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phases in ternary alloys
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Abstract

Dissolution of stoichiometric multi-component particles in ternary alloys is an import-

ant process occurring during the heat treatment of as-cast aluminium alloys prior to hot-

extrusion. A mathematical model is proposed to describe such a process. In this model

an equation is given to determine the position of the particle interface in time, using two

di�usion equations which are coupled by nonlinear boundary conditions at the interface.

Some results concerning existence, uniqueness, and monotonicity are given. Furthermore,

for an unbounded domain an analytical approximation is derived. The main part of this

work is the development of a numerical solution method. Finite di�erences are used on a

grid which changes in time. The discretization of the boundary conditions is important

to obtain an accurate solution. The resulting nonlinear algebraic system is solved by the

Newton-Raphson method. Numerical experiments illustrate the accuracy of the numerical

method. The numerical solution is compared with the analytical approximation.

Keywords: Stefan problem, moving grid method, stoichiometric particle dissolution, ternary

alloy homogenisation

AMS Subject Classi�cation: 35R35, 65M06, 80A22

1 Introduction

Heat treatment of metals is often necessary to optimise their mechanical properties both for

further processing and for �nal use. During the heat treatment the metallurgical state of the

alloy changes. This change can either involve the phases being present or the morphology of

the various phases. Whereas the equilibrium phases can be predicted quite accurately from

the thermodynamic models, there are no general models for microstructural changes nor gen-

eral models for the kinetics of these changes. In the latter cases both the initial morphology

and the transformation mechanisms have to be speci�ed explicitly. One of these processes

that is amenable to modelling is the dissolution of second phase particles in a matrix with a

uniform initial composition.
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To describe this particle dissolution in solid media several physical models for binary al-

loys have been developed, incorporating the e�ects of long-distance di�usion [18, 2, 13] and

non-equilibrium conditions at the interface [8, 1, 14]. These articles did not cover the techno-

logically important dissolution of stoichiometric multi-component particles in ternary alloys.

The phase transformation element in steel has been studied in [5, 17]. Reiso [11] investigated

the dissolution of Mg

2

Si-particles in aluminium alloys mainly experimentally. He compared

his results to a simple dissolution model valid for dissolution in in�nite media. All analyses

indicate that the addition of a second alloying element can inuence the dissolution kinetics

strongly. However, in none of these articles attention was paid to the e�ect of the particle

geometry on the dissolution of particles in ternary alloys. The present article describes the

dissolution of spherical and needle shaped particles, a planar medium, a spherical layer of

segregation and the combination of a dissolving particle and a dissolving spherical layer of

segregation. In many metallurgical situations, the thermal treatment also aims at the dissol-

ution of the segregation layer around the grains. In the articles mentioned, no attention was

paid to the impact of all physical parameters on the overall dissolution kinetics.

The present work covers a detailed numerical analysis of a coupled Stefan problem in which

two boundaries either move or are �xed. The di�usion equation is solved using a �nite dif-

ference discretization. The displacement of the boundary is computed with a front-tracking

method. The concentration of both chemical elements are linked via the hyperbolic relation

between the Dirichlet conditions corresponding to both di�using elements. The disappearance

of a moving boundary is incorporated and modelled by a transition of a Dirichlet condition to

a Neumann condition. The calculation can then be continued until complete homogenisation

has been reached.

The mathematical model for the dissolution of second phases in ternary alloys is given in

Section 2. Some remarks about existence, uniqueness and properties of the solution are given

in Section 3. In Section 4 the numerical method is speci�ed. Some properties of the nu-

merical method are investigated in Section 5. In this section also a number of metallurgical

applications are solved and properties of their solutions are given.

2 A model of dissolution in ternary alloys

Consider three chemical species denoted by A;B, and C. We investigate the dissolution of

an A

l

B

m

C

n

particle in an A � B � C alloy, where we assume that the concentrations of B

and C are small with respect to that of component A. The concentrations of B and C are

written as c

B

; c

C

(mol/m

3

) respectively. At a given temperature the initial concentrations

are equal to c

0

B

and c

0

C

. The concentrations of B and C in the particle are denoted by c

B;part

and c

C;part

. The interface concentrations (c

B;sol

and c

C;sol

) are variant.

We consider a one-dimensional problem. The geometry is given by 
(t) = fx 2 RjM

1

�

S

1

(t) � x � S

2

(t) � M

2

g, t 2 [0; T ] where T is an arbitrary positive number. In some

applications there is a time t

1

and t

2

such that respectively S

1

(t) = M

1

; t � t

1

and S

2

(t) =

M

2

; t � t

2

. For the determination of c

B

; c

C

we use the multi-component version of Fick's
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Second Law (see [15], [9] p. 160):

@c

p

@t

=

1

r

a

@

@r

(D

p;B

r

a

@c

B

@r

) +

1

r

a

@

@r

(D

p;C

r

a

@c

C

@r

); r 2 
(t); t 2 (0; T ]; p 2 fB;Cg; (1)

where a is a geometric parameter, which equals 0,1, or 2 for respectively a planar, a cylindrical,

or a spherical geometry. Note thatM

1

should be non-negative for a 6= 0. All these geometries

occur in metallurgical applications. For simplicity we assume D

B;C

= D

C;B

= 0, both species

di�use independently, and that D

B;B

= D

B

; D

C;C

= D

C

(m

2

/s) are constant. Hence, the

equations given in (1) reduce to:

@c

p

@t

=

D

p

r

a

@

@r

(r

a

@c

p

@r

); r 2 
(t); t 2 (0; T ]; p 2 fB;Cg: (2)

As initial conditions we use

c

p

(r; 0) = c

0

p

(r); r 2 
(0); p 2 fB;Cg; (3)

where c

0

p

are given non-negative functions. When a moving boundary becomes �xed, i.e.

