
Parallel domain decomposition with
incomplete subdomain solution

Report 96-83

J. Frank
A. Segal
K. Vuik

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c
 1996 by the Faculty of Technical Mathematics and Informatics, Delft, The

Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+31152784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They are located in the directory /pub/publications/tech-reports at ftp.twi.tudelft.nl

Parallel domain decomposition with incomplete subdomain

solution

J. Frank and A. Segal and K. Vuik

Faculty of Technical Mathematics and Informatics

Delft University of Technology

Mekelweg 4, 2622 EH Delft, The Netherlands

August 15, 1996

Abstract

In this paper we outline a parallel implementation of Krylov-accelerated Schwarz domain

decomposition in which subdomain problems are solved to low precision. By so doing,

computational time is focused on the convergence of the global iteration rather than wasted

on ine�ective subdomain iterations. We consider the GCR method using classical Gram-

Schmidt and Householder orthogonalization methods. Our goal is to apply this approach

to the incompressible Navier-Stokes equations. For the parallel implementation, we assume

a distributed memory system with message passing.

1 Schwarz Domain Decomposition

Domain decomposition is a natural approach to solving partial di�erential equations on compli-

cated domains [6, 15]. It also almost begs to be parallelized. In this paper we develop a parallel

implementation of domain decomposition for the incompressible Navier-Stokes equations within

the framework of the ISNaS program. The ISNaS program solves the incompressible continuity

and momentum equations in general coordinates on structured, boundary-�tted grids. We �rst

discuss the domain decomposition method employed.

Domain decomposition, as considered in this paper, is an approach to solving a linear system

Au = f , often obtained through discretization of a partial di�erential equation de�ned on a

domain
 with discrete coordinate elements x

j

2
. The approach is to partition
 into smaller

subdomains

1

;

2

; � � � ;

M

. To each subdomain

m

is associated an index set J

m

= fj j x

j

2

m

g, and we de�ne n

m

= dimJ

m

to be the number of elements in J

m

and n = dim
. For a

moment we will assume that the J

m

are disjoint. We reorder the unknown vector u, collecting

elements de�ned on common subdomains

u =

2

6

6

6

4

u

1

u

2

.

.

.

u

M

3

7

7

7

5

; u

m

= fu

(j)

; j 2 J

m

g;

where parentheses are placed around an index to indicate an element of a vector, while omission

of parentheses indicates a subvector. To aid in notation, we de�ne the trivial restriction operators

R

m

: R

n

! R

n

m

; m = 1 : M , with at most one 1 in each row and each column, which achieve

the above reordering [6]:

u

m

= R

m

u; m = 1 :M:

1

2 1 SCHWARZ DOMAIN DECOMPOSITION

Reordering the coe�cient matrixA and the right hand side vector f to agree with the new order

of u, we obtain the block system,

2

6

6

6

4

A

11

A

12

� � � A

1M

A

21

A

22

� � � A

2M

.

.

.

.

.

.

.

.

.

.

.

.

A

M1

A

M2

� � � A

MM

3

7

7

7

5

2

6

6

6

4

u

1

u

2

.

.

.

u

M

3

7

7

7

5

=

2

6

6

6

4

f

1

f

2

.

.

.

f

M

3

7

7

7

5

: (1)

Note that the diagonal blocks are given by A

mm

= R

m

AR

t

m

. For the applications we have in

mind, the diagonal blocks are sparse and the o�-diagonal blocks are sparse or zero.

In case the J

m

are not disjoint, we double the repeated unknowns and augment the matrix

A to include the unknowns in each subdomain to which they belong. An example will illustrate

this; we consider the two-dimensional Poisson equation

@

2

u

@x

2

+

@

2

u

@y

2

= f (2)

in Cartesian coordinates with appropriate boundary conditions, de�ned on
 = (�1; 1)� (0; 1).

We construct a grid of size (2N � 1) � N on
 with grid spacing �x � �y as illustrated in

Figure 1. Discretizing equation (2) on
 using vertex-centered central di�erences, we obtain the

�ve-point stencil

1

�x

2

u

i�1;j

+

1

�y

2

u

i;j�1

�

�

2

�x

2

+

2

�y

2

�

u

ij

+

1

�y

2

u

i;j+1

+

1

�x

2

u

i+1;j

= f

ij

: (3)

We reorder the unknowns u

ij

and the right-hand side f

ij

to produce vectors u and f , obtaining

a linear system Au = f . where A represents the coe�cients of (3).

N
N

x=-1 x=0 x=1

y=0

y=1

Ω Ω1 2
∆y

∆x

i=1 2N-1

j=1

Figure 1: Two subdomain grid for Poisson equation example

We divide
 into two subdomains along the line x = 0, denoting the left subdomain by

1

and the right subdomain by

2

as shown in Figure 1. Letting J

m

be the index set of unknowns in

m

, we note that J

1

and J

2

have a non-empty intersection corresponding to the interface i = N .

If, instead, a cell-centered �nite volume discretization had been used on the grid in Figure 1, we

would have found J

1

\ J

2

= ;, and it would have been trivial to rearrange the unknowns into

the block structure (1). However, since there is overlap, we partition the unknowns into three

groups with ~u

1

corresponding to unknowns with indices J

1

nJ

2

, ~u

2

corresponding to unknowns

with indices J

1

\J

2

, and ~u

3

corresponding to unknowns with indices J

2

nJ

1

. The resulting matrix

A has the block structure

A =

2

4

S

11

S

12

S

13

S

21

S

22

S

23

S

31

S

32

S

33

3

5

:

3

Now we augment the system, doubling the interface unknowns to get

2

6

6

4

S

11

S

12

0 S

13

S

21

S

22

0 S

23

S

21

0 S

22

S

23

S

31

0 S

32

S

33

3

7

7

5

2

6

6

4

~u

1

~u

2

~u

0

2

~u

3

3

7

7

5

=

2

6

6

4

f

1

f

2

f

2

f

3

3

7

7

5

; (4)

for which the invertibility of S

22

implies ~u

2

= ~u

0

2

[21]. We note here that invertibility of A

does not guarantee invertibility of S

22

; and in particular, if S

22

= 0, then the augmentation (4)

results in a loss of independence in the rows of A. For our model problem, S

22

is the coe�cient

matrix of the interface equations, disregarding coupling to non-interface unknowns. From (3)

we �nd, taking h = �x = �y,

S

22

=

1

h

2

2

6

6

6

6

4

�4 1

1

.

