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Global Krylov subspace methods are among the most efficient algorithms to solve matrix 
equation A X = B . Deflation and augmentation techniques are used to accelerate the 
convergence of Krylov subspace methods. There are two different approaches for deflated 
and augmented methods: an augmentation space is applied explicitly in every step, 
or the global method is used for solving a projected problem and then a correction 
step is applied at the end. In this paper, we present a framework of deflation and 
augmentation approaches for accelerating the convergence of the global methods for the 
solution of nonsingular linear matrix equations A X = B . Then, we define deflated and 
augmented global algorithms. Also, we analyze the deflated and augmented global minimal 
residual and global orthogonal residual methods. Finally, we present numerical examples 
to illustrate the effectiveness of different versions of the new algorithms.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many applications in science and engineering require the solution of a matrix equation

A X = B, (1)

where A is an m × m real matrix and B and X are m × s rectangular matrices with s � m.
For solving matrix equation (1), some block Krylov subspace methods have been developed in the past years. O’Leary 

[22] presented the block conjugate gradient (Bl-CG) algorithm for symmetric positive definite problems. An adaptive block 
Lanczos algorithm and a block version of MINRES method were developed in [4] when the matrix is symmetric. In [26], the 
block generalized minimal residual (Bl-GMRES) algorithm was established.

Recently, global Krylov subspace methods have been generated by projecting globally the initial matrix residual onto a 
block Krylov subspace. Jbilou et al. [14] presented the global full orthogonalization method (Gl-FOM) and the global GMRES 
method (Gl-GMRES) for the nonsymmetric matrix equation (1). In the case where the coefficient matrix A is diagonalizable 
and nonsymmetric, Bellalij et al. [1] obtained some new convergence results for Gl-GMRES. Gu and Yang [12] presented the 
global semi-conjugate direction algorithms. For symmetric positive definite matrix A, the Gl-CG method [7] is presented.

In Bl-GMRES, the chosen block size for Vn (Arnoldi basis for the Krylov subspace Kn(A, R0)) should be small, such as 
n = 2, since Bl-GMRES becomes, in each restart, time-consuming in computation when n is large. While for Gl-GMRES, it 
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is appropriate to take the block size for basis Vn larger, such as n = 25 [7]. Example 1 in [29] shows that for large n, 
the iteration steps are reduced but the required CPU-time increases. Also, Gl-GMRES for large n is more effective than 
Bl-GMRES. In the block methods, to delete linearly or almost linearly dependent vectors generated during the iterations, a 
deflation procedure is often used [9]. However, the global methods do not suffer from dependence of vectors during the 
iterations. Therefore, no deflation procedure is used to delete linearly or almost linearly dependent vectors. Examples in 
[15,25,29,31,32,34] show that the global methods are effective, as compared to block methods, for solving large and sparse 
matrix equations. In general, block methods are more effective for dense linear systems than for sparse linear systems [16].

Deflation and augmentation are two techniques for accelerating the convergence of Krylov subspace methods. In aug-
mentation approaches, the search space of the method is made larger by an appropriately selected subspace [10]. Since 
eigenvalues of the operator close to zero incline to reduce the speed of convergence of the Krylov subspace methods [3], 
these eigenvalues are essentially deflated from the spectrum of the matrix, with adding the corresponding eigenvectors to 
the search space. In deflation, for removing components that decelerate convergence, the linear system Ax = b is multiplied 
with a properly selected projection operator [10].

The first deflation and augmentation techniques for solving linear systems were presented by Nicolaides [21] and 
Dostál [5]. For symmetric positive definite matrix A, Saad et al. [24] described a deflated version of the CG algorithm. 
Also, Vuik et al. [27] applied deflated CG with incomplete Cholesky preconditioning for the solution of a class of layered 
problems with extreme contrasts in the coefficients. Nabben and Vuik [19,20] presented similarities between the domain 
decomposition methods and deflation approach. In 1990, Morgan [18] considered GMRES with an augmented basis but not 
with explicit deflation. In [13], a recent superior analysis of these methods together with detailed references and historical 
explanations can be found. Also, for linear systems with non-Hermitian matrices, applications of deflated Krylov subspace 
methods with orthogonal and oblique projections were presented in [8].

