
An investigation of Schwarz
domain decomposition using

accurate and inaccurate solution of
subdomains

Report 95-18

Erik Brakkee
Kees Vuik

Piet Wesseling

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c

 1995 by the Faculty of Technical Mathematics and Informatics, Delft, The

Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous ftp-
site, ftp.twi.tudelft.nl. They are located in directory /pub/publications/tech-reports. They
can also be accessed on the World Wide Web at:
http://www.twi.tudelft.nl/TWI/Publications/Overview.html

An investigation of Schwarz Domain Decomposition using

accurate and inaccurate solution of subdomains

Erik Brakkee

Kees Vuik, Piet Wesseling

March 22, 1995

Abstract

For the solution of practical complex problems in arbitrarily shaped domains, simple

Schwarz domain decomposition methods with minimal overlap are used. Krylov subspace

methods, such as the GMRES method, can be used to obtain signi�cant acceleration of

convergence. When accurate solution of subdomains is presupposed, this acceleration pro-

cedure can be quite e�cient but the amount of time spent in solving subdomain problems

may be prohibiting. To reduce computing time, inaccurate solution of subdomains is con-

sidered. This requires a di�erent, GCR based, acceleration technique. Experiments show

that computing time for a multi-domain problem can be reduced to that of single domain

solution with the same total number of unknowns. For this purpose, the multiplicative

domain decomposition algorithm should be used. This is an important practical observa-

tion, since this makes e�cient domain decomposition available for complex problems, for

which parallel implementation is not readily available, possible or feasible. The prospects

for parallel implementation are also investigated.

1 Introduction

For the solution of the incompressible Navier-Stokes equations in domains of arbitrary shape,

we use a block-structured �nite volume method is used. References [20, 9, 27] describe the

discretization in detail and reference [21] discusses the capability of the method to accurately

solve a number of benchmark problems. A Schwarz type domain decomposition iteration in

combination with a GMRES [23] acceleration is used to solve the resulting domain decompo-

sition problem. Signi�cant reductions in computing time can be obtained using the GMRES

acceleration procedure, see [5] and [4].

However, since this method requires an accurate solution of subdomains, the computing

time can be much larger than with single block solution for the same number of unknowns.

Another problem with this method is that it is not known beforehand how accurate the

subdomains must be solved. A possible solution to both problems is to solve the linear

equations on the subdomains inaccurately. The e�ect of this is that the GMRES acceleration

procedure can no longer be used because the preconditioner may vary in each iteration.

Instead, a method based on GCR [14] is used. For the special case of a single domain, this

method simpli�es to GMRESR [24] if GMRES is used to solve the subdomains (inaccurately).

1

Theoretical analysis of the e�ect of inaccurate solution of subdomains seems intractable.

Therefore we take recourse to numerical experiments. We compare some results on solving

the subdomains accurately and inaccurately for a two-dimensional model problem, namely

the advection-di�usion equation:

�

@

2

u

@x

2

�

@

2

u

@y

2

+ a

1

@u

@x

+ a

2

@u

@y

+ cu = f on
 = [�1; 1]� [�1; 1]: (1)

This equations is a good model of what can be expected when the method is applied to the mo-

mentum equations in Navier-Stokes solution methods. With a

1

= a

2

= 0 we obtain a Poisson

equation which is a good model for the pressure equation occurring in the pressure-correction

method. A cell-centered discretization is used, see [5] for details on domain decomposition

and discretization for this equation. The results are reported in the entire range between very

accurate subdomain solution with tolerance � = 10

�8

and very inaccurate solution using a

blocked version of the subdomain ILU postconditioner.

In the literature, much focus is on parallel algorithms. However, parallel implementations

are not immediately available and one can imagine situations where parallel execution is

not (e�ciently) possible. Therefore, to obtain an e�cient sequential domain decomposition

algorithm we pay much attention to multiplicative domain decomposition. The prospects for

parallel implementation are also discussed.

2 Krylov subspace acceleration

The basic Schwarz domain decomposition iteration converges slowly because, for practical

reasons, in computation
uid dynamics minimal overlap is usually used. Therefore, some

acceleration procedure for this iterative procedure is needed. Krylov subspace methods are

frequently used to accelerate domain decomposition methods, see for example [1] and many

of the papers on iterative substructuring methods in [15, 7, 8, 16, 19]. This section presents

both the acceleration procedure used with accurate solution of subdomains and the procedure

used with inaccurate solution of subdomains.

Basically, the domain decomposition iteration is of the following form

u

m+1

= (I �N

�1

A)u

m

+N

�1

f: (2)

with A the global discretization matrix over all domains and N

�1

an approximation to the

inverse of the block diagonal or block lower-diagonal matrix of A. The matrix N is called the

block Jacobi and Gauss-Seidel matrix of A respectively. The matrix A is divided into blocks

where each block corresponds with all unknowns in a single subdomain. For instance, for a

decomposition into 3 blocks we have

A =

2

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

31

A

32

A

33

3

7

5

: (3)

2

In [5] we assumed that the subdomains were solved accurately so that N

�1

is the exact

inverse of the block diagonal or block lower-diagonal matrix of A, so

N = N

gs

=

2

6

4

A

11

; ;

A

21

A

22

;

A

31

A

32

A

33

3

7

5

or N = N

jac

=

2

6

4

A

11

; ;

; A

22

;

; ; A

33

3

7

5

(4)

with N

gs

the Gauss-Seidel version and N

jac

the Jacobi version of N . The Gauss-Seidel

version is suitable for implementation on a single processor and leads to the sequential or

multiplicative algorithm. The Jacobi version is suitable for parallelization and is called the

parallel or additive version.