.

.

.

.

.

.

.

.

.

.

.

1

1 �4

3

7

7

7

7

5

;

which is strictly diagonally dominant and thus invertible.

In terms of the augmented matrix (4), A can be written in the block form (1), taking

A

11

=

�

S

11

S

12

S

21

S

22

�

, A

22

=

�

S

22

S

23

S

32

S

33

�

, etc.

The additive Schwarz iteration for solving (1), using an initial guess u

0

, is given in [6] by:

u

k+1

1

= u

k

1

+ A

�1

11

r

k

1

.

.

.

u

k+1

M

= u

k

M

+A

�1

MM

r

k

M

where r

k

= f � Au

k

is the residual. Using the restriction operators R

m

, we have

u

k+1

1

= u

k

1

+ A

�1

11

R

1

(f �Au

k

)

.

.

. (5)

u

k+1

M

= u

k

M

+A

�1

MM

R

M

(f � Au

k

)

or,

u

k+1

= u

k

+

�

R

t

1

A

�1

11

R

1

+ � � �R

t

M

A

�1

MM

R

M

�

(f � Au

k

):

De�ning the block diagonal matrix N = diag (A

11

; � � � ; A

MM

), we obtain the iteration

u

k+1

= u

k

+ N

�1

(f � Au

k

): (6)

This is equivalent to a block Jacobi preconditioner. There is also an analogous multiplicative

Schwarz iteration [6], in which the residual (f�Au

k

) in the right hand side of (5) is updated after

each substep of the iteration step. The resulting preconditioner is equivalent to block Gauss-

Seidel, but since we are interested in parallelization and since Gauss-Seidel is more di�cult to

parallelize, it will not be considered here.

In practice, the inverse of N is never computed in iteration (6). Rather, the iteration follows

as in Algorithm 1. Note that the solution of N� = r

k

in the algorithm corresponds to solving a

linear system on each subdomain. The solution of each subdomain problem will be accomplished

in a secondary iteration, which we will refer to as the inner iteration loop. Similarly, the additive-

Schwarz iteration is termed the outer iteration loop.

4 2 INCOMPLETE SUBDOMAIN SOLUTION

Algorithm 1 Schwarz Domain Decomposition

r

0

= f � Au

0

for k = 0; 1; � � � ; convergence

solve N� = r

k

u

k+1

= u

k

+ �

r

k+1

= r

k

� A�

end for

The solution obtained by iteration (6) lies in the subspace u

0

+K

k

, where K

k

is the Krylov

subspace:

K

k

= span fN

�1

r

0

; (N

�1

A)N

�1

r

0

; � � � ; (N

�1

A)

k�1

N

�1

r

0

g (7)

This can be seen by induction. Given u

0

, we have

u

1

= u

0

+N

�1

r

0

2 u

0

+K

1

:

Suppose u

k

2 u

0

+K

k

. Then

r

k

= f � Au

k

2 r

0

+AK

k

;

where we have used the notation A span fx

1

; x

2

; � � � g = span fAx

1

; Ax

2

; � � �g. From this,

u

k+1

= u

k

+N

�1

r

k

2 (u

0

+K

k

) +

�

N

�1

r

0

+ (N

�1

A)K

k

�

= u

0

+K

k

+K

k+1

= u

0

+K

k+1

;

, since K

k

� K

k+1

. This is the same subspace which is searched by a Krylov subspace method

for the preconditioned problem

N

�1

Au = N

�1

f: (8)

Krylov subspace methods \optimize" the residual with respect to the Krylov space in each iter-

ation [13]. In this way, using a Krylov subspace method to solve (8) accelerates the convergence

of (6), and is thus referred to as Krylov-accelerated Schwarz domain decomposition.

2 Incomplete Subdomain Solution

The block structure of the domain-decomposed problem hints at the possibility of parallelization.

In the application of domain decomposition to discretized partial di�erential equations such as

(2), the \weight" of the matrix A in (1) is usually concentrated in the blocks on the diagonal.

Especially in a problem with a large number of subdomains, most of the o�-diagonal blocks are

zero. This is easy to see if one notes that the o�-diagonal blocks represent coupling between

subdomains in the stencil. With a �ve point stencil such as in (3), each subdomain is coupled

only to the nearest row or column of its neighbors. In such a case, the only nonzero o�-diagonal

blocks are those corresponding to neighboring subdomains. Furthermore, those nonzero blocks

are themselves only nonzero where necessary to grab a nearest row or column element from the

neighboring subdomain.

As discussed in the previous section, Schwarz domain decomposition amounts to a nested

iteration in which the inner loop solves the decoupled subdomain problems and the outer loop,

in a sense, resolves the coupling between subdomains. A question which has been considered

in [16, 10] with regard to general linear iterative methods is: to what extent may we relax

the convergence tolerance in the inner iteration without greatly hurting the convergence of the

5

outer iteration? For, if the inner loop tolerance may be relaxed, the computational expense

presumably would be reduced.

The application of this idea to incomplete solution of subdomain problems in domain de-

composition is considered in [2, 12, 7, 20, 3]. A method is presented in [3, 5, 4] which uses

incomplete solution of the subdomain problems to accelerate convergence of the global solution.

The method uses the GCR algorithm of [8] for the outer iteration loop and GMRES [19] with

incomplete subdomain solution for the inner loop. In [3] the method was only implemented

sequentially; we will review the method in this section and extend it to parallel in the following

sections.

As noted in reference to equation (6), the inverse of the matrix N is never computed. For

the Jacobi preconditioner, the matrix N has the block diagonal form

N =

2

6

6

6

4

A

11

A

22

.

.

.

