
Journal of Computational and Applied Mathematics 330 (2018) 193–213

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

On POD-based Deflation Vectors for DPCG applied to porous
media problems
G.B. Diaz Cortes a,*, C. Vuik a, J.D. Jansen b

a Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
b Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 6 February 2017

Keywords:
Deflation
POD
PCG
Single-phase flow
Heterogeneous porous media

a b s t r a c t

We study fast and robust iterative solvers for large systems of linear equations resulting
from simulation of flow through strongly heterogeneous porous media. We propose the
use of preconditioning and deflation techniques, based on information obtained from the
system, to reduce the time spent in the solution of the linear system.

An important question when using deflation techniques is how to find good deflation
vectors, which lead to a decrease in the number of iterations and a small increase in the
required computing timeper iteration. In this paper,wepropose theuse of deflation vectors
based on a POD-reduced set of snapshots. We investigate convergence and the properties
of the resulting methods. Finally, we illustrate these theoretical results with numerical
experiments. We consider compressible and incompressible single-phase flow in a layered
modelwith variations in the permeability layers up to 103 and the SPE 10 benchmarkmodel
with a contrast in permeability coefficients of 107. Using deflation for the incompressible
problem, we reduce the number of iterations to 1 or 2 iterations. With deflation, for the
compressible problem, we reduce up to ∼ 80% the number of iterations when compared
with the only-preconditioned solver.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Often,most computational time spent during the simulation ofmulti-phase flow through porousmedia is taken up by the
solution of the pressure equation. This involves, primarily, solving large systems of linear equations as part of the iterative
solution of the time and space discretized, governing nonlinear partial differential equations. The time spent in solving the
linear systems depends on the size of the problem and the heterogeneity, i.e. the spatial variations of rock permeability
values within the medium (permeability is an inverse measure of the resistance to flow, which is related to the porosity and
the pore structure of the rock). Solution of problems with extreme contrasts in the permeability values may lead to very
large computing times.

Iterative methods are known to be the best option to solve such extreme problems. However, sometimes, iterative
methods are not sufficient to solve these problems in a reasonable amount of time. As the systems become larger or ill-
conditioned, finding a way to accelerate the convergence of these methods becomes necessary. Preconditioning is a way
to accelerate convergence, but new preconditioning techniques still need to be developed to improve the performance
of iterative methods [1,2]. Reduced Order Models (ROM) have also been studied to improve computational efficiency by

* Corresponding author.
E-mail address: g.b.diazcortes@tudelft.nl (G.B. Diaz Cortes).

http://dx.doi.org/10.1016/j.cam.2017.06.032
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.06.032
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.06.032&domain=pdf
mailto:g.b.diazcortes@tudelft.nl
http://dx.doi.org/10.1016/j.cam.2017.06.032

194 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

reducing the model size without losing essential information [3–5]. A potential ROM to reduce the computing time for
large-scale problems is Proper Orthogonal Decomposition (POD). A method that has been investigated for flow problems
in porousmedia, in [6–15], among others. The use of a POD-based preconditioner for acceleration of the solution is proposed
by Astrid et al. [11] to solve the pressure equation resulting from two-phase reservoir simulation, by Jiang et al. [14] for a
similar application and by Pasetto et al. [15] for groundwater flow models.

The POD method requires the computation of a series of ‘snapshots’ which are solutions of the problem with slightly
different parameters orwell inputs. Astrid et al. [11] use snapshots in the formof solutions of the pressure equation computed
in a small number of short pre-simulations, prior to the actual simulation. The snapshots are obtained with diverse well
configurations. They report promising speed ups with factors between three and five. They note that the overhead required
to pre-compute the POD solutions implies that the method will be particularly attractive when many solutions of near-
similar simulationmodels are required. A similar approach is followed by Jiang [14], who concludes that POD-based pressure
preconditioning does not appear to be an ideal choice, due to its dependence on the differences between the right-hand sides
(forcing terms) used in the pre-simulations and the actual simulation. The snapshots computed by Pasetto et al. [15] are
solutions of the previous time steps in the full-model. Once the snapshots are computed, the POD method is used to obtain
a set of basis vectors that capture the most relevant features of the system, which can be used to speed-up the subsequent
simulations.

The method of Pasetto et al. [15] is partly based on the work of Markovinovic and Jansen [8], who use a similar, but more
restricted approach, in which the acceleration is achieved by only improving the initial guess.

Problems with high contrast between the permeability coefficients are, sometimes, approached through the use of
deflation techniques, see, e.g., [16]. These techniques involve the search of good deflation vectors, which are, usually,
problem-dependent. In [16], subdomain based deflation vectors are used for layered problemswith a large contrast between
permeability coefficients. However, these deflation vectors cannot be used if the distribution of the permeability coefficients
is not structured, as is usually the case in reservoir simulation models; see, e.g., the well-known SPE 10 benchmark
problem [17].

Algebraic Multigrid (AMG) [18], Multi-level and Domain Decomposition [19] preconditioners have been studied in
combination deflation techniques to accelerate the convergence of iterative methods. In [8,11,15], after computing a basis
from the previously obtained snapshots, the solution is computed in the subspace generated by this basis and then projected
back to the original high-dimensional system. Carlberg et al. [20] also use POD to obtain information from the system,
in particular, the previous time step solutions. Then, a Krylov-subspace is constructed using the information obtained
previously.

Following the ideas of [8,11,15,20], we propose the use of POD of many snapshots to capture the system’s behavior and
combine this technique with deflation to accelerate the convergence of an iterative Krylov method. In this work, instead of
computing the solution in a low dimensional subspace, the basis obtained with POD is proposed as an alternative choice for
the deflation vectors to accelerate the convergence of the pressure solution in reservoir simulation.

This work is divided into six sections. Section 2 is devoted to a detailed description of the models used to simulate flow
through a porous medium. In Section 3, we present some theory about the linear solvers used in this work and we introduce
preconditioning and deflation techniques. In Section 4, we present some theory about POD. We prove two lemmas that will
help us in the choice of good deflation vectors for the incompressible case studied in Section 5.

In Section 6, we present numerical experiments, we describe the studied problem, the solver and the preconditioning
and deflation techniques used to speed up the solver. The results are also presented in this section. Finally, we end with the
conclusions.

2. Flow through porous media

Petroleum reservoirs are layers of sedimentary rock, which vary in terms of their grain size and mineral contents. The
volume fraction of the rock in-between the grains, i.e. the void space, is called rock porosity, a scalar quantity indicated with
φ. The ability of the rock to transmit a single fluid, when the void space is completely filled with fluid, is known as rock
permeability, a tensor quantity indicated with K .

Reservoir simulation is a way to analyze and predict the fluid behavior in a reservoir. The description of subsurface
flow simulation involves two types of models: geological (static) and flow (dynamic) models. The static model is used to
describe spatial properties of the reservoir, i.e. the porosities and permeabilities, which are parameters for the dynamic
model. The dynamic model is subsequently used to predict fluid pressures and flow taking into account mass conservation
and Darcy’s law, an empirical, simplified version of the momentum conservation equations. The corresponding equations
used to describe single-phase flow through a porous medium are (see, e.g. [21–23]):

∂(ρφ)
∂t

+ ∇ · (ρv) = q, v = −
K
µ
(∇p − ρg∇z), (1)

or
∂(ρφ)
∂t

− ∇ ·

(
ρK
µ

(∇p − ρg∇z)
)

= q, (2)

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 195

where the pressure p is the primary unknown, g is the constant of gravity, d is the reservoir depth, ρ and µ are the fluid
density and viscosity and q is a source term (i.e. an injection or production well). A list of notation is presented in Appendix
A. The fluid density ρ = ρ(p) and the rock porosity φ = φ(p) can be pressure-dependent. Rock porosity is related to the
pressure via the rock compressibility. The relation is given by:

cr =
1
φ

dφ
dp

=
d(ln(φ))

dp
.

