
Solution of the coupled
Navier-Stokes equations

Report 95-28

C. Vuik
A. Segal

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics



ISSN 0922-5641

Copyright c
 1995 by the Faculty of Technical Mathematics and Informatics, Delft, The

Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous ftp-
site, ftp.twi.tudelft.nl. They are located in directory /pub/publications/tech-reports. They
can also be accessed on the World Wide Web at:
http://www.twi.tudelft.nl/TWI/Publications/Overview.html



Solution of the coupled Navier-Stokes equations

C. Vuik and A. Segal

Faculty of Technical Mathematics and Informatics,

Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands,

e-mail: c.vuik@math.tudelft.nl a.segal@math.tudelft.nl

Abstract

In this paper the incompressible Navier-Stokes equations are discretized by the

�nite element method. After linearization large, sparse systems of linear equations

have to be solved. A well known problem is the occurrence of zero elements on the

main diagonal. We describe ordering techniques of the grid points and the unknowns

to avoid this problem, so direct and iterative methods can be used without pivoting.

It appears that in three-dimensional problems the iterative methods are much better

than the direct or penalty methods.

1 Introduction

There are several methods to solve the incompressible Navier-Stokes equations. In this

paper we restrict ourselves to the three-dimensional case and use the velocities and the

pressure as unknowns. The coupled equations, three momentum equations and the conti-

nuity equation, are discretized by the �nite element method. After linearization we obtain

a large, sparse system of linear equations. Due to zero elements on the main diagonal,

break down of direct and iterative methods may occur.

In Section 2, we describe and investigate some orderings, where the zero main diago-

nal elements become non zero elements during the decomposition of the matrix. In our

numerical experiments we observe no break down of the direct method without pivoting.

Thereafter, in Section 3, we specify two incomplete LU decompositions, which are used as

preconditioners for Krylov subspace methods. Some theoretical results are given.
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Finally the described methods are compared numerically in Section 4. It appears that

already for small problem sizes the preconditioned Krylov subspace methods are much

better than the direct or penalty methods. For large problem sizes it is impossible to use

direct or penalty methods due to excessive memory requirements. Furthermore for medium

problem sizes the CPU time for a direct or penalty method is orders of magnitudes larger

than that for the iterative method.

2 Statement of the problem and ordering techniques

In this section we consider the discretization of the incompressible Navier-Stokes equations

by �nite elementmethods. Furthermore the consequences of the incompressibility condition

are investigated. The general form of the stationary Navier-Stokes equations may be

written as

�div � + u � ru = f (1)

where � is the stress tensor:

� = �pI+ �(ru

T

+ru) (2)

� denotes the viscosity, f is some external force and u �ru represents the convective terms.

The continuity equation is given by

div u = 0 (3)

Equations (1) to (3) are solved by a standard �nite element method based upon the

Galerkin formulation as can be found in for example Cuvelier et al [2]. In this paper

we restrict ourselves to the three-dimensional case. The elements used are the triquadratic

isoparametric Crouzeix Raviart hexahedrons. This means that the velocity is approximated

by a quadratic polynomial in each direction in the reference element and the pressure is

approximated by a linear polynomial, which is discontinuous over the element boundaries.

Since the convective terms are non-linear it is necessary to use some linearization scheme.

To that end we use the solution of the Stokes equations (i.e. the Navier-Stokes equations

without convective terms) as initial guess, proceed with a number of so-called Picard it-

erations and �nally apply Newton linearization. In each step of the iteration process, it

is necessary to solve a large system of linear equations. Formally this system of equations

can be written as:

 

A B

T

B 0

! 

u

p

!

=

 

f

0

!

; (4)

where A denotes the discretization of the stress tensor and the linearized convection terms,

B

T

p the discretization of the pressure gradient and Bu = 0 the discretization of the con-

tinuity equation. The vector u represents the velocity unknowns and the vector p the

unknown pressures.
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The so-called zero-block at the main diagonal of the second equation of (4) is caused by the

fact that the pressure is not present in the continuity equation, whereas the equation itself

is coupled to the pressure unknowns. This property is inherent to incompressible Navier-

Stokes equations and is independent of the type of discretization. Due to this zero-block a

so-called saddle point problem arises. This is one of the major problems in the solution of

the incompressible Navier-Stokes problems.

The system of linear equations (4) may be solved by either a direct method (LU-decomposition)

or an iterative method. Let us �rst focus on the direct methods.