It can be seen that the left-hand side of (2) only depends on the values of u

m

near an

interface. This means that if we split the vector u into vectors w en v with w the non-interface

unknowns and v the interface unknowns, see Figure 1, we have

(I �N

�1

A)u = (I �N

�1

A)Qv (5)

with Q =

"

0

I

#

an injection operator from v into u =

"

0

v

#

. From (5), it follows that (I �

N

�1

A)

"

w

0

#

= 0 so that the non-interface unknowns do not contribute to the computation

of u

m+1

in (2).

v ww

Figure 1: Interface variables v and non-interface variables w for a 5-point discretization stencil

and a decomposition into two blocks

By substituting (5) into (2) and by premultiplying with Q

T

we get

v

m+1

= Q

T

u

m+1

= Q

T

(I �N

�1

A)Qv

m

+ Q

T

N

�1

f: (6)

Since we are interested in the stationary solution v of this iteration process we get

v = Q

T

(I �N

�1

A)Qv + Q

T

N

�1

f: (7)

3

which is equivalent to

Q

T

N

�1

AQv = Q

T

N

�1

f: (8)

Therefore, accurate solution of subdomains �nally leads to a system concerning only the

interface equations. Accelerated domain decomposition in [5] amount to solving the interface

equations (8) using GMRESR [24]. The required matrix-vector product can be computed by

doing one domain decomposition iteration, see [5] for details.

Inaccurate solution of subdomains implies that we no longer take the exact inverse of N

but use some approximation

~

N to N , so

~

N =

~

N

gs

=

2

6

4

~

A

11

; ;

A

21

~

A

22

;

A

31

A

32

~

A

33

3

7

5

or

~

N =

~

N

jac

=

2

6

4

~

A

11

; ;

;

~

A

22

;

; ;

~

A

33

3

7

5

: (9)

with

~

N

gs

the Gauss-Seidel (sequential) version and

~

N

jac

the Jacobi (parallel) version of

~

N .

In the literature, much focus is on parallel algorithms. However, parallel implementations

are not immediately available and one can imagine situations where parallel execution is not

possible. Suppose for instance that there is only one workstation to do computations on.

Therefore, to obtain an e�cient sequential domain decomposition algorithm we pay much

attention the the Gauss-Seidel version of N .

The matrix vector product of p =

~

N

�1

gs

v is computed like

p

1

=

~

A

�1

11

v

1

p

2

=

~

A

�1

22

(v

2

� A

21

v

1

) (10)

p

3

=

~

A

�1

33

(v

3

� A

31

v

1

�A

32

v

2

):

Here

~

A

�1

ii

represents the approximate solution in subdomain i up to a low accuracy using GM-

RES. A special case occurs when we take

~

A

ii

= L

i

U

i

to be some incomplete LU factorization

of A

ii

. This paper also investigates this case for ILUD factorization, see further on.

The GMRES subdomain solution implicitly constructs a polynomial p(A

ii

) of the subdo-

main matrix A

ii

such that the �nal residual p(A

ii

)r

0

is minimal in the k ? k

2

norm. Speci�-

cally, with initial guess p

i0

= 0 and right-hand side v

i

, we get for the �nal subdomain solution

p

i

= p(A

ii

)v

i

. Since the polynomial, p(A

ii

) depends on both the required accuracy and the

right-hand side (initial residual), the matrix

~

A

�1

ii

= p(A

ii

) can be di�erent for each v. There-

fore, the GMRES acceleration procedure cannot be used since the preconditioner

~

N varies in

each step.

The GCR [14] method can be easily adapted to cope with variable preconditioners. Be-

cause of its simplicity and for completeness, we derive the GCR method here. The GCR

method is based on maintaining two subspaces, a subspace S

k

=< s

1

; s

2

; : : : ; s

k

> for storing

the search directions s

i

and a subspace V

k

=< v

1

; v

2

; : : : ; v

k

> with As

i

= v

i

. In every oper-

ation of GCR the property As

i

= v

i

is preserved. The GCR method minimizes the residual

kb�Ax

k

k

2

over x

k

2 S

k

. Clearly, if the fv

i

g

i=1;:::;k

form an orthonormal basis, we can obtain

the solution by projecting onto the space V

k

. So we must �nd x

k

2 S

k

such that b�Ax

k

? v

i

for i = 1; : : :k, therefore,

(b� Ax

k

; v

i

) = 0: (11)

4

Since Ax

k

2 V

k

we have

Ax

k

=

X

j=1:::k

�

j

v

j

(12)

and by substituting (12) into (11) we get �

i

= (b; v

i

) so that

Ax

k

=

X

i=1:::k

(b; v

i

)v

i

: (13)

