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Abstract

Some preconditioners that show potential for parallelization are examined to judge their

e�ciency relative to the current ISNaS incompressible ow solver preconditioners. The ex-

periments show that in 2D parallel versions of the current preconditioners outperform there

rivals. In 3D the approximate inverse preconditioner shows promise as preconditioner for the

pressure equation.

1 Introduction

To compute incompressible turbulent ows in complicated two- and three-dimensional domains we

use a numerical method with the following properties. Boundary �tted coordinates and domain-

decomposition are used to handle geometrically complicated domains. The �nite volume method

and a staggered grid are used for discretization in space. A combination of the Euler backward

scheme and the pressure correction method is used to advance the solution in time. The computer

program is referred to as the ISNaS (Information System for Navier-Stokes equations) incompress-

ible ow solver [11].

Benchmark solutions for the discretization chosen can be found in [9]. Research into parallelism

through multi-block techniques is described in [3]. Some results concerning the use of multigrid

solvers in this code can be found in [19, 7, 8] . Periodic and anti-periodic boundary conditions

are discussed in [12] . Some aspects of the discretization are discussed in [17, 13, 16, 18]. The

treatment of turbulence is discussed in [20, 21]. In this paper we consider a two dimensional single

block laminar ow as a test case for implementation on a Cray Research T3D.

The ISNaS solver uses pressure correction, it determines an intermediate velocity �eld and then

calculates a correction to obtain a velocity �eld with zero divergence. The intermediate velocity

�eld is obtained by applying a linear solver to the Newton linearization of the momentumequations.

The pressure correction is obtained as the solution of a second linear system of equations.

The equations are discretized on a staggered grid and with curvilinear coordinates. The curvi-

linear coordinates result in some extra non-zero entries in the matrix. In 2D we initially �nd a 17

point stencil for the momentum vector component equations and a 9 point stencil for the pressure

equation. With divergence freedom, the number of points needed in the momentum stencil reduces

to 13.

It is impossible to treat, in one paper, all aspects of the parallelization of an incompressible

Navier-Stokes code. As an initial analysis showed that matrix construction is embarrassingly

parallel, we concentrate on the linear solvers for the momentumand pressure equations. Within the

solver the preconditioner is probably the main problem. This paper studies the e�ectiveness and

potential for parallelization for several preconditioners when compared with the preconditioners

described in [15].

For later reference we include a short description of the GMRES(m) method as given in [10],

but with a left-preconditioner M

1

and a right-preconditioner M

2

,.

1. Start: Choose an initial estimate x

0

, compute the initial residual r

0

= M

1

(f � Ax

0

) and

determine v

1

= r

0

=kr

0

k.

2. Iterate: For j = 1; 2; : : : ;m do:
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); i = 1; 2; : : : ; j;
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h

j+1;j

= kv̂

j+1

k;

v

j+1

= v̂

j+1

=h

j+1;j

3. Form the approximate solution: x

m

= x

0

+M

2

P

m

k=1

y

k

v

k

where the y

k

minimize

kM

1

(r

0

� A

P

m

k=1

y

k

M

2

v

k

)k.

4. Restart: Compute r

m

= M

1

(f � Ax

m

), if satis�ed then stop else compute x

0

= x

m

, v

1

=

r

m

=kr

m

k and go to 2.

Where in step 2 the new search direction is made perpendicular to all previous search directions

with the standard Gram-Schmidt method. For a full description of the GMRES method we refer

to [10].

2 Preconditioners

We discuss two main types of preconditioner. The Incomplete LU preconditioners are based on an

approximation of the matrix through the use of sparse approximations to the matrices L and U

that form the LU decomposition of the matrix. The approximate inverse preconditioner is based

on the approximation of the inverse through the minimization in a certain norm of the di�erence

between the identity matrix and the product of the matrix with a sparse approximate inverse.

2.1 Some variations on Incomplete LU preconditioning

The well-known Incomplete LU preconditioners [6] are based on the following idea. If the LU

decomposition of A is known, then to solve the system we only need to perform one backward

and one forward substitution. It seems reasonable to assume that, if we have M = LU and M

approximates A, then an iterative solver might converge more quickly for M

�1

Ax = M

�1

b than

for Ax = b.

