
Domain decomposition for the
incompressible Navier-Stokes
equations: solving subdomain

problems accurately and
inaccurately

Report 95-37

Erik Brakkee
Kees Vuik

Piet Wesseling

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c
 1995 by the Faculty of Technical Mathematics and Informatics, Delft, The

Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous ftp-
site, ftp.twi.tudelft.nl. They are located in directory /pub/publications/tech-reports. They
can also be accessed on the World Wide Web at:
http://www.twi.tudelft.nl/TWI/Publications/Overview.html

Domain decomposition for the incompressible Navier-Stokes

equations: solving subdomain problems accurately and

inaccurately

Erik Brakkee,

Kees Vuik, Piet Wesseling

May 31, 1995

Abstract

For the solution of practical ow problems in arbitrarily shaped domains, simple Schwarz

domain decomposition methods with minimal overlap are quite e�cient, provided Krylov

subspace methods, such as the GMRES method, are used to accelerate convergence. With

accurate subdomain solution, the amount of time spent in solving these problems may

be quite large. To reduce computing time, inaccurate solution of subdomain problems

is considered, which requires a di�erent, GCR based, acceleration technique. Much em-

phasis is put on the multiplicative domain decomposition algorithm since we also want

an algorithm which is fast on a single processor. Nevertheless, the prospects for parallel

implementation are also investigated.

1 Introduction

For the solution of the incompressible Navier-Stokes equations in domains of arbitrary shape,

we use a �nite volume method on structured boundary �tted grids. References [38, 17, 51,

43, 54, 55] describe the discretization in detail and [39, 54] discuss the capability of the

method to accurately solve a number of laminar and turbulent ows. A Schwarz type domain

decomposition iteration [42] in combination with GMRES [41] acceleration is used. In [10],

signi�cant reductions in computing time can be obtained using the GMRES acceleration

procedure, see [11] and [10].

However, since the method described in [10] requires accurate solution of subdomain

problems, it appears that the computing time can be much larger than with single-block

solution for the same number of unknowns. Also, it is not known beforehand how accurate the

subdomain problems must be solved. The required subdomain solution accuracy may be quite

high, especially when grid cells are very much stretched near block interfaces, and a too low

accuracy generally gives wrong results. A possible solution to both problems is to abandon the

assumption of exact subdomain solution and to allow (very) inaccurate subdomain solution.

Since the preconditioner may now vary in each iteration, GMRES acceleration may no longer

be applied. Instead, a method based on GCR [23] is used.

1

Considerable reductions in computing time can be obtained in this way for a 2-dimensional

advection-di�usion equation, see [9]. Approximate subdomain solution using a single iteration

with ILUD factorization reduced multi-block computing time to almost that of single-block

computing time. This encouraged us to extend this approach to the Navier-Stokes equa-

tions. Theoretical results and numerical experiments are presented to illustrate the e�ect of

inaccurate solution of subdomain problems for the incompressible Navier-Stokes equations.

Parallel computing is of increasing importance. Therefore it is important to compare the

parallel (additive) domain decomposition algorithms with the best multiplicative algorithms,

which are known to be faster than additive algorithms. Therefore, we pay much attention to

multiplicative algorithms.

2 Discretization

For the spatial discretization, we use a �nite volume method employing a staggered grid and

central discretization. The normal velocity components are located at the centers of the faces

of the cell and the pressure unknowns are located at the centers of the cells, see Figure 1.

v

u

p
p control volume

u control volume

v control volume

Figure 1: Arrangement of unknowns in a staggered grid

For the time discretization, the implicit Euler method is used. With V

n

and P

n

repre-

senting the algebraic vectors of velocity and pressure unknowns at time t

n

, we get

V

n+1

� V

n

�t

= M(V

n

; P

n

)V

n+1

�GP

n+1

; (1)

DV

n+1

= 0; (2)

where (1) represents the momentum equations and (2) represents the incompressibility con-

dition div u = 0. The matrix M represents the linearized spatial discretization of the Navier-

Stokes equations around time level n, G is the discretized gradient operator and D is the

discretized divergence operator on a staggered grid. Figure 2 shows the discretization sten-

cils. The pressure correction method [29, 16, 47] is used to solve (1) and (2). The pressure

correction method consists of three steps. In the �rst step, an estimate V

?

of V

n+1

is com-

puted by solving (1) with the pressure �xed at the old time level:

V

?

� V

n

�t

= M(V

n

; P

n

)V

?

� GP

n

: (3)

2

G1 1D M

Figure 2: Discretization stencils: discretization of divergence operator D, x-component of

momentum equations M

1

and x component of gradient matrix G

1

.

In the second step, the pressure correction �P is solved from

DG�P =

DV

?

�t

: (4)

The last step consists of correcting the pressure: P

n+1

= P

n

+ �P and computing V

n+1

satisfying the incompressibility condition (2)

V

n+1

= V

?

��tG�P: (5)

3 Domain decomposition

The basic approach to handle geometrically complex domains is to develop a domain decom-

position version of (3){(5). Subdomains are assumed to intersect regularly, so that grid lines

are continuous across block-interfaces.

The domain decomposition algorithm considered here uses a minimal overlap and no

coarse grid correction. It is known from theory [52] and experiment [13] that both constant

overlap in physical space and a multi-level acceleration are required to keep the iteration

count constant as the mesh is re�ned. Examples of constant overlap in physical space can

be found in [30, 44, 53]. However, as observed in [26, 22, 13], algorithms with small overlap

can be quite e�ective, even for large and ill-conditioned problems. Although the number of

GMRES iterations is typically higher with small overlap, this is compensated for by the fact

that there is less duplication of work in the overlap regions. Methods with small overlap

are also much easier to implement for practical complicated problems, and tend to dominate

engineering applications.

A coarse grid correction [35, 12, 3, 4] can be quite e�ective for improving convergence

of domain decomposition. However, in large codes used for engineering computations coarse

grid correction is di�cult to implement, and will not be considered here. Our present aim is

to optimize e�ciency of domain decomposition with minimal overlap.

3

3.1 General description

The pressure correction algorithm (3){(5) is used for Navier-Stokes solution on the global

domain. The equations (3) and (4) are solved using domain decomposition. In this paper, we

assume that the subdomains intersect regularly, that is the grid lines are continuous across

block-interfaces. For the description of the domain decomposition algorithm, we start from a

discretization of the momentum and pressure equations on the global grid.

The discretization matrix of the linearized momentum equations on the global domain is

S(V

n

; P

n

) =

I

�t

�M(V

n

; P

n

) (6)

and the discretization matrix of the pressure equations on the global domain is

T = DG (7)

with D the global divergence and G the global gradient operator. Equations (6) and (7)

are solved using domain decomposition. The correction of V

?

is carried out in all blocks

independently.

Both the pressure equations (4) and the momentum equations (3) can be written as

Av = f (8)

with either A = S from (6) and v = V for the momentum equations or A = T from (7)

and v = �p for the pressure equations. If we decompose A into blocks such that each

block corresponds to all unknowns in a single subdomain, with a small modi�cation for the

momentum equations, see further on, then for two subdomains

A =

"

A

11

A

12

A

21

A

22

#

; (9)

where A

11

and A

22

represent the subdomain discretization matrices and A

12

and A

21

represent

the coupling between subdomains. Unaccelerated domain decomposition iteration for (8) is

of the following form

v

m+1

= (I �N

�1

A)v

m

+N

�1

f; (10)

with N

�1

an approximation to the inverse of the block diagonal or block lower-triangular

matrix of A. The matrix N is called the block Jacobi or Gauss-Seidel matrix of A, depending

on the method used.

