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Abstract

In this paper we consider the solution of the systems of non-linear equations

arising from the discretization of the incompressible Navier-Stokes equations. These

equations are linearized by a combination of Picard and Newton iterations. The re-

sulting systems of linear equations su�er from the occurrence of zero elements on the

main diagonal. In this paper we describe some ordering techniques which allow us to

renumber these equations a-priori such that direct solvers may be used without piv-

oting. Combination of these ordering techniques with standard ILU preconditioning

makes it possible to solve the system of equations by standard iterative methods. In

this way a considerable amount of computation time and memory is saved.

1 Introduction

The solution of the incompressible Navier-Stokes equations has been a challenging prob-

lem for the last decades. Important practical problems are for example the construction

of turbulence models and the viscosity model to be used. In this paper, however, we shall

limit ourselves to laminar 
ow with a Newtonian viscosity model.

One of the important problems related to the incompressible Navier-Stokes equations is

that the pressure is absent in the continuity equation. Since the continuity equation is

strongly related to the pressure this implies that the systems of linear equations to be

solved have zeros at the main diagonals for the rows corresponding to the pressure un-

knowns. Such a property makes the solution of the system of equations in general a
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di�cult task.

We shall restrict ourselves to the solution of the coupled Navier-Stokes equations by the

�nite element method, although other discretization techniques like �nite volumes have the

same problems and presumably our way of solving may also be applied to those types of

discretization. Furthermore we restrict ourselves to three-dimensions since for that class

of problems the need for iterative solution methods is most urgent.

In Section 2 we consider the Navier-Stokes equations and the discretization by the �nite

element method. The appearance of the zero diagonal elements is shown.

Section 3 recalls some common techniques to overcome the problem of the zero pivots.

Advantages and disadvantages of these methods will be summarized. In Section 4, we

describe and investigate some orderings, where the zero main diagonal elements become

non zero elements during the decomposition of the matrix. In our numerical experiments

we observe no break down of the direct method without pivoting.

Thereafter, in Section 5, we specify our iterative method. The e�ect of scaling of the con-

tinuity equation on the rate of convergence of the iterative method is investigated. Two

incomplete LU decompositions are given, which are used as preconditioners for Krylov

subspace methods. Finally the in
uence of the ordering of the unknowns is investigated.

The described methods are compared numerically in Section 6. Even for small prob-

lem sizes the preconditioned Krylov subspace methods appear to be much better than the

direct or penalty methods. For large problem sizes it is impossible to use direct or penalty

methods due to excessive memory requirements. Furthermore for medium problem sizes

the CPU time for a direct or penalty method is orders of magnitudes larger than that for

the iterative method.

2 Discretization of the Navier-Stokes equations

In this section we consider the discretization of the incompressible Navier-Stokes equa-

tions by �nite element methods. For the sake of simplicity we restrict ourselves to time-

independent equations. However, we may expect that the techniques we derive in this

paper will also be suitable for the time-dependent case, since then the matrices involved

become more diagonally dominant.

The general form of the stationary Navier-Stokes equations may be written as

�div � + u � ru = f ; (1)

where � is the stress tensor:

� = �pI+ �(ru

T

+ru): (2)
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� denotes the viscosity, f is some external force and u �ru represents the convective terms.

The continuity equation is given by

div u = 0: (3)

In order to have a unique solution it is necessary to prescribe boundary conditions. Com-

mon types of boundary conditions are prescribed velocities (Dirichlet boundary conditions)

and prescribed stresses or combinations of these two.

Equations (1) to (3) are solved by a standard �nite element method based upon the

Galerkin formulation as can be found in for example Cuvelier et al [7].

To that end the weak formulation is derived by multiplying the equations (1) and (3) by test

functions for the velocity and pressure respectively. Application of the Gauss divergence

theorem leads to

Z




� � r�u+ u � ru � �ud
 =

Z




f � �ud
 +

Z

�

stress

�

n

�u

n

+ �

t

� �u

t

d�; (4)

and
Z




div u � �pd
 = 0: (5)


 is the de�nition region and �

stress

is that part of the boundary where stresses are pre-

scribed. The vector n denotes the outward normal and t a tangential vector at the bound-

ary. Vector �u represents the test functions for the velocity and �p the test functions for

the pressure.

In this paper we restrict ourselves to the three-dimensional case. The elements used are

the triquadratic isoparametric Crouzeix Raviart hexahedrons [7]. This means that the ve-

locity is approximated by a quadratic polynomial in each direction in the reference element

and the pressure is approximated by a linear polynomial, which is discontinuous over the

element boundaries.

The Galerkin formulation is derived by substituting a linear combination of basis functions

for velocity and pressure and the complete set of basis functions for the test functions.

Since the convective terms are non-linear it is necessary to use some linearization scheme.

Commonly used schemes are the Picard iteration where the convective terms at the new

level are approximated by:

u

k+1

� ru

k+1

� u

k

� ru

k+1

; (6)

and the Newton scheme:

u

k+1

� ru

k+1

� u

k

� ru

k+1

+ u

k+1

� ru

k

� u

k

� ru

k

: (7)

k denotes the old iteration level and k + 1 the new one.