Now we consider the ILUD [6] preconditioner. Let A = L

A

+D

A

+ U

A

, where L

A

is strictly

lower triangular, D

A

is a diagonal matrix and U

A

is strictly upper triangular. In this case we take

M = (D + L

A

)D

�1

(D + U

A

), with D such that A

ii

= M

ii

, i.e. A and M have identical main

diagonals,

D

ii

= A

ii

�

X

j<i

A

ij

D

�1

jj

A

ji

: (1)

A variation on ILUD, called MILUD [5] uses a slightly di�erent criterion to determine the elements

of D. We still use M = (D+L

A

)D

�1

(D+U

A

), but now D is such that

P

j

A

ij

=

P

j

M

ij

, i.e. A

and M have identical row sums,

D

ii

= A

ii

�

X

j<i

X

k>j

A

ij

D

�1

jj

A

jk

(2)

2.1.1 Momentum equations

For the momentum equations we use a row by row combination of 0:05 times the D from ILUD

and 0:95 times the D taken from MILUD

2

, as described in [15], this is similar to RILUD as

described in [1].

To describe the MILUD

2

preconditioner we use the following splitting

u =

�

u

(1)

u

(2)

�

(3)
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where u

(1)

contains a vector of the �rst momentum vector component in all cells and u

(2)

contains

a vector of the second momentum vector component in all cells. The corresponding partitions of

A, M , L and U are

A =

�

A

(11)

A

(12)

A

(21)

A

(22)

�

(4)

M =

�

M

(11)

M

(12)

M

(21)

M

(22)

�

(5)

L =

�

L

(11)

0

L

(21)

L

(22)

�

(6)

U =

�

U

(11)

U

(12)

0 U

(22)

�

(7)

where L = D+L

A

and U = D+U

A

. And we take M = (D+L

A

)D

�1

(D+U

A

) with D such that

P

j

A

(qq)

ij

=

P

j

M

(qq)

ij

, i.e. A and M have identical row sums for the sub-matrices A

(qq)

;M

(qq)

found when we split A and M into parts according to velocity components.

The standard MILUD preconditioning would determine D using the conditions

rowsum(L

(11)

D

(11)

�1

U

(11)

) + rowsum(L

(11)

D

(11)

�1

U

(12)

) = rowsum(M

(11)

+M

(12)

) (8)

and

rowsum(L

(21)

D

(11)

�1

U

(11)

) + rowsum(L

(21)

D

(11)

�1

U

(12)

) + rowsum(L

(22)

D

(22)

�1

U

(22)

) = (9)

rowsum(M

(21)

+M

(22)

) : (10)

This is called MILUD

1

in [15].

On the other hand, MILUD

2

would determine D using the conditions

rowsum(L

(11)

D

(11)

�1

U

(11)

) = rowsum(M

(11)

) (11)

and

rowsum(L

(21)

D

(11)

�1

U

(12)

) + rowsum(L

(22)

D

(22)

�1

U

(22)

) = rowsum(M

(22)

) : (12)

2.1.2 Pressure equations

For the pressure we use M = (D + L)D

�1

(D + U ). With the sparsity pattern of L and U equal

to that of L

A

and U

A

, for each i we calculate: for all l < i and A

il

6= 0:

L

il

+

X

j<min(i;l)

L

ij

D

�1

jj

U

jl

= A

il

; (13)

for all l > i and A

iL

6= 0:

U

il

+

X

j<min(i;l)

L

ij

D

�1

jj

U

jl

= A

il

; (14)

D

ii

+

X

j<i

L

ij

D

jj

U

ji

= A

ii

: (15)

A variation on this is MILU, where again we calculate an alternative D by imposing the

condition

P

j

A

ij

=

P

j

M

ij

i.e.,

D

ii

+

X

j<i

X

k>j

L

ij

D

�1

jj

U

jk

+

X

j<i

L

ij

+

X

i<j

U

ij

=

X

j

A

ij

: (16)

In the ISNaS solver we use RILU(0.975), which is a row by row combination of the two diagonal

matrices, 0.025 times the ILU version and 0.975 times the MILU version [14], [1].
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2.1.3 A parallel version

On a parallel machine ILU is not very e�cient, but in [2] it is shown that we can use the fact

that we have a 2D rectangular domain to obtain some parallelism as follows: make vertical strips,

distribute the strips over the processors and overlap calculation of strips at di�erent \heights" on

di�erent processors.