Block Gauss-Seidel and Jacobi iterations are algebraic generalizations of the Schwarz

domain decomposition algorithm [42, 34]. Similar to Schwarz domain decomposition, in each

iteration, subdomain problems are solved using values from neighboring blocks. For instance,

formula (10) interpreted for domain 1 becomes

v

m+1

1

= A

�1

11

(f �A

12

v

m

2

); (11)

where A

�1

11

represents subdomain solution and v

m

2

are the values from the neighboring block.

The subdomain problems, A

11

x

1

= : : : and A

22

x

2

= : : : are solved using GMRES [41] with

4

appropriate preconditioners [50]. GMRES may be used to solve subdomain problems as well

as to accelerate domain decomposition. We cannot apply the above described block Gauss-

Seidel and Jacobi algorithms directly to the momentum matrix S because the normal velocity

components at the block interfaces belong to two blocks. First we augment the matrix S in

the following way. For the sake of argument, consider a decomposition into two blocks as in

Figure 3. Suppose that the velocity unknowns are divided into 3 sets as in Figure 3.

II

y

x

Inr Ir III nrIII r

Figure 3: De�nition of three sets of unknowns. I

nr

and I

r

consistute set I and III

nr

and

III

r

consitute set III

� The �rst set consists of velocities belonging to block 1 excluding the normal velocities

at the block interfaces.

� The second set consists of the normal velocities at the interface.

� The third set consists of the velocities belonging to block 2 excluding the normal veloc-

ities at the block interfaces.

With respect to these three sets of unknowns the matrix S(V

n

; P

n

) has the block form:

S(V

n

; P

n

) =

2

6

4

S

11

S

12

S

13

S

21

S

22

S

23

S

31

S

32

S

33

3

7

5

(12)

The system of equations S(V

n

; P

n

)V

?

= f can be transformed to the equivalent system

�

S(V

n

; P

n

)

�

V

?

=

2

6

6

6

4

S

11

S

12

0 S

13

S

21

S

22

0 S

23

S

21

0 S

22

S

23

S

31

0 S

32

S

33

3

7

7

7

5

�

2

6

6

6

4

�

V

?

1

�

V

?

2

�

V

0

?

2

�

V

?

3

:

3

7

7

7

5

=

2

6

6

6

4

f

1

f

2

f

2

f

3

3

7

7

7

5

(13)

5

The solution of (13) always satis�es

�

V

?

2

=

�

V

0

?

2

if S

22

is invertible (see [45]) and therefore the

system (13) is equivalent to the original system of equations S(V

n

; P

n

)V

?

= f . In view of (9),

we have

A

11

=

"

S

11

S

12

S

21

S

22

#

; A

22

=

"

S

22

S

23

S

32

S

33

#

: (14)

so that domain decomposition for the momentum equations has been described.

In (11), v

m+1

1

only depends on A

12

v

m

2

. Since A

12

only has non-zero coe�cients for un-

knowns in III

r

, see Figures 2 and 3, the left-hand side v

m+1

1

only depends on these compo-

nents. Analogously, v

m+1

2

only depends on the components of v

m

1

in region I

r

. The compo-

nents in I

r

and III

r

are assembled in a vector v

r

also called the interface unknowns, and the

remaining ones in v

nr

. The normal uxes at the block interface in region II are a part of the

inner regions of the subdomains, and are solved for in each iteration.

Finally, the last step (5) of the pressure-correction algorithm is carried out in all blocks

independently. The above discussion can be easily extended to the general multi-domain case.

Also extensions to irregular intersections are possible, see for example [2, 30, 53].

3.2 Accurate subdomain solution

In [11] subdomain problems are assumed to be solved accurately so that N

�1

is the exact

inverse of the block diagonal or block lower-triangular matrix of A, so

N = N

gs

=

"

A

11

;

A

21

A

22

#

or N = N

jac

=

"

A

11

;

; A

22

#

(15)

with N

gs

the Gauss-Seidel version and N

jac

the Jacobi version of N . The Gauss-Seidel

version is suitable for implementation on a single processor and leads to the sequential or

multiplicative algorithm. The Jacobi version is suitable for parallelization and is called the

parallel or additive version.

It can be seen from Figure 2 and 3 that the left-hand side of (10) only depends on the

values of u

m

in regions I

r

and III

r

in Figure 3. The unknowns u are ordered in such a way

that u =

"

w

v

#

, where v are the interface unknowns (regions I

r

, III

r

), and w are remaining

unknowns. We have

(I �N

�1

A)u = (I �N

�1

A)Qv (16)

with Q =

"

0

I

#

an injection operator such that Qv =

"

0

v

#

. By substituting (16) into (10)

and by premultiplying with Q

T

we get

v

m+1

= Q

T

u

m+1

= Q

T

(I �N

�1

A)Qv

m

+ Q

T

N

�1

f: (17)

Since we are interested in the stationary solution v of (17) we get

v = Q

T

(I �N

�1

A)Qv + Q

T

N

�1

f: (18)

6

which is equivalent to

Q

T

N

�1

AQv = Q

T

N

�1

f: (19)

In this way, accurate solution of subdomain problems �nally leads to a system involving

only the interface equations. Accelerated domain decomposition in [11] amounts to solving

the interface equations (19) using GMRESR [46]. In the present paper, we use GMRES:

the required matrix-vector product can be computed by doing one domain decomposition

iteration, see [11] for details.

3.3 Inaccurate subdomain solution

Domain decomposition iteration (10) is typically implemented as

~

Nu

m+1

= (N � A)u

m

+ f; (20)

where the right-hand side term (N�A)u

m

represents the discretization of the internal bound-

ary conditions, which is always exact, and the left-hand side term

~

Nu

m+1

indicates solution

of the subdomain problems using some type of solver, which was assumed accurate enough

in the previous section.

In general, the stationary solution of (20) satis�es the perturbed equations (A+

~

N�N)u =

f instead of Au = f . Since with inaccurate subdomain solution, the di�erence between

~

N

and N may be quite large, the computed solution u may have a very large error. Since the

algorithm of the previous section relies on (20), we may not use this procedure with inaccurate

solution of subdomain problems. Instead we must use

u

m+1

= u

m

+

~

N

�1

(f �Au

m

); (21)

for which the stationary solution u always satis�es Au = f .

With inaccurate subdomain solution, we have

~

N =

~

N

gs

=

"

~

A

11

;

A

21

~

A

22

#

or

~

N =

~

N

jac

=

"

~

A

11

;

;

~

A

22

#

: (22)

with

~

N

gs

the Gauss-Seidel (sequential/multiplicative) version and

~

N

jac

the Jacobi (paral-

lel/additive) version of

~

N . The matrices

~

A

ii

represent inaccurate subdomain solution. The

matrix vector product p =

~

N

�1

gs

t is computed like

p

1

=

~

A

�1

11

t

1

p

2

=

~

A

�1

22

(t

2

�A

21

t

1

) (23)

where, for instance,

~

A

�1

11

t

1

represents an approximate solution in subdomain 1 with a low

accuracy. Another possibility is to take

~

A

ii

= L

i

U

i

to be some incomplete LU factorization

of A

ii

, see further on.