A common way of iteration is to use the solution of the Stokes equations (i.e. the Navier-

Stokes equations without convective terms) as initial guess, proceed with a number of
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so-called Picard iterations and �nally apply Newton linearization.

In each step of the iteration process, it is necessary to solve a large system of linear

equations. Formally this system of equations can be written as:

 

A B

T

B 0

! 

u

p

!

=

 

f

0

!

; (8)

where A denotes the discretization of the stress tensor and the linearized convection terms,

B

T

p the discretization of the pressure gradient and Bu = 0 the discretization of minus the

continuity equation. The vector u represents the velocity unknowns and the vector p the

unknown pressures.

Equations of the type (8) are easily recognized as corresponding to a saddle-point problem.

These equations are characterized by the presence of a large zero matrix at the diagonal.

The complete matrix is not symmetric positive de�nite even in the absence of convective

terms. This type of equations is in general much more di�cult to solve than the classical

matrices arising from standard discretizations.

In the sequel we shall refer to the zero matrix at the main diagonal as the zero-block. This

zero matrix is due to the fact that the pressure is not present in the continuity equation,

whereas the equation itself is coupled to the pressure unknowns. This property is inherent

to incompressible Navier-Stokes equations and is independent of the type of discretization.

3 Solution methods for the discretized Navier-Stokes

equations

In the literature many attempts have been made to solve the equations arising from the

discretization of the Navier-stokes equations. Of course one can try to solve equations of

the type (8) immediately by some direct or iterative solver. However, a straight forward

direct solver may have some problems with the zeros at the main diagonal, depending on

the ordering of the equations. We shall return to this matter in Section 4. Also standard

iterative solvers usually converge very slowly or even do not converge at all in case of

saddle-point problems. For that reason many alternative formulations are used in practice

to prevent the zero-block. Most of them are based on a segregation of pressure and velocity.

We shall shortly recall some popular methods and mention advantages and disadvantages.

In the context of �nite element methods, the penalty function method is very popular.

In this approach the continuity equation is perturbed by a small parameter " times the

pressure:

"p + div u = 0: (9)

From equation (9) the pressure may be eliminated and hence pressure and velocity com-

putation are segregated. One can prove ([7]) that the perturbed solution approximates
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the original solution provided the parameter " is small enough. In the discrete version the

penalty function formulation corresponding to equation (8) becomes:

p = �

1

"

M

�1

Bu; (10)

(A+

1

"

B

T

M

�1

B)u = f; (11)

where M is the pressure mass matrix. In many practical problems M is approximated by

a diagonal matrix.

From equations (10) and (11) it is clear that �rst the velocity and then the pressure is

solved. The di�erence between perturbed solution and original solution is usually of the

order of ". The size of the matrix to be solved by the penalty function method is much

smaller than that of the original problem. Furthermore the zero-block has been disappeared.

As a consequence also the solution time is reduced considerably.

A disadvantage of the penalty method is that the choice of the parameter " depends on the

magnitude of the pressure. In practice " is chosen between 10

�5

and 10

�9

. Another more

severe problem is that the matrix to be inverted is very ill-conditioned due to the factor

1

"

. As a consequence iterative methods do not converge and only direct methods may be

applied. For three-dimensional problems this means that large amounts of computing time

and memory are necessary.

In �nite volume and �nite di�erence techniques the pressure correction technique ([5]) or

variants of it are very popular. With some minor adaptations this method is also applied in

�nite element methods ([9]). The pressure-correction method is in fact developed for time-

dependent problems. Roughly speaking the pressure-correction method can be formulated

as a prediction step in which the velocity is estimated from the momentum equations using

the pressure at the previous time-level but without taking into account the continuity

equation. Next the velocity is projected onto the space of divergence-free vector �elds,

resulting in a Laplacian-like equation for the pressure ([25]) and the velocity is updated.

The matrices to be inverted have nice properties and both direct and iterative solvers may

be applied. A disadvantage of the pressure-correction method is that this method converges

slowly if a steady state must be reached. For time-dependent problems, however, it is a

very attractive method.

In the context of �nite element methods the solenoidal approach using basis functions that

are approximately divergence-free have been proposed by Gri�ths ([15]) and Thomasset

([22]) for two-dimensional problems and Hecht ([16]) for three-dimensions. Conceptually

this approach seems the most attractive, however, the construction of the basis functions

is not straight-forward especially in three-dimensions and the method does not seem to be

very popular.

Another approach is based on the Uzawa scheme [13] developed for optimisation problems
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with constraints, just as the penalty function method. This method seems to become more

popular for the iterative solution of the (Navier-)Stokes equations ([18], [12]). It is based

on the dual problem; instead of eliminating the pressure one tries to eliminate the velocity

and solve the pressure equations. In terms of equation (8) this means:

u = A

�1

(f �B

T

p); (12)

BA

�1

B

T

p = BA

�1

f: (13)

From equations (12) and (13) it is possible to derive the following iterative method:

Au

n

= f �B

T

p

n

; (14)

p

n+1

= p

n

+ �Bu

n

; (15)

where n denotes the n

th

iteration level. By a clever choice of � or a sequence of di�erent

�'s in combination with a suitable preconditioning one may arrive at a convergent method.