Since As

i

= v

i

, we have

Ax

k

=

X

i=1:::k

(b; v

i

)As

i

= A

X

i=1:::k

(b; v

i

)s

i

(14)

so that x

k

=

P

i=1:::k

(b; v

i

)s

i

. This gives x

k+1

= x

k

+ (b; v

k+1

)s

k+1

and with r

k

= b � Ax

k

we get r

k+1

= r

k

� (b; v

k+1

)v

k+1

. The GCR algorithm proceeds by choosing a new search

direction s

k+1

(preferably such that As

k+1

approximates the residual r

k

) and computes the

vector v

k+1

= As

k+1

. A modi�ed Gram-Schmidt procedure is used to make v

k+1

orthogonal

to v

i

(1 � i � k). The same linear combinations of vectors are applied to the space of search

directions S

k

to ensure that As

i

= v

i

still holds for all i. Figure 2 shows the resulting GCR

algorithm.

For the special case of the search direction s

k+1

= r

k

, we obtain the classical GCR

algorithm, which is equivalent to GMRES [23]. For this choice of search direction, the space

S

k

is called the Krylov space. The di�erence between GCR and GMRES is that, at the bene�t

of allowing more general search directions, GCR requires twice the storage of GMRES and

3=2 times the number of
oating point operations for orthogonalization. However GCR can

be combined with truncation strategies, for instance the Jackson & Robinson [17] strategy,

whereas GMRES can only be restarted. Because of this, GCR may converge faster than

GMRES.

Recent developments have led to a more
exible GMRES algorithm which allows more

general search directions, so called FGMRES [22]. Also, the amount of work in GCR can be

reduced to approximately that of GMRES if restarted GCR is used, see [25]. The resulting

algorithm is comparable to FGMRES both in memory requirements and work. The GCR

method achieves the same goal as FGMRES in a more understandable way.

The present paper considers only restarted GCR to compare with subdomain solution

(which uses restarted GMRES). The optimizations of [25] are not used in this paper but

will certainly be considered for domain decomposition for the incompressible Navier-Stokes

equations.

If we compute the search direction s

k+1

using some GMRES iterations for solving As

k+1

=

r

k

we obtain the GMRESR [24] algorithm. In the present paper, we use s

k+1

=

~

N

�1

r

k

. If the

subdomains are solved (inaccurately) using GMRES, this method reduces to GMRESR for the

single domain case. If the subdomains are approximately solved using some ILU factorization

we obtain a blocked version of the subdomain ILU postconditioning called IBLU, which was

investigated for parallel implementation in (Incomplete Block LU) [13, 18, 10, 11]. In this

paper we also investigate the sequential version of IBLU. For a single domain, this method is

equivalent to GMRES with an ILU postconditioner.

5

r

0

= b� Ax

0

; k = 0

while kr

k

k � �kr

0

k

choose a search direction s

k+1

compute v

k+1

= As

k+1

modi�ed Gram-Schmidt

for i = 1; : : : ; k

� = (v

k+1

; v

i

)

v

k+1

= v

k+1

� � � v

i

ensure As

k+1

= v

k+1

s

k+1

= s

k+1

� � � s

i

end for

� = kv

k+1

k

2

v

k+1

= v

k+1

=�

s

k+1

= s

k+1

=�

end Gram-Schmidt

update x and r

 = (b; v

k+1

)

x

k+1

= x

k+1

+
s

k+1

r

k+1

= r

k+1

�
s

k+1

k = k + 1

end while

Figure 2: The GCR algorithm with general search directions without restart and with a

relative stopping criterion [24]

For the special case where

~

A

ii

corresponds to incomplete LU factorization, the precon-

ditioner is constant and the GMRES acceleration procedure may also be applied. The only

di�erence between the general method, based on GCR, and the GMRES acceleration is that

GMRES requires less vector updates and less memory. Both methods of acceleration will be

considered for IBLU postconditioning.

An important remark is that the stopping criterion for accurate solution di�ers from

that for inaccurate solution. With accurate solution, the stopping criterion is based on the

preconditioned residual r = Q

T

N

�1

f � Q

T

N

�1

AQv of only the interface unknowns. On the

other hand, with inaccurate solution, it is based on the unpreconditioned residual r = f�Au of

all unknowns. Therefore, a comparison between the two methods is di�cult since di�erences

in computing time can either be caused by a di�erence in convergence behavior or by the

di�erence in the de�nition of the residual. In this paper, we assume that the di�erence in

de�nition of the residual does not give di�erent accuracies of the �nal solution when using

6

the relative stopping criterion kr

k

k � �kr

0

k.