The GMRES subdomain solution implicitly constructs a polynomial p(A

ii

) of the sub-

domain matrix A

ii

such that the �nal residual p(A

ii

)r

0

is minimal in the Euclidean norm.

Speci�cally, with initial guess p

i0

= 0 and right-hand side v

i

, we get for the �nal subdomain

7

solution p

i

= p(A

ii

)v

i

. Since the polynomial p(A

ii

) depends on both the required accuracy

and the right-hand side (initial residual), the matrix

~

A

�1

ii

= p(A

ii

) can be di�erent for each

v. Therefore, GMRES acceleration cannot be used since the preconditioner

~

N varies in each

step. Only for the case

~

A

ii

= L

i

U

i

we may apply GMRES acceleration, but we still apply

GCR in this case.

3.4 Theoretical motivation

Inaccurate solution of subproblems reduces the amount of work in each domain decomposition

iteration at the cost of some additional work in the outer domain decomposition iteration.

Therefore this approach can only lead to a reduction in computing time if the increase in

outer domain decomposition iterations is small.

A simple analysis of the condition number of the postconditioned matrix A

~

N

�1

con�rms

this statement. For symmetric problems, the condition number is a good estimate for the

rate of convergence (

p

��1

p

�+1

for CG) For unsymmetric problems the condition number is less

closely linked to convergence.

Each iteration involves solving

Nu = g (24)

with N the matrix from (10). With inaccurate solution of subdomains, we solve a problem

~

N ~u = g (25)

with

~

N as in (22) and (21). All subproblems are solved using a relative accuracy.

Condition 1 Each subproblem A

ii

u

i

= g

i

is solved using initial guess 0 and with a relative

accuracy of � so that kg

i

�A

ii

~u

i

k � �kg

i

k in the Euclidean norm.

Theorem 1 relates N and

~

N .

Theorem 1 If condition 1 holds for all subdomains and all possible right-hand sides g

i

, then

(a) kI �N

gs

~

N

�1

gs

k � C�, for some constant C > 0.

(b) kI �N

jac

~

N

�1

jac

k � �.

8

Proof:

Proof of (a): Combination of Condition 1 with

~

A

ii

~u

i

= g

i

(inaccurate subdomain

solution) gives kg

i

� A

ii

~

A

�1

ii

g

i

k = k(I � A

ii

~

A

�1

ii

)g

i

k � �kg

i

k for all g

i

. From the

de�nition of a matrix norm it follows that kI �A

ii

~

A

�1

ii

k � �.

Without loss of generality we take two subdomains, so thatN and

~

N are described

by (15) and (22) respectively. We get

I �N

~

N

�1

=

"

I � A

11

~

A

�1

11

;

�(I �A

22

~

A

�1

22

)A

21

~

A

�1

11

I � A

22

~

A

�1

22

#

(26)

Partition x =

"

x

1

x

2

#

and note that for the Euclidean norm kxk �

"

x

1

0

#

+

"

0

x

2

#

= kx

1

k+kx

2

k, then we have kI�N

~

N

�1

k = sup

kxk�1

k(I�N

~

N

�1

)xk �

sup

kxk�1

�

k(I � A

11

~

A

�1

11

)x

1

k+ k(I � A

22

~

A

�1

22

)A

21

~

A

�1

11

x

1

k+ k(I �A

22

~

A

�1

22

)x

2

k

�

.

Furthermore, for the Euclidean norm kxk � 1 implies kx

1

k � 1 and kx

2

k � 1 so

that �nally (a) follows with C = 2+ kA

21

~

A

�1

11

k.

Proof of (b): For any block diagonal matrix B = diag(D

1

; D

2

; : : : ; D

n

), we have:

kBk =

q

�(B

T

B) =

q

�(diag(D

T

1

D

1

; : : : ; D

T

n

D

n

)) = maxf

q

�(D

T

1

D

1

); : : : ;

q

�(D

T

n

D

n

)g =

maxfkD

1

k; : : :kD

n

kg. If we use the additive postconditioner, then I � N

~

N

�1

is

a block diagonal matrix with blocks D

i

= I � A

ii

~

A

�1

ii

, so that kI � N

~

N

�1

k =

max

i

kI �A

ii

~

A

�1

ii

k � �. Therefore, (b) holds.

2

Theorem 1 enables us to give a relation between the condition numbers of A

~

N

�1

and AN

�1

.

Theorem 2 Under the conditions of Theorem 1 and C� < 1, the condition number of A

~

N

�1

satis�es

�(A

~

N

�1

) �

1 + C�

1� C�

� �(AN

�1

): (27)

Proof:

Application of Theorem 1, and noting that k ? k is a least upper bound norm,

gives kN

~

N

�1

k = kN

~

N

�1

� I + Ik � 1+ C� and k(N

~

N

�1

)

�1

k = k(N

~

N

�1

)

�1

(I �

N

~

N

�1

) + Ik � 1 + k(N

~

N

�1

)

�1

kC�.

Since C� < 1, �(N

~

N

�1

) = kN

~

N

�1

k � k(N

~

N

�1

)

�1

k �

1+C�

1�C�

.

Inequality (27) follows from �(A

~

N

�1

) = �(AN

�1

N

~

N

�1

) � �(AN

�1

) � �(N

~

N

�1

).

2

Theorem 2 shows that the subdomain solution accuracy has only a small e�ect on the

condition number of the postconditioned matrix. This means that (at least for symmetric

9

problems) the number of outer iterations will not increase (signi�cantly) when the subdomain

accuracy is lowered. The sensitivity of outer loop convergence to � is given by the constant C

in Theorem 1, which can be chosen 1 for the additive algorithm, independently of the number

of subdomains. For multiplicative algorithms this sensitivity constant C will probably also be

small and independent of the number of subdomains, however, sharper bounds may require

a much more detailed analysis.

The theorems only hold for constant

~

N , but the results in Section 6 show that the con-

clusions also hold in case

~

N varies in each iteration.

4 Krylov subspace acceleration

The basic Schwarz domain decomposition iteration converges slowly and is not always conver-

gent for the Navier-Stokes equations. Therefore, we use Krylov subspace acceleration, which

is frequently used to accelerate domain decomposition methods, see for example [5] and many

of the papers on iterative substructuring methods in [24, 14, 15, 25, 33]. The acceleration pro-

cedure used with accurate solution of subdomain problems is GMRES applied to the interface

equations (19) and is described in detail in [11, 10]. This section describes the procedure used

with inaccurate subdomain solution.