A

MM

3

7

7

7

5

: (9)

Solution of N� = r

k

in Algorithm 1 thus amounts to solving the subdomain problems A

11

�

1

=

r

k

1

; � � � ; A

MM

�

M

= r

k

M

. With incomplete subdomain solution, the result �

1

is not actually

A

�1

11

r

k

1

, but is dependent on the subdomain solution method used. Consider solving a subdomain

problem Au = g. Assuming a Krylov subspace method is used, then after k iterations, the

solution u

k

is an element of u

0

+ spanfr

0

; Ar

0

; � � � ; A

k�1

r

0

g, where r

0

= g � Au

0

. If we use an

initial guess u

0

= 0, we can express u

k

as

u

k

= y

(0)

g + y

(1)

Ag + � � �+ y

(k�1)

A

k�1

g

=

�

y

(0)

I + y

(1)

A+ � � �+ y

(k�1)

A

k�1

�

g

for some y. Without implying invertibility we shall refer to the terms in brackets above by

~

A

�1

. Thus

~

A

�1

is the approximation to the inverse of A achieved by incomplete solution of

the subdomain. For Krylov methods, the y

(i)

are dependent on the right hand side g, and

~

A

�1

is further dependent on the number of iterations k required to reach the subdomain stopping

criterion. If we de�ne

~

N

�1

to be the block diagonal matrix consisting of these

~

A

�1

mm

, then with

incomplete subdomain solution we have � =

~

N

�1

r

k

. It is important to note that because of the

dependencies mentioned above, the matrix

~

N

�1

varies in each outer iteration loop. This will

motivate our choice of the GCR method for the outer loop solution.

Theorem 6.2 in [3] relates the condition number of the preconditioned system (8) to that of

the preconditioned system resulting from incomplete subdomain solution. The theorem states

that if the subdomain solutions satisfy

kI � A

mm

~

A

�1

mm

k

2

� � < 1; m = 1 :M; (10)

then the condition numbers of the Jacobi-preconditioned systems resulting from complete and

incomplete solution of the subdomain problems satisfy

�(

~

N

�1

A) �

1 + �

1� �

�(N

�1

A):

That is to say, the condition number should be not much a�ected for small enough �. Unfortu-

nately, the condition (10) is not easy to check.

The GMRES method searches for a solution of the form x

k

= x

0

+ V

k

y to the problem

Ax = b. The columns v

j

of the matrix V

k

form an orthonormal basis for the Krylov space

K

k

= spanfr

0

; Ar

0

; � � � ; A

k�1

r

0

g. The weight vector y is chosen to minimize the functional

J(y) =

r

0

2

e

1

�

�

H

k

y

2

;

6 2 INCOMPLETE SUBDOMAIN SOLUTION

where the matrix

�

H

k

is an augmentation of the upper Hessenberg matrixH

k

= V

t

k

AV

k

and e

1

is

the �rst canonical unit vector in R

k

. It is necessary for the matrix A to be constant during the

GMRES iteration. Since the coe�cient matrix

~

N \varies" in each iteration, it is thus impractical

to use GMRES for this problem. There is a Flexible GMRES algorithm in which the matrix A

can vary [18]; however, we choose to use the GCR method, which can be optimized [23].

The GCR method produces a series of A

t

A-orthogonal (conjugate) vectors, along each of

which the residual is minimized. By �rst computing the new search direction v

k+1

to be

v

k+1

=

~

N

�1

r

k

=

~

N

�1

(f � Au

k

) (11)

and then applying an orthogonalization procedure with respect to all previous search vectors,

the GCR algorithm searches in the same Krylov subspace as (6).

The above computation of v

k+1

corresponds to a single iteration of Algorithm 1 with in-

complete solution and with an initial value u

k

= 0. That is, the update to the solution vector

becomes the new search vector. This new search vector is orthogonalized with respect to all of

the previous search directions using the modi�ed Gram-Schmidt method. Finally, the residual

is minimized along the new search direction. GCR requires computation of the scalar products

hAv

k+1

; Av

j

i; j = 1; � � � ; k + 1 and hf;Av

k

i, plus the matrix-vector product Av

k

itself. An

additional requirement is the storage of the vectors v

i

and Av

i

. The sequential version of GCR

with incomplete subdomain solution is given in Algorithm 2.

Algorithm 2 GCR

Given: the solution u

0

r

0

= f � Au

0

for k = 0; 1; � � � ; convergence

solve Nv

k+1

= r

k

, incomplete subdomain solution using GMRES

compute Av

k+1

/* Orthogonalize: */

for i = 1; � � � ; k

� = hAv

k+1

; Av

i

i

v

k+1

= v

k+1

� �v

i

(Av

k+1

= Av

k+1

� �Av

i

)

end for

� = jjAv

k+1

jj

v

k+1

= v

k+1

=�

(Av

k+1

= Av

k+1

=�)

/* Minimize: */

 = hr

k

; Av

k+1

i

u

k+1

= u

k

+ v

k+1

r

k+1

= r

k

� Av

k+1

end for

The individual subdomain problems A

mm

u

m

= g

m

are solved using GMRES with ILUD

preconditioning. De�ning the matrices L, U and D by

l

ij

= a

ij

; j < i

u

ij

= a

ij

; j > i

u

ii

= l

ii

= d

i

where the diagonal matrix D may be chosen in various ways, according to the well-known

techniques of ILU factorization. The solution of the preconditioned subdomain problem

U

�1

m

D

m

L

�1

m

A

mm

u

m

= U

�1

m

D

m

L

�1

m

g

m

7

by GMRES requires the repeated computation of the matrix-vector product w = U

�1

m

D

m

L

�1

m

v.

This product is achieved as follows:

solve L

m

�v = v

compute �w = D

m

�v

solve U

m

w = �w

With the subdomain solution algorithm thus implemented, the GCR iteration is given in Algo-

rithm 2.

In [5], Algorithm 2 with minimal subdomain solution (� = 10

�1

) was found to reduce com-

putation time by as much as 85% for 4 subdomains, decaying to 50% for 64 subdomains, over

that of the algorithm with complete subdomain solution (� = 10

�8

). At the same time, the

solution accuracy and the required number of outer iterations remained relatively una�ected.

The reduction in computational time became less marked as the number of subdomains was

increased. We use the success of Algorithm 2 as motivation to attempt a parallelized version in

the following section.

3 Parallel Implementation

In this section, we would like to distinguish between local problems, corresponding to the inner

iteration loop, which are solved on individual processors with limited dependence on neighboring

subdomains; and the global problem, associated with the outer iteration loop, which mainly

involves the convergence of the GCR algorithm. The local problems are comprised of tasks to

be performed in parallel, and the global problem is the essentially sequential host task. There are

three operations in Algorithm 2 which contribute to the global problem: the initial construction

of the coe�cient matrix A and the right-hand side vector f , the matrix-vector multiplications

Au and Av

k+1

, and the inner products hAv

k+1

; Av

i

i, kAv

k+1

k, and hAv

k+1

; r

k

i.