S

k

(t) =M

k

, we assume that there is no ux through the boundary, so

@c

p

@r

(M

k

; t) = 0; for t � t

k

; p 2 fB;Cg; k 2 f1; 2g: (4)

On the moving boundaries a Dirichlet boundary condition is used:

c

p

(S

k

(t); t) = c

p;k;sol

(t); t 2 [0; T ]; p 2 fB;Cg; k 2 f1; 2g: (5)

So, six unknown quantities remain: S

k

(t); c

B;k;sol

(t), and c

C;k;sol

(t); k 2 f1; 2g. To obtain

a unique solution six boundary conditions are necessary. We assume that the particle is

stoichiometric, which means that c

A;part

; c

B;part

; and c

C;part

are constant. Using the Gibbs

free energy of the stoichiometric compound we get [15]:

(c

B;k;sol

(t))

m

� (c

C;k;sol

(t))

n

= K; k 2 f1; 2g; (6)

where the exponentsm;n correspond to the stoichiometric phase A

l

B

m

C

n

andK is a constant

depending on temperature. The balance of B and C atoms and the constant composition of

the particle lead to the following equations [12] for the moving boundary positions:

(c

p;part

� c

p;k;sol

(t))

dS

k

dt

(t) = D

p

@c

p

@r

(S

k

(t); t); t 2 (0; T ]; p 2 fB;Cg; k 2 f1; 2g: (7)

Condition (7) implies

D

B

c

B;part

� c

B;k;sol

(t)

@c

B

@r

(S

k

(t); t) =

D

C

c

C;part

� c

C;k;sol

(t)

@c

C

@r

(S

k

(t); t); k 2 f1; 2g: (8)

The moving boundary problem given by equations (2),..., (7) is known as a Stefan problem [3].

For a recent book where this type of problems is considered we refer to [16] (see for instance

p. 132 (2.5), (2.9)). There are some di�erences between the dissolution in a binary alloy ([15])

and in a ternary alloy. In the �rst place, two di�usion equations have to be solved, which

are coupled through the conditions (5), (6), and (7) on the moving boundaries. Secondly, the

problems are nonlinear due to the balance of atoms on S

1

; S

2

, both in the binary and the

ternary case. However, in the mathematical model for a ternary alloy an extra non-linearity

occurs in equation (6).
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3 Properties of the Stefan problem

After the description of a maximum principle we give some results concerning existence,

uniqueness, and monotonicity of solutions of the given Stefan problem. Also an approximate

solution is given for the dissolution of a particle in an unbounded domain (M

2

=1).

3.1 The maximum principle for the di�usion equation

First a few basic principles are formulated, which are used later in this section. The Stefan

problem is formed by the di�usion equation and a displacement equation for one or more

moving boundaries. For the di�usion equation it can be proved that the solution satis�es a

maximum principle, which we present for completeness.

Maximum principle

Suppose c satis�es the inequality

@

2

c

@r

2

�

@c

@t

� 0; r 2 
(t); t 2 (0; T ]; (9)

then a local maximum has to occur at one or both of the sides S

1

; S

2

(the moving boundaries),

or at t = 0 (the initial condition). Suppose that a local maximum occurs at the point P on

S

1

; or S

2

. If

@

@�

denotes the derivative in an outward direction from 
(t), then

@c

@�

> 0 at P .

This statement is referred to as the maximum principle and has been proved by Protter and

Weinberger for a general parabolic operator (see [10] p. 168, p. 170). This principle can also

be applied for local minima (and

@c

@�

< 0) when the inequality in (9) is reversed. The principle

thus requires the global extremes of a solution to the di�usion equation to occur either at the

boundaries S

1

; S

2

, or at t = 0.

3.2 Some limitations of the Stefan problem

In this section we consider some arti�cial problems, in order to investigate the limitations of

our mathematical model. In the �rst example we show that the model breaks down when

the concentration at the interface is equal to the particle concentration. From the second

example it appears that di�culties occur when the initial concentration is equal to the particle

concentration. Then the ternary model should be replaced by a binary model.

The movement of the boundaries S

1

; S

2

is given by equation (7). This holds provided c

p;sol

6=

c

p;part

; p 2 fB;Cg to prevent a division by zero. If

@c

p

@r

(S

k

(t); t) 6= 0 then a division by zero

would imply an in�nite displacement. Such a situation can occur, for example, when we have

an initial concentration pro�le in which c

0

p

(r) < c

p;part

for r 2 (S

1

(0); (S

1

(0) + S2(0))=2) and

c

0

p

(r) > c

p;part

for r 2 ((S

1

(0) + S2(0))=2; S

2

(0)). Simulations have shown that then possibly

c

p;sol

converges to c

p;part

, causing a division by zero when computing the displacement of the

boundary.