Unfortunately the Uzawa scheme converges slowly for high Reynolds numbers and is there-

fore not robust enough for practical applications.

In the next section we shall de�ne an a priori ordering technique that makes the a posteri-

ori pivoting of the system of equations unnecessary in case of a direct solution technique.

This ordering has been constructed such that a nearly optimal pro�le is still present. The

same ordering technique will be used in combination with an ILU preconditioner in order

to get a fast converging iterative method.

4 Optimal ordering of the unknowns without the ne-

cessity of pivoting

The system of linear equations (8) may be solved by either a direct method (LU-decomposition)

or an iterative method. In this section we restrict ourselves to direct methods.

The notation used in equation (8) suggest that the unknowns are ordered in the sequence:

all velocity unknowns and then all pressure unknowns. In the sequel we shall denote this

ordering by p-last ordering. Since pressure and velocity are locally coupled such an order-

ing produces a large pro�le and is therefore very uneconomical for a direct solver. A much

smaller pro�le will be produced if the unknowns are ordered in the sequence of the nodal

points, where �rst all unknowns of node 1 are used, then of node 2 etcetera, provided the

nodal points are numbered such that an optimal pro�le is possible.

Unfortunately the zero-block complicates things considerably. Due to boundary conditions

it may be possible that the �rst diagonal element in the matrix is zero and as a conse-

quence straight-forward LU-decomposition is not possible. Hence it may be necessary to

use a kind of pivoting strategy, which in
uences the structure of the matrix and makes
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the a priori estimation of the memory required to store the matrix a di�cult task. So

in fact one would like to have some a priori numbering of nodal points and unknowns

that prevents the presence of a zero diagonal element during the elimination process and

moreover, produces a kind of optimal pro�le. This numbering must be such that the �rst

unknowns are velocity degrees of freedom independent of the type of boundary conditions.

Furthermore it must have a very small in
uence at the local band width (pro�le).

Let us, for the sake of the argument, consider the simple rectangular domain of Figure 1,

subdivided into quadrilaterals. We assume that the velocity is approximated by a bi-linear

polynomial based on the velocities in the vertices and a constant pressure per element based

on the pressure in the centroid. Furthermore we assume that the velocity is prescribed at

 

Figure 1: Rectangular domain, subdivided into quadrilaterals

the complete boundary. This means implicitly that the pressure is �xed upon an additive

constant. The fact that this element does not satisfy the so-called B-B condition ([7]) is

not important for our argument. If the nodes are numbered in a natural way, from left to

right and line-wise from below to the upper boundary, it is clear that the �rst unknown

is the pressure in the �rst element, since all velocity degrees of freedom corresponding to

nodes with a lower sequence number are prescribed. The band width is determined by

one stroke of elements only. One may expect that if we �rst number all velocities and

then all pressures as suggested by equation (8), then during the elimination procedure the

pressure diagonal elements become non-zero due to �ll-in. What we want is an ordering of

the unknowns such that pressure diagonal elements become non-zero during elimination,

but without increasing the local band width (pro�le) considerably. Since the band width

of this mesh is completely determined by the width of one stroke of elements, a natural

ordering technique is to number the unknowns such that per stroke of elements �rst all

velocities are numbered and then all pressures. Figure 2 shows the �rst three levels of
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nodes.

In this way, due to �ll in, the elimination may change the pressure diagonal elements to

level 3

level 1

level 2

Figure 2: First three levels in rectangular region

non-zero elements and the actual band width is hardly changed. Such a renumbering will

be called pressure last renumbering per level or p-last per level.

This renumbering is simple for a rectangular region. In a general irregular shaped region

an automatic procedure is necessary to de�ne the equivalent of the strokes of elements. To

that end we assume that the nodal points have been renumbered before, in order to get a

small pro�le for example by the standard reversed Cuthill-McKee renumbering algorithm

[14] or the algorithm proposed by Sloan [21]. Next we de�ne a level structure which is

very similar to the Cuthill-McKee structure. We start with node 1 and �nd all neighbours

of this node. Let node i

1

have the highest number of this set of neighbours. Then level

1 is de�ned as the set of nodes 1 to i

1

. The next level is found by considering all new

neighbours of level 1. Let node i

2

have the highest number of this new set. Then the next

level is de�ned as the i

1

+1 to i

2

. This process is repeated until all neighbours are part of

a level. With respect to the start it might be necessary to combine levels 1 and 2. Per

level we number �rst the velocities and then the pressure degrees of freedom. In this way

we get a nearly optimal numbering, which may be applied in combination with Gaussian

elimination.

In practice it might be better to start with a row of points instead of one single point. If

we start the Cuthill-McKee renumbering process with a boundary instead of a nodal point

and use this boundary as start of the level structure we might get a numbering that is

more similar to the natural numbering shown in Figure 2. In fact in this simple exam-

ple it is exactly the type of level structure we get. Experiments with Navier-Stokes and

convection-di�usion equations have shown that the out
ow boundary forms in general a

nice starting set.

We have applied this renumbering procedure to a number of test examples both two and

three-dimensional problems. In all cases we had no problems with zero diagonal elements

and moreover the pro�le was more or less optimal. However, compared to the penalty
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function method, direct solution of the coupled system of equations by Gaussian elimina-

tion is still expensive. So only in the case that there are problems with the choice of " this

direct method is preferred.