Taking advantage of the block structure of (1), we will develop a subdomain-parallel im-

plementation of Algorithm 2. In other words, to each subdomain we will associate a processor

node which will handle storage of the corresponding partitions of the vectors u

k

, r

k

and v

k

in addition to the corresponding diagonal block of A and the \coupling rules" for that block,

which encompass the o�-diagonal blocks of the same block row of A. These coupling rules allow

local computation of the local subvector of Av

k+1

given the vector v

k+1

. This partitioning of

data is illustrated in Figure 2. Here we tacitly assume a one-to-one correspondence between

available nodes and subdomains, as well as a distributed memory parallel architecture. There

is no reason why more than one subdomain cannot be handled by the same processor, however.

To summarize, given the system (1), we have M processor nodes. Node m holds the subvectors

u

k

m

, f

m

, r

k

m

, and v

i

m

and (Av

i

)

m

(i = 1; � � � ; k), plus the blocks A

m1

; � � � ; A

mm

; � � � ; A

mM

of the

matrix A.

1

u 2

u M

A11 A12

A21 22A

AM1 M2A

A1M

MMA

2MA

f1

f2

f

u

M. . .

..

.
..
.

..

.
..
.

..

.
..
.

..

.=

node 1

node 2

node M

. . .

. . .

Figure 2: Distribution of the partitioned linear system Au = f across parallel nodes.

There must be some information exchange between nodes to build the subdomain coe�cient

matrices A

mm

, coupling matrices A

mi

, and right-hand side vectors f

m

. With a �ve-point stencil

8 3 PARALLEL IMPLEMENTATION

such as in (3), the only information required by a given subdomain is the nearest row or column

of its neighbor subdomains. Formally, we de�ne the virtual-cell restriction operators:

Definition 1

The virtual-cell restriction matrix R

mn

with at most one 1 in each row and each column and

all other elements 0, selects from the unknowns of subdomain m, those which are coupled to

subdomain n.

For the two subdomain problem of Figure 1, R

1;2

is an N � N

2

matrix. If u

1

represents the

unknowns in subdomain

1

, then R

1;2

u

1

corresponds to the unknowns on i = N � 1. We de�ne

the neighbor set of subdomain m to be the set of indices B

m

= fn j

n

is a neighbor of

m

g.

With this we can implement two message passing functions:

� vc send(vector R

mn

u

m

, node n)

� vc receive(vector R

nm

u

n

, node n)

These functions allow implementation of Algorithm 1 in parallel with complete subdomain so-

lution.

To compute the local component of Av

k+1

, we need those elements of v

k+1

from the sur-

rounding subdomains to which the local subdomain is coupled. But those are exactly the

elements which are passed by the functions vc send() and vc receive(). As noted previously, the

o�-diagonal blocks of the matrix A represent coupling to neighboring subdomains. Therefore,

to implement the matrix-vector multiply, we use the virtual cell concept, copying the coupled

unknowns from the surrounding subdomains into virtual rows/columns around the local grid.

Then we apply the stencil (3) to each of the local subdomain elements, using the virtual cells

where needed. See Figure 3. We denote the function which accomplishes this product locally as

(Av

k+1

)

m

= Amult(A

m

,v

k+1

).

m

N

j=1

i=1 N

Ω

Figure 3: Virtual cells and stencil used in the local computation of Av

k+1

in subdomain

m

To compute the inner product of two vectors a and b, stored in blocks a

m

and b

m

, m =

1; � � � ;M on M processors, we compute the local inner products ha

m

; b

m

i, m = 1; � � � ;M and

take the global inner product as the sum of these:

ha; bi =

M

X

m=1

ha

m

; b

m

i: (12)

For this we need to de�ne two more message passing functions, this time between each subdomain

processor and a common host processor:

� ip send(vector local ips, node host)

9

� ip receive(vector global ips, node host)

where the variables local ips and global ips are declared as vectors to allow a set of inner products

to be computed simultaneously as discussed below. It should be noted that the host machine

does not have to be dedicated to the task of computing the sums (12). The host may be any of

the subdomain processors. These four message passing functions now handle all of the required

communication for our parallel implementation.

Algorithm 2 utilizes the modi�ed Gram-Schmidt orthogonalization process. The communi-

cation requirements of this method are high: k + 1 communications per outer iteration. It is

possible to reduce the number of communications by calculating all of the inner products of

Algorithm 2 with a single call to the ip send() and ip receive() functions. Adopting the nota-

tion of [3], we let s

i

= Av

i

; i = 1 : k. Further, let v be the solution of Nv = r

k

, prior to

orthogonalization, and s = Av. Inner products are required for:

� coe�cients for orthogonalization of s,

� the length of s for normalization, and

� calculation of the minimization coe�cient .

We will consider these three cases separately in the following three paragraphs.

In the classical Gram-Schmidt orthogonalization procedure, all of the orthogonalization co-

e�cients

�

(i)

= hs; s

i

i; i = 1 : k

are computed prior to orthogonalizing the vector s, which can subsequently be carried out locally

on each node:

s

k+1

= s �

k

X

i=1

�

(i)

s

i

(13)

Classical Gram-Schmidt may be subject to serious round-o� error [17]. Our choice is motivated

by the reduction in communication which can be achieved with the classical method, and we

give some justi�cation here. It is shown in [17] that the orthogonalization errors �

ij

= hw

i

; w

j

i

for previously orthogonalized w

i

and w

j

(i.e. the �

ij

should be zero) are ampli�ed by a factor

1=kŵ

k+1

k, where ŵ

k+1

is that component of the vector to be orthogonalized which is normal to

all preceding vectors. It is therefore desirable to make this component as large as possible. We

note that for Algorithm 2, the new search direction is given by v = N

�1

r

k

, so that s = AN

�1

r

k

.

If the preconditioner N

�1

is a good approximation for A

�1

, then \one can hope" that s will be

approximately in the same direction as r

k

, and since r

k

? s

i

; i � k, the component of s normal

to the previous s

i

would be large. One possible solution for the problem of stability of classical

Gram-Schmidt is to re-orthogonalize when the vectors are not \orthogonal enough." Another

possibility is to use an iterative Gram-Schmidt method [14]. An alternative approach, to be

discussed in the next section, is the use of Householder orthogonalization.