3 Results

This section compares accurate with inaccurate solution of subdomains. Three problems are

considered. The �rst is a Poisson equation

�

@

2

u

@x

2

�

@

2

u

@y

2

= �4 on
 = [�1; 1]� [�1; 1]: (15)

with u(x; y) = x

2

+ y

2

on the boundary. The second is a recirculating
ow problem with

oblique
ow across the interface:

�

@

2

u

@x

2

�

@

2

u

@y

2

+ a

1

@u

@x

+ a

2

@u

@y

+ 50u = 1 on
 = [�1; 1]� [�1; 1]: (16)

with

(

a

1

(x; y) = 100 � y � (1� x

2

)

a

2

(x; y) = �100 � x � (1� y

2

) + 10 � (y + 1):

(17)

The term 10 � (y + 1) makes the
ow oblique across vertical and horizontal interfaces. On

the left and lower sides u(x; y) = 1 is given and on the other sides @u=@n = 0 holds. This

problem is known to be a di�cult domain decomposition problem, see [5]. A third problem

is one with simple uniform
ow:

�

@

2

u

@x

2

�

@

2

u

@y

2

+ 50

@u

@x

+ 50

@u

@y

+ 50u = 2 on
 = [�1; 1]� [�1; 1]; (18)

with the same boundary conditions as problem two. Central discretization in space is applied.

The subdomains are solved using GMRES with ILUD preconditioning and a relative stop-

ping criterion. The subdomain solution accuracy is varied. As a special case the subdomain

solution is approximated by means of the inverse of the ILUD preconditioner, see [12, 26].

This preconditioner is of the form P = LD

�1

U with L and U lower and upper triangular

matrices and D a diagonal matrix with

8

>

<

>

:

l

i;j

= a

i;j

for j < i

u

i;j

= a

i;j

for j > i

d

i

= u

i;i

= l

i;i

:

(19)

For a matrix with non-zero elements only on the positions (i; i� n

x

); (i; i� 1); (i; i); (i; i+

1); (i; i+ n

x

) this leads to the recursion

d

i

= a

i;i

� a

i;i�w

d

�1

i�w

a

i�w;i

� a

i;i�1

d

�1

i�1

a

i�1;i

for i = 1; 2; 3; : : : (20)

with a

i;j

= 0 if j is out of range. The ILUD preconditioner is cheap in memory because only

the d

i

for 1 � i � n need be stored and it is also cheap in work.

7

The multi-block problem (the outer loop) is solved up to a relative accuracy of 10

�4

. In all

experiments a Krylov space of dimension 20 is used for both GMRES and GCR multi-block

acceleration and for GMRES subdomain solution. A restart after 20 iterations is used with

both GMRES and GCR.

Iteration counts and computing times is given in the tables in the form itercount/time.

The experiments were conducted on a HP9000/735 workstation.

In most of the experiments, the Gauss-Seidel (sequential) version of N is used. Only sec-

tion 3.3 examines the possibilities for parallelism. Section 3.1 examines the e�ect of lowering

the accuracy of the subdomain solution on the number of iterations and total computing

time. Section 3.2 compares single block solution with multi-block solution with emphasis on

the amount of additional time needed with multi-block (the multi-block penalty).

3.1 Lowering the subdomain accuracy of solution

Table 1 lists the iteration counts and computation times (itercount=time) for the three prob-

lems. The global grid consists of 80� 80 grid cells and it was divided into 4� 4 subdomains.

The �rst two rows concern the algorithm for accurate solution of subdomains. The iteration

counts for extremely accurate subdomain solution with tolerance � = 10

�8

and � = 10

�4

are

the same. From this we conclude that the subdomain solution accuracy with tolerance 10

�4

is accurate enough for this algorithm and test problem.

� Poisson Recirculating
ow Uniform
ow

I 10

�8

19=38:74 12=20:74 7=7:98

10

�4

19=22:98 12=13:52 7=5:60

II 10

�4

14=16:91 9=9:91 5=3:74

10

�3

14=14:00 9=8:68 5=3:30

10

�2

15=12:27 9=7:38 5=2:82

10

�1

17=9:90 10=6:47 6=2:93

III IBLUD post + GMRES 33=4:43 46=6:24 16=2:13

IBLUD post + GCR 33=5:19 46=7:49 16=2:50

Table 1: Lowering the accuracy of subdomain solution. I is the algorithm for accurate solution

of subdomains, II for inaccurate solution using GMRES, III is for IBLUD

The other rows are for the GCR based algorithm. Note that in the special case of IBLUD

postconditioning we have also listed the more e�cient GMRES acceleration. As the subdo-

main solution accuracy is lowered the number of iterations increases only slightly. Because

of this the computing time drops signi�cantly for lower subdomain accuracies. Only for the

special case of IBLUD postconditioning, the number of iterations is signi�cantly higher. This

rise in number of iterations does however not outweigh the reduction in work by computing

only U

�1

L

�1

� vector instead of doing GMRES. The computing time with IBLUD postcon-

ditioning is by far the lowest. Note that the amount of additional work in GCR acceleration

compared to GMRES acceleration can be signi�cant. The only di�erence with GMRES is

8

that GCR needs some additional vector updates and requires some more memory. A more

e�cient implementation, see [25], will certainly be considered for the incompressible Navier-

Stokes equations. Mathematically, the algorithms are the same for IBLUD postconditioning.