If the rock compressibility is constant, the previous equation can be integrated as:

φ(p) = φ0ecr (p−p0). (3)

The fluid density and the pressure are related via the fluid compressibility cf , according to:

cf =
1
ρ

dρ
dp

=
d(ln(ρ))

dp
.

If the fluid compressibility is constant, the previous equation can be integrated as:

ρ(p) = ρ0ecf (p−p0). (4)

To solve Eq. (2), it is necessary to supply conditions at the boundary of the domain. While, for parabolic equations, we also
need to impose initial conditions. Boundary and initial conditions will be discussed later for each problem.

2.1. Incompressible fluid

If the density and the porosity are not pressure-dependent in Eq. (2), we have an incompressible model, where density
and porosity do not change over time. Therefore, the incompressible model is time-independent. Assuming no gravity terms
and a fluid with constant viscosity, Eq. (2) then becomes:

−
ρ

µ
∇ · (K∇p) = q. (5)

Discretization
The spatial derivatives are approximated using a finite difference schemewith cell central differences. For a 3Dmodel, we

suppose a mesh with a uniform grid size∆x,∆y,∆z, where (i, j, l) is the center of the cell in the position i in the x direction,
j in the y direction, and l in the z direction (xi, yj, zl), and pi,j,l = p(xi, yj, zl) is the pressure at this point.

For the x direction, we have (see, e.g. [21–23]):

∂

∂x

(
k
∂p
∂x

)
=

∆

∆x

(
k
∆p
∆x

)
+ O(∆x2) =

ki+ 1
2 ,j,l

(pi+1,j,l − pi,j,l) − ki− 1
2 ,j,l

(pi,j,l − pi−1,j,l)

(∆x)2
+ O(∆x2),

where ki− 1
2 ,j,l

is the harmonic average of the permeability for cells (i − 1, j, l) and (i, j, l):

ki− 1
2 ,j,l

=
2

1
ki−1,j,l

+
1

ki,j,l

. (6)

After discretization, Eq. (5), together with boundary conditions, can be written as:

Tp = q, (7)

where T is known as the transmissibility matrix with elements in adjacent grid cells. The transmissibility (Ti− 1
2 ,j,l

) between
grid cells (i − 1, j, l) and (i, j, l) is defined as:

Ti− 1
2 ,j,l

=
2∆y∆z
µ∆x

ki− 1
2 ,j,l
. (8)

System (7) is a linear system, that can be solvedwith iterative or directmethods. For the solution of this system, it is necessary
to define boundary conditions in all boundaries of the domain. These conditions can be prescribed pressures (Dirichlet
conditions), flow rates (Neumann conditions) or a combination of these (Robin conditions).

2.2. Compressible fluid

If the fluid is compressible, with a constant compressibility, the density depends on the pressure (see Eq. (4)). Therefore,
Eqs. (1) become:

∂(ρ(p)φ)
∂t

+ ∇ · (ρ(p)v) = q, v = −
K
µ
(∇p − ρ(p)g∇z). (9)

196 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Discretization
Using backward Euler time discretization, Eqs. (9) are approximated by:

(φρ(p))n+1
− (φρ(p))n

∆tn
+ ∇ · (ρ(p)v)n+1

= qn+1,

vn+1
= −

K
µn+1 (∇(pn+1) − gρn+1

∇z). (10)

Assuming no gravity terms, constant fluid viscosity and constant rock porosity, Eqs. (10) become:

φ
ρ(pn+1) − ρ(pn)

∆tn
−

1
µ

∇ · (ρ(pn+1)K∇pn+1) + qn+1
= 0. (11)

Due to the dependence of ρ on the pressure, the latter is a nonlinear equation for p, that can be linearized with, e.g., the
Newton–Raphson (NR) method. Eq. (11) can be discretized in space, using, e.g. a finite differences scheme. After spatial
discretization, Eq. (11) reads:

V(pn+1) − V(pn)
∆tn

+ Tpn+1
= qn+1. (12)

We note that in a more general case, where also the porosity is pressure-dependent, a slightly more complex, mass
conservative formulation is usually employed (see [21–23]). As in the incompressible case, we need to define boundary
condition to solve Eq. (12). Dirichlet, Neumann or Robin boundary conditions can be used. For this problem, we also have a
derivative with respect to time. Therefore, it is also necessary to specify the initial conditions that are the pressure values of
the reservoir at the beginning of the simulation.

2.3. Well model

In reservoirs, wells are typically drilled to extract or inject fluids. Fluids are injected into a well or produced from a well
at constant rate or constant bottom-hole pressure (bhp).

When the bhp is prescribed, the flow rates into or from the wells are usually computed with the aid of a well model, that
takes into account the bhp and the average grid pressure in the block containing the well. This model is a linear relationship
between the bhp and the flow rate in a well. For a cell (i, j, l), that contains a well, this relationship is given by:

q(i,j,l) = I(i,j,l)(p(i,j,l) − pbh(i,j,l)), (13)

where I(i,j,l) is the productivity or injectivity index of the well, p(i,j,l) is the reservoir pressure in the cell where the well is
located, and pbh(i,j,l) is a prescribed pressure inside the well.

Incompressible fluid
Using the well model for an incompressible fluid, Eq. (7) transforms into:

Tp = Iw(p − pbh), (14)

where Iw is a diagonal matrix containing the productivity or injectivity indices of the wells present in the reservoir. The
diagonal elements are zero for cells without wells and have the value of the well index for each cell containing a well.

Compressible fluid
For a compressible fluid, using the well model, Eq. (12) reads:

φ
ρ(pn+1) − ρ(pn)

∆tn
−

1
µ

∇ · (ρ(pn+1)K∇pn+1) + Iw(pn+1
− pn+1

bh) = 0, (15)

or
V(pn+1) − V(pn)

∆tn
+ (T + Iw)pn+1

− Iw(pn+1
bh) = 0.

2.4. Solution procedure for compressible flow

As mentioned before, for the compressible problem, we have a nonlinear system, that depends on the pressure at the
time step n and the pressure at time step n + 1:

g(pn+1
; pn) = 0. (16)

This nonlinear system can be solved with the NR method. The resulting system for the (k + 1)th NR iteration is:

J(pk)δpk+1
= −g(pk

; pn), pk+1
= pk

+ δpk+1,

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 197

where J(pk) =
∂g(pk;pn)
∂pk is the Jacobian matrix, and δpk+1 is the NR update at iteration step k + 1.

Therefore, the linear system to solve is:

J(pk)δpk+1
= b(pk) (17)

with b(pk) being the function evaluated at iteration step k, b(pk) = −g(pk
; pn).

The procedure to solve a compressible flow problem consists of three stages. During the first stage, we increase the
time with one time step and solve Eq. (15) for the new time. Because of the nonlinearity of Eq. (15), we use an iterative
Newton–Raphson procedure that involves linearization at each iteration, i.e. we perform a series of iterations to find the
zeros of Eq. (16). For every NR iteration, the linear system in Eq. (17) is solved. In this work, the solution of the linear system
is performed with iterative methods (see Section 3). A summary of this procedure is presented in Algorithm 1.

Algorithm 1
for t = 0, ..., %Time integration

Select time step
for NR_iter = 0, ..., %NR iteration

Find zeros of g(pn+1
; pn) = 0

for lin_iter = 0, ..., %Linear iteration
Solve J(pk)δpk+1

= b(pk) for each NR iteration
end

end
end

3. Iterative solution methods

When simulating single-phase flow through a porous medium, we obtain a linear system of the form

Ax = b, (18)

for both compressible and incompressible models. Since A is SPD, we choose Conjugate Gradient (CG) as iterative method,
accelerated with the Incomplete Cholesky (IC) preconditioner. In this work, we also study the acceleration with deflation
techniques. In this section, we give a brief overview of the methods.