We consider the following planar problem: c

0

C

= 0, c

0

B

= c

B;part

, S

2

(t) = M

2

, and for

simplicity equation (4) is replaced by

c

p

(M

2

; t) = c

0

p

; p 2 fB;Cg: (10)
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Suppose that S

1

; c

B

; and c

C

are a solution of the Stefan problem, where 0 � c

C;sol

(t) � c

C;part

.

Then we have the following result:

Proposition

There is no

^

t > 0 such that S

1

(t) is monotone on [0;

^

t]; unless c

B;sol

(t) = c

B;part

.

Proof

Suppose there is a

^

t > 0 such that

dS

1

dt

� 0; t 2 [0;

^

t]. This assumption together with the

inequality c

C;sol

(t) � c

C;part

, and equation (7) imply that

@c

C

@r

(S

1

(t); t) � 0; t 2 [0;

^

t]. Equa-

tion (6) implies that c

C;sol

(t) 6= 0. From the maximum principle it follows that the maximum

occurs at S

1

. However at such a point the inequality

@c

C

@r

(S

1

(t); t) < 0 holds. This leads to a

contradiction.

Now we assume that there is a

^

t > 0 such that

dS

1

dt

� 0; t 2 [0;

^

t]. When there is a

~

t 2 [0;

^

t]

such that c

B;sol

(

~

t) > c

B;part

, equation (7) implies that

@c

C

@r

(S

1

(

~

t);

~

t) � 0. Using the maximum

principle as before, we again obtain a contradiction. In the same way it can be proved that

c

B;sol

(

~

t) < c

B;part

is impossible. 2

This proposition implies that the only physically acceptable solution occurs when c

B;sol

(t) =

c

B;part

. In this case we are faced with a division by zero when computing the displace-

ment of the boundary. However, due to the maximum principle c

B

(r; t) = c

B;part

= c

0

B

, so

@c

B

@r

(S

1

(t); t) = 0. Hence we are faced with a zero-by-zero division. From a thermodynamic

point of view it is reasonable that for this case there is no change of the concentration pro�le

in the matrix. The boundary conditions are coupled via equation (6). The solution for this

situation can be obtained using the solution of the concentration pro�le of the element C only.

We are thus faced with a binary di�usion problem, in which the interfacial concentration of

element C is then determined by the concentration of element B by equation (6).

3.3 Monotonicity properties

Consider the solution of the Stefan problem: S

1

; c

B

; and c

C

, where S

2

= M

2

and equa-

tion (4) replaced by (10). We assume that c

0

B

< c

B;part

. Suppose that at some time, t

1

,

c

B

(S

1

(t

1

); t

1

) < c

B;part

and at a later time, t

3

> t

1

, we would have c

B

(S

1

(t

3

); t

3

) > c

B;part

.

From the continuity of c

B

(S

1

(t); t), it follows that for some time, t

2

, such that t

1

< t

2

< t

3

;

c

B

(S

1

(t); t) < c

B;part

; t 2 [t

1

; t

2

), and c

B

(S

1

(t

2

); t

2

) = c

B;part

. According to equation (7),

@c

B

@r

(S

1

(t

2

); t

2

) = 0. This violates the maximum principle. A similar situation can be analysed

for c

0

B

> c

B;part

, and c

B

(S

1

(t

1

); t

1

) > c

B;part

. From this it can be concluded that the sign

of c

p

(S

k

(t); t)� c

p;part

does not change with time, provided this sign is equal to the sign of

c

0

p

(r)� c

p;part

for all r.

3.4 An approximate solution

For the case that di�usion takes place in an in�nite medium with spherical symmetry near

a spherical particle, the Laplace transform can be used to solve the problem. The di�usion

equation for spherical symmetry determines the transport of matter:

@c

p

@t

=

D

p

r

2

@

@r

(r

2

@c

p

@r

); p 2 fB;Cg:

5



The condition at the interface is given by:

c

p

(S

1

(t); t) = c

p;sol

(t):

At in�nity and for t = 0:

c

p

(r; 0) = c

0

p

; c

p

(1; t) = c

0

p

;

where c

0

p

are given constants. We approximate the function c

p;sol

(t) by a constant value ĉ

p;sol

.

By means of the (inverse) Laplace transform an approximate solution [18] is given by:

~c

p

(r; t) = c

0

p

+ (ĉ

p;sol

� c

0

p

) �

S

1

(t)

r

�Erfc

 

r � S

1

(t)

2

p

D

p

t

!

: (11)

This approximation is exact when S

1

(t) is constant. So we assume that the di�erence between

the exact solution and the approximation is small as long as S

1

(t) is a slowly varying function.

Substitution of ~c

p

into equation (7), yields:

dS

1

(t)

dt

= �

ĉ

p;sol

� c

0

p

c

p;part

� c

p;sol

�

 

D

p

S

1

(t)

+

r

D

p

�t

!