The GCR [23] method for solving Ax = f can be easily adapted to cope with variable

preconditioners. Because of its simplicity and for completeness, we describe the GCR method

here. GCR is based on maintaining two subspaces, a subspace S

k

=< s

1

; s

2

; : : : ; s

k

> for

storing the search directions s

i

and a subspace V

k

=< v

1

; v

2

; : : : ; v

k

> with As

i

= v

i

. In

every operation of GCR the property As

i

= v

i

is preserved. For simplicity we take the initial

guess x

0

= 0, in which case GCR minimizes the residual kf �Ax

k

k

2

over x

k

2 S

k

. Clearly, if

the fv

i

g

i=1;:::;k

form an orthonormal basis, we can obtain the solution by projecting onto the

space V

k

. So we must �nd x

k

2 S

k

such that f �Ax

k

? v

i

for i = 1; : : :k, therefore,

(f � Ax

k

; v

i

) = 0: (28)

Since Ax

k

2 V

k

we have

Ax

k

=

X

j=1:::k

�

j

v

j

(29)

and by substituting (29) into (28) we get �

i

= (f; v

i

) so that

Ax

k

=

X

i=1:::k

(f; v

i

)v

i

: (30)

Since As

i

= v

i

, we have

Ax

k

=

X

i=1:::k

(f; v

i

)As

i

= A

X

i=1:::k

(f; v

i

)s

i

(31)

so that x

k

=

P

i=1:::k

(f; v

i

)s

i

. This gives x

k+1

= x

k

+ (f; v

k+1

)s

k+1

and with r

k

= f � Ax

k

we get r

k+1

= r

k

� (f; v

k+1

)v

k+1

. The GCR algorithm proceeds by choosing a new search

direction s

k+1

(preferably such that As

k+1

approximates the residual r

k

) and computes the

10

vector v

k+1

= As

k+1

. A modi�ed Gram-Schmidt procedure is used to make v

k+1

orthogonal

to v

i

(1 � i � k). The same linear combinations of vectors are applied to the space of search

directions S

k

to ensure that As

i

= v

i

still holds for all i. Figure 4 shows the resulting GCR

algorithm.

r

0

= f �Ax

0

; k = 0

while kr

k

k � �kr

0

k

choose a search direction s

k+1

compute v

k+1

= As

k+1

modi�ed Gram-Schmidt

for i = 1; : : : ; k

� = (v

k+1

; v

i

)

v

k+1

= v

k+1

� � � v

i

ensure As

k+1

= v

k+1

s

k+1

= s

k+1

� � � s

i

end for

� = kv

k+1

k

2

v

k+1

= v

k+1

=�

s

k+1

= s

k+1

=�

end Gram-Schmidt

update x and r

 = (f; v

k+1

)

x

k+1

= x

k+1

+ s

k+1

r

k+1

= r

k+1

� s

k+1

k = k + 1

end while

Figure 4: The GCR algorithm with general search directions without restart and with a

relative stopping criterion [46]

For the special case of the search direction s

k+1

= r

k

, we obtain the classical GCR

algorithm, which is equivalent to GMRES [41]. For this choice of search direction, the space

S

k

is called the Krylov space. The di�erence between GCR and GMRES is that, with the

bene�t of allowing more general search directions, GCR requires twice the storage of GMRES

and 3=2 times the number of oating point operations for orthogonalization. However, GCR

can be combined with truncation strategies, for instance the Jackson & Robinson [31] strategy,

whereas GMRES can only be restarted. Because of this, truncated GCR may converge faster

than GMRES, see for example Section 6.2. Furthermore, restarted GCR can be optimized [49],

which makes GCR just as e�cient as GMRES. Both optimized restarted GCR and truncated

11

GCR will be considered in our numerical experiments.

Recent developments have led to a more exible GMRES algorithm which allows more

general search directions, so called FGMRES [40]. The FGMRES method is used in [6] to

investigate the Neumann-Dirichlet method with inexact subdomain solution. The emphasis

in [6] is on restrictions on subdomain solution accuracy to retain the h-independent con-

vergence of the Neumann-Dirichlet algorithm rather than on reduction of computing time.

Optimized restarted GCR is just as e�cient as FGMRES, both in memory requirements and

work.

In the present paper, we use s

k+1

=

~

N

�1

r

k

, which corresponds to a single iteration

of (21) with initial guess u

m

= 0. The case of multiple iterations of (21) to determine

s

k+1

is not considered in this paper. If the subdomain problems are solved (inaccurately)

using GMRES, this method reduces to GMRESR [46] for the single domain case. In case

~

A

ii

= L

i

U

i

is the (relaxed) incomplete LU factorization of A

ii

, we obtain a blocked version

of the subdomain RILU(�) [27] postconditioner (with parameter �), here called RIBLU(�)

(Relaxed Incomplete Block LU). The parameter � may be varied to improve convergence.

The RIBLU(�) preconditioner is investigated for parallel implementation in for example [21,

32, 18, 19]. The present paper also investigates the multiplicative version of the RIBLU(�)

postconditioner. The GMRES acceleration procedure may be applied with RIBLU(�), which

is equivalent to GCR acceleration in this case.

The stopping criterion for accurate solution of subdomain problems di�ers from that for

inaccurate solution. With accurate solution, the stopping criterion is based on the precon-

ditioned residual r = Q

T

N

�1

f �Q

T

N

�1

AQv of only the interface unknowns. On the other

hand, with inaccurate solution, it is based on the unpreconditioned residual r = f � Au of

all unknowns. Therefore, a comparison between the two methods is di�cult. Nevertheless,

we assume that the �nal solution obtained with both methods is equally accurate if the rel-

ative stopping criterion kr

k

k � �kr

0

k is used. This assumption was con�rmed in [9]. With

inaccurate subdomain solution, the results for di�erent subdomain solution accuracies can be

compared since the stopping criterion does not depend on the way subdomain problems are

solved.

5 The model problem

We shall consider ow around a cylinder in a wall-bounded shear ow. This problem models

the removal of particles from surfaces. Examples of where this type of ow occurs are for

instance, the cleaning of surfaces by water jets, vacuum cleaners and contamination of sur-

faces. An example of the latter is the disposal route of irradiated fuel of nuclear reactors.

Therefore this problem is of considerable practical interest. From a numerical point of view it

is interesting because it requires a non-orthogonal grid and the results of the computation can

be used to verify assumptions made by experimentalists [28, 37]. The problem also requires

large computing times, about 7 hours on a single workstation, which makes it a challenge for

algorithmic improvements and parallel computing.

Figure 5 shows the geometry and decomposition of the domain and a coarse version of the

multi-block and single-block grids. Decompositions into more blocks are obtained by further

12

decomposing the two blocks into subblocks.

The cylinder has diameter a = 2. The Reynolds number is de�ned as

Re =

au

?

�

(32)

with

u

?

=

r

�

0

�

(33)

where �

0

= �@u=@y is the shear stress associated with the linear inlet velocity pro�le. Typical

Reynolds numbers for this problem are Re = 1� 5. Our results are given for Re = 2. In the

computation we have used L = H = 10. The boundary conditions are as follows:

� ABGFIBC: u = 0, v = 0

� AE: u =

�

0

�

� y, v = 0

� DC: �

xx

= 0, v = 0

� ED: �

xy

= �

0

, v = 0

LL

H

A B

aG I

F

C

1 2

E D

(a) (b)

(c)

Figure 5: (a) Geometry and decomposition of the domain. (b) multi-block grid (c) single-block

grid

The stationary solution is computed using the implicit Euler time integration scheme with

start time t = 0, end time t = 10 and with time step 0:02. The time measurements in the next

section are given for only the �rst 10 time steps to avoid excessive computing times. Figure 6

shows the streamlines for the stationary solution. For more details on this computation, the

reader is referred to [10].