3.1. Conjugate gradient method

Given a starting solution x0 and the residual defined by rk = b − Axk, we define the Krylov subspace Kk as Kk(A, r0) =

span{r0,Ar0, . . . ,Ak−1r0} and xk ∈ x0 + Kk(A, r0) has a minimal error measured in the A-norm, for all the approximations
contained in x0 + Kk(A, r0). The error of this approximation is bounded by:

∥x − xk+1
∥A ≤ 2∥x − x0∥A

(√
κ2(A) − 1

√
κ2(A) + 1

)k+1

.1 (19)

The pseudo code for CG is given in Algorithm 2.

Algorithm 2 Conjugate Gradient (CG) method, solving Ax = b.

Give an initial guess x0.
Compute r0 = b − Ax0 and set p0

= r0.
for k = 0, ..., until convergence

αk
=

(rk,rk)
(Apk,pk)

xk+1
= xk + αkpk

rk+1
= rk − αkApk

βk
=

(rk+1,rk+1)
(rk,rk)

pk+1
= rk+1

+ βkpk

end

1 The condition number κ2(A) is defined as κ2(A) =

√
λmax(AT A)

√
λmin(AT A)

. If A is SPD, κ2(A) =
λmax(A)
λmin(A)

[24].

198 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

3.2. Preconditioning

To accelerate the convergence of a Krylovmethod, one can transform the system into another one, containing an iteration
matrix with a better spectrum, i.e, a smaller condition number. This can be done by multiplying the system from Eq. (18) by
a matrixM−1.

M−1Ax = M−1b. (20)

The new system has the same solution, but can provide a substantial reduction of the condition number. For this precondi-
tioned system, the error is bounded by:

∥x − xk∥A ≤ 2∥x − x0∥A

(√
κ(M−1A) − 1√
κ(M−1A) + 1

)k

. (21)

The matrixM is chosen as an SPD matrix such that κ(M−1A) ≤ κ(A), and M−1b is cheap to compute.

3.3. Deflation

Deflation is used to annihilate the effect of extreme eigenvalues on the convergence of an iterative method [16]. Given
an SPDmatrix A ∈ Rn×n, for a given matrix Z ∈ Rn×m the deflation matrix P is defined as follows [19,25]:

P = I − AQ, P ∈ Rn×n, Q ∈ Rn×n, (22)

where

Q = ZE−1ZT , Z ∈ Rn×m, E ∈ Rm×m,

with

E = ZTAZ.

The matrix E is known as the Galerkin or coarse matrix, which has to be invertible. If A is SPD and Z is full rank, then, E
is invertible. The full rank matrix Z is called the deflation − subspace matrix, and its columns are the deflation vectors or
projection vectors.

Deflated PCG method
To obtain the solution of linear system (18), we have to solve the deflated system (see Appendix D):

PAx̂ = Pb, (23)

with the CG method, for the deflated solution x̂. This deflated the solution is related to the solution x of the original system
as (see Appendix D):

x = Qb + PT x̂. (24)

The deflated linear system can also be preconditioned with an SPD matrix M. After preconditioning, the deflated precondi-
tioned system to solve with CG is [19]:

P̃Ã ˆ̃x = P̃b̃,

where:

Ã = M−
1
2 AM−

1
2 , ˆ̃x = M

1
2 x̂, b̃ = M−

1
2 b.

This method is called the Deflated Preconditioned Conjugate Gradient DPCG method. In practice M−1PAx = M−1Pb is
computed and the error is bounded by:

∥x − xi+1
∥A ≤ 2∥x − x0∥A

(√
κeff (M−1PA) − 1√
κeff (M−1PA) + 1

)i+1

,

were κeff =
λmax(M−1PA)
λmin(M−1PA)

is the effective condition number and λmin(M−1PA) is the smallest non-zero eigenvalue ofM−1PA.

Choices of deflation vectors
The deflation method is used to remove the effect of the most unfavorable eigenvalues of A. If the matrix Z contains

eigenvectors corresponding to the unfavorable eigenvalues, the convergence of the iterative method is achieved faster.
However, to obtain and to apply the eigenvectors is costly in view of memory and CPU time. Therefore, a good choice of
the matrix Z that efficiently approximates the eigenvectors is essential for the applicability of the method.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 199

A good choice of the deflation vectors is usually problem-dependent. Available information on the system is, in
general, used to obtain these vectors. Most of the techniques used to choose deflation vectors are based on approximating
eigenvectors, recycling [26], subdomain deflation vectors [1] or multigrid andmultilevel based deflation techniques [19,27].
A summary of these techniques is given below.

Recycling deflation. A set of search vectors previously used is reused to build the deflation-subspace matrix [26]. The
vectors could be, for example, q − 1 solution vectors of the linear system with different right-hand sides or of different
time steps. The matrix Z containing these solutions is:

Z = [x(1), x(2), . . . , x(q−1)
].

Subdomain deflation. The domain is divided into several subdomains, using domain decomposition techniques or taking
into account the properties of the problem. For each subdomain, there is a deflation vector that contains ones for cells in
the subdomain and zeros for cells outside [1].

Multigrid and multilevel deflation. For the multigrid and multilevel methods, the prolongation and restriction matrices
are used to pass from one level or grid to another. These matrices can be used as the deflation-subspace matrices Z [19].

4. Proper Orthogonal Decomposition (POD)

Asmentioned before, in thiswork,wewant to combine deflation techniques and Proper Orthogonal Decomposition (POD)
to reduce the number of iterations necessary to solve the linear system obtained from reservoir simulation, in a cheap and,
automatic way. In this section, we give a brief overview of the POD method.

The PODmethod is aModel Order Reduction (MOR)method, where a high-ordermodel is projected onto a space spanned
by a small set of orthonormal basis vectors. The high dimensional variable x ∈ Rn is approximated by a linear combination
of l orthonormal basis vectors [11]:

x ≈

l∑
i=1

ciψi, (25)

where, ψi ∈ Rn are the basis vectors and ci are their corresponding coefficients. In matrix notation, Eq. (25) is rewritten as:

x ≈ Ψ c,

where Ψ = [ψ1 ψ2 . . . ψl], Ψ ∈ Rn×l is the matrix containing the basis vectors, and c ∈ Rl is the vector containing the
coefficients of the basis vectors.

The basis vectorsψi are computed from a set of ‘snapshots’ {xi}i=1,...,m, obtained by simulation or experiments [8]. In POD,
the basis vectors {ψj}

l
j=1, are l eigenvectors, corresponding to the largest eigenvalues, {σj}lj=1, of the data snapshot correlation

matrix R.

R :=
1
m

XXT
≡

1
m

m∑
i=1

xixTi , X := [x1, x2, . . . xm], (26)

where X ∈ Rn×m is an SPSD matrix containing the previously obtained snapshots. The l eigenvectors should contain almost
all the variability of the snapshots. Usually, they are chosen as the eigenvectors of the maximal number (l) of eigenvalues
satisfying [8]:∑l

j=1 σj∑m
j=1 σj

≤ α, 0 < α ≤ 1, (27)

with α close to 1. The eigenvalues σj are ordered from large to small with σ1 the largest eigenvalue of R. It is not necessary
to compute the eigenvalues from XXT , but instead, it is possible to compute the eigenvalues of the much smaller matrix XTX
(see Appendix C).

In this study, we normalize the snapshots, so ∥xi∥2 = 1.