The ordering as suggested in equation (4), that is, �rst all velocity unknowns and then

all pressure unknowns, appears to be very uneconomical, since the corresponding pro�le

is very large. In the sequel we shall denote this ordering by p-last ordering. A much

better ordering is achieved by ordering all unknowns per point. If a good nodal point

numbering is present this gives by far most the smallest pro�le. Unfortunately the zero-

block complicates things considerably. Due to boundary conditions it may be possible that

the �rst diagonal element in the matrix is a zero and as a consequence straight-forward

LU-decomposition is not possible. In that case it is necessary to use a kind of pivoting

strategy, which inuences the structure of the matrix and makes the estimation of the size

of the matrix a di�cult task. So in fact one would like to have some a priori numbering of

nodal points and unknowns that prevents the presence of a zero diagonal element during

the elimination process and moreover, produces a kind of optimal pro�le. This numbering

must be such that the �rst unknowns are velocity degrees of freedom independent of the

type of boundary conditions. Furthermore it must have a very small inuence at the local

band width.

Let us, for the sake of the argument, consider the simple rectangular domain of Figure

1, subdivided into triangles. Furthermore we assume that the velocity is prescribed at the

complete boundary. If the nodes are numbered in a natural way, from left to right and

line-wise from below to the upper boundary, it is clear that one of the �rst unknowns is the

pressure in the �rst element. The band width is determined by one stroke of elements only.

One may expect that if we �rst number the velocities and then the pressures, then during

the elimination procedure the pressure diagonal elements become non-zero. In order to

avoid increase of the pro�le a clever numbering would be to renumber the unknowns such

that per stroke of elements �rst all velocities are numbered and then all pressures. In this

way, due to �ll in, the elimination may change the pressure diagonal elements to non-zero

elements and the actual band width is hardly changed. Such a renumbering will be called

pressure last renumbering per level or p-last per level.

This renumbering is simple for a rectangular region. In a general irregular shaped region

an automatic procedure is necessary to de�ne the equivalent of the strokes of elements. To
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Figure 1: Rectangular domain, subdivided into triangles

that end we assume that the nodal points have been renumbered before, in order to get a

small pro�le for example by the standard reversed Cuthill-McKee renumbering algorithm.

Next we de�ne a level structure which is very similar to the Cuthill-McKee structure. We

start with node 1 and �nd all neighbours of this node. Let node i

1

have the highest number

of this set of neighbours. Then level 1 is de�ned as the set of nodes 1 to i

1

. The next level

is found by considering all new neighbours of level 1. Let node i

2

have the highest number

of this new set. Then the next level is de�ned as the i

1

+1 to i

2

. This process is repeated

until all neighbours are part of a level. With respect to the start it might be necessary

to combine levels 1 and 2. Per level we number �rst the velocities and then the pressure

degrees of freedom. In this way we get a nearly optimal numbering, which may be applied

in combination with Gaussian elimination. To our knowledge this type of numbering has

not yet been published before. Experiments have shown that indeed this numbering is

suitable for the solution of the equations by a direct method.

In the literature one often tries to solve the problems due to the zero-block by segregating

the computation of pressure and velocity. Well known methods are for example the penalty

function method, pressure correction and the method of divergence-free vector �elds.

In terms of �nite element methods the penalty approach is very popular. In this approach

the continuity equation is disturbed by a small pressure term:

"p+ divu = 0: (5)

This allows us to express the pressure explicitly in the velocity and to substitute this pres-

sure in the momentum equations. In this way an equation for the velocity only remains.

A clear advantage of this approach is the reduction of the size of the system of equations
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and the fact that there is no need to use a pivoting strategy. An important disadvantage

of the penalty function method is that we have to choose the parameter " in a suitable

way. If " is too large, the accuracy of velocity and pressure is insu�cient, if " is too small,

the condition of the system of equations becomes too large because 1/" appears in the

equations. For many practical problems a choice of " = 10

�6

is reasonable. However,

even if we have a good penalty parameter still we are faced with a problem. The condi-

tion of the system of equations to be solved is very large and as a consequence it is not

possible to solve the equations by an iterative method. Especially for three-dimensional

problems direct methods lead to unacceptable memory requirements and computing times.

The pressure correction method is typically a method for time-dependent problems. Its

application in case of �nite element methods is somewhat more complex than in case of

�nite volumes. We will not go into details.