We can merge simultaneously deflation and augmentation in a single Krylov subspace method. In this case, the search 
space of the Krylov subspace method will be

Sn = U + K̃n,

where U is the augmentation space and K̃n represents the deflated Krylov subspace.
In this paper, we consider global minimal residual (Gl-MR) [6] methods including all global methods that are theoretically 

equivalent to Gl-GMRES and global orthogonal residual (Gl-OR) [2] methods containing the methods that are theoretically 
equivalent to Gl-FOM. Then, we present an extension of the framework of Gaul et al. [10] to the global methods for solving 
matrix equation (1) and define a deflated and augmented global algorithm.

This paper is organized as follow: In Section 2, we review some definitions and properties which are utilized throughout 
this article. In Section 3, we present a framework for deflated and augmented global Krylov subspace methods for the 
solution of matrix equation (1) and define a deflated and augmented global algorithm. Section 4 is devoted to employing 
deflation and augmentation for global OR-type methods. Also, a deflated and augmented version of the global MR-type 
methods and particularly Gl-MINRES is discussed in Section 5. In Section 6, numerical examples are presented. Finally, some 
concluding remarks are given in Section 7.

We use the following notations. For two matrices Y and Z in Rm×s , we define the inner product < Y , Z >F = tr(Y T Z)

where tr(Y T Z) denotes the trace of the matrix Y T Z . The associated norm is the Frobenius norm denoted by ‖.‖F . A system 
of matrices of Rm×s is said to be F-orthonormal if it is orthonormal with respect to < ., . >F . We denote the null space and 
the range space of matrix A by N (A) and R(A), respectively.

2. Definitions and properties

In this section, we give definitions and properties of the Kronecker product and the � product. Also, we briefly review 
the global OR-type methods and the global MR-type methods.

2.1. The Kronecker product and the � product

The Kronecker product of matrices A and B is given by A ⊗ B = [aij B]. For this product, we have the following properties 
[30]:

(1) (A ⊗ B)T = AT ⊗ BT .
(2) (A ⊗ B)(C ⊗ D) = (AC ⊗ B D).
(3) tr(A ⊗ B) = tr(A)tr(B).

In the following we recall the product denoted by � [2]:

Definition 2.1. Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be matrices of dimension n × ps and n × ls, respectively, 
where Ai and B j (i = 1, . . . , p; j = 1, . . . , l) are n × s matrices. Then the p × l matrix AT � B is defined by:
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AT � B =

⎛
⎜⎜⎜⎝

< A1, B1 >F < A1, B2 >F . . . < A1, Bl >F

< A2, B1 >F < A2, B2 >F . . . < A2, Bl >F
...

...
...

...

< Ap, B1 >F < Ap, B2 >F . . . < Ap, Bl >F

⎞
⎟⎟⎟⎠ .

It is not difficult to prove the following remark.

Remark 2.2. For the � product, we have:

(1) If s = 1 then AT � B = AT B .
(2) If s = 1, p = 1 and l = 1, then setting A = u ∈R

n and B = v ∈R
n , we have AT � B = uT v ∈R.

(3) The matrix A = [A1, A2, . . . , Ap] is F-orthonormal if and only if AT � A = I p .
(4) If X ∈ R

n×s , then X T � X = ‖X‖2
F .

We have the following properties for the � product.

Proposition 2.3. (See [2].) Let A, B, C ∈R
n×ps, D ∈R

n×n, L ∈R
p×p and α ∈R. Then

(1) (A + B)T � C = AT � C + BT � C.
(2) AT � (B + C) = AT � B + AT � C.
(3) (αA)T � C = α(AT � C).
(4) (AT � B)T = BT � A.
(5) (D A)T � B = AT � (DT B).
(6) AT � (B(L ⊗ Is)) = (AT � B)L.

2.2. The global OR-type methods

We consider the block Krylov subspace of Rm×s [7] spanned by the matrices V , AV , . . . , An−1 V of the form

Kn(A, V ) = span{V , AV , . . . , An−1 V },
where A is an m × m matrix and V is an m × s matrix. Note that Z ∈ Kn(A, V ) means that

Z =
n∑

i=1

yi Ai−1 V = [V , AV , . . . , An−1 V ](y ⊗ Is),

where y = [y1, y2, . . . , yn] ∈R
n .