An important observation is that the GCR algorithm for inaccurate solution of subdomains

requires fewer iterations than the algorithm for accurate subdomain solution using the same

subdomain solution accuracy. To show that this di�erence is not caused by the di�erent

de�nition of the residual, we compare the computed solutions u

h

of the Poisson equation

with the exact solution u(x; y) = x

2

+ y

2

.

Table 2 shows the maximum norms and 2-norms of the di�erence with the exact solution.

The 2-norm is de�ned as kxk

2

=

q

P

i=1;:::;n

x

2

i

=n. Clearly, the solutions obtained with both

algorithms have approximately the same accuracy. Only for large subdomain accuracy (giving

very large computing time) the algorithm for accurate solution of subdomains gives a more

accurate solution. This veri�es our earlier claim that the solution obtained with GMRES

acceleration used with accurate solution of subdomains is sensitive to the subdomain solution

accuracy. This sensitivity is not present with the GCR based acceleration procedure used

with inaccurate solution of subdomains.

� ku

h

� uk

1

ku

h

� uk

2

I 10

�8

0:00001 0:0002

10

�4

0:0020 0:0030

II 10

�4

0:0032 0:0016

10

�3

0:0033 0:0016

10

�2

0:0029 0:0014

10

�1

0:0038 0:0020

III IBLUD 0:0010 0:0022

Table 2: Accuracy of the solution to the Poisson problem using (I) the algorithm for accu-

rate solution of subdomains, (II) the algorithm for inaccurate solution of subdomains using

GMRES and (III) for IBLUD

We see that with inaccurate solution of subdomains by ILUD (the IBLUD postcondi-

tioning), we can reduce computing time is reduced by a factor 2 � 6 compared to accurate

solution of subdomains. In [6], a comparison between accurate and inaccurate solution was

made based on the number of iterations only. This led to the conclusion that the simple

accelerated Schwarz algorithm using accurate subdomain solution was a competitive method

compared to single-domain ILU preconditioned GMRES. The basis of analysis in the present

paper is that we do less work per iteration and therefore we allow some more iterations.

Therefore, although the number of iterations is machine and implementation independent

it should not be used as a basis for comparison. Computing time is more suitable to com-

pare algorithms but may give di�erent results depending on the implementation and machine

architecture.

The most impressive reductions of computing time are obtained for the Poisson equation,

9

which is also the most expensive part of the multi-block Navier-Stokes problem, see [4]. For

the di�cult recirculating
ow problem we obtain a reduction of a factor of 2. The simpler

uniform
ow problem shows a reduction of a factor of 4.

3.2 Single domain versus multi domain

One of the main reasons for investigating inaccurate solution of subdomains was to reduce the

excessive computing times observed in the multi-block incompressible Navier-Stokes solver [4],

and to bring them closer to single block block solution. This also gives better prospects for

parallel computing.

It is therefore interesting to compare single block solution times with multi-block solution

times.

Table 3 lists the number of iterations and computing times for single block solution of a

Poisson equation on an 80 � 80 grid. The results are given for GMRES subdomain solution

using both ILUD preconditioning and postconditioning. The postconditioning is a special

case of the IBLUD postconditioner for a single domain. The preconditioner is implemented

e�ciently on the level of the subdomain solver. The �rst row of the table thus represents

an e�cient ILUD preconditioner and the second row an ILUD postconditioner with some

multi-block overhead (copying of vectors etc.)

Poisson Recirculating
ow Uniform
ow

ILUD preconditioner 39=3:74 52=5:04 17=1:57

ILUD postconditioner 33=3:84 39=4:69 16=1:85

Table 3: Single block solution using GMRES with ILUD pre- and postconditioning

Table 4 shows a comparison of single block solution and multi-block solution for the Pois-

son equation for di�erent decompositions of the domain. The decomposition of the domain

is indicated as b

x

� b

y

� n

x

� n

y

where b

x

� b

y

indicates the decomposition into blocks and

n

x

� n

y

the size of each subdomain in grid cells.

We see that the number of iterations with accurate solution of subdomains approximately

doubles as the same grid is divided up from 2 � 2 subdomains into 8 � 8 = 64 subdomains.

As the subdomains are solved less accurate, this increase in the number of iterations is only

slightly less. The IBLU postconditioner performs well. Although the number of iterations

for the same decomposition of the domain is approximately twice as much as with GMRES

solution of subdomains for the same decomposition of the domain, the computing time is still

signi�cantly smaller.

Note that, despite an increase in the number of iterations, the computing time is almost

constant if subdomains are solved accurately (� = 10

�4

, � = 10

�8

). The reason is that

subdomain solution becomes more e�cient for smaller problems. This can be seen as follows.

The amount of work required to solve a subdomain problem depends on the number of

unknowns m:

W (m) = c �m

�

(21)

10

with c > 0 and � > 1. If the global domain consists of N unknowns and p subdomains are

used, we have m = N=p and the amount of work for one domain decomposition iteration

becomes

W = p �W (N=p) = cN

�

�

1

p

�

� 1

: (22)

Clearly W decreases as the number of subdomains p rises. Since (21) is only valid for m large

enough, the result (22) is not valid for large p and computing time will start to increase again.

p.