The method of divergence-free vector �elds is quite complicated to program, especially

in three dimensions. For that reason it is not commonly used.

A method that tries to overcome some of the disadvantages of the penalty function method

is the so-called Uzawa scheme. In fact this is a type of iteration method that is based on the

same ideas as the penalty function method. The main di�erence is that the parameter " has

a moderate value of order 10

�1

. Although this method does not have the ill-conditioned

property of the penalty method, in practice the convergence is not very fast. For that

reason we shall investigate an iterative method that is based on the original equations.

3 Incomplete LU decompositions

In this section we consider the iterative solution of the linear system, that has been given

in the previous section. We solve this system with iterative methods of Krylov subspace

type combined with preconditioners based on incomplete LU decompositions [1]. First we

compare two di�erent representations of the coupled linear system. Thereafter two di�er-

ent ILU preconditioners are de�ned. Finally, some existence results are proved for the ILU

decompositions.

From Section 2 it appears that when we use the p-last ordering we have to solve the

following coupled system of equations:

~

M

 

u

p

!

=

 

A B

T

B 0

! 

u

p

!

=

 

f

0

!

: (6)

Another representation of this equation is:

M

 

u

p

!

=

 

A B

T

�B 0

! 

u

p

!

=

 

f

0

!

: (7)
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An advantage of (6) is that for the Stokes problem

~

M is a symmetric matrix. For Navier-

Stokes A is non-symmetric, so

~

M is also non-symmetric. Disadvantages of (6) are:

~

M is

never positive de�nite and a symmetric incomplete LL

T

decomposition breaks down. First

we consider the positive de�niteness properties of

~

M and M . We have:

�

x

T

y

T

�

 

A B

T

B 0

! 

x

y

!

= x

T

Ax+ 2x

T

By; (8)

and

�

x

T

y

T

�

 

A B

T

�B 0

! 

x

y

!

= x

T

Ax: (9)

For a given x the vector y can always be chosen in such a way that the right-hand side of

(8) is negative. On the other hand for every choice of x and y the sign of the right-hand

side of (9) only depends on the properties of A. So if A is positive de�nite then M is

positive semi-de�nite.

We now consider two incomplete LU decompositions: the classic ILU decomposition [3] and

ILUD, where only the diagonal is changed. Both versions are used. It appears that ILU

is more robust, but more expensive, whereas ILUD is easier to analyse. The matrix M is

decomposed into the following matrices: L a lower triangular matrix,D a diagonal matrix,

U an upper triangular matrix. Furthermore diag(L) = diag(U) = D. The decomposition

is made such that

^

L

^

U � M where

^

L = LD

�1=2

and

^

U = D

�1=2

U . The following rules are

used:

ILU

1. l

i;j

= u

j;i

= 0 if there is no connection between i and j,

2. (

^

L

^

U)

i;j

= m

i;j

if there is a connection between i and j.

ILUD

1. l

i;j

= m

i;j

, and u

j;i

= m

j;i

for i > j,

2. (

^

L

^

U)

i;i

= m

i;i

.

Note that for both preconditioners d

i

> 0 is necessary in order to form

^

L and

^

U .

In the remaining part of this section, we give some existence results for the ILUD pre-

conditioner. Therefore we consider the second rule from ILUD:

(

^

L

^

U)

i;i

= (LD

�1=2

D

�1=2

U)

i;i

= d

i

+

i�1

P

j=1

l

i;j

�u

j;i

d

j

= m

i;i

.

Combination with rule 1 leads to:

d

i

= m

i;i

�

i�1

X

j=1

m

i;j

�m

j;i

d

j

: (10)
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Suppose M 2 IR

n�n

and A 2 IR

n

1

�n

1

then we have the following theorem:

Theorem 1 If the ILUD decomposition of A exists and the norm of every column of B

T

is non-zero, then the ILUD decomposition of M exists and d

i

> 0 for i 2 [1; n].