The main reason to introduce this new renumbering technique is not to use it for direct

methods, although they have inspired us to develop this renumbering but for the iterative

methods treated in the next section.

5 Incomplete LU decompositions

In this section we consider the iterative solution of the linear system given in Section 2.

We will solve this system by iterative methods of Krylov subspace type combined with

preconditioners based on incomplete LU decompositions. For a recent overview of pre-

conditioners and iterative methods we refer to [2]. After giving some known methods we

will present our solution method for the coupled linear system. It will be shown that a

scaling of the continuity equation by a multiplication factor may in
uence the rate of con-

vergence of the iterative process without e�ecting the exact solution. Next two di�erent

ILU preconditioners will be de�ned, and some existence results given. We will conclude

this section with an investigation of the in
uence of the ordering used on the convergence

of the iterative method.

Discussion of known methods

In Section 3 an overview of the literature to circumvent the zero-block is presented. Here

we discuss the literature with respect to iterative methods applied to the coupled momen-

tum and continuity equations. In [18], [27], and [20] the discrete Stokes problem is solved

by iterative methods using the p-last ordering. The preconditioners used are restricted

to block diagonal forms, so the preconditioner of the velocity part is independent of the

pressure part. In our approach we use a preconditioner based on the coupled velocity and

pressure part.

In [1] an inner outer iteration scheme is given to solve the Stokes problem. This method is

closely related to the classic Uzawa algorithm. Another class of methods is formed by the

distributive iterative methods, see [28] for an overview. In these methods the di�culties

of the zero-block are circumvented by multiplying the coe�cient matrix from the right by

a postconditioner such that the product matrix is an M-matrix.

Dahl and Wille present a preconditioner based on the coupled equations in [8]. The Navier-

Stokes equations are discretized by Taylor-Hood elements. In their experiments, Dahl and

Wille only use preconditioners for the Navier-Stokes equations, which are based on the

Stokes coe�cient matrix. No results are given for irregular shaped domains. This ap-

proach is closely related to our iterative methods.

In [6], [3] a �nite volume discretization on a structured grid is used for the 2-dimensional

Navier-Stokes equations. The convective terms are discretized by upwind techniques. In

[6] the RCM and MUM orderings are applied. To prevent zero pivots Clift and Forsyth
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consider p-last, u v p

�

last (only the pressure unknowns related to a Dirichlet boundary

are numbered last), and a pre-elimination of the pressure unknowns. They conclude from

their experiments that pre-elimination combined with RCM is the most e�ective method.

Our solution method

Here we specify our choices to solve the discretized coupled Navier-Stokes equations.

Solution method

1. After mesh generation the grid points are reordered by the Cuthill-McKee or Sloan

renumbering method.

2. To prevent a zero pivot during the incomplete LU decomposition, the unknowns per

grid point are reordered by the p-last, or the p-last per level reordering methods.

3. If the normal component of the velocity is prescribed on the complete boundary, the

pressure is determined up to a constant, so the coe�ent matrix is singular. Using a

Gaussian elimination method this is repaired by specifying the pressure in one grid

point. We apply the iterative method directly to the singular system, which leads to

a better rate of convergence. No problems occur as long as the right-hand side is in

the column space of the coe�ent matrix.

4. In terms of the p-last ordering the system of equations we solve has the following

form:

M

 

u

p

!

=

 

A B

T

�B 0

! 

u

p

!

=

 

f

0

!

: (16)

which is a discretized version of (4) and (5).

5. An incomplete LU decomposition of the matrix M is constructed and used as a

preconditioner.

6. A preconditioned Krylov subspace method (GMRES, Bi-CGSTAB, etc.) is used to

approximate the solution.

In the next paragraphs we motivate our choices in more detail.

Two representations of the linear system

From Section 2 it is clear that when we use the p-last ordering we have to solve the following

coupled system of equations:

~

M

 

u

p

!

=

 

A B

T

B 0

! 

u

p

!

=

 

f

0

!

; (17)

A 2 IR

n

v

�n

v

, and B 2 IR

n

p

�n

v

, where n

v

is the number of velocity unknowns and n

p

is the

number of pressure unknowns. Another representation of this system is given in (16). An
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advantage of (17) is that for the Stokes problem

~

M is a symmetric matrix. For Navier-

Stokes A is non-symmetric, so

~

M is also non-symmetric. A disadvantage is however that

~

M

is never positive de�nite and as a consequence a symmetric incomplete LL

T

decomposition

breaks down. Let us consider the positive de�niteness properties of

~

M and M . Pre- and

post multiplication of the matrix by an arbitrary vector gives:

�

x

T

y

T

�

 

A B

T

B 0

! 

x

y

!

= x

T

Ax+ 2x

T

By; (18)

and

�

x

T

y

T

�

 

A B

T

�B 0

! 

x

y

!

= x

T

Ax: (19)

For a given vector x the vector y can always be chosen in such a way that the right-hand

side of (18) is negative. On the other hand, for every choice of x and y the sign of the

right-hand side of (19) only depends on the properties of A. So if A is positive de�nite, M

is positive semi-de�nite.