13

234
5

6

6
6 6

6

7

8

9

10

11

12

13

LEVELS

 1 -.035

 2 -.025

 3 -.020

 4 -.015

 5 -.005

 6 .000

 7 .005

 8 .400

 9 2.000

10 4.000

11 8.000

12 16.000

13 32.000

 Multiblock ISNaS

Figure 6: Streamlines of the stationary solution

6 Results

This section compares accurate with inaccurate solution of subdomain problems. We consider

both the cylinder problem from the previous section and a Poisseuille ow in a rectangle

[0; 1]� [0; 1]. The global grid for the cylinder problem consists of 12240 grid cells. The single-

block cylinder grid in Figure 5 consists of 10800 grid cells. For the Poisseuille problem a

Cartesian grid of 80� 80 cells is used.

The subdomain problems are solved using GMRES with RILU(�) preconditioning [50, 48]

and a relative stopping criterion. For � = 0 we get the standard ILU preconditioner [36] and

for � = 1 we get the Modi�ed ILU preconditioner [27]. RILU(�) [1] lies in between these two.

With RILUD(�) we mean RILU(�) restricted to the diagonal. The momentum equations are

solved using a RILUD(0:95) preconditioner and the pressure equations using a RILU(0:975).

As a short-hand, we will use RILU(�) to mean RILUD(0:95) whenever the momentum, and

RILU(0:95) whenever the pressure equations are involved. The subdomain solution accuracy

is varied. As a special case the subdomain solution is approximated by means of the inverse

of the RILU(�) [20, 50, 48] preconditioner, thereby omitting GMRES for subdomain solution.

The multi-block problem (the outer loop) is solved up to a relative accuracy of 10

�4

. In all

experiments a Krylov space of dimension 20 is used for both GMRES and GCR multi-block

acceleration and for GMRES subdomain solution. GMRES always uses a restart after 20

iterations. With GCR, we investigate both optimized restart, denoted by GCR (restart), and

truncation, denoted by GCR (trunc). Iteration counts and computing times are given in the

tables in the form time(iteration count). The iteration counts and times are summed over

all time steps taken (10 time steps are used in all examples). The experiments are run on a

HP9000/735 workstation.

In most of the experiments, the multiplicative algorithm is used. Only section 6.4 ex-

amines the additive algorithm. Section 6.1 examines the e�ect of lowering the accuracy of

the subdomain solution on the number of iterations and total computing time. Section 6.2

compares single-block solution time with multi-block solution time. Section 6.3 examines the

14

e�ect of the � parameter in the subdomain RILU(�) preconditioner on convergence using the

RIBLU(�) postconditioner.

6.1 Lowering the subdomain solution accuracy

Table 1 lists the computation times and iteration counts for the cylinder problem. A decom-

position into two blocks is used as in Figure 5.a. The table shows the following quantities:

� Total: the total computing time.

� Momentum: the total time and number of domain decomposition iterations needed to

solve the multi-block problem for the momentum equations.

� Pressure: the total time and iterations needed to solve the pressure equations.

� Other: the total time involved in `other' work like building matrices, computing coe�-

cients, correcting the subdomain velocity �elds and writing the output �le.

The time listed in the column Other is almost perfectly constant, as it should be since the

amount of work in this category does not depend on the type of domain decomposition al-

gorithm used. Method I uses GMRES for the outer loop, based on (hypothetical) accurate

solution of subdomain problems, method II uses GCR for the outer loop and uses subdomain

solution (with possible low accuracy) using GMRES, and method III approximates the sub-

domain solution using a single application of the subdomain RILU(�) preconditioner to the

subdomain right-hand side.

� Total Momentum Pressure Other

I 10

�8

924:7 146:6(37) 722:8(157) 50:5

10

�4

449:1 78:6(38) 315:2(154) 50:5

II 10

�4

465:2 58:4(37) 351:6(155) 50:5

10

�2

292:1 43:5(38) 193:4(168) 50:5

10

�1

230:3 47:5(48) 127:6(210) 50:4

III RIBLU(�) post + GCR (trunc) 190:3 28:4(85) 106:8(566) 50:4

RIBLU(�) post + GCR (restart) 179:0 26:7(85) 97:0(646) 50:6

Table 1: Results with varying accuracy of subdomain solution for the cylinder problem,

multiplicative algorithm

As the subdomain solution accuracy is lowered from 10

�4

to 10

�1

, the number of outer

GCR iterations shows only a small increase, which, because of the reduced work in solving

subproblems, results in a reduction of total computing time (here approximately a factor

two). This is in accordance with Theorem 2.

The use of the RIBLU(�) postconditioner (method III) leads to small amounts of work

per iteration at the cost of much larger iteration counts. The computing time is somewhat

lower than for method II. This is contrary to our model study for the advection-di�usion

15

equation [9], where the RIBLU(�) postconditioner resulted in a more signi�cant drop in

computing time. The reason is that RIBLU(�) preconditioner shows a larger increase in

number iterations with respect to subdomain RILU(�) for � close to 1:0. This increase is

not present with � = 0, see [9] and Section 6.3. The use of optimized restarted GCR instead

of Jackson & Robinson truncation gives only a small reduction in computing time. For the

momentum equations the total number of iterations is the same which is because the number

of iterations per time step is below 20: the dimension of the Krylov space.

6.2 Single domain versus multi domain

One of the main reasons for investigating inaccurate solution of subdomain problems is to

reduce the excessive computing times observed in the multi-block incompressible Navier-

Stokes solver [10], and to bring them closer to single-block solution time. This also gives

better prospects for parallel computing.

Table 2 lists the number of iterations and computing times for single-block solution of the

Poisseuille ow on an 80 � 80 grid and the single-block cylinder grid with 10800 cells from

Figure 5. The results are given for GMRES subdomain solution using RILU(�) postcondi-

tioning. Table 3 shows a comparison of single-block solution and multi-block solution of the

Poisseuille ow

Total Momentum Pressure Other

94:0 46:5(407) 21:0(395) 24:4

Cylinder problem

Total Momentum Pressure Other

128:0 31:6(140) 48:9(497) 44:0

Table 2: Single-block solution using GMRES with RILU(�) postconditioning

momentum equations for di�erent decompositions of the domain. Table 4 shows a compar-

ison of single-block solution and multi-block solution of the pressure equations for di�erent

decompositions of the domain. It is important to note that with the optimized restarted

GCR method with RIBLU(�) postconditioning (the bottom row in Table 4), the maximum

dimension of the Krylov space had to be increased to 40 to obtain convergence within 200

iterations/time step of the pressure equation.

Comparing Tables 2 and 3, we see that for small numbers of subdomains, computing

time for the momentum equations can be reduced to below that of single-block solution for

method II. However, for larger numbers of blocks this is not the case, which is possibly due to

superlinear convergence of the subdomain solvers, see further on. Method III is faster than

method II for the cylinder problem, but not for the Poisseuille problem. An explanation is

that the time step for the cylinder problem (0:02) is much smaller than for the Poisseuille

ow (0:1) which increases the diagonal of the momentum matrix considerably and improves

convergence.