Now, we consider matrix equation (1) with initial residual R0 = B − A X0 where X0 is an initial m × s matrix. At step n, 
a global OR-type method [2] generates approximation XOR

n such that

XOR
n − X0 = Zn ∈ Kn(A, R0), (2)

and residual ROR
n satisfies the orthogonality relation

ROR
n = R0 − A Zn⊥F Kn(A, R0), (3)

where the notation ⊥F means orthogonality with respect to the inner product < ., . >F . Note that ROR
n is obtained by 

projecting R0 onto AKn(A, R0) along to the F-orthogonal of the Krylov subspace Kn(A, R0).
We consider the F-orthonormal basis Vn , constructed with the global Arnoldi algorithm [14]. From relation (2), we 

conclude that

XOR
n = X0 + Vn(yn ⊗ Is), (4)

where vector yn is obtained by imposing orthogonality condition (3). By substituting (4) in ROR
n , we obtain

ROR
n = R0 − AVn(yn ⊗ Is).
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2.3. The global MR-type methods

A global-MR type method [6] constructs, at step n, the approximation XMR
n satisfying the following two relations

XMR
n − X0 ∈ Kn(A, R0), (5)

and

RMR
n ⊥F Kn(A, AR0). (6)

From (5), we obtain

XMR
n = X0 + Vn(yn ⊗ Is), (7)

where vector yn is obtained by imposing orthogonality condition (6). The F-orthonormal basis Vn for Krylov subspace 
Kn(A, AR0) is constructed with the global Arnoldi algorithm. Note that RMR

n is obtained by projecting R0 onto AKn(A, R0)

along to the F-orthogonal of the Krylov subspace Kn(A, AR0). By substituting (7) in RMR
n , we get

RMR
n = R0 − AVn(yn ⊗ Is).

Since, the global MR-type method is an orthogonal projection method onto the Krylov subspace Kn(A, AR0), we have the 
minimization property

‖RMR
n ‖F = min

Z∈Kn(A,R0)
‖R0 − A Z‖F .

3. A framework for deflated and augmented global Krylov subspace methods

In this section, we present a general framework for deflated and augmented global Krylov subspace methods for the 
solution of matrix equation (1). Given an initial guess X0 ∈ R

m×s , an n-dimensional subspace Sn of Rm×s , we consider an 
approximation Xn to the solution X of the form

Xn ∈ X0 + Sn, (8)

so that the corresponding residual satisfies

Rn := B − A Xn⊥FBSn, (9)

where B ∈ R
m×m is a nonsingular matrix. When A is symmetric positive definite, B = I and the search space Sn is the nth 

block Krylov subspace generated by A and the initial residual R0 := B − A X0, then (8) and (9) mathematically characterize 
the Gl-CG method. If B = A and A is nonsingular, then (8) and (9) mathematically characterize the Gl-GMRES method.

Now, we suppose that the search space Sn is augmented with a space U :

Sn = K̃n + U . (10)

Here, U is called the augmentation space and the subspace K̃n has dimension n. Let matrix U ∈R
m×k be such that

EB := U T BT AU ∈R
k×k (11)

is nonsingular. We define the m × m-matrices⎧⎪⎨
⎪⎩

QB := U E−1
B U T ,

PB := I − A QBBT ,

P̃B := I − QBBT A.

(12)

The following lemma states some basic properties of the matrices PB and P̃B . The proof of these properties is straightfor-
ward, and is therefore omitted.

Lemma 3.1. We consider a k-dimensional space U and denote by U a matrix whose columns form a basis of U. Also, we suppose that 
matrix EB := U TBT AU is nonsingular. Then the matrices (12) are well defined and the following statements hold:

(1) P 2
B = PB , PB AU = 0, and U TBT PB = 0, i.e., PB is the projection onto (BU)⊥ along AU.

(2) P̃ 2
B = P̃B , ̃PBU = 0, and U TBT A P̃B = 0, i.e., ̃PB is the projection onto (ATBU)⊥ along U.

(3) PB A = A P̃B .
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The following theorem shows that solving a deflated matrix equation, we can obtain a solution Xn of matrix equation (1)
such that conditions (8) and (9) are satisfied.