Proof: From the assumptions it follows that the ILUD decomposition of A exists and thus

d

j

> 0 for j = 1; :::; n

1

. For i 2 (n

1

; n] we have m

i;j

= �m

j;i

and m

i;i

= 0. This together

with (10) implies that d

i

=

i�1

P

j=1

m

2

i;j

d

j

. Since the norm of a column of B

T

is non-zero we have

i�1

P

j=1

m

2

i;j

> 0. Combined with d

k

> 0 for k < i it follows that

d

i

� (min

1�k�i�1

1

d

k

)

i�1

X

j=1

m

2

i;j

> 0:

2

Remark:

The assumption on B is satis�ed in many practical applications, but the assumption on A

is not always satis�ed. If the ILUD preconditioner is applied to

~

M then d

j

> 0 for j � n

1

,

but d

n

1

+1

< 0 so it is impossible to form

^

L and

^

U .

Suppose another ordering is used, for instance the p-last per level ordering. Then there

exists a permutation matrix P such that M is given by

M = P

T

 

A B

T

�B 0

!

P:

The equations m

i;j

= �m

j;i

and m

i;i

= 0 again hold for a row which corresponds with a

pressure unknown.

Theorem 2 Suppose that the ILUD decomposition exists for j < i (so d

j

> 0) and the i

th

row corresponds with a pressure unknown. If there is one k < i such that m

i;k

6= 0 then

d

i

> 0.

Proof: It follows again from (10) that

d

i

=

i�1

X

j=1

m

2

i;j

d

j

:

Since d

j

> 0 for j < i and m

2

i;k

> 0 for at least one k < i we obtain d

i

> 0 2

This implies that the ILUD decomposition does not break down (d

i

6= 0) in a pressure

row, if every pressure unknown is preceded by a velocity unknown with a non-zero connec-

tion. Both theorems hold for Stokes and Navier-Stokes problems.
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4 Numerical experiments

In this section we give some numerical experiments with the preconditioners given in Sec-

tion 3. We start with the solution of the Stokes equations, where we compare the iterative

method with a direct and a penalty method. Thereafter we solve the Navier-Stokes equa-

tions on a three-dimensional Backward Facing Step problem.

4.1 The Stokes equations

We consider the Stokes equations on a cube. In Table 1 we give the number of unknowns

and the size of the matrices for the coupled system. Only non zero elements are stored and

the rows and columns corresponding to essential boundary conditions have been removed.

The ratio between these two numbers gives the average number of non-zero elements per

row. It appears that this ratio is relatively large (� 180). This has two important im-

number of number of non-zero entries ratio

elements unknowns of the matrix

3� 3� 3 483 75 000 155

6� 6� 6 4 857 840 000 173

12 � 12 � 12 43 400 7 800 000 180

Table 1: The size of the problem with respect to the grid-size

plications: the CPU time for a matrix vector multiplication is large with respect to the

CPU time for a vector update, and a large part of the �ll-in is used in the classical ILU

decomposition, so we expect a fast convergence of the preconditioned iterative method.

In Table 2 we summarise the results for three di�erent methods: a penalty method, a

direct method and an iterative method (GMRES with ILUD). The last two methods are

applied to the coupled problem (7). We observe no break down of the direct and iterative

method if the p-last per level ordering technique is used (see Section 2). Comparing the

di�erent solution methods, it appears that using the iterative method leads to a large de-

crease in CPU time and memory requirements. The CPU time is measured in seconds on

an HP 735 workstation.

Now we give a theoretical consideration of the work and memory requirements. It ap-

pears that for the penalty and direct method the memory required is proportional to n

5

1

,

where n

1

denotes the number of grid points in the x

1

-direction. The amount of work for

these methods depends on n

7

1

. For the iterative method the values are n

3

1

and n

4

1

respec-

tively. In Table 3 we compare these expressions with the measurements. For the iterative
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3 � 3 � 3 6 � 6� 6

method non-zero entries CPU time non-zero entries CPU time

direct 160,000 1.3 5,000,000 237

penalty 100,000 0.47 3,400,000 132

iterative 75,000 0.08 840,000 2.74

Table 2: The CPU time and the memory requirements for the various methods

method memory work

direct 31.7 (32) 182 (128)

penalty 34 (32) 247 (128)

iterative 11 (8) 34 (16)

Table 3: The ratio for the memory and work requirements for n

1

= 6 and n

1

= 3. Between

brackets the theoretical expected values

method we were able to obtain also the ratios for n

1

= 12 and n

1

= 6. They are given

by 9.4 (memory) and 24 (work). We see a reasonable correspondence between theory and

experiment. Furthermore the di�erences between the direct and penalty method and the

iterative method increases enormously for increasing grid size.