16

Poisseuille ow

decomposition

� 2� 2 4� 4 5� 5

I 10

�8

333:6(101) 190:8(120) 171:3(129)

10

�4

147:3(102) 90:5(121) 87:5(129)

II 10

�4

120:1(89) 81:0(106) 82:8(116)

10

�2

55:6(89) 50:6(108) 56:6(117)

10

�1

45:3(111) 49:9(136) 57:1(146)

III RIBLUD(0:95) post + GCR (trunc) 51:5(241) 78:8(281) 92:5(295)

RIBLUD(0:95) post + GCR (restart) 42:8(241) 65:8(281) 86:4(295)

Cylinder problem

no. of blocks

� 2 4 8

I 10

�8

146:6(37) 145:9(49) 113:6(49)

10

�4

78:6(38) 80:7(49) 63:0(49)

II 10

�4

58:4(37) 65:7(47) 53:0(47)

10

�2

43:5(38) 49:3(47) 42:4(47)

10

�1

47:5(48) 52:5(56) 59:8(56)

III RIBLUD(0:95) post + GCR (trunc) 28:4(85) 30:8(86) 30:8(86)

RIBLUD(0:95) post + GCR (restart) 26:7(85) 29:1(86) 29:0(86)

Table 3: Results with various decompositions into subdomains for the momentum equations,

multiplicative algorithm.

Comparing Tables 2 and 4, we see that for small numbers of subdomains, the computing

time with method II with inaccurate subdomain solution is still a factor 2 � 3 larger than

with single block solution. Also, for the Poisseuille ow in Table 4 inaccurate subdomain

solution does not always provide a speedup. Method III leads to growing iteration count and

computing times for increasing numbers of blocks. The reason for the bad performance of

the RIBLU(�) postconditioner is that for � close to 1:0, it performs much worse with respect

to single domain RILU(�) than for � = 0:0, see Section 6.3. We also see that the Jackson

& Robinson truncation strategy is quite e�ective in reducing iteration count compared to

restarted GCR. The optimizations in GCR do not outweigh this increase in iteration count.

A possible reason for the modest reduction in computing time by method II for larger

numbers of blocks is the following. For larger numbers of blocks the subdomains are smaller

and therefore superlinear convergence of the subdomain GMRES solver can occur earlier. For

example, in case of superlinear convergence, lowering the subdomain solution accuracy from

10

�2

to 10

�1

might only save a single subdomain GMRES iteration (out of say 6 iterations).

The subdomain solution accuracy therefore only gives a small reduction of work needed to

solve subdomains, but it may still cause a signi�cant increase in the number of GCR iterations

in the outer loop.

17

Poisseuille ow

decomposition

� 2� 2 4� 4 5� 5

I 10

�8

135:6(180) 104:2(297) 120:5(334)

10

�4

63:8(188) 59:7(303) 77:1(344)

II 10

�4

77:8(201) 85:2(323) 108:2(361)

10

�2

52:9(216) 69:1(333) 90:8(374)

10

�1

56:0(303) 81:5(422) 103:8(456)

III RIBLU(�) post + GCR (trunc) 53:7(483) 100:6(633) 120:3(660)

RIBLU(�) post + GCR (restart) 43:3(599) 84:8(767) 124:4(867)

Cylinder problem

no. of blocks

� 2 4 8

I 10

�8

722:8(157) 688:9(282) 496:2(343)

10

�4

315:2(154) 328:4(285) 247:7(344)

II 10

�4

351:6(155) 352:1(279) 283:2(339)

10

�2

193:4(168) 208:6(296) 201:6(374)

10

�1

127:6(210) 155:1(371) 176:6(467)

III RIBLU(�) post + GCR (trunc) 106:8(566) 149:5(742) 183:0(811)

RIBLU(�) post + GCR (restart) 97:0(646) 173:2(1076) 225:2(1332)

Table 4: Results with various decompositions into subdomains for the pressure equations,

multiplicative algorithm.

The results in Table 3 and Table 4 con�rm the remark in Section 3.4 that the constant C

in Theorem 2 does not depend on the number of blocks for the multiplicative algorithm: the

ratio of the number of iterations needed with � = 10

�2

and � = 10

�1

does not increase as the

domain is decomposed into more subdomains.

6.3 The inuence of the parameter �

The properties of the blocked RIBLU(�) preconditioner depend on the parameter �. Fig-

ure 7 shows the e�ect of the � parameter on convergence of domain decomposition for the

momentum and pressure equations for the Poisseuille ow problem.

Figure 7 con�rms the observation in [9] that with standard ILU preconditioning (RILU(0:0)),

the number of iterations shows a relatively small increase when the number of subdomains

is increased. Larger values of � � 1 can have a signi�cant e�ect on convergence, but this

e�ect diminishes rapidly as more subdomains are used. Clearly, varying the � parameter for

multi-domain problems has a much lower inuence on convergence than for single-domain

problems. Also, the optimal value of � is lower for multi-domain problems.

18

1x1

2x2

3x3

4x4

0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

alpha

red. factor

1x1

2x2

3x3

4x4

0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

alpha

red. factor

(a) (b)

Figure 7: E�ect of the � parameter using the RIBLU(�) preconditioner on the reduction

factor: (a) Momentum and (b) Pressure equations

6.4 Prospects for parallel implementation

In [7, 8] parallelization of domain decomposition for the incompressible Navier-Stokes equa-

tions using accurate solution of subdomain problems is investigated. The method performs

well on a cluster of workstations. The reason is that with accurate solution of subdomain

problems the parallelization is rather coarse grained. Furthermore, the reduction to a system

of interface equations (19) makes a very simple parallel implementation possible.

In this section, we take a brief look at the possibilities for parallel implementation of the

GCR accelerated method of this paper. Table 5 shows a comparison between the multiplica-

tive and additive algorithms. We see that the penalty of going from the multiplicative to the

additive algorithm is between 1:5� 2 for method II, which is more than for method III.

Multiplicative Additive

� momentum pressure momentum pressure

10

�4

53:0(47) 283:2(339) 87:0(76) 574:8(674)

10

�2

42:4(47) 201:6(374) 68:2(76) 394:9(749)

10

�1

59:8(56) 176:6(467) 68:1(84) 276:0(736)

RIBLU(�)+GCR (trunc) 30:8(86) 183:0(811) 37:0(101) 213:2(998)

RIBLU(�+GCR (restart) 29:0(86) 225:2(1332) 34:5(101) 332:3(1965)

Table 5: Comparison between the multiplicative (Gauss-Seidel) and additive (Jacobi) algo-

rithm for a decomposition into 8 blocks.

Table 5 shows that the number of iterations only increases slightly as the subdomain

solution accuracy is lowered to � = 10

�1

. This means that lowering the subdomain accuracy

will almost certainly give a lower computing time. Method III requires much more iterations,

especially for the pressure equations, and therefore communication. Therefore, method II is

19

more suitable for parallel processing than method III. Again GCR with Jackson & Robinson

truncation is quite e�ective for method III compared to optimized restarted GCR.