We see that the number of iterations for IBLUD does not increase signi�cantly as the

number of subdomains is increased. This property is probably caused by the A

ji

(j > i)

terms in the preconditioner

~

N , see Eq. (4), which were used in the preconditioner. The

number of iterations is almost the same as with single-block solution. Also, note that for

IBLUD postconditioning, the more general GCR acceleration gives an overhead of about

10� 20% with respect to the more e�cient GMRES acceleration.

decomposition

� 2� 2� 40� 40 4� 4� 20� 20 8� 8� 10� 10

I 10

�8

14=64:04 19=38:74 27=42:69

10

�4

14=30:01 19=22:98 27=30:31

II 10

�4

11=22:73 14=16:91 20=22:24

10

�3

11=18:73 14=14:00 21=21:36

10

�2

11=12:56 15=12:27 21=19:18

10

�1

13=8:64 17=9:90 24=19:44

III IBLUD post + GMRES 33=3:85 33=4:43 35=5:82

IBLUD post + GCR 33=4:73 33=5:19 35=7:00

Table 4: Subdivision of the same grid into subdomains for the Poisson equation. I is the

algorithm for accurate solution of subdomains, II is inaccurate solution of subdomains using

GMRES and III for IBLUD

Table 5 lists the results for the recirculating and uniform
ow problems. Again there

is an increase in the number of iterations as more subdomains are used. With inaccurate

solution of subdomains using GMRES there is an increase of a factor 2 to 3 in the number

of iterations for the recirculating
ow problem as the grid is divided into more subdomains.

For the uniform
ow problem, this increase is only moderate. With IBLUD postconditioning,

the number of iterations increases only moderately with the number of subdomains. The

number of iterations is approximately equal to that of single domain solution with ILUD

postconditioning, see Table 3, especially for the uniform
ow problem. This means that,

excluding overhead by the implementation, the computing time should be almost constant as

the number of blocks is increased.

In all three problems, we see that with IBLUD postconditioning, the GCR based algorithm

requires more computing time than IBLUD postconditioning combined with GMRES. This is

what can be expected because GCR requires more vector updates than GMRES. Also, as the

11

Recirculating
ow

decomposition

� 2� 2� 40� 40 4� 4� 20� 20 8� 8� 10� 10

I 10

�8

8=24:80 12=20:74 20=30:07

10

�4

8=14:38 12=13:52 20=23:61

II 10

�4

6=9:99 9=9:91 16=18:16

10

�3

6=8:45 9=8:68 16=17:22

10

�2

7=7:64 9=7:38 16=15:95

10

�1

9=6:21 10=6:47 18=16:42

III IBLUD post + GMRES 43=5:20 46=6:24 49=8:31

IBLUD post + GCR 43=6:40 46=7:49 49=9:67

Uniform
ow

decomposition

� 2� 2� 40� 40 4� 4� 20� 20 8� 8� 10� 10

I 10

�8

6=8:64 7=7:98 8=10:16

10

�4

6=5:37 7=5:60 8=8:21

II 10

�4

4=3:37 5=3:74 7=6:63

10

�3

4=2:97 5=3:30 7=6:17

10

�2

4=2:40 5=2:82 7=5:84

10

�1

5=2:02 6=2:93 8=5:99

III IBLUD post + GMRES 16=1:89 16=2:13 16=2:74

IBLUD post + GCR 16=2:29 16=2:50 16=3:05

Table 5: Subdivision of the same grid into subdomains for the recirculating and uniform
ow

problems. I is the algorithm for accurate solution of subdomains, II is inaccurate solution of

subdomains using GMRES and III is for IBLUD

number of subdomains is enlarged, the number of iterations with IBLUD does not increase

signi�cantly. However, the computing time still does. This increase in computing time is

caused by overhead of the multi-block algorithm. Table 6 lists the overhead for solving the

Poisson equation using IBLUD postconditioning with GMRES acceleration. The computing

time is divided into several categories

� copy: for the copying of vector

� bc: for the computation of the internal boundary conditions, that is the terms A

ji

v

i

for

j > i, see formula (10)

� prec: for evaluating the subdomain ILUD preconditioner (computation v = U

�1

L

�1

w)

(also present with single-block solution)

� matvec: for computation of the subdomain matrix vector product A

ii

v.

12

Categories copy and bc are typical multi-block overhead and prec and matvec are also

present in the single-block case. The amount of time spent in latter two categories should be

approximately the same for both multi-block and single-block solution.

Decomposition

category 1� 1 2� 2 4� 4 8� 8

total time 3:81 3:85 4:43 5:82

copy 0:33 0:39 0:71 1:14

bc 0:16 0:23 0:38 0:88

prec 0:81 0:75 0:68 0:66

matvec 0:58 0:57 0:61 0:64

Table 6: Overhead in the multi-block algorithm for inaccurate solution of subdomains

The overhead in all categories increases signi�cantly as the grid is subdivided into more

domains. The overhead of copying vectors cannot be easily reduced if we want to retain a

black box implementation of the subdomain solution algorithm. The overhead involved in

the computation of internal boundary conditions can also not be avoided. As Table 6 shows,

the amount of time spent in evaluating the preconditioner and computing the matrix-vector

product is almost constant as more blocks are used. This is correct, since the number of

iterations stays approximately the same and the global discretization matrix A is of the same

size independent of the number of blocks.