Theorem 3.2. Let the assumptions of Lemma 3.1 be satisfied and subspace K̃n of Rm×s has dimension n. We denote by Vn =
[V (1)

n , V (2)
n , . . . , V (n)

n ] a matrix whose blocks V (i)
n ∈ R

m×s form a basis of K̃n. Furthermore, we consider � = {UieT
j ∈ R

m×s, i =
1, . . . , k, j = 1, . . . , s} where Ui is ith column of matrix U and e j is the jth canonical basis vector in Rs. Also, we suppose a 
ks-dimensional space U of Rm×s such that � is a basis of it. Let B, X0 ∈ R

m×s be arbitrary matrices.
Now, we consider the solution ̂Xn of the matrix equation ̂A X = B̂ where ̂A := PB A and ̂B := PBB, such that

X̂n ∈ X0 + K̃n, (13)

R̂n := B̂ − Â X̂n⊥FB K̃n, (14)

for n ≥ 1 in the sense that

Xn = P̃B X̂n + QBBT B, (15)

Rn = R̂n. (16)

Then

Xn ∈ X0 + K̃n + U, (17)

Rn = B − A Xn⊥FB K̃n + BU . (18)

Proof. From (15) and (16) and by using matrices (12), we have

Rn = B̂ − Â X̂n = PB(B − A X̂n)

= B − A X̂n − A QBBT B + A QBBT A X̂n

= B − A( P̃B X̂n + QBBT B)

= B − A Xn.

Therefore, the first orthogonality condition in (18) is satisfied by using (16) and condition (14). Also, we note that relations 
(13) and (14) mean that

X̂n = X0 + Vn(yn ⊗ Is),

R̂n = PB(B − A X̂n),

for some vector yn ∈ R
n . Substituting X̂n and R̂n in (15) and (16) and using matrices (12), get

Xn = (I − U E−1
B U T BT A)(X0 + Vn(yn ⊗ Is)) + U E−1

B U T BT B

= X0 + Vn(yn ⊗ Is) + U (E−1
B U T BT (R0 − AVn(yn ⊗ Is))),

Rn = (I − AU E−1
B U T BT )(R0 − AVn(yn ⊗ Is))

= R0 − AVn(yn ⊗ Is) − AU (E−1
B U T BT (R0 − AVn(yn ⊗ Is))).

Then, assuming

Un := E−1
B U T BT (R0 − AVn(yn ⊗ Is))

gives

Xn = X0 + Vn(yn ⊗ Is) + U Un, (19)

Rn = R0 − AVn(yn ⊗ Is) − AU Un. (20)

From (19), we have

Xn ∈ X0 + K̃n + U .

Also for (20), the following relation is satisfied

(BU )T Rn = 0,

so, for i = 1, . . . , k and j = 1, . . . , s
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e j U
T
i B

T Rn = 0.

Then

Rn⊥FBU .

Therefore, conditions (17) and (18) are satisfied. �
For s = 1 (single right-hand side), theoretically, the deflated and augmented global method is equivalent to the deflated 

and augmented method in [10].
Note that in the proof of Theorem 3.2, we use from the fact that for each A and B in Rm×s , we have

AT B = 0 ⇒ < A, B >F = 0,

while for s = 1, we give

AT B = 0 ⇔ < A, B >F = 0.

Also using Remark 2.2, F-orthogonality (⊥F ) in the case of s = 1 reduces to Euclidean orthogonality. Therefore, we have the 
following corollary.

Corollary 3.3. Using the notations of Theorem 3.2 for s = 1, the following two sets of conditions

Xn ∈ X0 + K̃n + U,

Rn = B − A Xn⊥B K̃n + BU
and

X̂n ∈ X0 + K̃n,

R̂n := B̂ − Â X̂n⊥B K̃n,

are equivalent for n ≥ 1 in the sense that

Xn = P̃B X̂n + QBBT B,

Rn = R̂n.

Proof. See [10]. �
Conditions (17) and (18), where the augmentation space U is explicitly contained in the search space, represent the 

explicit deflated and augmented method. In conditions (13) and (14), the explicit inclusion of U is replaced by a suitable 
projection of a restricted problem: we first construct iterations X̂n ∈ X0 + K̃n without components in U such that the 
projected residuals R̂n = PB(B − A X̂n) satisfy the simplified condition of (14). Then, we apply the final correction step (15). 
Interestingly, the projected residuals are equal to the original ones. We call this the implicit deflated and augmented method. 
According to its definition, R̂n is the residual of the approximate solution X̂n of the projected or deflated matrix equation

Â X̂n = B̂, (21)

where Â = PB A, B̂ = PBB .
Thus, we can consider K̃n := Kn( Â, ̂R0) and solve matrix equation (21) with conditions (13) and (14) using the global 

Krylov subspace methods. Note that matrices Â and U are in general unrelated.
So far we have not specified the matrices Â and R̂0 := B̂ − Â X̂0. In the following sections we will discuss suitable choices 

for Â and R̂0 depending the properties of the matrix A.
Using the implicit approach of Theorem 3.2, we can obtain a deflated and augmented global (Def-Aug-Global) algorithm.