5. Deflation vector analysis

As mentioned in Section 3, it is important to choose ‘good’ deflation vectors if we want to speed up an iterative method.
We can use solutions of systems slightly different from the original (snapshots) as deflation vectors. For this, we need to

choose a way of selecting these snapshots. The idea behind this selection is to obtain a small number of snapshots and, at
the same time, obtain the largest amount of information from the system.

In this section, two lemmas are proved. The lemmas are helpful to select the systems used to obtain the snapshots.

200 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Lemma 1. Let A ∈ Rn×n be a non-singular matrix, and x be the solution of:

Ax = b. (28)

Let xi, bi ∈ Rn, i = 1, . . . ,m, be vectors linearly independent (l.i.) and

Axi = bi. (29)

The following equivalence holds

x =

m∑
i=1

cixi ⇔ b =

m∑
i=1

cibi. (30)

Proof (⇒).

x =

m∑
i=1

cixi ⇒ b =

m∑
i=1

cibi. (31)

Substituting x from (31) into Ax = b leads to:

Ax =

m∑
i=1

Acixi = A(c1x1 + · · · + cmxm).

Using the linearity of A the equation above can be rewritten as:

Ac1x1 + · · · + Acmxm = c1b1 + · · · + cmbm = Bc (32)

where B ∈ Rn×m, c ∈ Rm, and the columns of B are the vectors bi.
From (28) and (32) we get:

Ax = b = c1b1 + · · · + cmbm =

m∑
i=1

cibi.

Proof (⇐).

x =

m∑
i=1

cixi ⇐ b =

m∑
i=1

cibi. (33)

Substituting b from (33) into Ax = b leads to:

Ax =

m∑
i=1

cibi. (34)

Since A is non-singular, multiplying (29) and (33) by A−1 we obtain:

xi = A−1bi,

x = A−1
m∑
i=1

cibi =

m∑
i=1

ciA−1bi,

then

x =

m∑
i=1

cixi. ⊠ (35)

Lemma 2. If the deflation matrix Z is constructed with a set of m vectors

Z =
[
x1 · · · · · · xm

]
, (36)

such that x =
∑m

i=1cixi, with xi l.i., then the solution of system (28) is obtained with one iteration of DCG.

Proof. The relation between x̂ and x is given in Eq. (24):

x = Qb + PT x̂.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 201

For the first term Qb, taking b =
∑m

i=1cibi we have:

Qb = ZE−1ZT

(
m∑
i=1

cibi

)

= Z(ZTAZ)−1ZT

(
m∑
i=1

ciAxi

)
using Lemma 1

= Z(ZTAZ)−1ZT (Ax1c1 + · · · + Axmcm)
= Z(ZTAZ)−1ZT (AZc)
= Z(ZTAZ)−1(ZTAZ)c
= Zc = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

=

m∑
i=1

cixi = x.

Therefore,

x = Qb, (37)

is the solution to the original system.
For the second term of Eq. (24), PT x̂, we compute x̂ from Eq. (23):

PAx̂ = Pb
APT x̂ = (I − AQ)b using Appendix D(f) and definition of P,
APT x̂ = b − AQb
APT x̂ = b − Ax = 0 taking Qb = x from above,

PT x̂ = 0 as A is invertible.

Then we have obtain the solution

x = Qb + PT x̂ = Qb,

in one step of DCG. ⊠

5.1. Accuracy of the snapshots

If we use an iterativemethod to obtain an approximate solution xk for the systemAx = b,we cannot compute the relative
error er (Eq. (38)) of the approximation with respect to the true solution, because the true solution is unknown,

er =
∥x − xk∥2

∥x∥2
. (38)

Instead, we compute the relative residual rr (Eq. (39)),

rr =
∥rk∥2

∥b∥2
≤ ϵ, (39)

and we set a stopping criterion ϵ or tolerance, that is related to the relative error as follows [28] (see Appendix B),

∥x − xk∥2

∥x∥2
≤ κ2(A)ϵ = rr .

Various tolerance values can be used in the experiments for the snapshots, as well as, for the solution of the original system.
If the maximum relative residual for the snapshots (xi) is ϵ = 10−η , then, the error in the snapshots is given by

∥xi − xki ∥2

∥xi∥2
≤ κ2(A) × 10−η

= rr .

From Eq. (35), if we compute m snapshots with an iterative method such that the solution of x is a linear combination of
these vectors, after one iteration of DCG we obtain

x1 =

m∑
i=1

cix
1(i)
i ,

202 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

where x1(i)i is the approximated solution of the snapshot i after one DCG iteration.
The error of this solution is given by:

∥x − x1∥2

∥x∥2
=

∥
∑m

i=1 ci(xi − x1i)∥2

∥
∑m

i=1 cixi∥2
≤

∑m
i=1|ci| × κ2(A) × 10−η

∥
∑m

i=1 cixi∥2
,

which means that the approximation has an error of the order κ2(A) × 10−η.
From Lemma 2we know that if we use the snapshots xi as deflation vectors, for the deflationmethod the solution is given

by (Eq. (37)):

x = Qb.

If the approximation x1 has an error of the order κ2(A) × 10−η , then, the solution achieved with the deflation method will
have the same error,

Qb − x1 = κ2(A) × 10−η.

Therefore, it is important to take into account the condition number of the matrix to estimate the accuracy of the deflation
vectors.

5.2. Boundary conditions

From Lemma 2, we know that if we use as deflation vectors a set ofm snapshots

Z = [x1 . . . xm],

such that x =
∑m

i=1cixi, where x is the solution of the system Ax = b, the solution of the latter system is achieved with one
DCG iteration.

In our application, only a small number (m) of elements of the right-hand side vector b can be changed. This implies that
every b can be written as b =

∑m
i=1cibi.Using Lemma 1, this implies that x is such that x ∈ span{x1, . . . , xm}, which is called

the solution span. Therefore, it is necessary to find the solution span of the system, such that the sum of the elements in the
solution span and the sum of right-hand sides give as result the original system. In this section, we explore the subsystems
that should be chosen, depending on the boundary conditions of the original system.

Neumann boundary conditions
WhenwehaveNeumannboundary conditions everywhere, the resultingmatrixA is singular, andA[1 1 . . . 1 1]T =

0, Ker(A) = span([1 1 . . . 1 1]T). Note that Ax = b has only a solution if b ∈ span{a1, . . . , an} (with ai the ith column
of A), which is equivalent to b ⊥ Ker(A) [29]. This implies that, if we havem sources with value si for the vector bi, we need
that

m∑
j=1

sji = 0.

Then, for each nonzero right-hand side, we need to have at least two sources. Therefore, we can have at mostm− 1 linearly
independent right-hand sides bi containing two sources.

This means that the solution space has dimension m − 1 and it can be spanned by span{x1, . . . , xm−1}. Each of these
subsystems will have the same no-flux conditions (Neumann) in all the boundaries. As the original system is a linear
combination of the subsystems (Lemma 1), the deflation vectors can be chosen as the solutions corresponding to the
subsystems. Therefore, the deflation matrix will be given by:

Z = [x1 . . . xm−1],

and if the accuracy of the snapshots used as deflation vectors is good enough (see Section 5.1), the solution is expected to be
achieved in one DCG iteration.

Dirichlet boundary conditions
In this case, the right-hand side of the system can contain the values of the boundary bb and the sources of the system si.

If we havem sources, as in the previous case, the right-hand side will be given by:

b =

m∑
i=1

cisi + bb.