We will illustrate this by discussing a highly simpli�ed version of this procedure for a �ve point

stencil on a square n�n grid. Each vertical strip consists of one grid cell in horizontal direction, so

n processors are used. This avoids the complications due to synchronisation needed for additional

stencil elements along diagonals and notation needed to indicate which processor builds the stencil

for a given grid cell.

Our preconditioner uses the lexicographical cell ordering, sorting �rst by y-coordinate and then

by x-coordinate. As our starting cell we take the cell in the lower left corner of the domain

During the construction of the preconditioner we have two classes of cells, namely cells where

the preconditioner has been constructed and cells where this is not the case.

During application of the preconditioner there are two back substitution steps, namely one for

an upper triangular matrix and one for a lower triangular matrix. During a back substitution step

there are again two classes of cells, namely cells where the solution is known and cells where we

still need to calculate it. The preconditioner construction and the back substitution for a lower

triangular matrix follow the same pattern. We start in the lower left corner and calculate new cells

according to the lexicographical ordering. For the upper triangular matrix the back substitution

starts in the upper right corner and calculates new cell values according to the reverse lexicograph-

ical ordering. We shall only describe the parallel version of the preconditioner construction. The

parallel version of back substitution for lower triangular matrices follows the same pattern and the

back substitution algorithm for upper triangular matrices follows almost immediately from that

for a lower triangular matrix.

For both preconditioner construction and back substitution for a lower triangular matrix the

new values (preconditioner elements or solution values) to be generated in a cell depend only on

the values already generated (preconditioner elements or solution values) in the cell directly to the

left of the current cell and the cell directly below the current cell, i.e. its neighbours to the west

and to the south.

To describe the construction and application of the preconditioner we introduce virtual cells all

around the 2D domain and treat these cells as cells where the values to be generated are already

known.

Now assign the responsibility to generate the new values needed in the cell (i; j) with centre

(x

i

; y

j

) to processor P

i

. If we assume a regular grid and a coordinate indexing such that x

1

<

x

2

< : : : < x

n

, y

1

< y

2

< : : : < y

n

, then we see immediately that all cells with indices (i

0

; j

0

)

such that i

0

+ j

0

= k + 1 can be calculated as soon as all calculations for cells with indices (i; j)

with i + j = k have been completed. Given our distribution of cells over processors, on average

n

2

=(2n� 1) or approximately n=2 processors are at work at the same time.

Please note that on a rectangular n � m with n processors grid we �nd that on average

mn=(m+ n� 1) or approximately max(m=(1 +m=n); n=(1+ n=m)) processors are at work at the

same time. This may allow us to reach e�ciencies considerably better than the 50% possible on

a n� n grid. We make use of this in the experiments.

2.1.4 Multi-colour version

An alternative is the use of a di�erent (\coloured") point ordering. Again a parallelism versus

e�ciency problem occurs, because the number of communication steps needed is equal to the

number of colours used but it appears from table 3 that the number of iterations needed is

5



inversely proportional to the number of colours used. Possible orderings for a nine point stencil

in 2D: di�erent colours for di�erent rows of cells, di�erent colours for di�erent columns of cells,

multicolour chessboard. The di�erent colours decouple adjacent cells and remove the need for the

bulk of the communication needed in the preconditioner.

2.1.5 The Neumann series

To avoid back substitution we can try to approximate the inverse of the lower and upper triangular

matrices by a series of matrix multiplications. One possible method is a truncated Neumann series.

If M is non-singular matrix with norm smaller than one, then we can approximate M

�1

by the

�rst n terms in the Neumann series:

(I �M )

�1

= (I +M )

1

Y

i=1

(I +M

2

i

): (17)

The use of this series replaces back substitution (not very parallel) by matrix multiplication (highly

parallel).

2.1.6 A multiplicative version

A variation on ILUD that only uses matrix-multiplication and seems reasonably e�ective in 3D

is the following method. Take L

A

, D

A

and U

A

as in the previous section. De�ne

D

ii

= 1�

X

j<i

(A

ij

A

ji

)=(A

ii

A

jj

) ; (18)

L

�1

1

= (I �D

�1

A

L

A

) ; (19)

U

�1

1

= (I �D

�1

D

�1

A

U

A

) ; (20)

and

M = D

A

L

1

DU

1

:

We will show that under certain conditions M

�1

A resembles the identity matrix. First we invert

M .