3.3 Prospects for parallel implementation

In this section, we take a brief look at the possibilities for parallel implementation. Table 7

shows a comparison between the block Gauss-Seidel and block Jacobi versions of the postcon-

ditioner

~

N . We see that the penalty of going from the sequential to the parallel algorithm is

approximately a factor 2 if subdomains are solved inaccurately using GMRES. With IBLUD

postconditioning on the other hand, this factor is much less than 2. Also, computing time on

a single machine is minimized if IBLUD postconditioning is used. This means that we expect

good results from parallelization of the IBLUD postconditioning.

In [2, 3] parallelization of domain decomposition for the incompressible Navier-Stokes

equations using accurate solution of subdomains was investigated. The method performed

well on a cluster of workstations. The reason was that with accurate solution of subdomains

the parallelization is rather coarse grained. Furthermore, the reduction to a system of interface

equations (8) made a very simple implementation possible.

The results of the present study show, however, that with the algorithms discussed in this

paper, the domain decomposition method on a single machine will probably beat the current

parallel implementation [2, 3] in the near future. Parallelization of the algorithms of this

report is also possible but involves a parallelization of the GCR method itself. As Table 7

shows, the number of iterations increases only slightly as the subdomain solution accuracy is

lowered to � = 10

�1

. Therefore, the communication overhead remains almost constant while

13

Poisson Recirculating
ow Uniform
ow

� seq par seq par seq par

10

�4

14=16:91 31=37:39 9=9:91 16=18:00 5=3:74 12=8:96

10

�3

14=14:00 32=31:95 9=8:68 16=15:99 5=3:30 12=8:00

10

�2

15=12:27 33=27:17 9=7:38 16=13:47 5=2:82 12=7:04

10

�1

17=9:90 34=19:94 10=6:47 17=11:34 6=2:93 12=5:97

IBLUD+GMRES 33=4:43 44=5:85 46=6:24 53=6:91 16=2:13 21=2:81

Table 7: Comparison between the sequential (Gauss-Seidel) and parallel (Jacobi) version of

the postconditioner

~

N for a decomposition into 4� 4 blocks.

the amount of work decreases, which gives a lower computing time (about a factor 2). The

most e�cient algorithm on a single machine will probably not perform well on the cluster

because then the number of iterations is much larger which increases the communication

overhead signi�cantly.

4 Conclusions

The main reason for this model study was to reduce the computing times observed with the

domain decomposition algorithm for the Navier-Stokes equations, see [4]. This report shows,

that it is possible to reduce computing time of the domain decomposition method by a factor

2 to 6 depending on the problem. Speci�cally, we can reduce computing time to almost that

of the single block solution.

As the subdomain solution accuracy is lowered, the number of iterations required to solve

the problem remains constant or shows only a small increase, which leads to a reduction in

total computing time in our experiments. The most impressive reduction is obtained if the

subdomain solution is approximated by an incomplete LU factorization. In this case, we can

reduce computing time to almost that of the single block solution. This is an important

practical observation, since this makes e�cient domain decomposition available for complex

problems, for which parallel implementation is not readily available, possible or feasible.

The experiments show that with the Gauss-Seidel version of the IBLUD preconditioner,

the number of iterations required for multi-block problems is approximately if not exactly

the same as that for single-block solution with ILUD postconditioning. The only reason

why there is an increase in computing time when more subdomains are used is overhead by

the implementation. This overhead is only noticeable for a large number of relatively small

subdomains.

The experiments show that with the algorithm for accurate solution of of subdomains,

the solution is sensitive to the subdomain solution accuracy, see Table 2. The GCR based

algorithm described in this paper is completely insensitive to the subdomain solution accuracy.

Inaccurate solution of subdomains is also interesting for parallel implementation. With

parallel implementation, however, the IBLUD postconditioning is preferable. This is because

14

the IBLUD postconditioned algorithm is more e�cient than the algorithm with GMRES

solution of subdomains. Also, the IBLUD postconditioner shows the smallest increase in

iteration count when going from the sequential algorithm to the parallel algorithm. When

communication is a real bottleneck, the algorithm using a small subdomain solution accuracy

of 10

�1

can be used instead of IBLUD.

The new methods investigated in this report will be implemented in the near future for

the incompressible Navier-Stokes equations. The e�cient implementation of restarted GCR

discussed in [25] will be used for that purpose. The current parallel implementation for

the Navier-Stokes equations, which uses accurate solution of subdomains, will probably be

surpassed by these new methods on a single machine.

References

[1] P.E. Bj�rstad and O.B. Widlund. Iterative methods for the solution of elliptic problems

on regions partitioned into substructures. SIAM Journal of Numerical Analysis, 23:1097{

1120, 1986.

[2] E. Brakkee and A. Segal. A parallel domain decomposition algorithm for the incom-

pressible Navier-Stokes equations. In L. Dekker, W. Smit, and J.C. Zuidervaart, editors,

Massively Parallel Processing Applications and Development, pages 743{752, Elsevier,

Amsterdam, 1994.

