 175,170 6, 19 .276,.519 312 105, 169 3, 16 .0873,.49164 .25 380 176,166 6, 18 .267,.519 338 119, 181 4, 17 .271,.510128 .0625 1595 741,702 6, 18 .270,.519 1451 508, 792 4, 17 .202,.511� .125 1561 741,668 6, 17 .272,.519 1511 536, 824 4, 19 .226,.513128 .25 1536 741,643 6, 16 .277,.518 1599 619, 828 4,20* .237,.51614



Table 4.4: Problem 4: the total CPU time tt, the CPU times tv and tp, the numbers ofiterations kv and kp at the �nal time step, and the reduction factors �v and �p of the multigridalgorithm in the last iteration at the �nal time stepRe = 1 Re = 1000Grid �t tt tv; tp kv; kp �v ; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 21 7, 8 13, 25 16 2, 8 4, 25� .125 22 8, 8 14, 25 18 3, 8 8, 2532 .25 23 9, 8 15, 25 20 6, 8 15, 2564 .0625 165 57, 79 19, 40 123 16, 78 6, 41� .125 180 65, 80 20, 42 130 23, 79 12, 4364 .25 180 73, 79 23, 42 154 47, 79 24, 40128 .0625 2244 655,1414 29,102 1548 113,1258 9,105� .125 2626 803,1688 32,145 1738 198,1371 19,150128 .25 2923 925,1864 40,164 2098 528,1440 43,117Method 232 .0625 70 36, 17 4, 5 .129,.139 60 29, 15 3, 5 .0661,.135� .125 71 36, 17 4, 6 .127,.141 70 38, 15 5, 5 .173,.12332 .25 72 36, 18 4, 6 .131,.122 92 57, 15 7, 6 .348,.11664 .0625 245 134, 47 4, 5 .130,.115 238 130, 57 4, 6 .166,.155� .125 249 131, 58 4, 5 .147,.133 332 214, 61 7, 6 .489,.15764 .25 253 132, 61 4, 5 .156,.168 486 357, 62 12, 6 .910,.160128 .0625 1051 623, 271 4, 5 .176,.108 1232 820, 261 5, 6 .786,.160� .125 1007 598, 259 4, 5 .194,.106 2129 1690, 285 13, 6 .825,.163128 .25 1006 597, 258 4, 5 .205,.116 d(6)Method 332 .0625 69 37, 20 4, 7 .144,.159 57 26, 19 3, 7 .0648,.168� .125 70 38, 20 4, 7 .147,.157 71 38, 20 4, 8 .154,.19532 .25 72 39, 20 4, 7 .161,.178 110 77, 20 12, 8 .472,.19764 .0625 253 145, 71 4, 7 .148,.435 265 153, 74 4, 8 .264,.199� .125 266 158, 71 4, 7 .166,.408 627 512, 77 20*, 8 .736,.22864 .25 270 160, 72 5, 7 .196,.440 d(11)128 .0625 1033 617, 264 5, 6 .214,.123 2445 2001, 292 20*, 8 1.01,.489� .125 1030 616, 263 5, 6 .236,.126 d(9)128 .25 1032 617, 264 5, 6 .243,.129 d(5)15



References[1] Axelsson, O. and G. Lindskog, On the eigenvalue distribution of a clase of preconditioningmethods. Numer. Math., 48, 479{498, 1986.[2] Hackbusch, W., Multi-grid methods and applications. Springer, Berlin, 1985.[3] Kan, J.J.I.M. van, A second-order accurate pressure-correction scheme for viscous in-compressible ow. SIAM J. Sci. Stat. Comput., 7, 870{891, 1986.[4] Mynett, A.E., P. Wesseling, A. Segal and C.G.M. Kassels, The ISNaS incompressibleNavier-Stokes solver: invariant discretization. Appl. Sci. Research, 48, 175{191, 1991.[5] Saad, Y. and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856{869, 1986.[6] Segal, A., P. Wesseling, J. van Kan, C.W. Oosterlee and C.G.M. Kassels, Invariant dis-cretization of the incompressible Navier-Stokes equations in boundary �tted co-ordinates.Int. J. Numer. Methods in Fluids, 15, 411{426, 1992.[7] Vorst, H.A. van der and C. Vuik, GMRESR: A family of nested GMRES methods. Re-port 91-80, Faculty of Technical Mathematics and Informatics, TU Delft, The Nether-lands, 1991. To appear in J. Numer. L. A. A.[8] Vuik, C., Further experiences with GMRESR. Report 92-12, Faculty of Technical Math-ematics and Informatics, TU Delft, The Netherlands, 1992.[9] Vuik, C., Solution of the discretized incompressible Navier-Stokes equations with the GM-RES method. Int. J. Num. Methods in Fluids, 16, 507{523, 1993.[10] Vuik, C., The solution of the discretized incompressible Navier-Stokes equations withiterative methods. Report 93-54, Faculty of Technical Mathematics and Informatics,TU Delft, The Netherlands, 1993.[11] Wesseling, P., An introduction to multigrid methods. John Wiley & Sons, Chichester,1992.[12] Wesseling, P., A. Segal, J. van Kan, C.W. Oosterlee and C.G.M. Kassels, Finite volumediscretization of the incompressible Navier-Stokes equations in general coordinates onstaggered grids. Comp. Fluid Dyn. J., 1, 27{33, 1992.[13] De Zeeuw, P.M., Matrix-dependent prolongations and restrictions in a block multigridmethod solver. J. Comput. Appl. Math. 3, 1{27, 1990.[14] De Zeeuw, P.M. and E.J. van Asselt, The convergence rate of multi-level algorithmsapplied to the convection-di�usion equation. SIAM J. Sci. Stat. Comput., 6, 492{508,1985. 16



[15] Zeng, S. and P. Wesseling, Galerkin coarse grid approximation for the incompressibleNavier-Stokes equations in general coordinates. Report 92-35, Faculty of Technical Math-ematics and Informatics, TU Delft, The Netherlands, 1992.[16] Zeng, S. and P. Wesseling, An e�cient algorithm for the computation of Galerkin coarsegrid approximation for the incompressible Navier-Stokes equations in general coordinates.Report 92-40, Faculty of Technical Mathematics and Informatics, TU Delft, The Nether-lands, 1992.[17] Zeng, S. and P. Wesseling, Galerkin coarse grid approximation in multigrid for the in-compressible Navier-Stokes equations. Report 92-103, Faculty of Technical Mathematicsand Informatics, TU Delft, The Netherlands, 1992. To appear in SIAM J. Num. Anal.

17