The results in Table 5 show that for this problem, the multiplicative algorithm is more

sensitive to the subdomain solution accuracy than the additive algorithm, probably because

errors made in solving subproblems propagate to other subdomains within a single iteration.

7 Conclusions

It is possible to obtain signi�cant reductions in computing time by inaccurate solution of

subproblems. When the subdomain solution accuracy is lowered, the number of iterations

increases only slightly, which is con�rmed by Theorem 2. Especially for small numbers of

blocks (equivalently: large subdomains) the reduction in computing time can be quite large.

For small subdomain problems, superlinear convergence for the subdomain GMRES solver

can occur earlier so that a reduction in subdomain solution accuracy can lead to only a very

small reduction of work needed to solve subdomain problems, but may still cause a more

signi�cant increase in the number of iterations needed by the outer GCR iteration.

The sensitivity of convergence in the outer GCR loop stays approximately the same as the

number of subdomains is enlarged. This was shown to be true for the additive algorithm in

Section 3.4 (Theorems 1 and 2), but it probably also holds for the multiplicative algorithm.

Convergence of the multiplicative algorithm seems to be more sensitive to the subdomain

solution accuracy than the additive algorithm.

The actual reductions obtained by inaccurate subdomain solution are very much problem

dependent. Signi�cant reductions in computing time can be obtained for the momentum

equations. For the pressure equations these reductions are typically much less.

The RIBLU(�) postconditioned GCR method does not perform well for � close to 1. For

such methods, the � parameter only improves convergence of single-block solution but its

e�ect on convergence of multi-block solution is much less. As shown in [9] and Figure 7, the

number of iterations needed with multiplicative RIBLU(0) postconditioners is only slightly

larger than with single-block solution. Generalizations of the RIBLU(�) postconditioner to

more subdomains that preserve this property are therefore of interest. Furthermore, overheads

in the implementation can be quite important and are especially to the disadvantage of the

RIBLU(�) algorithms. These disadvantages of the current RIBLU(�) postconditioner prevent

a reduction of computing time to almost that of single-block solution. The optimized restarted

GCR method does not give signi�cant reductions in computing time because of an increased

number of iterations compared to Jackson & Robinson truncation.

Parallel implementation of the GCR based algorithm is attractive, because convergence

of the outer GCR loop does not depend sensitively on the subdomain solution accuracy.

Therefore, the number of iterations will in general be approximately the same as with very

accurate subdomain solution, so that reduced computing time is almost certain. Only for very

inaccurate subdomain solution, for instance when the RIBLU(�) postconditioner is used, we

get a signi�cant increase in the number of iterations and therefore communication.

Inaccurate solution of subdomain problems combined with GCR acceleration removes the

restriction inherent in GMRES solution of interface equations (19) that subdomain problems

20

should be solved accurately (enough). The GCR based algorithm is therefore in general more

reliable than the GMRES algorithm for solving interface equations.

References

[1] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning

methods. Numerische Mathematik, 48:479{498, 1986.

[2] M.J. Berger. On conservation at grid interfaces. SIAM Journal of Numerical Analysis,

24:967{984, 1987.

[3] P. Bj�rstad and M.D. Skogen. Domain decomposition algorithms of Schwarz type, de-

signed for massively parallel computers. Report in informatics 54, Department of Infor-

matics, University of Bergen, Bergen, 1991.

[4] P. Bj�rstad and M.D. Skogen. Domain decomposition algorithms of Schwarz type, de-

signed for massively parallel computers. In David E. Keyes, Tony F. Chan, G�erard

Meurant, Je�rey S. Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth Interna-

tional Symposium on Domain Decomposition methods for Partial Di�erential Equations,

pages 362{375, SIAM, Philadelphia, 1992.

[5] P.E. Bj�rstad and O.B. Widlund. Iterative methods for the solution of elliptic problems

on regions partitioned into substructures. SIAM Journal of Numerical Analysis, 23:1097{

1120, 1986.

[6] Christoph B�orgers. The Neumann-Dirichlet domain decomposition method with inexact

solvers on the subdomains. Numer. Math., 55:123{136, 1989.

[7] E. Brakkee and A. Segal. A parallel domain decomposition algorithm for the incom-

pressible Navier-Stokes equations. In L. Dekker, W. Smit, and J.C. Zuidervaart, editors,

Massively Parallel Processing Applications and Development, pages 743{752, Elsevier,

Amsterdam, 1994.

[8] E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition algorithm

for the incompressible Navier-Stokes equations. To appear in Journal of Simulation

Practice and Theory.

[9] E. Brakkee, C. Vuik, and P. Wesseling. An investigation of Schwarz domain de-

composition using accurate and inaccurate solution of subdomains. Report 95-18,

Faculty of Technical Mathematics and Informatics, Delft University of Technology,

Delft, 1995. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-

reports/1995/DUT-TWI-95-18.ps.gz, Submitted to Numerical Linear Algebra with Ap-

plications.

[10] Erik Brakkee and Piet Wesseling. Schwarz domain decomposition for the incompresssi-

ble Navier-Stokes equations in general coordinates. Report 94-84, Faculty of Technical

21

Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from

anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-

84.ps.gz.

[11] Erik Brakkee and Peter Wilders. A domain decomposition method for the advection-

di�usion equation. Report 94-08, Faculty of Technical Mathematics and Infor-

matics, Delft University of Technology, Delft, 1994. Available from anonymous

ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-08.ps.gz.

[12] J.H. Bramble, J.E. Pasciak, and A.H. Schatz. The construction of preconditioners for

elliptic problems by substructuring I. Math. Comp., 47:103{134, 1986.

[13] Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some do-

main decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic

problems. Numerical Linear Algebra with Applications, 1, 1994.

[14] Tony F. Chan, Roland Glowinski, Jacques P�eriaux, and Olof B. Widlund, editors.

Proc. of the Second International Symposium on Domain Decomposition methods, SIAM,

Philadelphia, 1989.

[15] Tony F. Chan, Roland Glowinski, Jacques P�eriaux, and Olof B. Widlund, editors. Proc.

of the Third International Symposium on Domain Decomposition methods for Partial

Di�erential Equations, SIAM, Philadelphia, 1990.

[16] A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745{

762, 1968.

[17] C.W.Oosterlee and P.Wesseling. A multigrid method for an invariant formulation of the

incompressible Navier-Stokes equations in general coordinates. Comm. Applied Num.

Methods, 8:721{725, 1992.

[18] E. de Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogonal-

ity. In N. Duane Melson, T.A. Manteu�el, and S.F. McCormick, editors, Sixth Copper

Mountain Conference on Multigrid Methods, Nasa Conference Publication 3224, Part I,

pages 111{125, Nasa Langley Research Center, Hampton, VA, USA, 1993.

[19] Eric de Sturler. IBLU preconditioners for massively parallel computers. In D. E. Keyes

and J. Xu, editors, Domain Decomposition Methods in Science and Engineering (Proceed-

ings of the Seventh International Conference on Domain Decomposition, October 27{30,

1993, The Pennsylvania State University). American Mathematical Society. Providence,

USA, 1995.

[20] H.A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a

non-symmetric matrix arising from pde-problems. J. Comput. Phys., 44:1{19, 1981.