[3] E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition algorithm

for the incompressible Navier-Stokes equations. Submitted to Journal of Simulation

Practice and Theory.

[4] Erik Brakkee and Piet Wesseling. Schwarz domain decomposition for the incompresssi-

ble Navier-Stokes equations in general coordinates. Report 94-84, Faculty of Technical

Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from

anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-

84.ps.gz.

[5] Erik Brakkee and Peter Wilders. A domain decomposition method for the advection-

di�usion equation. Report 94-08, Faculty of Technical Mathematics and Infor-

matics, Delft University of Technology, Delft, 1994. Available from anonymous

ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-08.ps.gz.

[6] Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some do-

main decomposition and ilu preconditioned iterative methods for nonsymmetric elliptic

problems. Numerical Linear Algebra with Applications, 1, 1994.

[7] Tony F. Chan, Roland Glowinski, Jacques P�eriaux, and Olof B. Widlund, editors.

Proc. of the Second International Symposium on Domain Decomposition methods, SIAM,

Philadelphia, 1989.

15

[8] Tony F. Chan, Roland Glowinski, Jacques Periaux, and Olof B. Widlund, editors. Proc.

of the Third International Symposium on Domain Decomposition methods for Partial

Di�erential Equations, SIAM, Philadelphia, 1990.

[9] C.W.Oosterlee and P.Wesseling. A multigrid method for an invariant formulation of

the incompressible navier-stokes equations in general coordinates. Comm. Applied Num.

Methods, 8:721{725, 1992.

[10] E. de Sturler and D.R. Fokkema. Nested krylov methods and preserving the orthogonal-

ity. In N. Duane Melson, T.A. Manteu�el, and S.F. McCormick, editors, Sixth Copper

Mountain Conference on Multigrid Methods, Nasa Conference Publication 3224, Part I,

pages 111{125, Nasa Langley Research Center, Hampton, VA, USA, 1993.

[11] Eric de Sturler. IBLU preconditioners for massively parallel computers. In D. E. Keyes

and J. Xu, editors, Domain Decomposition Methods in Science and Engineering (Proceed-

ings of the Seventh International Conference on Domain Decomposition, October 27{30,

1993, The Pennsylvania State University). American Mathematical Society. Providence,

USA, 1995.

[12] H.A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a

non-symmetric matrix arising from pde-problems. J. Comput. Phys., 44:1{19, 1981.

[13] Radicati di Brozolo and Y. Robert. Parallel conjugate gradient like algorithms for solving

sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing,

11:223{239, 1989.

[14] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsym-

metric systems of linear equations. SIAM Journal of Numerical Analysis, 20:345{357,

1983.

[15] R. Glowinski, G.H. Golub, G.A. Meurant, and J. P�eriaux, editors. First International

Symposium on Domain Decomposition Methods for Partial Di�erential Equations, SIAM,

Philadelphia, 1988.

[16] Roland Glowinski, Yuri A. Kuznetsov, G�erard Meurant, Jacques P�eriaux, and Olof B.

Widlund, editors. Proc. of the Fourth International Symposium on Domain Decomposi-

tion methods for Partial Di�erential Equations, SIAM, Philadelphia, 1991.

[17] C.P. Jackson and P.C. Robinson. A numerical study of various algorithms related to the

preconditioned conjugate gradient method. Internal Journal for Numerical Methods in

Engineering, 21:1315{1338, 1985.

[18] Wang Jin-xiau. The parallel block preconditioned conjugate gradient algorithms. In

David E. Keyes, Tony F. Chan, G�erard Meurant, Je�rey S. Scroggs, and Robert G.

Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition

methods for Partial Di�erential Equations, pages 339{345, SIAM, Philadelphia, 1992.

16

[19] David E. Keyes, Tony F. Chan, G�erard Meurant, Je�rey S. Scroggs, and Robert G. Voigt,

editors. Proc. of the Fifth International Symposium on Domain Decomposition methods

for Partial Di�erential Equations, SIAM, Philadelphia, 1992.

[20] A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible

Navier-Stokes solver: invariant discretization. Applied Scienti�c Research, 48:175{191,

1991.

[21] C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for the

incompressible Navier-Stokes equations in general coordinates on staggered grids. Inter-

national Journal for Numerical Methods in Fluids, 17:301{321, 1993.

[22] Y. Saad. A
exible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat.

Comp., 14:461{469, 1993.

[23] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving

non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856{869, 1986.

[24] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Nu-

merical Linear Algebra with Applications, 1(4), 1994.

[25] C. Vuik. New insights in GMRES-like methods with variable preconditioners. Reports of

the Faculty of Technical Mathematics and Informatics 93{10, Delft University of Tech-

nology, Delft, 1993.

[26] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the

GMRES method. International Journal for Numerical Methods in Fluids, 16:507{523,

1993.

[27] P. Wesseling, A. Segal, J. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Invariant

discretization of the incompressible Navier-Stokes equations in general coordinates on

staggered grids. Comput. FLuids Dyn. J., 1:27{33, 1992.

17