: (12)

Combination of both components to full �ll the requirement as stated by equation (8), it

follows that:

ĉ

B;sol

� c

0

B

c

B;part

� ĉ

B;sol

�

 

D

B

S

1

(t)

+

r

D

B

�t

!

=

ĉ

C;sol

� c

0

C

c

C;part

� ĉ

C;sol

�

 

D

C

S

1

(t)

+

r

D

C

�t

!

: (13)

Using equation (6) as the relation between the concentrations at the interface S

1

, it follows

that for t # 0:

ĉ

B;sol

� c

0

B

c

B;part

� ĉ

B;sol

�

r

D

B

D

C

=

(K=ĉ

n

B;sol

)

1=m

� c

0

C

c

C;part

� (K=ĉ

n

B;sol

)

1=m

: (14)

As has been remarked before, it has been assumed that the interfacial concentration is con-

stant in time. The variation of the interfacial concentration with time is most signi�cant at

the early stages: the interfacial concentrations then change from c

0

p

to ĉ

p;sol

. In the later

stages, the interfacial concentrations will vary less with time and the above used approxima-

tion may be more accurate. As the di�usion of the chemical elements proceeds, the elements

reach the other boundary. Then, an accumulation of atoms occurs there. However, this ana-

lytical model does not incorporate this e�ect since it is assumed that the domain in which

the elements di�use is in�nite. Therefore at the later stages this approximation will become

less accurate as well.

For the case of a particle stoichiometry BC, i.e. n = m, a quadratic equation results from

equation (14). If (c

0

C

�c

C;part

�

q

D

B

D

C

)�(c

B;part

�c

0

B

�

q

D

B

D

C

) < 0 then there is only one root for

which the inequality ĉ

B;sol

> 0 holds. If however, (c

0

C

�c

C;part

�

q

D

B

D

C

)�(c

B;part

�c

0

B

�

q

D

B

D

C

) > 0

and the discriminant is positive then we have to keep in mind that the roots have to meet

the requirement that the Stefan problem is not degenerate, i.e. we may not have 0 � c

0

p

<

6



c

p;part

< c

p;sol

or 0 < c

p;sol

< c

p;part

< c

0

p

; p 2 fB;Cg. A root that does not satisfy this re-

quirement is rejected. In case of the existence of two real positive roots such that the problem

is not degenerate the model cannot be used reliably. It appeared from numerical experiments

that the solutions are unstable then. For higher orders (di�erent stoichiometries) it is very

hard to state any general remarks about the solution. For the cases considered so far, it was

found that there was only one real solution larger than zero.

4 The numerical method

Various numerical methods are known to solve Stefan problems. In Crank [3] the following

types of method are distinguished: front-tracking, front-�xing, and �xed-domain methods.

The latter two methods can only be used when the concentration on the interface is a con-

stant. We choose a front-tracking method to solve our problem numerically, because in this

problem the concentrations on the time-dependent boundaries are variable. We use the front-

tracking method of Murray and Landis [7]. First an outline of the numerical method is given.

Thereafter each part is described in more detail.

The equations are solved with a �nite di�erence method in the r and t-direction. A char-

acteristic feature of a front-tracking method is that the interface positions are nodal points

in every time-step. So, the position of the grid points depends on time. An outline of the

algorithm is:

1. Compute the concentration pro�les solving the nonlinear problem given by (2),...,(6),(8),

2. Predict the positions of S

1

and S

2

at the new time-step: S

1

(t +�t) and S

2

(t+ �t),

3. Redistribute the grid such that S

1

(t+�t) and S

2

(t +�t) are nodal points,

4. Return to step 1.

We introduce the following notation: the time-step is �t = T=N

T

, and the positions of the

interfaces are denoted by S

j

k

= S

k

(j�t); k 2 f1; 2g. The step-size in the space direction

is �r

j

=

S

j

2

�S

j

1

N

, and r

j

i

= S

j

1

+ i�r

j

; i 2 f0; :::; Ng. In some expressions r

j

i�

1

2

is used,

which is equal to S

j

1

+ (i�

1

2

)�r

j

. Finally, the concentration c

k

(r

j

i

; j�t) is approximated by

c

j

k;i

; k 2 fB;Cg. In the remainder of this section we give a detailed description of the various

parts of our algorithm. In this paper we explain the method for an equidistant grid. In

practice one can save much computation time when the grid is re�ned in the neighbourhood

of the moving boundaries.

Discretization of the interior region

In this paragraph we use the symbols c and D instead of c

B

; c

C

; D

B

, or D

C

. We suppose

that S

j+1

k

and c

j

i

are given. The concentration on the new time-step satis�es the following

equation:

c

j+1

i

D�t

+ f[(r

j+1

i+

1

2

)

a

+ (r

j+1

i�

1

2

)

a

]c

j+1

i

� (r

j+1

i�

1

2

)

a

c

j+1

i�1

� (r

j+1

i+

1

2

)

a

c

j+1

i+1

g=f(r

j+1

i

)

a

(�r

j+1

)

2

g =

1

D�t

fc

j

i

+

c

j

i+1

� c

j

i�1

2�r

j

(r

j+1

i

� r

j

i

)g; i = 1; :::; N � 1: (15)
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In this formula central di�erences are used to discretize the term

1

r

a

@

@r

(r

a

@c

@r

). The �nal term

is caused by the changing mesh. The value of c

j

i

is given in the point (r

j

i

; j�t). However, for

the time derivative it is necessary to evaluate c

j

i

at (r

j+1

i

; j�t). Linear interpolation is used

to approximate this value:

c

j

i

(r

j+1

i

; j�t) ' c

j

i

+ (

@c

@r

)

j

i

(r

j+1

i

� r

j

i

) ' c

j

i

+

c

j

i+1

� c

j

i�1

2�r

j

(r

j+1

i

� r

j

i

):

For a > 0 a division by zero could occur in (15) when r

j+1

i

= 0. Since i � 1 and S

j

1

�M

1

� 0,

the value of r

j+1

i

is always positive, so (15) is valid also for a > 0.