M

�1

= U

�1

1

D

�1

L

�1

1

D

�1

A

=

(I �D

�1

D

�1

A

U

A

)D

�1

(I �D

�1

A

L

A

)D

�1

A

:

Multiplication of A by M

�1

gives

M

�1

A = M

�1

(D

A

+ L

A

+ U

A

)

or

M

�1

A = (I �D

�1

D

�1

A

U

A

)D

�1

(I �D

�1

A

L

A

)(I +D

�1

A

L

A

+D

�1

A

U

A

)

Now write L = D

�1

A

L

A

and U = D

�1

A

U

A

,

M

�1

A = (I �D

�1

U )D

�1

(I � L)(I + L+ U ) =

(I �D

�1

U )D

�1

(I + U � L

2

� LU ) :

We reorder the terms and add and subtract a term D,

(I �D

�1

U )D

�1

(I + U � L

2

� LU ) = (I �D

�1

U )D

�1

(D + U � L

2

+ I � LU �D) =
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I � (D

�1

U )

2

� (I �D

�1

U )(D

�1

L

2

�D

�1

(I � LU � diag(I � LU )))

Now, if we assume that A is scaled such that jA

ii

j > 1 and jA

ii

j > jA

ij

j for i 6= j then the elements

of L, U , D

�1

L and D

�1

U are of order e < 1. There are n

c

non-zero elements per row in A, so

I � (D

�1

U )

2

� (I �D

�1

U )(D

�1

L

2

�D

�1

(I � LU � diag(I � LU ))) = I + (I �D

�1

U )E ;

where E is a matrix with zero diagonal and o�-diagonal elements of order n

c

e

2

=2. This may mean

that the resulting matrix is diagonally dominant, but su�cient conditions have not been derived

and the preconditioner fails for certain A.

2.2 Approximate inverse preconditioning

An approximate inverse P of A is determined as follows. Either kAP�Ik or kPA�Ik is minimized

for a given norm and given bounds on the sparsity pattern for P [4]. In this report we shall use

the Frobenius norm for this purpose. This norm is de�ned as

kWk

2

F

= Tr(W

T

W ) =

N

X

i=1;j=1

W

2

ij

: (21)

We limit the search to matrices P with a given sparsity pattern, such that

kAP � Ik

2

F

=

n

X

k=1

k(AP � I)e

k

k

2

2

(22)

is minimized. If P

k

denotes the k-th column of P we have to minimize

P

n

k=1

kAP

k

� e

k

k

2

2

. Since

P

k

has only non-zero elements in say m

k

selected places the minimization leads to n independent

least squares problems. If m

k

= n the vector P

k

is the k-th column of A

�1

. Otherwise we have to

solve for every k 2 f1; 2; :::; ng an n �m

k

least squares problem and P

k

is the k-th column of an

approximate inverse of A (for further details see [4]).

In our 2D experiments we use a sparsity pattern based on a 5 � 5 stencil (see Figure 1). In

our 3D experiments we either use the sparsity pattern of the pressure matrix or we allow non-zero

elements in P based on a 5� 5� 5 stencil.

3 Numerical Experiments

In the �rst set of experiments we examine the behaviour of GMRES with the di�erent precon-

ditioners on grids with square and elongated cells. We are interested mainly in the number of

iterations needed to obtain a factor 10

�6

reduction of the momentum residual and a factor 10

�4

reduction of the pressure residual. In the second set of experiments we check the dependence on

the number of cells in the grid. We also give some preliminary results in 3D.

3.1 Iteration counts for various preconditioners in 2D

In most of our problems we use a 16x16 cell grid. When we use other number of grid cells,

this number is explicitly stated. We consider four di�erently sized domains. A unit square, a

[0; 8]� [0; 1] rectangle, a [0; 8]� [0; 1] rectangle, and an [0; 8]� [0; 8] square. On all domains we

consider ow in all four directions. In this way we can examine possible dependencies of the

iteration counts on ow direction, cell size and shape. We use dt = 0:1 and a parabolic inow with

a maximum value of one (furthermore we choose the density � = 5, and the dynamic viscosity

� = 0:5). Unless otherwise noted, ow direction has no signi�cant inuence on the number of

iterations. Modi�ed Gram-Schmidt orthogonalization is used.
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Figure 1: The original 9 point stencil is denoted by *, whereas the additional points of the 5� 5

stencil used for the approximate inverse P are denoted by o

3.1.1 Momentum preconditioners

For the solution of the momentumequations we always use the GMRES(60) method, meaning that

the GMRES method is restarted after 60 iterations. In Table 1 we give the number of iterations

needed by GMRES when solving the momentum equations using the following preconditioners:

none No preconditioner.

diagonal Left multiplication of the matrix with the inverse of its diagonal.