The subsystems will be m + 1, where one of them corresponds to the boundary conditions Axb = bb, and the other m
will correspond to the sources Axi = si. Therefore, snapshot m + 1 will be the solution xb of the system with no sources
and the Dirichlet boundary conditions of the original system. The other m snapshots will correspond to the m sources with
homogeneous Dirichlet boundary conditions. Then, the solution space will be given by span{x1, . . . , xm, xb}. If we use the
solution of the m + 1 snapshots as deflation vectors, with the correct accuracy, we will obtain the solution within one DCG
iteration.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 203

6. Numerical experiments

6.1. Model

We study the solution of systems of linear equations resulting from the discretization of elliptic and parabolic partial
differential equations for the description of single-phase flow through a porous medium. The solution of the linear system is
performedwith theConjugateGradientmethodpreconditionedwith Incomplete Cholesky (ICCG) and theDeflatedConjugate
Gradient method preconditioned with Incomplete Cholesky (DICCG). We propose the use of snapshots and snapshots-based
POD basis vectors as deflation vectors for the above-mentioned method.

In the present section, we give a general overview of the experiments we perform, but the specifications are presented
below for each problem separately. We solve the elliptic problem (incompressible flow) and the parabolic problem
(compressible flow). Neumann homogeneous boundary conditions (no-flux) are imposed for an academic layered problem
and for the SPE 10 benchmark problem.

The model
The experiments simulate flow through a porousmediumwith a constant porosity field of 0.2. Wemodel incompressible

and compressible single-phase flow. For the single-phase model the following properties of the fluid are used:

• µ = 1 cp,
• ρ = 1014 kg/m3.

In the compressible case, the compressibility of the fluid is:

• cf = 1 × 10−3.

The matrices corresponding to the linear systems A and right-hand sides b are obtained with the Matlab Reservoir
Simulation Toolbox (MRST) [30].

Snapshots
As mentioned before, for the DICCG method we need a set of deflation vectors. In the first series of experiments

(incompressible model), the deflation vectors are solutions of the systemwith various wells configurations. These solutions,
called snapshots, are obtained with the ICCG method. For the compressible problem, the snapshots are the solutions of the
previous time steps with the same well configuration. We also propose the use of a POD basis as deflation vectors, obtained
from the previously computed snapshots for the incompressible and compressible cases. As tolerance or stopping criterion,
weuse the relative residual, defined as the 2-normof the residual of the k-th iteration dividedby the 2-normof the right-hand
side of the preconditioned or deflated system:

rr =
∥M−1rk∥2

∥M−1b∥2
≤ ϵ.

The residual of the approximation is the same for bothmethods, ICCG and DICCG (see Appendix D.1). Therefore, the accuracy
of the solution is the same for both methods.

6.2. Incompressible problem

We simulate single-phase flow through a porous medium, for an incompressible fluid (see Eq. (7)), with the previously
mentioned characteristics. HomogeneousNeumannboundary conditions are imposed on all boundaries. Thismodel contains
five wells, four on the corners and one in the center of the domain.

A set of four linearly independent snapshots is used as deflation vectors (DICCG4). We also use a linearly dependent set of
15 snapshots (DICCG5) and a 4-vectors POD basis obtained from these 15 snapshots (DICCGPOD4). We set the same boundary
conditions as in the original problem for all the snapshots. The four linearly independent snapshots (z1-z4) are obtained
giving a value of zero to one well and non-zero values to the other wells, such that the sum of the well pressures equals zero.
The set of 15 snapshots are all possible combinations of wells such that the flow-in equals the flow-out of the reservoir. The
snapshots and the solutions are obtained with a tolerance of 10−11.

A summary of the well configurations is presented in Table 1.

Heterogeneous permeability layers
A Cartesian grid of 64 × 64 grid cells and length (Lx, Ly) of 70 × 70 m2 with 8 layers of the same size is studied. Four

layers have a permeability σ1 and each layer is followed by a other onewith a different permeability value σ2 (see Fig. 1). The
permeability of one set of layers is set to σ1 = 1 mD, the permeability of the other set σ2 is varied. Therefore, the contrast in
permeability between the layers (σ2

σ1
= σ2) depends on the value of σ2.

We investigate the dependence on the contrast in permeability value between the layers for the ICCG andDICCGmethods.
The permeability σ2 varies from σ2 = 10−1 mD to σ2 = 10−3 mD.

204 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Table 1
Table with the well configurations of the system and the snapshots.

Fig. 1. Heterogeneous permeability, 5 wells.

Fourwells are positioned in the cornerswith a bhp (bottomhole pressure) of−1bar. Onewell is positioned in the center of
the domain and has a bhp of +4 bars (see Fig. 1). Snapshots are obtained solving the systemwith differentwell configurations
(see Table 1).

Table 2 shows the number of iterations required to reach convergence for the ICCG method and the deflation method
with four linearly independent snapshots as deflation vectors DICCG4, 15 linearly dependent snapshots DICCG15 and the
POD basis vectors, DICCGPOD4 .

2 For the deflation vectors of DICCGPOD4 we plot the eigenvalues of the snapshot correlation
matrix R =

1
15X

TX (see Section 4) in Fig. 2. We observe that there are 4 eigenvalues much larger than the rest. These largest
eigenvalues are responsible for the slow convergence of the ICCGmethod. For theDICCGPOD4 method,weuse the eigenvectors
corresponding to the larger eigenvalues as deflation vectors.

In Table 2, for the ICCG method, we observe that the number of iterations increases if the contrast in the permeability
increases. For the DICCG method with 4 linearly independent deflation vectors and 4 POD basis vectors, convergence is
reached within one iteration and it does not change when we vary the contrast between permeability layers. However, for
the case of 15 linearly dependent vectors, the solution is not reached within the 200 iterations, the maximum number of
iterations allowed for this problem.

2 The * means that the solution is not reached within the maximum number of iterations allowed for the problem.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 205

Table 2
Number of iterations for different contrast in the permeability of the layers
for the ICCG and DICCG methods.

σ2 (mD) 10−1 10−2 10−3

ICCG 90 115 131
DICCG4 1 1 1
DICCG15 200* 200* 200*

DICCGPOD4 1 1 1

The * means that the solution is not reached within the maximum number of
iterations allowed for the problem.

Fig. 2. Eigenvalues of the snapshot correlation matrix R = 1/15XXT , if 15 snapshots are used.

Fig. 3. SPE 10 benchmark, permeability field.

SPE 10 model
This model has large variations in the permeability coefficients, the contrast between coefficients is 3 × 107 [17]. The

model contains 60 × 220 × 85 cells (Fig. 3) and five wells, four of them located in the corners and one in the center of the
domain.

Snapshots are obtained solving the systemwith different well configurations (see Table 1). As before, we simulate single-
phase incompressible flow.

The number of iterations required to achieve convergence with the ICCG and DICCG methods for various grid sizes is
presented in Table 3. In this table, we observe that for the ICCG method we require 1011 iterations to reach the desired

206 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Table 3
Table with the number of iterations for ICCG and DICCG methods.

Method Iterations

ICCG 1011
DICCG15 2000*

DICCG4 2
DICCGPOD4 2

The * means that the solution is not reached within the maximum number of
iterations allowed for the problem.

Fig. 4. Heterogeneous permeability, 5 wells, compressible problem.

accuracy. Meanwhile, for the deflated methods DICCG4 and DICCGPOD4 only two iterations are required. In theory, only one
iteration is necessary to reach the solution with the deflated methods. However, the large contrast in the permeability field
may require higher accuracy for the snapshots to find the solution with the deflation method, within one iteration, within
the imposed tolerance [31,32]. In this case, the first iteration has a relative residual smaller than 10−10 for the DICCG4 and
DICCGPOD4 methods, therefore, after a first iteration, we have already a good approximation.

For the deflated method with 15 linearly dependent snapshots (DICCG15), we observe that the desired accuracy is not
reached after 2000 iterations, as the deflation methods are linearly dependent, the deflation method is unstable because the
matrix E is a nearly singular matrix.