Discrete boundary condition at a �xed boundary

At a �xed boundary the Neumann boundary condition (4) holds. For a discrete version of

this condition we assume that (15) is also valid for i = 0, and i = N . Note that virtual con-

centrations c

j+1

�1

, and c

j+1

N+1

occur. These concentrations are eliminated by using the discrete

analogue of (4):

c

j+1

1

� c

j+1

�1

2�r

j+1

= 0;

c

j+1

N+1

� c

j+1

N�1

2�r

j+1

= 0: (16)

An exception is made for the case i = 0, and a > 0, because then equation (15) contains a

division by zero. Now equation (4) is replaced by a balance of atoms. For a = 2 the balance

is considered for a sphere with radius

�r

j+1

2

:

c

j+1

0

� c

j

0

�t

�

4�

3

�

�r

j+1

2

�

3

= D � 4�

�

�r

j+1

2

�

2

�

c

j+1

1

� c

j+1

0

�r

j+1

:

Using cylinder coordinates a similar expression holds. After simpli�cation for spherical and

cylindrical geometry the resulting equations are

c

j+1

0

� c

j

0

�t

�

�r

j+1

2(a+ 1)

= D �

c

j+1

1

� c

j+1

0

�r

j+1

; a 2 f1; 2g: (17)

Discrete boundary condition at a moving boundary

In the numerical method we assume that the positions of the boundaries are known at

t

j+1

= (j + 1)�t. Hence, on each boundary (S

1

; S

2

) two boundary conditions (6, 8) are

necessary. The derivatives used in (8) are discretized with central di�erences including the

virtual concentrations c

j+1

�1

, and c

j+1

N+1

. We assume again that (15) holds for i = 0, and i = N .

Condition (6) is replaced by:

(c

j+1

B;0

)

m

� (c

j+1

C;0

)

n

= K; (c

j+1

B;N

)

m

� (c

j+1

C;N

)

n

= K: (18)

Summarising, we note that at the new time-step 2(N + 3) unknowns are used, whereas up

to now only 2(N + 2) equations are speci�ed. This implies that the solution consists of a

two-parameter family. To determine a unique solution we assume that all concentrations are

a function of c

j+1

B;0

, and c

j+1

B;N

. These remaining unknowns are determined by the following

coupled nonlinear equations (compare (8)):

f

1

(c

j+1

B;0

; c

j+1

B;N

) � D

B

(c

C;part

� c

j+1

C;0

)(c

j+1

B;1

� c

j+1

B;�1

)� D

C

(c

B;part

� c

j+1

B;0

)(c

j+1

C;1

� c

j+1

C;�1

) = 0;

(19)
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and

f

2

(c

j+1

B;0

; c

j+1

B;N

) � D

B

(c

C;part

� c

j+1

C;N

)(c

j+1

B;N+1

� c

j+1

B;N�1

)� D

C

(c

B;part

� c

j+1

B;N

)(c

j+1

C;N+1

� c

j+1

C;N�1

) = 0:

(20)

So the problem has been reduced to obtaining a root for the vector function (f

1

; f

2

). We

approximate this root by the Newton-Raphson method.

The p-th iterates of the concentrations are denoted by c

j+1

B;i

(p); i 2 f0; Ng: The continuous

Newton-Raphson method runs as follows

 

c

j+1

B;0

(p+ 1)

c

j+1

B;N

(p+ 1)

!

=

 

c

j+1

B;0

(p)

c

j+1

B;N

(p)

!

+ (J(p))

�1

�

�

�f

1

(p)

�f

2

(p)

�

; (21)

where J is the Jacobian. In practice it is impossible to compute J , so we use a discrete

approximation

^

J . The elements of the 2� 2 matrix

^

J are

^

J

k;i

= [f

k

(c

j+1

B;0

+ (2� i)"; c

j+1

B;N

+ (i� 1)")� f

k

(c

j+1

B;0

� (2� i)"; c

j+1

B;N

� (i� 1)")]=2"; k; i 2 f1; 2g:

The discretization of the Jacobian is determined using a central di�erence in order to guar-

antee an accuracy of O("

2

). From a numerical point of view it is important to note that "

has to be su�ciently small, but larger than the accuracy of the numerical scheme to evaluate

the concentrations.