ISNaS MILUD

2

The special version of MILUD described in section 2.1.1.

Multiplicative ILUD The variation on ILUD described in section 2.1.6.

In order to investigate the dependence of the convergence on the number of grid points we have

done some experiments using the unit square domain with a 16x16, 32x32 and a 64x64 grid. The

results of these experiments are given in Table 4.

3.1.2 Pressure preconditioners

The pressure equation is solved by the GMRES(200) method. In Table 2 and 3 we give iteration

counts for some preconditioners for the pressure equation. The considered preconditioners are:

none No preconditioner.

diagonal Left multiplication of the matrix with the inverse of its diagonal.

ISNaS RILU The matrixM

�1

generated by the version of RILU(0.975) described in section 2.1.2

is used as a right-preconditioner. The sparsity pattern of the L and U matrix in the preconditioner

is taken from the original matrix.

RILU The matrix M from 2.1.2 is considered as the product of the lower and upper triangular

matrices in the formula M = LU . L

�1

is used as left-preconditioner and U

�1

is used as right-
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preconditioner.

Multiplicative ILUD The variation on ILUD described in section 2.1.6.

Approximate inverse An approximate inverse is generated as described in section 2.2. The

prescribed sparsity pattern is based on a 5�5 stencil. In Table 2 the number of iterations is given

for the matrix P resulting from minimization of kPA� Ik

F

as a left-preconditioner. The results

for the minimization strategy kAP � Ik

F

are more or less the same.

Neumann series RILU; one-three terms The matrix M from 2.1.2 is considered as the

product of the lower and upper triangular matrices in the formula M = LU . L

�1

is used as

left-preconditioner and U

�1

is used as right-preconditioner. However, in stead of solving Ly = f

and Ux = y, we determine an approximation to x and y by matrix-vector multiplication using an

approximation to L

�1

and U

�1

. We use a Neumann series 2.1.5 to determine this approximation.

RILU (i-direction reordering, 2-8 colours) We use the RILU method described under the

heading RILU(0.975), but in stead of lexicographical ordering of the grid cells, we divide the cells

into columns of di�erent colours (the colours alternate) and order the cells �rst by colour and

within a set of a given colour by the standard lexicographical ordering.

RILU (j-direction reordering, 2-8 colours) We use the RILU method described under the

heading RILU(0.975), but in stead of lexicographical ordering of the grid cells, we divide the cells

into rows of di�erent colours (the colours alternate) and order the cells �rst by colour and within

a set of a given colour by the standard lexicographical ordering.

RILU (ij-direction reordering, 4-25 colours)We use the RILU method described under the

heading RILU(0.975), but in stead of lexicographical ordering of the grid cells, we divide the cells

into sets of di�erent colours by creating a multi-colour chessboard structure and order the cells

�rst by colour and within a set of a given colour by the standard lexicographical ordering.

We used the unit square domain with a 16x16, 32x32 and a 64x64 grid to determine the dependence

of iteration counts on the number of cells in the grid. The results are presented in Table 5.

3.2 Iteration counts for various preconditioners in 3D

In this subsection we solve the Navier-Stokes equations on a unit cube. We use various numbers

of grid cells to discretize the Navier-Stokes equations. For some preconditioners we investigate

the convergence behaviour of preconditioned GMRES applied to the momentum and pressure

equations.

3.2.1 Momentum preconditioners

In Table 6 results are presented using the following preconditioners:

none No preconditioner.

diagonal Left multiplication of the matrix with the inverse of its diagonal.

ISNaS MILUD

2

The special version of MILUD described in section 2.1.1.

multiplicative ILUD The variation on ILUD described in section 2.1.6.
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3.2.2 Pressure preconditioners

Table 7 contains the results for the following preconditioners:

ISNaS RILUD The matrixM

�1

generated by the version of RILUD as described in section 2.1.1

is used as a right-preconditioner.

Multiplicative ILUD The variation on ILUD described in section 2.1.6.

Approximate inverse (19) An approximate inverse is generated as described in 2.2. The pre-

scribed sparsity pattern is taken from the pressure matrix.