Eigenvalue properties of M and

~

M

It is well known that the rate of convergence of Krylov subspace iterative methods de-

pends on the spectrum of the coe�cient matrix (see [19] and [24]). For this reason we

have computed approximations of the eigenvalues of M and

~

M . For the Stokes problem

the spectrum of M contains complex eigenvalues but the real part of all eigenvalues are

positive. The eigenvalues of

~

M are all real but the spectrum contains positive and negative

eigenvalues. In general, a preconditioner will be constructed such that the eigenvalues of

the preconditioned matrix are clustered. If all the eigenvalues of the original matrix have a

positive real part no problems are expected. However, in the case that the original matrix

has positive and negative eigenvalues di�culties may occur, because it is possible that a

negative eigenvalue becomes an eigenvalue of the preconditioned matrix very close to zero,

which leads to bad convergence. So we expect that the form (16) is preferred if we want

to solve the system of equations by a preconditioned iterative method.

Scaling of the continuity equation

One may expect that the properties of M and thus the convergence of the iterative meth-

ods depend on the scaling between the momentum and the continuity equation. Suppose

that the continuity equation is multiplied by a constant � . The eigenvalues of M satisfy

the following equation:

 

A B

T

��B 0

! 

x

y

!

= �

 

x

y

!

: (20)

For � 6= 0, equation (20) can be rewritten as

(A�

�

�

B

T

B)x = �x: (21)
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First the spectrum of M is considered for � small. Take e

i

the i

th

unit vector in IR

n

p

and

v

i

= �A

�1

B

T

e

i

for i = 1; :::; n

p

. Substitution of this choice into (20) leads to

M

 

v

i

e

i

!

=

 

0

��BA

�1

B

T

e

i

!

: (22)

This equation shows that for � small kM

 

v

i

e

i

!

k

2

is small, which implies that the vectors

 

v

i

e

i

!

are close to the eigenvectors corresponding to a small eigenvalue. So there are n

p

eigenvalues of M clustered around zero. Furthermore it follows from (21) that the other

eigenvalues of M are near the eigenvalues of A.

For � large the eigenvalues of B

T

B play an important role. Since B 2 IR

n

p

�n

v

the matrix

B

T

B is an element of IR

n

v

�n

v

and rank B

T

B = n

p

. This implies that B

T

B is a singular

matrix (n

p

� n

v

). So also for large values of � eigenvalues close to zero are expected.

Without preconditioning, GMRES [19] converges for � small, but no convergence occurs

for � large (� > 50). For 0 < � � 1 the residual of the continuity equation has a small

in
uence on the coupled residual. This explains that the approximated velocity �eld may

be not divergence-free and thus large errors occur. If GMRES is combined with one of the

preconditioners presented below, then for � < 50 the resulting method appears to be nearly

independent of the choice of � . However, for � > 50, also the preconditioned methods are

non convergent. For that reason we have limited ourselves in the numerical experiments

to the natural scaling (� = 1).

Preconditioners

We now consider two incomplete LU decompositions: the classic ILU decomposition and

ILUD [17]. Both preconditioners are combined with Krylov subspace methods to solve the

system (16). For the explanation of the incomplete LU decompositions we de�ne the set

P , which consists of pairs (i; j) such that the i

th

component of the vector of unknowns is

connected to the j

th

component. It is not necessary that this is a non zero connection. In

the classic ILU decomposition the matrix M is approximated by a product of a lower and

upper triangular matrix where the elements on positions not in P are set equal to zero.

In formulas this means: consider L a lower triangular matrix, D a diagonal matrix, U an

upper triangular matrix. The decomposition is such that M �

^

L

^

U with

^

L = LD

�1=2

and

^

U = D

�1=2

U . The following rules are used:

ILU

1. diag(L) = diag(U) = D,

2. l

i;j

= u

j;i

= 0 for (i; j) 2= P ,

3. (

^

L

^

U)

i;j

= m

i;j

for (i; j) 2 P .

In the ILUD preconditioner the o� diagonal elements of L and U are taken equal to the

12



corresponding elements of M , only the matrix D has to be determined. In formulas:

ILUD

1. diag(L) = diag(U) = D,

2. l

i;j

= m

i;j

, and u

j;i

= m

j;i

for i > j,

3. (

^

L

^

U)

i;i

= m

i;i

.

Note that for both preconditioners d

i

> 0 is necessary in order to form

^

L and

^

U . In

practice ILU is robust, but expensive. The ILUD preconditioner is cheap to build and

easier to analyse. Furthermore the ILUD preconditioned Krylov method can be optimized

by using the Eisenstat implementation [11].

Existence results for the ILUD decomposition

In the following propositions existence results for the ILUD decomposition are given.

Proposition 1

If we use the p-last ordering and assume that the ILUD decomposition of A exists and

every column of B

T

contains a non zero element then the ILUD decomposition exists.

Proposition 2

For an arbitrary ordering we suppose that the ILUD decomposition exists for all j < i,

where the i

th

row is related to the continuity equation. If the i

th

(pressure) unknown is

preceded by at least one velocity unknown with a non zero connection to this pressure

unknown, then the ILUD decomposition exists.