By comparison with (13), we can also compute the orthogonalized vector length by �rst

computing the inner product prior to orthogonalization,

�

(k+1)

= hs; si = ksk

2

;

and then updating this using the Pythagorean theorem to get � = ks

k+1

k. Keeping in mind

that the s

i

; i � k are already of length one,

�

2

= ks

(k+1)

k

2

= �

(k+1)

�

k

X

i=1

(�

(i)

)

2

:

10 3 PARALLEL IMPLEMENTATION

Finally, the inner product = hr

k

; s

k+1

i may be computed before orthogonalization, using

the property r

k

? s

i

; i � k

hr

k

; s

k+1

i = hr

k

; s�

k

X

i=1

�

(i)

s

i

i

= hr

k

; si �

k

X

i=1

�

(i)

hr

k

; s

i

i

= hr

k

; si:

Thus we can compute all vector products, before orthogonalization, with a single communication

call. It remains to be determined if this method will be stable with respect to rounding errors.

In the parallel GCR Algorithm 3, we have de�ned an additional function build(matrix A,

vector f) which constructs the local subdomain problems. Note that Algorithm 3 is written

from the point of view of the local node, and not from that of the global job. We use here a

\node-only" model, as it is described in the PVM Users' Guide [9] (p. 33). Multiple instances

of algorithm are executed on di�erent processors, exchanging information with each other as

needed, and communicating with the host task to compute global inner products and to output

the solution periodically.

Algorithm 3 Parallel GCR with incomplete subdomain solution

/* Algorithm for subdomain (processor) m, with neighbors n 2 B

m

*/

Given: the solution u

0

call vc send(R

mn

u

0

, neighbor n) (n 2 B

m

)

call vc receive(R

nm

u

0

, neighbor n) (n 2 B

m

)

build matrix A, vector f

call Au

0

=Amult(A,u

0

)

r

0

= f � Au

0

for k = 0; 1; � � � ; convergence

solve Nv

k+1

= r

k

, incomplete subdomain solution using GMRES

call vc send (R

mn

v

k+1

, neighbor n) (n 2 B

m

)

call vc receive (R

nm

v

k+1

, neighbor n) (n 2 B

m

)

call Av

k+1

= Amult (A,v

k+1

)

for i = 1 : k + 1

�local

(i)

= hAv

k+1

; Av

i

i

end for

local = hAv

k+1

; r

k

i

call ip send(local, �local

(i)

(i = 1 : k + 1), host)

call ip receive(, �

(i)

; i = 1 : k + 1, host)

Av

k+1

= Av

k+1

�

P

k

i=1

�

(i)

Av

i

v

k+1

= v

k+1

�

P

k

i=1

�

(i)

v

i

� = kAv

k+1

k =

h

�

(k+1)

�

P

k

i=1

(�

(i)

)

2

i

1=2

Av

k+1

= Av

k+1

=�

v

k+1

= v

k+1

=�

 = =�

u

k+1

= u

k

+ v

k+1

r

k+1

= r

k

� Av

k+1

end for

11

4 Householder Orthogonalization

To avoid the threat of round-o� error from the classical Gram-Schmidt orthogonalization meth-

od, we consider using Householder transformations, which are known to be more stable than

Gram-Schmidt.

Suppose a matrix A with columns a

1

; � � � ; a

k

could be factored as A = QR, where Q is

orthogonal and R is upper triangular. Then it follows that the columns q

1

; � � � ; q

k

of Q form

an orthonormal basis for the span of the a

i

, since a

i

= QR

i

= R

(1)

i

q

1

+ � � � + R

(i)

i

q

i

, where

R

i

denotes the ith column of R. One way of obtaining Q is to apply a series of k orthogonal

reection matrices P

1

; � � � ; P

k

to A. Such matrices have the properties P

2

i

= I = P

t

i

P

i

. We

choose the P

i

such that

P

k

� � �P

1

A = R:

In particular, we want the P

i

to have the properties:

1. P

i

(P

i�1

� � �P

1

a

i

) = R

i

= R

(1)

i

e

1

+ � � �+ R

(i)

i

e

i

2. P

i

e

j

= e

j

; j < i

where e

i

is the ith canonical unit vector in the space of the same dimension as the columns of

A. Property 1 says that, having applied the previous i � 1 transformations to A, we want P

i

to transform the ith column of the modi�ed A so that the elements below the ith are all zero.

Property 2 assures that P

i

has no e�ect on the previously transformed i� 1 columns.

Having factored A completely, we can let Q = (P

k

� � �P

1

)

t

= P

1

� � �P

k

, and Q is orthogonal

since the P

i

are. Note that the ith column of Q is given by

q

i

=Qe

i

=P

1

� � �P

i

P

i+1

� � �P

k

e

i

=P

1

� � �P

i

e

i

by property 2 above, and we see that it is not necessary to have the complete factorization of

A to get a particular orthonormal basis vector q

i

. In fact, it is not even necessary to have the

complete set of a

i

prior to transformation, Given a

1

, we can �nd P

1

and thus q

1

; given a

1

and

a

2

, we can �nd P

1

, P

2

, q

1

, and q

2

; etc. The P

i

which achieve our goal are called Householder

transformations and are de�ned by:

P

i

= I � 2

w

i

w

t

i

w

t

i

w

i

;

where w

i

, yet to be determined, is of the same dimension as a

i

, and w

(j)

i

= 0; j < i. This second

condition on w

i

is imposed to ensure property 2.