To start the Newton-Raphson procedure an initial guess has to be found. To prevent con-

vergence to an undesired root, the initial guess is chosen as close as possible to the root. For

time-steps j > 1, the boundary concentrations from the former time-step are chosen as initial

guesses. However, at time step j = 1, the roots of (see equation (14))

x� c

0

B

(r

i

)

c

B;part

� x

r

D

B

D

C

=

m

q

K

x

n

� c

0

C

(r

i

)

c

C;part

�

m

q

K

x

n

; i 2 f0; Ng (22)

are used. We terminate the iteration when

jc

j+1

B;0

(p+ 1)� c

j+1

B;0

(p)j+ jc

j+1

B;N

(p+ 1)� c

j+1

B;N

(p)j < ":

The given approach is adapted for the case a > 0 and S

j+1

1

< �r

j+1

. In this case the virtual

grid-point near S

1

is released. The derivatives in equation (8) are replaced by one-sided dif-

ferences, and (15) is no longer used for i = 0.

Adaptation of the moving boundaries

We have only used one half of the boundary conditions given in (7) to determine the concen-

trations. The remaining conditions are used to adapt the positions of the moving boundaries.

An explicit time discretization yields

S

j+1

1

� S

j

1

�t

=

D

B

c

B;part

� c

j

B;0

c

j

B;1

� c

j

B;�1

2�r

j

;

S

j+1

2

� S

j

2

�t

=

D

B

c

B;part

� c

j

B;N

c

j

B;N+1

� c

j

B;N�1

2�r

j

: (23)
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Due to the explicit nature of this adaptation it is important to choose the time-step not

too large relative to the grid-size. In our computations we choose �t such that �t �

10(�r

0

)

2

=maxfD

B

; D

C

g. The virtual concentrations c

j

B;�1

; c

j

B;N+1

, are computed from (15).

For a > 0 and S

j

1

< �r

j+1

the central �nite di�erence to approximate

@c

B

@r

(S

1

(t); t) is replaced

by a one-sided �nite di�erence, as has been mentioned in the previous paragraph. When the

distance between a moving boundary and a �xed boundary is small (

S

j+1

k

�M

k

S

0

k

�M

k

< "; k 2 f1; 2g)

we �x the boundary (S

j+1

k

= M

k

; k 2 f1; 2g), and change the boundary conditions accord-

ingly.

5 Numerical experiments

The accuracy of the computations

In order to determine the accuracy of the calculations, grid-size and time-step dependence

tests have been carried out. The results are shown in �gures 1 and 2. The following input
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Figure 1: Relative position of the interface
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Figure 2: Relative position of the interface

S

1

(t)=S

1

(0); without a virtual point

parameters have been used: D

C

= 2�D

B

= 2�10

�13

m

2

/s, c

0

p

= 0; c

p;part

= 50; p 2 fB;Cg; K =

1; m = n = 1; S

1

(0) = 10

�6

m, M

2

� S

1

(0) = 5 � 10

�6

m, S

2

(0) = M

2

; and we assume

spherical geometry. The grid-size and time-step were decreased until the di�erences are

negligible for the whole simulation. It can be seen in �gures 1 and 2 that the distances

between all curves are negligible for small times. For larger times the di�erences increase.

The use of a virtual point at the interface increases the accuracy considerably. The observed

rate is O(�r

2

) with a virtual point and O(�r) without a virtual point.

In case of the use of a virtual grid point, the central discretization reads as follows:

c

j

p;1

� c

j

p;�1

2�r

j

=

@c

p

@r

(S

1

(t

j

); t

j

) +

(�r

j

)

2

6

@

3

c

p

@r

3

(�

1

; t

j

); �

1

2 (S

1

(t

j

)��r

j

; S

1

(t

j

) + �r

j

):

Without the use of a virtual grid point we have the following one-sided discretization:

c

j

p;1

� c

j

p;0

�r

j

=

@c

p

@r

(S

1

(t

j

); t

j

) +

�r

j

2

@

2

c

p

@r

2

(�

2

; t

j

); �

2

2 (S

1

(t

j

); S

1

(t

j

) + �r

j

):
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In the vicinity of the interface we observe the following inequalities:

@c

p

@r

< 0;

@

2

c

p

@r

2

> 0;

@

3

c

p

@r

3

< 0:

Therefore respectively in case of the presence of a virtual grid point and without a virtual grid

point, the discretization at the interface overestimates (Figure 1) respectively underestimates

(Figure 2) the interface velocity.

A comparison of the analytical and numerical solution

As has been mentioned before, the initial guess for the interfacial concentrations is based on

some analytical considerations. The derivation of this analytical approximation is summarised

in Chapter 3. This expression holds for spherical symmetry, but it can be used for planar

geometry as well [1]. Unfortunately, this derivation has to be done under the assumption that

the interfacial concentration remains constant during the entire dissolution process. At the

early stages of the dissolution process, the interfacial concentration does not remain constant

(see Figure 3). To compute the interfacial concentration we iterate the analytical solution

using the following predictor-corrector method with a su�ciently small time-step:

Predictor-corrector method

1. Compute ĉ

B;sol

(�t) from (14), j = 1;

2. Substitute ĉ

B;sol

(�t) in (12) and compute S

1

(j ��t);

3. Using S

1

(j ��t), obtain c

B;sol

((j + 1) ��t) from (8) and (13), j := j + 1, go to 2.