[21] Radicati di Brozolo and Y. Robert. Parallel conjugate gradient like algorithms for solving

sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing,

11:223{239, 1989.

22

[22] Maksymillian Dryja and Olof B. Widlund. Some recent results on Schwarz type domain

decomposition algorithms. In A. Quarteroni, J. Periaux, Yu.A. Kuznetsov, and O.B.

Widlund, editors, Proc. of the Sixth International Symposium on Domain Decomposition

methods in Science and Engineering, pages 53{61, AMS, Providence, 1992.

[23] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsym-

metric systems of linear equations. SIAM Journal of Numerical Analysis, 20:345{357,

1983.

[24] R. Glowinski, G.H. Golub, G.A. Meurant, and J. P�eriaux, editors. First International

Symposium on Domain Decomposition Methods for Partial Di�erential Equations, SIAM,

Philadelphia, 1988.

[25] Roland Glowinski, Yuri A. Kuznetsov, G�erard Meurant, Jacques P�eriaux, and Olof B.

Widlund, editors. Proc. of the Fourth International Symposium on Domain Decomposi-

tion methods for Partial Di�erential Equations, SIAM, Philadelphia, 1991.

[26] William D. Gropp and Barry F. Smith. Experiences with domain decomposition in

three dimensions: Overlapping Schwarz methods. In A. Quarteroni, J. Periaux, Yu.A.

Kuznetsov, and O.B. Widlund, editors, Proc. of the Sixth International Symposium on

Domain Decomposition methods in Science and Engineering, pages 323{333, AMS, Prov-

idence, 1992.

[27] I. Gustafsson. A class of �rst order factorization methods. BIT, 18:142{156, 1978.

[28] D. Hall. Measurements of the mean force on a particle near a boundary in turbulent

ow. J. Fluid Mechanics, 187:451{466, 1988.

[29] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incom-

pressible ow of uid with a free surface. The Physics of Fluids, 8:2182{2189, 1965.

[30] W.D. Henshaw and G. Chesshire. Multigrid on composite meshes. SIAM J. Sci. Stat.

Comp., 8:914{923, 1987.

[31] C.P. Jackson and P.C. Robinson. A numerical study of various algorithms related to the

preconditioned conjugate gradient method. Internal Journal for Numerical Methods in

Engineering, 21:1315{1338, 1985.

[32] Wang Jin-xiau. The parallel block preconditioned conjugate gradient algorithms. In

David E. Keyes, Tony F. Chan, G�erard Meurant, Je�rey S. Scroggs, and Robert G.

Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition

methods for Partial Di�erential Equations, pages 339{345, SIAM, Philadelphia, 1992.

[33] David E. Keyes, Tony F. Chan, G�erard Meurant, Je�rey S. Scroggs, and Robert G. Voigt,

editors. Proc. of the Fifth International Symposium on Domain Decomposition methods

for Partial Di�erential Equations, SIAM, Philadelphia, 1992.

23

[34] P.L. Lions. On the Schwarz alternating method, I. In R. Glowinski, G.H. Golub, G.A.

Meurant, and J. P�eriaux, editors, First International Symposium on Domain Decom-

position Methods for Partial Di�erential Equations, pages 1{42, SIAM, Philadelphia,

1988.

[35] Jan Mandel and Steve McCormick. Iterative solution of elliptic equations with re�ne-

ment: The two-level case. In Tony F. Chan, Roland Glowinski, Jacques P�eriaux, and

Olof B. Widlund, editors, Proc. of the Second International Symposium on Domain De-

composition methods, pages 81{92, SIAM, Philadelphia, 1989.

[36] J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear systems

of which the coe�cient matrix is a symmetric M-matrix. Math. Comp., 31:148{162, 1977.

[37] A. M. Mollinger. Particle entrainment: Measuring the uctuating lift force. PhD disser-

tation, Delft University of Technology, 1994.

[38] A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible

Navier-Stokes solver: invariant discretization. Applied Scienti�c Research, 48:175{191,

1991.

[39] C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for the

incompressible Navier-Stokes equations in general coordinates on staggered grids. Inter-

national Journal for Numerical Methods in Fluids, 17:301{321, 1993.

[40] Y. Saad. A exible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat.

Comp., 14:461{469, 1993.

[41] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving

non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856{869, 1986.

[42] H.A. Schwarz.

�

Uber einige Abbildungsaufgaben. Journal f�ur Reine und Angewandte

Mathematik, 70:105{120, 1869.

[43] A. Segal, P. Wesseling, J.J.I.M. Van Kan, C.W. Oosterlee, and C.G.M. Kassels. In-

variant discretization of the incompressible Navier-Stokes equations in boundary �tted

coordinates. International Journal for Numerical Methods in Fluids, 15:411{426, 1992.

[44] John C. Strikwerda and Carl D. Scarbnick. A domain decomposition method for incom-

pressible ow. SIAM J. Sci. Comput., 14:49{67, 1993.

[45] Wei Pai Tang. Generalized Schwarz splittings. SIAM J. Sci. Stat. Comput., 13:573{595,

1992.

[46] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Nu-

merical Linear Algebra with Applications, 1(4), 1994.

[47] J.J.I.M. Van Kan. A second-order accurate pressure correction method for viscous in-

compressible ow. SIAM J. Sci. Stat. Comp., 7:870{891, 1986.

24

[48] C. Vuik. Fast iterative solvers for the discretized incompressible Navier-Stokes

equations. Reports of the Faculty of Technical Mathematics and Informatics

93{98, Delft University of Technology, Delft, 1993. Available from anonymous

ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-98.ps.gz. To

appear in Int. J. Num. Meth. in Fluids.

[49] C. Vuik. New insights in GMRES-like methods with variable precondition-

ers. Reports of the Faculty of Technical Mathematics and Informatics 93{

10, Delft University of Technology, Delft, 1993. Available from anonymous

ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-10.ps.gz.

[50] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the

GMRES method. International Journal for Numerical Methods in Fluids, 16:507{523,

1993.

[51] P. Wesseling, A. Segal, J. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Invariant

discretization of the incompressible Navier-Stokes equations in general coordinates on

staggered grids. Comput. Fluids Dyn. J., 1:27{33, 1992.

[52] O.B. Widlund. Some Schwarz methods for symmetric and nonsymmetric elliptic prob-

lems. In David E. Keyes, Tony F. Chan, G�erard Meurant, Je�rey S. Scroggs, and

Robert G. Voigt, editors, Proc. of the Fifth International Symposium on Domain De-

composition methods for Partial Di�erential Equations, SIAM, Philadelphia, 1992.

[53] J.A. Wright and W. Shyy. A pressure-based composite grid method for the Navier-Stokes

equations. Journal of Computational Physics, 107:225{238, 1993.

[54] M. Zijlema, A. Segal, and P. Wesseling. Finite volume computation of incompressible

turbulent ows in general coordinates on staggered grids. Int. J. of Num. Meth. in Fluids,

20:621{640, 1995.

[55] M. Zijlema, A. Segal, and P. Wesseling. Invariant discretization of the k-" model in gen-

eral coordinates for prediction of turbulent ows in complicated geometries. Computers

and Fluids, 24:209{225, 1995.

25