Now, following the derivation of [11], suppose we have a

1

. We would like to �nd w

1

which

generates P

1

such that

P

1

a

1

=

�

I � 2

w

1

w

t

1

w

t

1

w

1

�

a

1

= a

1

� 2

w

t

1

a

1

w

t

1

w

1

w

1

2 spanfe

1

g:

We see that w

1

2 spanfa

1

; e

1

g, so let w

1

= a

1

+ �e

1

. Then

w

t

1

a

1

= a

t

1

a

1

+ �a

(1)

1

;

and

w

t

1

w

1

= a

t

1

a

1

+ 2�a

(1)

1

+ �

2

12 4 HOUSEHOLDER ORTHOGONALIZATION

and therefore

P

1

a

1

=

1� 2

a

t

1

a

1

+ �a

(1)

1

a

t

1

a

1

+ 2�a

(1)

1

+ �

2

!

a

1

� 2�

w

t

1

a

1

w

t

1

w

1

e

1

:

To have the coe�cient of a

1

equal zero, we set � = �ka

1

k. Thus, w

1

= a

1

� ka

1

ke

1

. We can

choose the sign of � to reduce cancelation errors. Once w

1

is determined, the transformation

P

1

may be applied to the columns of A, and a w

2

can be found in the same manner which zeros

the subdiagonal elements of P

1

a

2

. This process can be repeated for each of the k columns of A.

We now develop a parallel implementation of this orthogonalization method for application

to the GCR algorithm with incomplete subdomain solution. We must therefore allow for the

modi�cation of the v

k+1

as we orthogonalize the s

k+1

= Av

k+1

. For this reason, and because

our vectors are distributed across several processors, the following approach is attractive.

According to [24], the transformation P

k

� � �P

1

s can be computed as follows:

~s = P

k

� � �P

1

s =s� 2d

(1)

w

1

� � � � � 2d

(k)

w

k

; (14)

where the coe�cients d

(i)

are given by

d

(1)

=w

t

1

s

d

(k)

=w

t

k

s� 2d

(1)

w

t

k

w

1

� � � � � 2d

(k�1)

w

t

k

w

k�1

; k � 2: (15)

To calculate the d

(i)

it is thus necessary to have the inner products hw

i

; si; i = 1 : k and

hw

k

; w

j

i; j = 1 : k � 1. Formula (15) then costs the same work as a forward substitution

of dimension k. Note that it will be necessary to store all of the previous inner products

hw

i

; w

j

i; 0 < j < i < k on the host processor.

Suppose we are in the (k+1)th iteration of GCR. Thus we have already computed and stored

s

1

; � � � ; s

k

and w

1

; � � � ; w

k

. After solving v =

~

N

�1

r

k

, the new vector to be orthogonalized is

s = Av. We can compute the e�ect of the previous Householder transformations on s, obtaining

~s from (14). Now we want to �nd w

k+1

with elements w

(i)

k+1

= 0; i < k + 1 such that

P

k+1

~s = P

k+1

P

k

� � �P

1

s = ~s

(1)

e

1

+ � � �+ ~s

(k)

e

k

+ �e

k+1

: (16)

To get w

k+1

, we formally de�ne the matrix J

k+1

which sets the �rst k elements of ~s to zero,

J

k+1

=

�

0 0

0 I

n�k

�

;

and take ~w = J

k+1

~s. Note that ~w

t

~s = ~w

t

~w = kwk

2

: Now we have, before normalization,

w

k+1

= ~w + sign(~s

(k+1)

)k ~wke

k+1

;

from which

w

t

k+1

~s = ~w

t

~s + sign(~s

(k+1)

)k ~wk~s

(k+1)

= k ~wk

2

+ j~s

(k+1)

jk ~wk

and similarly

w

t

k+1

w

k+1

= ~w

t

~w + 2sign(~s

(k+1)

)k ~wk~s

(k+1)

+ k ~wk

2

= 2k ~wk

2

+ 2j~s

(k+1)

jk ~wk = 2w

t

k+1

~s (17)

Now, to determine � in (16), using the non-normalized w

k+1

, we get

P

k+1

~s = (I � 2

w

k+1

w

t

k+1

w

t

k+1

w

k+1

)~s = ~s �

2w

t

k+1

~s

w

t

k+1

w

k+1

w

k+1

= ~s � w

k+1

13

and since � is the (k + 1)th component of the resulting vector,

� =~s

(k+1)

� ~w

(k+1)

� sign(~s

(k+1)

)k ~wk

or since ~s

(k+1)

= ~w

(k+1)

,

� =� sign(~s

(k+1)

)k ~wk: (18)

It is assumed in (15) that the w

i

are of unit length. Using the de�nition (18) of �, equation (17)

becomes kw

k+1

k

2

= 2�

2

� 2�~s

(k+1)

, so that the normalized vector w

k+1

is given by

w

k+1

= (J

k+1

~s � �e

k+1

)=

p

2�

2

� 2�~s

(k+1)

; (19)

and the denominator is zero only when � is. Note that computation of � from (18) requires an

additional inner product, which may not be evaluated at the same time as the inner products of

(15), resulting in an additional host communication. Alternatively, we could use the fact that

k~sk = ksk:

� = � sign(~s

(k+1)

)

(~s

(k+1)

; � � � ; ~s

(n)

)

(20)

= � sign(~s

(k+1)

)

q

ksk

2

� k~s

(1)

� � � ~s

(k)

k

2

; (21)

which is more e�ciently parallelized. Note that for typically large domain decomposition prob-

lems, all of the �rst k+1 elements of ~s will reside on the same \�rst" subdomain. The term ksk

can be calculated in the same communication as the inner products hw

i

; si, and then all that

are needed to calculate � on each process individually are the ~s

(i)

; i = 1 : k + 1. These values

may be broadcast to all other processes simultaneously, and as we shall see, they are required

for computation of s

k+1

and v

k+1

anyway.

After doing some numerical experiments, we observe that computing � from (21) can result

in large round-o� errors. To illustrate this, consider the example of [1]. The vectors to be

orthogonalized are

S =

2

6

6

4

1 1 1

� 0 0

0 � 0

0 0 �

3

7

7

5

:

Here, � is chosen small enough that 1 + �

2

evaluates to 1 in computer arithmetic. Thus the

length of each column of S evaluates to 1. The �rst vector remains unchanged in the �rst

orthogonalization step, and w

1

is de�ned to be (1 �=2 0 0)

T

. In the second step, s = (1 0 � 0)

T

,

ksk and d

(1)

evaluate to 1; ~s = s � 2w

1

= (�1 � �=2 � 0)

T

. Equation (21) then gives

� = �sign(��=2)

p

(1)

2

� k1k

2

= 0;

and the algorithm breaks down, cf. equation (19) and equations (23) and (24), yet to be derived.