In this example both preconditioners are used. It appears that ILU is more robust than

ILUD and it leads to less iterations of the preconditioned GMRES method. However the

construction of the ILU decomposition takes a lot more work and doubles the memory re-

quired. For this reason if the ILUD decomposition does not breakdown ILUD is preferred,

because the extra memory is negligible and the total CPU time is, in general, less than

that for ILU.

4.2 The Navier-Stokes equations

In this section we solve the Navier-Stokes equations on a three-dimensional Backward Fac-

ing Step problem. The geometry is given in Figure 2. At the left boundary surface we

use a Dirichlet inow boundary condition and at the right boundary surface we use an

outow boundary condition: �

nn

= 0 and �

nt

= 0. At all other boundaries we use a

no slip condition. In this case we have to solve a non linear problem. The strategy to

do this is given in Section 2. Initially we solve the corresponding Stokes equations, there-

after some Picard iterations are done and �nally some Newton Raphson iterations are used.
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Figure 2: The geometry of the three-dimensional Backward Facing Step problem

The ILU/ILUD decompositions are based on the current coe�cient matrix, so a new de-

composition is made in every outer iteration. As Krylov subspace methods we use GMRES

[4] and Bi-CGSTAB [5]. When we restrict ourselves to Stokes and Picard outer iterations

then for both methods 9 outer iterations are needed. The total number of inner iterations

is 153 for GMRES and 122 for Bi-CGSTAB. The total CPU time (including building of

the matrices and decompositions) is 351 s for GMRES and 385 s for Bi-CGSTAB. Note

that Bi-CGSTAB uses less iterations, but one iteration of Bi-CGSTAB is approximately

two times as expensive as an iteration of GMRES. This explains the bigger CPU time for

Bi-CGSTAB. The optimal CPU time for GMRES is not unexpected since it is known that

if the number of iterations is small and a matrix vector product is expensive (which means

a large number of non zero elements per row) then GMRES is the best method (see [6]).

We have experimented with di�erent strategies to solve the non linear equations. It ap-

pears that the number of inner iterations in a Newton Raphson step is slightly more than

in a Picard step. However in general less outer iterations are needed if Newton Raphson

is used. For this reason we use the Stokes equations in the �rst iteration, Picard in the

second iteration and Newton Raphson in the following iterations. In general 5 or 6 outer

iterations are su�cient to reduce the initial error with a factor of 10

�4

. We stop the inner

iteration if kr

k

k

2

=kr

0

k

2

< eps. If Picard iterations are used eps = 10

�1

is su�cient. If

Newton Raphson steps are used it may be better to use eps = 10

�2

, because then the

outer iterations converge quadratically, whereas if eps = 10

�1

is used Newton Raphson has

a linear convergence behaviour.

Finally we observe that in this problem the ILUD decomposition breaks down, so we only
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use the ILU preconditioner. It appears that break down of the ILUD decomposition always

happens in the velocity part, which is in agreement with the theory given in Section 3. The

construction of the ILU decomposition is expensive. The CPU-time is comparable with

the CPU time to build the coe�cient matrix. With respect to the ordering techniques

we observe no break down of the ILU decomposition using the p-last, or p-last per level

ordering. It appears that the p-last per level ordering leads to less inner iterations and

CPU time than the p-last ordering.

We end this section with some results for the BFS problem on an 8 � 16 � 28 grid. The

number of unknowns is equal to 8� 10

4

and the number of non zero entries of the matrix

is equal to 1:4 � 10

7

. The CPU time to build the matrix is 2 min., whereas the CPU

time to build the ILU preconditioner is 3 min. Using ILU, GMRES, p-last per level and

eps = 10

�2

, 5 outer iterations are needed. The total CPU time is 80 min. and the total

number of inner iterations is 350.

5 Conclusions

In this paper the incompressible Navier-Stokes equations are solved. We consider the mo-

mentum equations coupled with the continuity equation.

Ordering techniques are described to prevent break down of the LU decomposition. From

our numerical experiments it appears that direct methods can be used with the p-last per

level ordering. The CPU time and memory requirements for the direct method are com-

parable to that of the penalty approach.

Thereafter the proposed orderings are combined with preconditioned Krylov subspace

methods. It appears from the theory that the zero main diagonal elements no longer

lead to break down or bad convergence. Furthermore, it appears that the iterative meth-

ods are much better, than direct or penalty methods.
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