Both propositions are valid for Stokes and Navier-Stokes problems and are proved in Ap-

pendix A. With respect to Proposition 1 we note that the assumption on B is satis�ed in

many practical applications, but the assumption on A is not always satis�ed. The assump-

tions given in Proposition 2 have motivated us to construct the p-last per level ordering.

Initially we expect problems due to the zero diagonal elements. To our surprise we have

had no problems with the zero diagonal elements if a correct ordering (p-last, p-last per

level) is used.

Some remarks on orderings

Without preconditioning GMRES is independent of the ordering of the unknowns. If

an ILU preconditioner is used then the convergence of preconditioned GMRES strongly

depends on the ordering used. For symmetric problems the in
uence of the ordering is

investigated in [10]. Du� and Meurant conclude that preconditioned CG converges fast

for 'local' orderings, which means that neighbouring nodes in the underlying mesh have

numbers that are not too far apart. This is closely related to minimizing the bandwidth

or pro�le of the matrix, and motivates us to order the grid points using a Cuthill-McKee

13



[14] or Sloan [21] reordering. Thereafter the unknowns in every grid point are reordered

by the p-last or p-last per level ordering to prevent zero pivots in the ILU decomposition.

From our numerical experiments we conclude that if various orderings are used, then the

ordering with the largest elements in D leads to the fastest convergence. Furthermore

we observe that ordering a pressure unknown before velocity unknowns with a non zero

connection leads to larger elements of D. This explains that preconditioned GMRES using

p-last per level converges faster than using the p-last ordering.

The e�ect of ordering a pressure unknown before or after a velocity unknown depends

on the discretization method used. For the Crouzeix Raviart element we observe that

using the Cuthill-McKee renumbering, the p-last per level and p-last ordering lead to ex-

actly the same convergence results. We explain this phenomenon for the p-last per element

ordering. This ordering is de�ned as follows: suppose that the �nite elements are already

ordered. Then we start with the �rst element and number its velocity unknowns and then

its pressure unknowns. Thereafter the non numbered velocity unknowns of the second

element are numbered and then its pressure unknowns etc.

Consider the construction of the ILUD decomposition. Note that for the Crouzeix Raviart

element the pressure unknowns in an element are only connected to velocity unknowns in

the same element. In the velocity part corresponding to the �rst element the decompo-

sition is not in
uenced by the pressure unknowns due to the ordering used. So this part

is equal to the one obtained by using the p-last ordering. The pressure part in the �rst

element is also equal to the corresponding part of the decomposition obtained from the

p-last ordering, because all velocity unknowns with a connection to the pressure unknowns

are already numbered. Furthermore these pressure unknowns have no connections with the

following velocity unknowns, so they do not in
uence the decomposition of the velocity

part in the remaining elements. This implies that the p-last per element ordering leads to

an ILUD decomposition which is a permuted version of the p-last numbered ILUD decom-

position. So the approximations computed with preconditioned GMRES are the same for

both orderings.

In the same way it can be shown that if the grid points are ordered by a Cuthill-McKee

ordering then the p-last per level ordering leads to the same results as the p-last ordering.

The same holds for the ILU decomposition. If the Sloan ordering is used the p-last per level

ordering leads to better results than the p-last ordering. For other type of �nite elements

(for instance Taylor Hood elements) we expect that p-last per level di�ers from p-last.
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6 Numerical experiments

In this section we give some numerical experiments with the preconditioners given in Sec-

tion 5. We start with the solution of the Stokes equations, where we compare the iterative

method with a direct and a penalty method. Thereafter we solve the Navier-Stokes equa-

tions on a three-dimensional Backward Facing Step problem and investigate the in
uence of

various choices for the preconditioner, the iterative method, the ordering of the unknowns

and the Reynolds number. All our experiments have been carried out by triquadratic

Crouzeix-Raviart hexahedrons, using 3 � 27 velocity unknowns and three pressure un-

knowns per element.

6.1 The Stokes equations

Consider the Stokes equations on a cube. In Table 1 the number of unknowns and the size

of the matrices for the coupled system are given. Only non-zero elements are stored and

the rows and columns corresponding to essential boundary conditions have been removed.

The ratio between these two numbers gives the average number of non-zero elements per

row. For the triquadratic hexahedron this ratio is relatively large (� 180). This has two

number of number of non-zero entries ratio

elements unknowns of the matrix

3� 3� 3 483 75 000 155

6� 6� 6 4 857 840 000 173

12 � 12 � 12 43 400 7 800 000 180

Table 1: The size of the problem with respect to the grid-size

important implications: the CPU time for a matrix vector multiplication is large compared

to the CPU time for a vector update, and a large part of the �ll-in is used in the classic

ILU decomposition, so we expect a fast convergence of the preconditioned iterative method.

In Table 2 the results are summarised for three di�erent methods: a penalty method,

a direct method and an iterative method (GMRES with ILUD). The last two methods are

applied to the coupled problem (16). We observe no break down of the direct and iterative

method if the p-last per level ordering technique is used (see Section 4). Comparing the

di�erent solution methods, we see that the iterative method leads to a large decrease in

CPU time and memory requirements. The CPU time is measured in seconds on an HP

735 workstation.