Algorithm 1 (Def-Aug-Global algorithm).

1. function [n, Xn, Rn] = Def-Aug-Global(A, B, ̂X0, U , B).
input: A, B, ̂X0, U , B.
code for EB, QB, PB, ̃PB [see (12)].
output: approximate solution Xn of A X = B; corresponding n, Rn .

2. Â = PB A, B̂ = PBB .

3. [n, ̂Xn, ̂Rn] = Global( Â, ̂B, ̂X0) [apply global method to Â X = B̂].
4. Xn = P̃B X̂n + QBBT B , and Rn = R̂n [see (15) and (16)].
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4. Deflated and augmented global OR-type method

In this section, we present deflated and augmented global OR-type methods. We choose B = I and some k-dimensional 
space U with corresponding matrix U . If A is even symmetric positive definite, conditions (8) and (9) characterize deflated 
and augmented Gl-CG method. In this case, matrix E I = U T AU is nonsingular, and the assumptions of Theorem 3.2 are 
satisfied. Hence, we present a framework for deflated and augmented Gl-CG method.

Using matrices (12) and matrix U , we set up the deflated matrix equation

Â X̂n = B̂, (22)

where

Â := P I A, B̂ := P I B,

here, P I = I − AU (U T AU )−1U T as defined in (12) when B = I . Moreover, P̃ I = P T
I . Clearly, the deflated matrix Â is 

singular, since P I is a nontrivial projector if 0 < k < m. Also, matrix equation (22) is consistent, since it results from a 
left-multiplication of the consistent matrix equation A X = B with P I . Note that Â is symmetric, and this matrix is also 
positive semidefinite, since

v T Âv = v P I Av = v T P I (P I A)v = v T P I (P I A)T v = v T P I A P T
I v ≥ 0

holds for any v ∈ R
m .

We point out that Â as defined in (22) is completely determined by A and the choice of the matrix U . (Recall that in 
Theorem 3.2, the matrices Â and U can be unrelated.)

The nth step of the Gl-CG method applied to the deflated system (22) with the initial guess X0 and the resulting initial 
residual R̂0 = B̂ − Â X̂0 is mathematically characterized by the following two conditions

X̂n ∈ X0 + Kn( Â, R̂0),

R̂n = B̂ − Â X̂n = P I (B − A X̂n)⊥F Kn( Â, R̂0).

In the sense of relations (15) and (16), these conditions give conditions (17) and (18), namely

Xn ∈ X0 + Kn( Â, R̂0) + U,

Rn = B − A Xn⊥F Kn( Â, R̂0) + U,

where space U has dimension ks and set � = {UieT
j ∈ R

m×s, i = 1, . . . , k, j = 1, . . . , s} forms a basis of it.
This is the starting point of the deflated and augmented Gl-CG method.
Now, we can define the effective condition number of the positive semidefinite matrix P I A denoted κeff (P I A), as the 

ratio of its largest to smallest strictly positive eigenvalues.
In deflated and augmented methods, we try to obtain a deflated matrix P I A whose effective condition number is smaller 

than the one of A, for example by eliminating the smallest eigenvalues of A.
We denote the t distinct eigenvalues of A ordered by increasing magnitude (i.e., values as they are real positive) by 

λ1 = λmin, . . . , λt = λmax. The union of eigenspaces associated with the smallest eigenvalues λ1, . . . , λk of A is an invariant 
subspace and can be used for U. Since P I AU = 0m×k , then P I A has k zero eigenvalues. We consider the orthogonal com-
plement of U and denote it by U⊥ , i.e., U T Z = 0 so that P I Z = Z . Because A is symmetric positive definite, Z defines an 
invariant subspace associated with the eigenvalues λk+1, . . . , λt = λmax. Then, we have A Z = Z C for some nonsingular C . 
Consequently, we have P I A Z = P I Z C = Z C so that Z is an invariant subspace of P I A associated with the same eigenvalues 
λk+1, . . . , λmax. Therefore, we have

κeff (P I A) = λmax

λk+1
.