The results obtained with the analytic approach are of the same order of magnitude as

the results obtained using the �nite di�erence scheme (see Figure 3). The �nite di�erence

results in Figure 3 have been obtained using various M

2

=S

1

(0)-values. Though there is a
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Figure 4: Relative size of the Jacobian ele-

ments

small di�erence between the results from the analytical and numerical scheme already at

early stages, it can be seen that for large M

2

=S

1

(0)-values the match between the analytical

approximation and the numerical solution is good. This is as expected, because the analytical
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approximation is based on the dissolution of a spherical particle in an in�nite medium. The

di�erences at early stages are due to the rather large variation of the Dirichlet conditions

with time. At later stages, the Dirichlet conditions vary less with time and the di�erence

between the results stops increasing. An advantage of the analytical approximation is that it

costs a negligible amount of CPU-time. However, in reality the e�ects of soft-impingement

(a bounded domain) are relevant. Then the analytical approximation is not reliable.

An analysis of the discretized Jacobian

In Section 4 the Newton-Raphson procedure to obtain the Dirichlet conditions has been

outlined. In this method the Jacobian plays an important role. The Jacobian consists of the

derivatives of both boundary functions f

i

; i 2 f1; 2g with respect to c

B;sol

at both boundaries.

Therefore during each zero point iteration we determine f

1

; f

2

at (c

B;sol

(S

1

); c

B;sol

(S

2

));

(c

B;sol

(S

1

)�"; c

B;sol

(S

2

)); and (c

B;sol

(S

1

); c

B;sol

(S

2

)�"), which means that in every iteration

the discretized equations have to be solved 5 times. It is obvious that for the case that the

di�usion �elds between the boundaries S

1

and S

2

do not interact, the o�-diagonal coe�cients

of the Jacobian are negligible and could be set zero. In this case it is su�cient to evaluate f

1

; f

2

at (c

B;sol

(S

1

); c

B;sol

(S

2

)); (c

B;sol

(S

1

) + "; c

B;sol

(S

2

) + "); and (c

B;sol

(S

1

) � "; c

B;sol

(S

2

) � "),

so the discretized equations need only be solved 3 times, which speeds up the calculation.

For each time-step, about 4 Newton-Raphson iterations had to be applied to get the desired

accuracy.

The o�-diagonal Jacobian terms have been analysed relative to the diagonal Jacobian terms

(i.e. J

1;2

=J

1;1

and J

2;1

=J

2;2

). It appeared that these values remained approximately constant

during an entire simulation, also when the di�usion �elds of both phases started to impinge. In

Figure 4 the o�-diagonal Jacobian terms have been displayed as a function of the dimensionless

time-step de�ned by: � = N

2

�min(D

B

; D

C

) ��t=(S

2

(0)� S

1

(0))

2

. It can be seen that the

inuence of the cross-terms in the Jacobian increases with increasing time-step. This may

be explained using the theory of penetration. It can be proved that for a planar medium

the penetration depth as a function of time is given by L(t) =

p

� �max(D

B

; D

C

) � t. The

penetration depth corresponds to the minimal distance from one of the moving boundaries to

the position where the concentration has been unchanged. For the ternary case, the interfacial

concentrations change during each time-step �t. If L(�t) . S

2

(0)� S

1

(0) then the changes

of the interfacial concentrations do not inuence each other, i.e. the o�-diagonal terms of the

Jacobian are negligible.

For the planar geometry, we have by symmetry J

1;2

=J

1;1

= J

2;1

=J

2;2

. In the cylindrical and

spherical cases we have the inequality J

1;2

=J

1;1

> J

2;1

=J

2;2

. This inequality becomes stronger

for the spherical case. The inequality will be explained for the spherical geometry. As the

area of S

2

is larger than the area of S

1

and the area increases from S

1

to S

2

, the inuence

on the boundary condition at S

1

by the boundary condition at S

2

will be larger than the

inuence on the boundary condition at S

2

by the boundary condition at S

1

. Therefore we

have the inequality J

1;2

=J

1;1

> J

2;1

=J

2;2

. A similar explanation may be given for the case of

cylindrical geometry.

For the planar geometry, the penetration depth may be written as

L(�t) =

p

� �max(D

B

; D

C

) ��t) =

s

� �max(D

B

; D

C

) � �

min(D

B

; D

C

)

�

S

2

(0)� S

1

(0)

N
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From this it follows that:

p

�

N

=

s

min(D

B

; D

C

)

� �max(D

B

; D

C

)

�

L(�t)

S

2

(0)� S

1

(0)

is an important dimensionless number. From Figure 4 it can be seen that if

p

�=N < 0:1 the

o�-diagonal terms of the Jacobian are negligible for all geometries. In most of our simulations

� is taken in the range [10,100]. So when N is larger than 100 the o�-diagonal terms of the

Jacobian contribute very little. This is a weak condition, because N should also be larger

than 100 for accuracy.