To avoid this, � may calculated with (20). Figure 4 compares the various orthogonalization

methods for this test problem. In the �gure, the sum of the absolute value of the inner products

of the normalized vectors:

orthogonality error =

X

i

X

j<i

jhs

i

; s

j

ij

is plotted for values of � from 10

�1

to 10

�7

. Of course this is a concocted example, and it remains

to be seen whether the matrices encountered in real examples will require the communication

increase posed by (20).

14 4 HOUSEHOLDER ORTHOGONALIZATION

1 2 3 4 5 6 7
10

−15

10
−10

10
−5

10
0

−log10 eps

or
th

og
on

al
ity

 e
rr

or

CGS

MGS

PHHa

PHHb

Figure 4: Comparison of orthogonalizationmethods for a poorly-behaved system. The 2-norm of

the orthogonality error is plotted for decreasing magnitude of �. CGS: classical Gram-Schmidt,

MGS: modi�ed Gram-Schmidt, PHHa: parallel Householder with (21), PHHb: parallel House-

holder with (20).

Since the (k + 1)th column of the orthogonal matrix Q is given by Qe

k+1

, we obtain the

newly orthogonalized vector s

k+1

from:

s

k+1

= Qe

k+1

= P

1

� � �P

n

e

k+1

= P

1

� � �P

k+1

e

k+1

; (22)

which is to say that we can orthogonalize as we go along, without having to start with a complete

set of vectors. Using this property, we multiply both sides of (16) by P

1

� � �P

k+1

, getting

s =~s

(1)

P

1

e

1

+ ~s

(2)

P

1

P

2

e

2

+ � � �+ �P

1

P

2

� � �P

k+1

e

k+1

=~s

(1)

s

1

+ ~s

(2)

s

2

+ � � �+ �s

k+1

:

Solving for s

k+1

,

s

k+1

=

1

�

"

s �

k

X

i=1

~s

(i)

s

i

#

: (23)

15

To maintain the relationship s

k+1

= Av

k+1

, we let

v

k+1

=

1

�

"

v �

k

X

i=1

~s

(i)

v

i

#

: (24)

When we distribute ~s

(1)

; � � � ; ~s

(k)

to calculate s

k+1

and v

k+1

from equations (23) and (24), we

can also distribute ~s

(k+1)

and the computation of w

k+1

from (19) can be carried out without

further communication.

To minimize the residual in the new search direction v

k+1

, making it A-orthogonal to all

searched directions v

j

; j � k + 1, we take

r

k+1

= r

k

� s

k+1

;

where = hs

k+1

; r

k

i. By comparison with equation (23), we see that = hs; r

k

i=�. That is, we

can compute using s before orthogonalization since r

k

? s

i

; i � k.

For parallel GCR with Householder orthogonalization, we de�ne a host process host() as in

Algorithm 4. Then the subdomain processes may be de�ned as in Algorithm 5.

Algorithm 4 GCR/Householder: Host process

De�ne function host (Input: Subdomain contributions to: hs; si, hs; r

k

i, hw

i

; si; i = 1 : k

and hw

k

; w

j

i; j = 1 : k � 1; Output: , ksk, d

(1:k)

)

/* Initialize running sums */

 = � = 0

d

(i)

= 0; i = 1 : k

�

(j)

= 0; j = 1 : k � 1

for m = 1 :M /* Compute global inner products */

 = + hs; r

k

i

m

� = � + hs; si

m

for i = 1 : k

d

(i)

= d

(i)

+ hw

k

; si

m

if i < k then

�

(i)

k

= �

(i)

k

+ hw

k

; w

i

i

m

end if

end for

end for

Store the �

(i)

k

on the host processor.

/* Finish the d

(i)

: */

for i = 2 : k

for j = 1 : i� 1

d

(i)

= d

(i)

� 2d

(j)

�

(j)

i

end for

end for

ksk =

p

�

return

The algorithm will breakdown when � = 0 (cf. Eqn. (23), (24), and (19).) This occurs when

~s

(i)

= 0; i = k + 1 : n. But in this case,

~s = P

k

� � �P

1

s = ~s

(1)

e

1

+ � � �+ ~s

(k)

e

k

;

or multiplying both sides by P

1

� � �P

k

,

s =~s

(1)

s

1

+ � � � ~s

(k)

s

k

s 2 spanfs

1

; � � � ; s

k

g:

16 5 CONCLUSIONS

That is to say, the algorithm breaks down when the new search direction is in the space already

searched. This further implies = hs; r

k

i = 0, so that no update of r

k

and u

k

occurs, and the

algorithm stalls. This should be a rare occurrence with large domain decomposition problems,

but we can avoid breakdown by checking if � = 0, and if so, letting v = A

t

r

k

, s = Av. This is

equivalent to the \LSQR-switch" of [22]. Then we �nd

 = hs; r

k

i = hAA

t

r

k

; r

k

i

= hA

t

r

k

; A

t

r

k

i = kA

t

r

k

k

> 0

as long as r

k

6= 0, which is the case unless the method has converged.

Algorithm 5 GCR/Householder: Node process

/* Algorithm for subdomain (processor) m, with neighbors n 2 B

m

*/

Given: the solution u

0

call vc send(R

mn

u

0

, neighbor n) (n 2 B

m

)

call vc receive(R

nm

u

0

, neighbor n) (n 2 B

m

)

build matrix A, vector f

call Au

0

=Amult(A,u

0

)

r

0

= f � Au

0

for k = 0; 1; � � � ; convergence

solve Nv = r

k

, incomplete subdomain solution using GMRES

call vc send (R

mn

v, neighbor n) (n 2 B

m

)

call vc receive (R

nm

v, neighbor n) (n 2 B

m

)

call s = Amult (A,v)

/* Compute local contributions to inner products */

�local = hs; si

local = hs; r

k

i

for i = 1 : k

�local

(i)

= hw

i

; si

if (i < k) then

�local

(i)

= hw

k

; w

i

i

end if

end for

call , ksk; d

(1:k)

= host(�local, local, �local

(1:k)

, �local

(1:k�1)

)

~s = s � 2

P

k

i=1

d

(i)

w

i

distribute ~s

(1)

; � � � ; ~s

(k+1)

to all nodes

� = �sign(~s

(k+1)

)

p

ksk

2

� k~s

(1)