Thus, deflating with an invariant subspace cancels the corresponding eigenvalues, leaving the rest of the spectrum un-
changed. If λk+1 � λmin the convergence of Gl-CG is significantly improved.

5. Deflated and augmented global MR-type method

In this section, we present deflated and augmented global MR-type methods. Assuming B = A, the matrix E A = U T AT AU
is nonsingular for any (nontrivial) space U. Thus, the assumptions of Theorem 3.2 are satisfied. We now consider the 
application of a global MR-type method to the deflated system

Â X = B̂, (23)

where Â := P A A and B̂ := P A B .
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Deflated matrix Â = P A A is singular if U = 0 and matrix P A = AU (U T AT AU )−1U T AT is symmetric. If we start the 
global MR-type method with an initial guess X0 and the corresponding initial residual R̂0 = B̂ − Â X0 = P A(B − A X0) then 
the iterations X̂n and the residuals R̂n are characterized by the two conditions

X̂n ∈ X0 + Kn( Â, R̂0),

and

R̂n = B̂ − Â X̂n⊥F ÂKn( Â, R̂0). (24)

Let Vn = [V (1)
n , V (2)

n , . . . , V (n)
n ] be a matrix such that the matrices V (i)

n , i = 1, . . . , n form a basis of Kn( Â, ̂R0). Condition (24)
means that

0 = tr(V (i)T
n ÂT R̂n) = tr(V (i)T

n AT P T
A R̂n) = tr(V (i)T

n AT P A P A(B − A X̂n))

= tr(V (i)T
n AT P A(B − A X̂n)) = tr(V (i)T

n AT R̂n),

and thus

0 = V T
n AT � R̂n.

Therefore, condition (24) is equivalent to

R̂n⊥F AKn( Â, R̂0).

Note that the Krylov subspace is multiplied with A instead of Â. Therefore, condition (14) is satisfied. Mathematically, using 
Theorem 3.2, these conditions give conditions (17) and (18), namely

Xn ∈ X0 + Kn( Â, R̂0) + U, (25)

Rn = B − A Xn⊥F AKn( Â, R̂0) + AU, (26)

in the sense that

Xn = P̃ A X̂n + Q A AT B, and Rn = R̂n. (27)

Thus, using a global MR-type method, we can solve deflated matrix equation (23) and apply correction step (27). Then, the 
obtained solution satisfies conditions (25) and (26).

From relation (24), we have the minimization property

‖R̂n‖F = min
Z∈Kn( Â,R̂0)

‖R̂0 − Â Z‖F . (28)

There are a number of ways to implement global MR-type methods, in each one, a basis of Kn ≡ Kn( Â, ̂R0) is generated and 
(28) is replaced by an unconstrained n-dimensional least-squares problem. We assume that it successfully generates a basis 
if and only if dim Kn = n.

Theorem 5.1. Consider an arbitrary matrix ̂A ∈ R
m×m and a matrix ̂B ∈ R( Â) (i.e., the matrix equation ̂A X = B̂ is consistent). Then 

the following conditions are equivalent:

(1) For each initial guess X0 ∈ R
m×s the global MR-type method applied to the matrix equation Â X = B̂ is well defined at each 

iteration step n and it terminates with a solution of the equation.
(2) R( Â) ∩N ( Â) = 0.

Proof. We assume that R( Â) ∩N ( Â) = 0, and we will construct an initial guess for which the global MR-type method does 
not terminate with the solution. For a nonzero matrix Y ∈R( Â) ∩N ( Â) there exists a matrix Ŷ ∈ R

m×s , such that Y = ÂŶ , 
and since B̂ = Â X is consistent, there exists a matrix X̂ ∈ R

m×s with B̂ = Â X̂ . Then the initial guess X0 := X̂ − Ŷ gives 
R0 = B̂ − Â X0 = B̂ − Â X̂ + ÂŶ = Y . But since Y ∈ N ( Â), we obtain ÂR0 = 0, so the global MR-type method terminates at 
the first iteration with the approximation X0, for which R0 = Y = 0. Thus, for this particular initial guess X0, the global 
MR-type method cannot determine the solution of Â X = B̂ .