Application to the movement of two boundaries in a ternary alloy

Some calculations for a ternary alloy have been carried out with two simultaneously moving

boundaries. Figure 5 shows some results for the boundary position as a function of time. The

input parameters for these curves are D

C

= 2 � D

B

= 2 � 10

�13

m

2

/s, c

0

p

= 0; c

p;part

= 50; p 2

fB;Cg; K = 1; m = n = 1; S

1

(0) = 7:5 � 10

�7

m, M

2

= 5 � 10

�6

m, M

2

� S

2

(0) = 2 � 10

�8

m, N = 500;�t = 100 ��r

2

=max(D

B

; D

C

).

It can be seen in Figure 5 that the dissolution time is largest for a spherical segregation

layer (S

2

). For both cylindrical and spherical geometries the surface of the segregation layer

increases during the dissolution process. For the particle (S

1

) it takes most time to dissolve

for the planar geometry, as the surface of the particle decreases during dissolution for both

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
el

at
iv

e 
po

si
tio

n

i = 1, planar

i = 1, cylindrical

i = 1, spherical

i = 1, S
2
(0) = M

2
, spherical

i = 2

Figure 5: Relative position of the inter-
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, ... c
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)

cylindrical and spherical geometry. For a comparison the curve of S

1

, without the presence of

S

2

, versus time has been displayed for a spherical geometry. It appears that the dissolution

of a particle is considerably delayed by the presence of a segregation layer. It can be observed

as well that at the early stages there is no inuence on the dissolution kinetics of S

1

from the

boundary S

2

.

To illustrate the behaviour of the concentration pro�le, the concentration pro�les of both

chemical elements at di�erent times have been presented in Figure 6 for the spherical geo-

metry. As is to be expected, at the early stages the pro�les are very steep. The interfacial
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Figure 7: The concentration ĉ

B;sol

at t = 0

concentrations at S

1

converge during dissolution as a result of soft-impingement. For the

concentration pro�le at t = 5 seconds, Dirichlet conditions are in e�ect at both boundaries:

both S

1

and S

2

are moving. For t = 10 seconds it can be seen that the boundary condition

at S

2

has changed into a Neumann condition: no mass transfer is allowed over the boundary.

Later, when S

1

=M

1

(dissolution of the particle) a Neumann condition is applied at S

1

too.

Finally the pro�le becomes homogeneous.

The inuence of the stoichiometry on the boundary conditions at S

1

Figure 7 shows the boundary condition at S

1

for the element B as a function of the particle

stoichiometry, i.e. B

n

C

m

. As input parameters we used D

C

= 2 � D

B

= 2 � 10

�13

m

2

/s,

c

0

p

= 0; c

p;part

= 50; p 2 fB;Cg; K = 1. The results in the �gure are obtained from Equation

(14) for various choices of n and m . From the �gure it is clear that the stoichiometry of the

phase contributes signi�cantly to the constitution of the boundary conditions.

The inuence of the di�usion coe�cients of both elements

To illustrate once more the applicability of the model, some calculations have been carried

out for the case of a stoichiometric spherical second phase Mg

2

Si and Mg

2

X in a ternary

aluminium alloy. The di�usion coe�cients D

Si

and D

Mg

, taken from Fujikawa [4] and Yamane

[6] for a temperature of 793 K, are 2:15 � 10

�13

m

2

/s and 3:24 � 10

�13

m

2

/s respectively. Fur-

thermore, the initial particle radius, the cell radius, and initial matrix concentrations have

been taken respectively as 10

�6

m, 8 � 10

�6

m, 0, 0. For K the value of 0.35 has been used.

As the calculation concerns an Mg

2

X particle, we have c

Mg;part

= 66:7%.

In Figure 8 the interfacial position for the case of dissolution of a spherical Mg

2

X particle

in aluminium is given. Various choices for the di�usion coe�cient D

X

are used. The special

choice D

X

= D

Mg

corresponds to the dissolution of an Mg particle, so this is a binary alloy.

Note that initially the interfacial velocity decreases. At the �nal stages of dissolution, the

interfacial area has become so small, that the interfacial velocity has to be large to satisfy

the Stefan condition. It can be seen from Figure 8 that the addition of a second element can

inuence the dissolution kinetics strongly.

Figure 9 represents the interfacial concentration at S

1

of both alloying elements as a function

14
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of time. From Figure 9 it is clear that at the initial stages the atoms of the slower element

accumulate near the interface. On the other hand, the atoms of the faster element di�use

deeper into the matrix. This causes the diverging behaviour of the interfacial concentrations

at early stages.

A more detailed analysis in which the stoichiometry, cell size and di�usion coe�cient have

been varied can be found in [15].

6 Conclusions

A mathematical model is given to describe the dissolution of stoichiometric multi-component

particles in ternary alloys. Some results concerning existence and uniqueness are given. How-

ever, a number of open questions remain.

An analytical approximate solution is given, valid when the dissolution takes place in an un-

bounded domain. The results are cheap to calculate and they are reasonably accurate. This

analytical approximation can also be used for short simulation times in a bounded domain,

or as starting solution for the Newton-Raphson process used in the numerical method.

The numerical method described is second order accurate when virtual points are used to

discretize the boundary conditions at the interface.

A criterion is given to estimate when the o�-diagonal terms of the Jacobian are negligible.

Then the computational work can be decreased considerably.

The numerical solutions lead to valuable insight for metallurgical applications.
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