6.3. Compressible problem

In this sectionwemodel single-phase flow through a porousmedium for a casewhen the density depends on the pressure
according to Eq. (4). We solve Eq. (12) for a fluid with a compressibility constant of cf = 1× 10−3. Eq. (12) is non-linear due
to the dependence of the density on the pressure. Therefore, we need to linearize this equation via the Newton–Raphson
(NR) method and to solve the resulting linear system. After linearization, we obtain the linear system (17) and we solve it
with an iterative method; a summary of the procedure is presented in Algorithm 1. The simulation, with exception of the
linear solvers, is performed with MRST. Automatic Differentiation (AD) is used for the NR loop [30]. The resulting linear
system is solved with ICCG and DICCG methods. We compute the solution of the system for the first 10 time steps with the
ICCG method. The rest of the time steps are solved with DICCG, using as deflation vectors the solution of the previous ten
time steps and POD basis vectors computed from these solutions. The number of POD deflation vectors is specified for each
problem.

We study an academic layered problem that consists of layers with two different permeability values (see Fig. 4). The first
layer has a permeability of σ1 = 30 mD, and the permeability of the second layer is varied; the permeability values of this
second layer are σ2 = [3 mD, 0.3 mD, 0.03 mD]. Therefore, the contrast between the layers is 101, 102 and 103. The domain
is a square with five wells, four of which are positioned in the corners of the domain and one well in the center. The length
of the domain is 70 m and the grid size is 35 grid cells in each dimension. We impose homogeneous Neumann boundary
conditions on all boundaries.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 207

Fig. 5. Solution of the compressible problem solved with the ICCG method for a layered problem with a contrast between permeability layers of 101 .

Fig. 6. Eigenvalues of the data snapshot correlation matrix R =
1
10XX

T , contrast between permeability layers of 101 .

The initial pressure of the reservoir is set to 200 bars. The bottom hole pressure (bhp) in the corner wells is 100 bars and
in the central well is 600 bars. The simulation was performed during 152 days with 52 time steps and a time step of 3 days.
The tolerance of the NR method and the linear solvers is 10−5.

In Fig. 5, the solution obtained with the ICCG method is presented for a contrast in permeability layers of 101. The upper
left figure represents the pressure field at the final time step. The upper right figure represents the pressure across the
diagonal joining the (1,1) and (35,35) grid cells for all the time steps. We observe the initial pressure (200 bars) across this
diagonal and the evolution of the pressure field through time. In the lower figure, we observe the surface volume rate of the
five wells during the simulation.

As mentioned before, for each time step, the previous 10 solutions are used as snapshots to compute the POD basis. The
eigenvalues of the snapshot correlation matrix R =

1
10XX

T constructed with the previous ten time steps are presented in
Fig. 6 for the 20th time step, for a contrast between permeability layers of 10.

In Fig. 6, we observe that six eigenvalues are larger than the rest. Then, we use the eigenvectors corresponding to these
six eigenvalues as deflation vectors (DICCGPOD6) to solve this problem. For a contrast between permeability layers of 102

and 103 we have 7 larger eigenvalues, therefore, we use 7 POD basis vectors as deflation vectors (DICCGPOD7). For all the

208 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Table 4
Comparison between the ICCC and DICCG methods of the average number of linear iterations for the first NR iteration for various contrast
between permeability layers.

1st NR iteration
σ2
σ1

Total ICCG Method ICCG snapshots DICCG Total ICCG+DICCG % of total ICCG

101 780 DICCG10 140 42 182 23
780 DICCGPOD6 140 84 224 29

102 624 DICCG10 100 42 142 23
624 DICCGPOD7 100 42 142 23

103 364 DICCG10 20 42 62 17
364 DICCGPOD7 20 42 62 17

Table 5
Comparison between the ICCC and DICCG methods of the average number of linear iterations for the second NR iteration for various
contrast between permeability layers.

2nd NR iteration
σ2
σ1

Total ICCG Method ICCG snapshots DICCG Total ICCG+DICCG % of total ICCG

101 988 DICCG10 180 78 258 26
988 DICCGPOD6 180 198 378 38

102 832 DICCG10 140 90 230 28
832 DICCGPOD7 140 154 294 33

103 884 DICCG10 110 90 200 23
884 DICCGPOD7 110 150 260 29

experiments, only the first time step requires more than two NR iterations. Hence, we solely study the behavior of the linear
solvers during the first two NR iterations.

In Tables 4 and 5 we compare the number of iterations necessary to reach convergence with the ICCG method and the
deflation methods DICCG10, DICCGPOD6 and DICCGPOD7 .

For the first NR iteration (see Table 4), we observe a significant reduction in the total number of linear iterations. For
the case when we have a contrast between permeability layers of 101, we observe that for the ICCG method, we need 780
linear iterations to compute the solution for the 52 time steps. By contrast, when we use the deflated method, we need
140 linear iterations to compute the snapshots during the first ten time steps (computed with ICCG) and 42 and 84 for
the 42 remaining time steps computed with DICCG10 and DICCGPOD6 . Then, we need in total 182 and 224 linear iterations
to compute the solution for the 52 time steps, which is 23% and 29% of the linear iterations required with only the ICCG
method.

When we have a contrast in permeability of 102, the required average of linear iterations to solve the 52 time steps is
624 for the ICCGmethod. With the deflated methods, taking into account the computation of the snapshots, we require 142
iterations for the DICCG10 and DICCGPOD7 methods, which is the 23% of the number of ICCG iterations. Finally, for a contrast
between permeability layers of 103 we require 364 linear iterations for the 52 time steps with the ICCGmethod. Meanwhile,
the required iterations for the DICCG10 and DICCGPOD7 methods is 62. That is 17% of the ICCG iterations (see Table 4).

For the second NR iteration (see Table 5), we also observe a significant reduction in the total number of linear iterations.
For the case when we have a contrast between permeability layers of 101, with the DICCG10 and DICCGPOD6 methods, it is
necessary to perform only 26% and 38% of the linear iterations required with ICCG.

Whenwehave a contrast in permeability layers of 102, the required linear iterations are 28% and 33% of the ICCG iterations
if we use the DICCG10 and DICCGPOD7 methods. For a contrast between permeability layers of 103, the DICCG10 and DICCGPOD7
methods require 23% and 29% of the number of ICCG iterations.

SPE 10model
We study the complete SPE 10 benchmark, that consists of 60 × 220 × 85 grid cells and has a contrast in permeability

of 3 × 107. To solve the linear system obtained after the NR linearization, we use 10 snapshots (the previous 10 time step
solutions), and POD basis vectors as deflation vectors. The simulationwas performed during 152 dayswith 52 time steps and
a time step of 3 days. In Fig. 7 the eigenvalues of the snapshot correlation matrix are presented. We observe that there are
4 eigenvalues larger than the rest, which implies that most of the information is contained in these eigenvalues. Therefore,
we study the deflation method with 10 snapshots as deflation vectors and 4 POD basis vectors, the largest eigenvectors
corresponding to the largest eigenvalues in Fig. 7.

For the first NR iteration, we observe that the average number of iterations required for the ICCG method is considerably
reduced. For the ICCG method we require 10173 iterations for the first NR iteration and 10231 for the second (see Tables 6
and 7). With the deflated methods DICCG10 and DICCGPOD4 , for the first NR iteration, we only need to perform 28% and 32%
of the linear iterations required with the ICCG method.

For the second NR iteration, the deflated methods require only 20% of the ICCG linear iterations. We also observe, that for
the first NR iteration, we need 1770 linear iterations to compute the ten initial snapshots (computed with ICCG) and 1134 to

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 209

Fig. 7. Eigenvalues of the data snapshot correlation matrix R =
1
10XX

T , time step 20, full SPE 10 benchmark.