Conversely, it is trivial that dim ÂKn ≤ dim Kn ≤ n for each n. Since the matrix equation Â X = B̂ is consistent, R̂0 ∈R( Â)

and Kn ⊆ R( Â) for each n. Condition R( Â) ∩ N ( Â) = 0 implies that dim ÂKn = dim Kn for each n, thus there cannot be 
breakdown through rank deficiency of the least-squares problem (28) (which occurs when dim ÂKn < dim Kn). Therefore, 
the global MR-type method does not break down at the nth step and Xn is uniquely defined. �

In the sense of dim ÂKn = dim Kn , since Â(Kn) ⊂ Kn+1, we have dim Â(Kn) ≤ dim Kn+1 ≤ n + 1. If dim Kn+1 = dim Â(Kn), 
then we must have Â(Kn) = Kn+1, hence R̂0 ∈ Â(Kn). It follows from (28) that R̂n = 0 and Â X̂n = B̂ . In this case, the global 
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MR-type method determines a solution without breakdown and then breaks down at the next step through degeneracy of 
the Krylov subspace (which occurs when dim Kk < k).

Corollary 5.2. Consider the deflated system (23). Then condition 1 in Theorem 5.1 is satisfied if and only if U ∩ (AU)⊥ = 0. In particular, 
the latter condition is satisfied when U is an exact A-invariant subspace, i.e., when AU =U.

Proof. Using the properties of the projection P A from Lemma 3.1 and the fact that A is nonsingular, we obtain

N ( Â) = N (P A A) = A−1N (P A) = U,

R( Â) = R(P A A) = R(P A) = (AU)⊥.

The result now follows from Theorem 5.1. If AU = U, then U ∩ (AU)⊥ = 0 holds trivially. �
5.1. Deflated and augmented global MINRES method

In this section, we assume that A is symmetric, nonsingular, and possibly indefinite. In this case, the global MR-type 
method is the global MINRES (Gl-MINRES) method. There are two versions of the MINRES algorithm which are based on 
efficient three-term recurrences. One is based on Lanczos algorithm and Givens Rotations [11,23] and the other one was 
presented by Wang [28]. We consider the global variant of Wang and present a deflated and augmented version of this 
algorithm.

We also consider B = A and get the following deflated matrix equation

Â X = B̂, (29)

where Â := P A A, B̂ := P A B .
If we start Gl-MINRES with an initial guess X0 and corresponding initial residual R̂0 = B̂ − Â X0 = P A(B − A X0) then the 

iterations X̂n and the residuals R̂n are characterized by two conditions

X̂n ∈ X0 + Kn( Â, R̂0), (30)

R̂n = B̂ − Â Xn⊥F ÂKn( Â, R̂0). (31)

In general, the deflated matrix Â = P A A = A − A Q A A2 is not symmetric, even when A is symmetric. Because P A is a 
projection, we can show that

Kn(P A A, P A V ) = Kn(P A A P A, P A V )

holds for every matrix V ∈R
m×s . Clearly, the matrix P A A P A is symmetric (since A and P A are symmetric). Thus, the Krylov 

subspaces we work with are generated by a symmetric matrix and we can apply the Gl-MINRES method using conditions 
(30) and (31) for the deflated matrix equation (29). As shown in Section 5, these conditions combined with the final 
correction (27), give conditions (25) and (26).

When we apply the Gl-MINRES algorithm for the deflated matrix equation (29), we use the following relation

< R̂ j, Â R̂ j >F = tr(R̂ T
j Â R̂ j) = tr((B − A X̂ j)

T P T
A P A AR̂ j) = tr((B − A X̂ j)

T P T
A AR̂ j)

= tr(R̂ T
j A R̂ j) =< R̂ j, AR̂ j >F .

We know that in general R(AT ) = N (A)⊥ for every matrix A. Now, if we can determine the deflated matrix Â with 
property

N ( Â) = N ( ÂT ),

then N ( Â) =R( Â)⊥ and hence condition 1 in Theorem 5.1 is satisfied. Consequently, if the deflated matrix Â is symmetric 
with a corresponding consistent deflated matrix equation, Gl-MINRES for this matrix equation cannot break down for any 
initial guess. Using matrices (12), we split the solution X of (1) as

X = P A X + (I − P A)X = P A X + A Q A A X = P A X + A Q A B, (32)

X = P̃ A + (I − P̃ A)X = P̃ A X + Q A A2 X = P̃ A X + Q A AB. (33)

Using (33), the matrix equation (1) becomes A( P̃ A X + Q A AB) = B . From definition P A and A P̃ A = P A A of Lemma 3.1, we 
see that this is equivalent to

P A A X = P A B

substitution of (32) in this equation, we obtain P A A(P A X + A Q A B) = P A B which is equivalent to
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P A A P A X = P A P̃ T
A B. (34)

Now, we can show the following result for the Gl-MINRES method applied to symmetric equation (34).