The work and memory requirements can be estimated a priori. For the penalty and direct
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3 � 3 � 3 6 � 6� 6

method non-zero entries CPU time non-zero entries CPU time

direct 160,000 1.3 5,000,000 237

penalty 100,000 0.47 3,400,000 132

iterative 75,000 0.08 840,000 2.74

Table 2: The CPU time and the memory requirements for the various methods

method the memory required is proportional to n

5

1

, where n

1

denotes the number of grid

points in the x

1

-direction. The amount of work for these methods depends on n

7

1

. For the

iterative method the values are n

3

1

and n

4

1

respectively. In Table 3 these expressions are

compared with the measurements. For the iterative method we were able to obtain also

method memory work

direct 31.7 (32) 182 (128)

penalty 34 (32) 247 (128)

iterative 11 (8) 34 (16)

Table 3: The ratio for the memory and work requirements for n

1

= 6 and n

1

= 3. Between

brackets the theoretically expected values

the ratios for n

1

= 12 and n

1

= 6. They are given by 9.4 (memory) and 24 (work). We see

a reasonable correspondence between theory and experiment. Furthermore the di�erences

between the direct and penalty method and the iterative method increases enormously for

increasing grid size.

In this example both preconditioners are used. Our experiments indicate that ILU is more

robust than ILUD and it leads to less iterations of the preconditioned GMRES method.

However the construction of the ILU decomposition takes a lot more work and doubles the

memory required. For this reason if the ILUD decomposition does not breakdown, ILUD

is preferred, because the extra memory is negligible and the total CPU time is, in general,

less than that for ILU.

One of the reasons to use M instead of

~

M is that we expect that the eigenvalues of

M have positive real parts, whereas the eigenvalues of

~

M are real but there are positive

and negative eigenvalues. To illustrate this the eigenvalues of M and

~

M are approximated

(see Figure 3 and 4). These �gures show that the properties of the eigenvalues ofM and

~

M

are in agreement with the expected ones. Note that the spectrum of M contains complex
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Figure 3: The spectrum of
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Figure 4: The spectrum of M

eigenvalues.

6.2 The Navier-Stokes equations

In this section we solve the Navier-Stokes equations on a three-dimensional Backward Fac-

ing Step problem. The geometry is given in Figure 5. At the left boundary surface we

Figure 5: The geometry of the three-dimensional Backward Facing Step problem

use a Dirichlet in
ow boundary condition and at the right boundary surface we use an

out
ow boundary condition: �

nn

= 0 and �

nt

= 0. At all other boundaries we use a

no slip condition. In this case we have to solve a non-linear problem. The strategy to
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do this is given in Section 4. Initially we solve the corresponding Stokes equations, there-

after some Picard iterations are done and �nally some Newton Raphson iterations are used.

Comparison of GMRES and Bi-CGSTAB

The ILU/ILUD decompositions are based on the current coe�cient matrix, so a new de-

composition is made in every outer iteration. As Krylov subspace methods we use GMRES

[19] and Bi-CGSTAB [23]. When we restrict ourselves to Stokes and Picard outer iterations

then for both methods 9 outer iterations are needed. The total number of inner iterations

is 153 for GMRES and 122 for Bi-CGSTAB. The total CPU time (including building of

the matrices and decompositions) is 351 s for GMRES and 385 s for Bi-CGSTAB. Note

that Bi-CGSTAB uses less iterations, but one iteration of Bi-CGSTAB is approximately

two times as expensive as an iteration of GMRES. This explains the bigger CPU time

for Bi-CGSTAB. The optimal CPU time for GMRES is not unexpected since it is known

that if the number of iterations is small and a matrix vector product is expensive (which

means a large number of non zero elements per row) then GMRES is the best method (see

[26]). Chin and Forsyth conclude in [4] that Bi-CGSTAB is faster than GMRES, which

contrasts with our conclusion. An explanation could be that the matrices used in [4] are

much sparser than the ones used in this paper.

Comparison of Picard and Newton Raphson

We have experimented with di�erent strategies to solve the non-linear equations. Our ex-

periments show that the number of inner iterations in a Newton Raphson step is slightly

more than in a Picard step. However, in general less outer iterations are needed if Newton

Raphson is used. For this reason we use the Stokes equations in the �rst iteration, Picard

in the second iteration and Newton Raphson in the following iterations. In general 5 or 6

outer iterations are su�cient to reduce the initial error by a factor of 10

�4

. We stop the

inner iteration if kr

k

k

2

=kr

0

k

2

< eps. If Picard iterations are used eps = 10

�1

is su�cient.

If Newton Raphson steps are used it may be better to use eps = 10

�2

, because then the

outer iterations converge quadratically, whereas if eps = 10

�1

is used Newton Raphson

has a linear convergence behaviour. Our results concerning the use of Picard or Newton

Raphson are comparable to those given in [6].

Comparison of p-last and p-last per level

In Table 4 the number of GMRES iterations are given for the Sloan and Cuthill-McKee

numbering. As expected the p-last and p-last per level leads to the same number of it-

erations for the Cuthill-McKee numbering. The results given in Table 4 show that Sloan

numbering leads to a faster convergence of GMRES than Cuthill-McKee. Furthermore in

these experiments the Sloan with p-last per level reordering leads to the best results.