� � � ~s

(k)

k

2

s

k+1

= (1=�)[s�

P

k

i=1

~s

(i)

s

i

]

v

k+1

= (1=�)[v �

P

k

i=1

~s

(i)

v

i

]

w

k+1

= (J

k+1

~s � �e

k+1

)=

p

2�

2

� 2�~s

(k+1)

 = =�

r

k+1

= r

k

� s

k+1

u

k+1

= u

k

+ v

k+1

end for

5 Conclusions

To conclude, we compare the computational e�ciencies of the three orthogonalization proce-

dures: modi�ed Gram-Schmidt, classical Gram-Schmidt, and Householder. Assuming a mini-

mum storage requirement of the most recently computed solution and residual vectors u

k

and

REFERENCES 17

r

k

, as well as the subspace vectors v

i

and s

i

, i = 1 : k, we consider the amount of work required

in the orthogonalization procedures in the kth iteration of GCR (the outer iteration). The

modi�ed Gram-Schmidt method, if implemented in parallel, would require k + 2 inner prod-

ucts, including k + 1 host communications for each node, since the vector to be orthogonalized

must be updated within the orthogonalization loop. Modi�ed Gram-Schmidt would require no

additional storage. Classical Gram-Schmidt also requires k + 2 inner products, but only 1 host

communication per node, and no additional storage. Householder orthogonalization requires

2k+1 inner products (2k+2 if (20) is used) and 2 communications|1 host communication per

node and 1 multicast communication (or only 2 host communications per node if (20) is used.)

Additional storage is required for the vectors w

i

, i = 1 : k. An additional k vector sums are

required in (14), plus a (likely negligible) back-substitution of dimension k on the host process.

These results are summarized in Table 1.

Table 1: Comparison of computational expense (in the kth outer iteration)

Orthog. Inner Communi- Additional Additional

Procedure Products cations Storage Computations

Modi�ed Gram-Schmidt k + 2 k + 1 none none

Classical Gram-Schmidt k + 2 1 none none

Householder 2k + 1 2 w

i

; i = 1 : k k vector additions

dim. k back-subst.

In a setting where inter-processor communication is expensive, such as is the case with PVM

on a cluster of workstations, the classical Gram-Schmidt and Householder procedures are to be

preferred. Classical Gram-Schmidt would be the cheapest solution if the problem to be solved is

\well enough behaved." On the other hand, if stability is a concern and if the memory require-

ments are not, the well-known superior stability of Householder orthogonalization makes it the

safer solution. We thus recommend an implementation providing the user with a choice between

Householder orthogonalization and classical Gram-Schmidt, possibly with re-orthogonalization.

References

[1] A. Bj�orck. Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT,

7:1{21, 1967.

[2] C. B�orgers. The Neumann-Dirichlet domain decomposition method with inexact solvers on

the subdomain. Numerische Mathematik, 55:123{136, 1989.

[3] E. Brakkee. Domain Decomposition for the Incompressible Navier-Stokes Equations. PhD

thesis, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,

Apr. 1996.

[4] E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incompressible

Navier-Stokes equations: Solving subdomain problems accurately and inaccurately. Tech-

nical Report 95{37, Faculty of Technical Mathematics and Informatics, Delft University of

Technology, Delft, the Netherlands. http://www.twi.tudelft.nl, 1995.

[5] E. Brakkee, C. Vuik, and P. Wesseling. An investigation of Schwartz domain decomposition

using accurate and inaccurate solution of subdomains. Technical Report 95{18, Faculty of

Technical Mathematics and Informatics, Delft University of Technology, Delft, the Nether-

lands. http://www.twi.tudelft.nl, 1995.

[6] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In A. Iserles, editor,

Acta Numerica, pages 61{143. Cambridge University Press, 1994.

18 REFERENCES

[7] H. Cheng. On the e�ect of using inexact solvers for certain domain decomposition algo-

rithms. East-West J. Numer. Math., 2(4):257{284, 1993.

[8] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsym-

metric systems of linear equations. SIAM Journal on Numerical Analysis, 20(2):345{357,

Apr. 1983.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:

Parallel Virtual Machine - A Users' Guide and Tutorial for Networked Parallel Computing.

The MIT Press, 1994.

[10] G. H. Golub and M. L. Overton. The convergence of inexact Chebyshev and Richardson

iterative methods for solving linear systems. Numerische Mathematik, 53:571{593, 1988.

[11] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,

2 edition, 1989.

[12] G. Haase, U. Langer, and A. Meyer. Domain decomposition preconditioners with inexact

subdomain solvers. Numerical Linear Algebra with Applications, 1:27{42, 1992.

[13] W. Hackbush. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag

New York, Inc., 1994.

[14] W. Ho�man. Iterative algorithms for Gram-Schmidt orthogonalization.Computing, 41:335{

348, 1989.

[15] P. le Tallec. Domain decomposition methods in computational mechanics. In J. T. Oden,

editor, Computational Mechanics Advances, volume 1, pages 121{220. Elsevier Science,

B.V., Amsterdam, 1994.

[16] N. K. Nichols. On the convergence of two-stage iterative processes for solving linear equa-

tions. SIAM Journal on Numerical Analysis, 10(3):460{469, 1973.

[17] J. R. Rice. Experiments on Gram-Schmidt orthogonalization.Mathematics of Computation,

20:325{328, 1966.

[18] Y. Saad. A exible inner-outer preconditioned GMRES algorithm. SIAM Journal on

Scienti�c and Statistical Computating, 14:461{469, 1993.

[19] Y. Saad and M. H. Schultz. GMRES: A generalized minimum residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scienti�c and Statistical Computating,

7(3):856{869, July 1986.

[20] K. H. Tan. Local Coupling in Domain Decomposition. PhD thesis, Utrecht University, P.O.

Box 80010, 3508 TA Utrecht, The Netherlands, Apr. 1996.

[21] W. P. Tang. Generalized Schwartz splittings. SIAM Journal on Scienti�c and Statistical

Computating, 13:573{595, 1992.

[22] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numerical

Linear Algebra with Applications, 1(4):369{386, 1994.

[23] K. Vuik. New insights in GMRES-like methods with variable preconditioners. Journal of

Computational and Applied Mathematics, 61:189{204, 1995.

[24] H. F. Walker. Implementation of the GMRES method using Householder transformations.

SIAM Journal on Scienti�c and Statistical Computating, 9(1):152{163, 1988.