Approximate inverse (125) An approximate inverse is generated as described above. The

sparsity pattern is based on a 5� 5� 5 stencil.

4 Analysis

4.1 Iteration counts for various preconditioners in 2D

The number of iterations exhibits a strong direction dependence for ows on grids with elongated

grid cells. This is expected for the momentum equations. To explain this dependence for the

pressure equation we notice that this equation also depends on the direction of the ow. On the

outow boundary the boundary condition for the pressure equation is of Dirichlet type and it is

of Neumann type at the other boundaries. This implies that for the 8� 1 rectangle the Dirichlet

condition holds on the long side for the up and down ow direction, whereas it holds on the short

side for the left and right ow direction.

In the remaining part of this subsection we only consider preconditioners for the 2D pressure

equation (see Table 2 and 3).

4.1.1 Approximate inverse

Note that multiplication with the larger approximate inverse matrix takes 25=9 times the work

needed for a normal matrix-vector multiplication. The construction of the preconditioner is also

very calculation intensive. On the other hand, both construction (almost completely local) and

application (standard matrix-vector product) should parallelize very well.

4.1.2 Neumann series MILU; one-three terms.

Note that a Neumann series of n terms needs approximately n + (n � 1)n=2 lower or upper

triangular matrix-vector multiplications whereas the work needed to do one back substitution is

approximately that needed for one triangular matrix-vector multiplication. The results show that

we need a relatively large number of terms in the sequence to get an e�cient preconditioner. This

method would only be attractive if the triangular matrix-vector multiplication was at least six

times more e�cient than the back substitution needed in standard MILU.

4.1.3 MILU multicolour

The use of multiple colours decouples neighbouring cells and allows for easy parallelization, but for

each extra colour we would need an extra communication step and the work between communica-

tion steps halves as the total work to be done remains equal to the work in one back substitution
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for the entire system. The results show that we need large numbers of colours to obtain reason-

able e�ciency. This can easily be explained by information transport information. In standard

back substitution information from the lower left corner of a 2D domain �lters upwards to the

upper right corner in one step and inuences all intermediate cells. With two colours only half the

number of intermediate cells gets the full update. As the number of colours increases the fraction

of cells that corresponds to the �rst colour, i.e. the cells that only get the information from their

own colour, decreases as one over the number of colours.

4.2 Iteration counts using di�erent number of grid points in 2D

From Table 4 and 5 it follows that halving cell size in both directions (i.e. doubling the number

of grid cells in both directions) will double the number of GMRES iterations needed for most

preconditioners. The exceptions are MILUD for the momentum equations and RILU or the three

term RILU Neumann series for the pressure equations. For these preconditioners the number of

iterations seems to increase by a factor of

p

2.

4.3 Iteration counts using di�erent number of grid points in 3D

From Table 6 we conclude, that the MILUD preconditioner is again much better than that of

the multiplicative version. The results in Table 7 show that in 3D the approximate inverse can

compete with RILUD. Although the relation between the increase in iterations and the increase

of the number of cells is more favourable for RILUD. Possibly further study will allow this to be

recti�ed. It then remains to weigh parallelization problems for 3D RILUD versus the extra work

(125 in stead of 19 non-zero entries per row in the preconditioner) needed for the best approximate

inverse or the quicker increase of the number of iterations needed when the number of cells grows

for the more economical version of the approximate inverse.

5 Conclusions

The preconditioners MILUD for the momentum equations and RILU for the pressure equation are

fast and e�cient both in terms of the number of GMRES iterations needed on a given grid and in

terms of the additional iterations needed when the number of cells is increased. The three term

Neumann series variation on RILU shares the properties of RILU to a certain extent, but needs to

do six times as much work. The other preconditioners simply do not give acceptable performance

on small grids and their performance degrades quickly on larger grids. It is expected that this

disadvantage will not be compensated su�ciently by better parallel performance.