Table 6
Average number of linear iterations for the first NR iteration, full SPE 10 benchmark.

1st NR iteration

Total ICCG Method ICCG snapshots DICCG Total ICCG+DICCG % of total ICCG

10173 DICCG10 1770 1134 2904 28
10173 DICCGPOD4 1770 1554 3324 32

Table 7
Average number of linear iterations for the second NR iteration, full SPE 10 benchmark.

2nd NR iteration

Total ICCG Method ICCG snapshots DICCG Total ICCG+DICCG % of total ICCG

10231 DICCG10 1830 200 2030 20
10231 DICCGPOD4 1830 200 2030 20

compute the solution of the rest of the solutions (computed with DICCG). For the second NR iteration, the number of linear
iterations is 1830 for the ten initial snapshots and 200 for the deflated methods. This shows that the largest amount of work
is carried out by the computation of the snapshots obtained with the ICCGmethod, which is more evident for the second NR
iteration.

7. Conclusions

In this work, we combine ICCG preconditioning with deflation and POD methods to accelerate the convergence of CG
method for large systems and systemswith high-contrast in permeability. The Deflated Conjugated Gradient preconditioned
with Incomplete Cholesky method (DICCG) is studied with snapshots, solutions of the system with diverse characteristics,
and POD basis vectors as deflation vectors. The number of iterations required with DICCG is compared with the number of
iterations required with the ICCGmethod for the same problems. The stopping criteria used for ICCG and DICCG is the same.
Therefore, the solution has the same accuracy for both methods.

Flow through a porous medium is studied for an incompressible and a compressible fluid. We study an academic layer
problem with different permeability values in the layers and the complete SPE 10 benchmark problem (1,122,000 cells).

To solve the incompressible problem, we propose the use of solutions of the problem with different well configurations
as deflation vectors. We observe that the number of linear iterations required with ICCG is reduced to only a few iterations
when using DICCG, and this number is independent of the contrast in permeability layers for the deflation methods. Results
also show that, if we have a linearly dependent set of deflation vectors, we have an unstable method that leads to a bad
approximation of the solution. Combination of POD with deflation techniques is shown to be a way to obtain the main
information about the system to speed-up the iterative method and to avoid instabilities.

For the compressible case, we propose the use of solutions of previous time steps, snapshots, and POD basis vectors
computed from these snapshots as deflation vectors.WithDICCGwe reduce the number of iterations up to 20% of the number

210 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

Table A.8
Notation.

Symbol Quantity Unit

φ Rock porosity
K Rock permeability Darcy (D)
cr Rock compressibility Pa−1

v Darcy’s velocity m/d
ρ Fluid density kg/m3

µ Fluid viscosity Pa s
p Pressure Pa
g Gravity m/s2

cf Fluid compressibility Pa−1

q Sources

of iterations of the ICCGmethodwith only a small increase in the number of flops. For the problemwith four deflation vectors,
each DICCG iteration needs around 1.4 times the number of flops required with the ICCG iteration.

We observe that the performance of the DICCG method with snapshots and POD basis vectors as deflation vectors is
similar. The required number of POD basis vectors to achieve a good acceleration of the method depends on the problem.
However, only a limited number of POD vectors is necessary to obtain a good speed-up (seven at most for the problems
here studied). For the SPE 10 problem, we reduce the number of deflation vectors to 4 POD basis vectors. For this number of
deflation vectors, the computation of the POD basis requires around 104 flops, which is less than the number of cells of the
problem.

The deflation techniques here presented are not restricted to these methods and could be combined with different
preconditioners, e.g. SSOR or AMG, and diverse iterative methods.

Acknowledgments

We like to thank the ‘ Consejo Nacional de Ciencia y Tecnología (CONACYT)’, the ‘ Secretaría de Energía (SENER)’ and the
Mexican Institute of Petroleum (IMP) which, through the programs: ‘Formación de recursos humanos especializados para el
sector hidrocarburos (CONACYT-SENER Hidrocarburos) (No. Convocatoria: 291128) and ‘Programa de Captación de Talento,
Reclutamiento, Evaluación y Selección de Recursos Humanos (PCTRES), have sponsored this work.

Appendix A. List of notation

In this appendix we present the notation for terms used in this work (see Table A.8).

Appendix B. Stopping criteria

Whenwe use an iterative method, we always want that our approximation is close enough to the exact solution. In other
words, we want that the error [28, page. 42]:

∥ek∥2 = ∥x − xk∥2,

or the relative error:

∥x − xk∥2

∥x∥2
,

is small.
When we want to chose a stopping criteria, we could think that the relative error is a good candidate, but it has the

disadvantage that we need to know the exact solution to compute it. What we have instead is the residual

rk = b − Axk,

that is actually computed in each iteration of the CGmethod. There is a relationship between the error and the residual that
can help us with the choice of the stopping criteria.

∥x − xk∥2

∥x∥2
≤ κ2(A)

∥rk∥2

∥b∥2
.

With this relationship in mind, we can choose the stopping criteria as an ϵ for which

∥rk∥2

∥b∥2
≤ ϵ.

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 211

But we should keep to have in mind the condition number of the matrix A, because the relative error will be bounded by:

∥x − xk∥2

∥x∥2
≤ κ2(A)ϵ.

Appendix C. Singular value decomposition for POD

If we perform SVD in X, we obtain the following matrices X = UΣVT , U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m.

To obtain the eigenvectors of X, it is necessary to construct the matrix R = XXT
∈ Rn×n.

However, if the problem is large, the resulting matrix is large and the SVD can be expensive. Instead, we can compute the
eigenvalues and eigenvectors from the much smaller matrix RT

= XTX ∈ Rm×m. For this matrix, the SVD is:

RT
= XTX
= (UΣVT)TUΣVT

= VΣTUTUΣVT , UTU = I
= VΛTVT , ΛT

= ΣTΣ ∈ Rm×m.

From where we obtain V andΛT . Then we can compute U as follows:

U = XV(ΛT)−
T
2 = XV(ΛT)

1
2 ,

that are the left-singular values of X.

Appendix D. Deflation method

In this appendix, we explain how to obtain the solution of the linear system of Eq. (18) with deflation. Some properties
of the matrices used for deflation that will help us to find the solution of system (18) are [19]:

(a) P2
= P.

(b) APT
= PA.

(c) (I − PT)x = Qb.
(d) PAQ = 0n×n.

(e) PAZ = 0n×l.

To obtain the solution of the linear system (18), we start with the splitting:

x = x − PTx + PTx = (I − PT)x + PTx. (D.1)

Multiplying expression (D.1) by A, using the properties of the deflation matrices, we have:

Ax = A(I − PT)x + APTx, Property :

Ax = AQb + APTx, (c)
b = AQb + PAx, (b),

multiplying by P and using the properties PAQ = 0n×n and P2
= P, properties (d) and (a), we have:

PAQb + P2Ax = Pb,
PAx = Pb,

where PAx = Pb is the deflated system. Since PA is singular, the solution of Eq. (D.2) can contain components of the null
space of PA, (N (PA)). A solution of this system, called the deflated solution, is denoted by x̂. Then, the linear system to solve
is:

PAx̂ = Pb. (D.2)

As the solution of Eq. (D.2) can contain components of N (PA), x̂ can be decomposed as:

x̂ = x + y, (D.3)

with y ∈ R(Z) ⊂ N (PA), and x the solution of Eq. (18).
Note: If y ∈ R(Z), then

y =

m∑
i=1

αizi,

212 G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213

PAy = PA(z1α1 + · · · + zmαm) = PAZα,

from property (e) we have:

PAy = 0.