Dependence on the Reynolds number

In general an increase of the Reynolds number leads to a lower rate of convergence for the
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outer iteration Sloan Sloan Cuthill-McKee

p-last per level p-last p-last per level

1 10 13 20

2 25 32 40

3 15 27 34

4 15 20 38

5 21 23 38

6 17 30 39

7 19 19 38

8 18 17 39

9 13 23 37

total 153 204 323

Table 4: The number of preconditioned GMRES iterations for various orderings

non-linear iteration method and the iterative method for the coupled system. In Table

5 results are given for various choices of the Reynolds number. The Reynolds number is

given by Re=

�hU

�

, where � is the density, h the stepsize and U the maximal value of the

velocity at the in
ow boundary.

Reynolds outer iterations average number CPU-time

of inner iterations

25 7 14 253

50 9 17 345

100 14 32 631

Table 5: The number of iterations for various values of the Reynolds number

Comparison of ILU and ILUD

Finally we observe that in this problem the ILUD decomposition breaks down, so we only

use the ILU preconditioner. It appears that break down of the ILUD decomposition always

happens in the velocity part, which is in agreement with the theory given in Section 5. The

construction of the ILU decomposition is expensive. The CPU-time is comparable to the

CPU time to build the coe�cient matrix. With respect to the ordering techniques we ob-

serve no break down of the ILU decomposition using the p-last, or p-last per level ordering.

Results for a BFS problem on a �ne grid
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We end this section with some results for the BFS problem on an 8 � 16 � 28 grid. The

number of unknowns is equal to 8� 10

4

and the number of non zero entries of the matrix

is equal to 1:4 � 10

7

. The CPU time to build the matrix is 2 min., whereas the CPU

time to build the ILU preconditioner is 3 min. Using ILU, GMRES, p-last per level and

eps = 10

�2

, 5 outer iterations are needed. The total CPU time is 80 min. and the total

number of inner iterations is 350.

7 Conclusions

In this paper we have considered the iterative solution of the incompressible Navier-Stokes

equations. To that end the momentum equations coupled with the continuity equation has

been solved. It has been shown that is necessary to use ordering techniques to prevent

break down of the LU decomposition. Our numerical experiments demonstrate that direct

methods can be used with the p-last per level ordering. The CPU time and memory re-

quirements for the direct method are comparable to that of the penalty approach.

Exactly the same ordering techniques as for the direct method may be applied for the

iterative approach. Combination of these orderings with preconditioned Krylov subspace

methods lead to a good convergence and prevents break down of the ILU decomposition.

This has been theoretically investigated and has been con�rmed by our experiments. Fur-

thermore the experiments show that the iterative solution methods presented in this paper

are far superior above direct methods at least for three-dimensional problems. Not only is

the required memory considerably less, also the CPU time has been largely reduced.
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A Existence proofs

In this appendix Proposition 1 and 2 are proved. Before the proofs are given we consider

the third rule from ILUD:

(

^

L

^

U)

i;i

= (LD

�1=2

D

�1=2

U)

i;i

= d

i

+

i�1

P

j=1

l

i;j

�u

j;i

d

j

= m

i;i

.

Combination with rule 2 leads to:

d

i

= m

i;i

�

i�1

X

j=1

m

i;j

�m

j;i

d

j

: (23)

Proposition 1

If we use the p-last ordering and assume that the ILUD decomposition of A exists and

every column of B

T

contains a non zero element then the ILUD decomposition exists and

d

i

> 0 for i 2 [1; n].

Proof: From the assumptions it follows that the ILUD decomposition of A exists and

thus d

j

> 0 for j = 1; :::; n

v

. For i 2 (n

v

; n] we have m

i;j

= �m

j;i

and m

i;i

= 0. This

together with (23) implies that d

i

=

i�1

P

j=1

m

2

i;j

d

j

. Since the norm of a column of B

T

is non-zero

we have

i�1

P

j=1

m

2

i;j

> 0. Combined with d

k

> 0 for k < i it follows that

d

i

� (min

1�k�i�1

1

d

k

)

i�1

X

j=1

m

2

i;j

> 0:

2

Remark:

If the ILUD preconditioner is applied to

~

M then d

j

> 0 for j � n

v

, but d

n

v

+1

< 0 so it is

impossible to form

^

L and

^

U .

Suppose another ordering is used, for instance the p-last per level ordering. Then there

exists a permutation matrix P such that M is given by

M = P

T

 

A B

T

�B 0

!

P:

The equations m

i;j

= �m

j;i

and m

i;i

= 0 again hold for a row which corresponds with the

continuity equation.

Proposition 2

For an arbitrary ordering we suppose that the ILUD decomposition exists for all j < i

(so d

j

> 0) , where the i

th

row is related to the continuity equation. If the i

th

(pressure)
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unknown is preceded by a velocity unknown with a non zero connection (so there is one

k < i such that m

i;k

6= 0) then the ILUD decomposition exists and d

i

> 0.

Proof: It follows again from (23) that

d

i

=

i�1

X

j=1

m

2

i;j

d

j

:

Since d

j

> 0 for j < i and m

2

i;k

> 0 for at least one k < i we obtain d

i

> 0 2

24