In 3D the approximate inverse preconditioner with �xed sparsity pattern may be a suitable

and easily parallelized alternative to RILUD.
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Preconditioner type Flow direction Domain form

1� 1 8� 1 1� 8 8� 8

none up, down 30 31 15 9

left, right 30 15 31 9

diagonal up, down 30 30 13 8

left, right 30 13 30 8

ISNaS MILUD up 6 4 4 3

other 7 4 4 3

Multiplicative ILUD up 13 19 6 4

down 12 18 6 4

left 13 6 18 4

right 13 6 19 4

Table 1: Iteration counts with several momentum preconditioners in 2D
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Preconditioner type Flow Direction Domain form

1� 1 8� 1 1� 8 8� 8

none up 55 89 158 54

down 54 89 160 54

left 54 160 89 54

right 54 158 89 54

diagonal up 52 87 155 52

down 52 87 155 52

left 52 155 87 52

right 52 155 87 52

ISNaS RILU up 14 6 18 14

down 13 5 19 13

left 14 12 9 13

right 15 12 12 14

RILU up 13 5 17 13

down 12 5 17 12

left 13 11 9 12

right 13 11 11 13

Multiplicative ILUD up 37 51 100 38

down 37 52 100 37

left 37 100 52 37

right 37 100 51 38

Approximate inverse up 16 35 63 16

down 16 35 62 16

left 16 62 35 16

right 16 62 35 16

Neumann series RILU; one term up 38 59 152 39

down 44 71 153 44

left 42 161 75 43

right 39 170 59 43

Neumann series RILU; two terms up 26 33 107 26

down 29 42 108 29

left 29 123 43 28

right 29 131 34 29

Neumann series RILU; three terms up 20 17 63 20

down 20 23 63 20

left 21 72 23 21

right 21 74 18 21

Table 2: Iteration counts with several pressure preconditioners in 2D
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Preconditioner type Flow Direction Domain form

1� 1 8� 1 1� 8 8� 8

RILU (i-direction reordering, 2 colours) up 35 13 110 35

down 33 13 111 36

left 35 22 59 36

right 35 23 58 36

RILU (i-direction reordering, 4 colours) up 30 13 71 30

down 29 13 71 30

left 30 22 38 30

right 30 22 38 30

RILU (i-direction reordering, 8 colours) up 27 13 50 27

down 27 12 50 26

left 27 22 24 26

right 27 22 26 27

RILU (j-direction reordering, 2 colours) up 35 59 22 35

down 35 59 22 34

left 35 108 12 34

right 35 108 13 34

RILU (j-direction reordering, 4 colours) up 27 37 23 27

down 26 36 23 25

left 25 68 12 26

right 25 68 14 26

RILU (j-direction reordering, 8 colours) up 21 20 20 20

down 20 20 20 19

left 20 40 11 20

right 20 40 13 21

RILU (ij-direction reordering, 4 colours) up 37 61 109 36

down 37 61 109 36

left 37 109 61 36

right 37 108 61 36

RILU (ij-direction reordering, 9 colours) up 41 58 101 42

down 44 62 101 44

left 44 101 62 44

right 41 101 58 42

RILU (ij-direction reordering, 16 colours) up 34 38 74 33

down 34 38 74 33

left 34 71 39 33

right 34 71 39 33

RILU (ij-direction reordering, 25 colours) up 33 43 79 34

down 38 49 78 38

left 38 76 49 38

right 33 76 43 34

Table 3: Iteration counts with several pressure preconditioners in 2D
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Preconditioner type mesh

16x16 32x32 64x64

none 30 59 128

diag 30 59 129

ISNaS MILUD 7 11 16

Multiplicative ILUD 14 24 53

Table 4: Iteration counts for several momentum preconditioners in 2D, with a varying number of

grid cells

Preconditioner type mesh

16x16 32x32 64x64

none 54 109 208

diagonal 52 108 227

ISNaS RILU 13 18 26

Neumann series MILUD; one term 42 78 154

Neumann series MILUD; two term 29 44 84

Neumann series MILUD; three term 21 30 46

Multiplicative ILUD 37 75 152

Approximate inverse 16 33 67

Table 5: Iteration counts for several pressure preconditioners in 2D, with a varying number of grid

cells

Preconditioner type mesh

8x8x8 10x10x10 12x12x12 16x16x16 32x32x32

ISNaS MILUD 2 3 3 4 8

Multiplicative ILUD 3 4 4 5 12

Table 6: Momentum preconditioners in 3D

Preconditioner type mesh

8x8x8 10x10x10 12x12x12 16x16x16 32x32x32

ISNaS RILUD 15 16 17 21 35

Multiplicative ILUD 23 29 34 45 102

Approximate inverse (19) 15 19 23 30 80

Approximate inverse (125) 9 12 14 18 37

Table 7: Pressure preconditioners in 3D
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