Therefore R(Z) ⊂ N (PA), and using property (b) we have:

PAy = APTy = 0.

As A is invertible, we have:

PTy = 0. (D.4)

Multiplying Eq. (D.3) by PT we obtain:

PT x̂ = PTx + PTy

substituting Eq. (D.4) we arrive to:

PT x̂ = PTx. (D.5)

Substitution of Eq. (D.5) and property (c) in Eq. (D.1) leads to:

x = Qb + PT x̂, (D.6)

which gives us the relation between x̂ and x.

D.1. Stopping criterion for the deflation method

In Appendix B, we describe the stopping criterion used for the CG method, which is:

∥rk∥2

∥b∥2
≤ ϵ,

where, r is the residual of the CG method. For the DCG method, the stopping criterion used depends on the residual of the
deflated system, i.e.

∥r̂k∥2

∥b∥2
≤ ϵ (D.7)

with r̂ the residual of the deflated system. This residual can be written as:

r̂k = P(b − Ax̂k)
= Pb − APT x̂k see Appendix D, property (b)

= Pb − APTxk see Eq. (D.5)

= Pb + AQb − Axk see Appendix D, property (c)

= b − Axk = rk. see Eq. (22)

Therefore, the residual of the DCG method is the same as the residual of the CG method.

References

[1] C. Vuik, A. Segal, L. Yaakoubi, E. Dufour, A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients, Appl.
Numer. Math. 41 (1) (2002) 219–233.

[2] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys. 182 (2) (2002) 418–477.
[3] A. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.
[4] W. Schilders, H. Van der Vorst, J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications, Vol. 13, Springer, 2008.
[5] A. Quarteroni, G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, Vol. 9, Springer, 2014.
[6] T. Heijn, R. Markovinovic, J.D. Jansen, et al., Generation of low-order reservoir models using system-theoretical concepts, SPE J. 9 (02) (2004) 202–218.
[7] P.T.M. Vermeulen, A.W. Heemink, C.B.M. Te Stroet, Reduced models for linear groundwater flow models using empirical orthogonal functions, Adv.

Water Resour. 27 (1) (2004) 57–69.
[8] R. Markovinović, J.D. Jansen, Accelerating iterative solution methods using reduced-order models as solution predictors, Internat. J. Numer. Methods

Engrg. 68 (5) (2006) 525–541.
[9] J. van Doren, R. Markovinović, J.D. Jansen, Reduced-order optimal control of water flooding using proper orthogonal decomposition, Comput. Geosci.

10 (1) (2006) 137–158.
[10] M.A. Cardoso, L.J. Durlofsky, P. Sarma, Development and application of reduced-order modeling procedures for subsurface flow simulation, Internat.

J. Numer. Methods Engrg. 77 (9) (2009) 1322–1350.

http://refhub.elsevier.com/S0377-0427(17)30340-0/sb1
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb1
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb1
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb2
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb3
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb4
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb5
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb6
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb7
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb7
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb7
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb8
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb8
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb8
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb9
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb9
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb9
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb10
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb10
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb10

G.B. Diaz Cortes et al. / Journal of Computational and Applied Mathematics 330 (2018) 193–213 213

[11] P. Astrid, G. Papaioannou, J.C. Vink, J.D. Jansen, Pressure preconditioning using proper orthogonal decomposition, in: SPE Reservoir Simulation
Symposium. Society of Petroleum Engineers, 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 2011, pp. 21–23.

[12] S. Krogstad, et al., A sparse basis POD for model reduction of multiphase compressible flow, in: SPE Reservoir Simulation Symposium, Society of
Petroleum Engineers, 2011.

[13] Y. Efendiev, J. Galvis, E. Gildin, Local–global multiscale model reduction for flows in high-contrast heterogeneous media, J. Comput. Phys. 231 (24)
(2012) 8100–8113.

[14] R. Jiang, Pressure Preconditioning Using Proper Orthogonal Decomposition, Master’s thesis, Stanford University, 2013.
[15] M. Pasetto, M. Ferronato, M. Putti, A reduced order model-based preconditioner for the efficient solution of transient diffusion equations, Internat. J.

Numer. Methods Engrg. (2016).
[16] C. Vuik, A. Segal, J.A. Meijerink, An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the

coefficients, J. Comput. Phys. 152 (1999) 385.
[17] M.A. Christie, M.J. Blunt, Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE Reservoir Eng. Eval. 4 (4) (2001) 308–317.
[18] H. Klie, M.F. Wheeler, K. Stueben, T. Clees, et al., Deflation AMG solvers for highly ill-conditioned reservoir simulation problems, in: SPE Reservoir

Simulation Symposium, Society of Petroleum Engineers, 2007.
[19] J.M. Tang, R. Nabben, C. Vuik, Y. Erlangga, Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid

methods, J. Sci. Comput. 39 (3) (2009) 340–370.
[20] K. Carlberg, V. Forstall, R. Tuminaro, Krylov-subspace recycling via the POD-augmented conjugate-gradient method, SIAM J. Matrix Anal. Appl. 37 (3)

(2016) 1304–1336.
[21] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Chapman & Hall, 1979.
[22] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, SIAM, 2006.
[23] J.D. Jansen, A Systems Description of Flow Through Porous Media, Springer, 2013.
[24] G. Golub, C.V. Loan, Matrix Computations., third ed., Johns Hopkins University Press, Baltimore, MD, USA, 1996.
[25] J. Tang, Two-Level PreconditionedConjugateGradientMethodswithApplications to Bubbly FlowProblems, Ph.D. thesis, Delft University of Technology,

2008.
[26] M. Clemens, M. Wilke, R. Schuhmann, T. Weiland, Subspace projection extrapolation scheme for transient field simulations, IEEE Trans. Magn. 40 (2)

(2004) 934–937.
[27] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University

Press, New York, 1996.
[28] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.
[29] G. Strang, Linear Algebra and Its Applications, Wellesley-Cambridge Press, 2009.
[30] K.A. Lie, An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST), SINTEF ICT, 2013.
[31] G.B. Diaz Cortes, C. Vuik, J.D. Jansen, Physics-based pre-conditioners for large-scale subsurface flow simulation, Report 16-3, Delft University of

Technology, Delft Institute of Applied Mathematics, Delft, 2016.
[32] G.B. Diaz Cortes, C. Vuik, J.D. Jansen, Physics-based pre-conditioners for large-scale subsurface flow simulation, in: Proceedings of the 15th European

Conference on the Mathematics of Oil Recovery, ECMOR XV, 2016.

http://refhub.elsevier.com/S0377-0427(17)30340-0/sb12
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb12
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb12
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb13
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb13
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb13
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb15
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb15
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb15
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb16
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb16
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb16
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb17
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb18
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb18
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb18
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb19
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb19
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb19
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb20
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb20
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb20
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb21
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb22
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb23
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb24
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb26
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb26
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb26
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb27
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb27
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb27
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb28
http://refhub.elsevier.com/S0377-0427(17)30340-0/sb29

	On POD-based Deflation Vectors for DPCG applied to porous media problems
	Introduction
	Flow through porous media
	Incompressible fluid
	Compressible fluid
	Well model
	Solution procedure for compressible flow

	Iterative solution methods
	Conjugate gradient method
	Preconditioning
	Deflation

	Proper Orthogonal Decomposition (POD)
	Deflation vector analysis
	Accuracy of the snapshots
	Boundary conditions

	Numerical experiments
	Model
	Incompressible problem
	Compressible problem

	Conclusions
	Acknowledgments
	List of notation
	Stopping criteria
	Singular value decomposition for POD
	Deflation method
	Stopping criterion for the deflation method

	References