Theorem 5.3. For each initial matrix X0 ∈ R
m×s , the Gl-MINRES method applied to matrix equation (34) gives (in exact arithmetic) 

well defined iteration Xn at each step n ≥ 1 until it terminates with a solution. Moreover, the sequence of iterations

Xn := P̃ A(P A Xn + A Q A B) + Q A AB, (35)

is well defined. It terminates (in exact arithmetic) with the exact solution X of the original matrix equation A X = B and its residuals 
are given by Rn = B − A Xn = P A P̃ T

A B − P A A P A Xn.

Proof. Since the matrix equation (34) is a consistent equation with a symmetric matrix P A A P A , then we can apply The-
orem 5.1. Therefore, the Gl-MINRES method applied to the matrix equation (34) cannot break down for any initial guess. 
Also, the nth residual of the original matrix equation A X = B is given by

Rn = B − A Xn = B − A( P̃ A(P A Xn + A Q A B) + Q A AB)

= B − A P̃ A(P A Xn + A Q A B) − A Q A AB

= (I − A Q A A)B − P A A(P A Xn + A Q A B)

= P A B − P A A P A Xn − P A A2 Q A B

= P A(I − A2 Q A)B − P A A P A Xn

= P A P̃ T
A B − P A A P A Xn. (36)

We see that Rn is equal to the nth Gl-MINRES residual for equation (34). In particular, this implies that the exact solution 
of matrix equation (1) is given by (35) when a solution Xn of (34) is determined by Gl-MINRES. �
6. Numerical results

In this section, we present numerical examples to illustrate the effectiveness of Algorithm 1 to solve matrix equations (1). 
Note that we can consider different versions of Algorithm 1 that depend on the properties of the matrix A.

Examples are carried out using double precision floating point arithmetic in MATLAB 7.12.0. All test matrices are taken 
from the Matrix Market [17] with the exception of Example 6.4. Since eigenvalues of the operator close to zero decelerate 
the convergence of the Krylov subspace methods, we first compute (by the MATLAB code eigs(A, k,′ sm′) for sparse ma-
trices with accuracy 10−16) the k smallest magnitude eigenvalues of A and their corresponding eigenvectors denoted by 
U1, U2, . . . , Uk . Then we apply Algorithm 1 with U = [U1, U2, . . . , Uk]. Also, the iterations are started with X̂0 = 0. Also, we 
give the CPU-time (that includes CPU-time for computation of eigs) for each algorithm in parenthesis and we denote the 
size of the matrix A with m. Tolerance of computed eigenvectors by eigs in all examples is given 10−16 except Example 6.5.

Example 6.1. In this example, we use matrices NOS5, GR-30-30 and BCSSTK06 and compare the performance of the Gl-CG 
[25] and Def-Aug-Gl-CG algorithms. We consider the 10 smallest eigenvalues of these matrices. The right-hand side B is 
chosen such that the exact solution X is a matrix of order m × s whose ith column has all entries equal to one except the 
ith entry which is zero. The stopping criterion is

max
1≤i≤s

‖b(i) − Ax(i)‖2

‖B‖F
< 10−7,

where b(i) and x(i) for i = 1, 2, . . . , s are columns in the matrices B and X , respectively.
The numerical results are shown in Table 1. This table shows that the Def-Aug-Gl-CG algorithm converges faster than 

Gl-CG by considering the corresponding eigenvectors of the 10 smallest eigenvalues for columns of matrix U . Also from 
Table 1, we see that for the Gl-CG and the Def-Aug-Gl-CG algorithms, the choice s = 2 is less cost effective than s = 4.

Fig. 1 shows the results obtained with Gl-CG and the Def-Aug-Gl-CG for matrices NOS5 and GR-30-30 with s = 4 and 
k = 10. As seen from this figure, the Def-Aug-Gl-CG method converges faster and gives a much smoother convergence 
behavior than Gl-CG.

Example 6.2. In this example, we compare the performance of the Gl-MINRES and the Def-Aug-Gl-MINRES algorithms for 
the symmetric matrices BLCKHOLE, JAGMESH2 and JAGMESH4. We consider the 10 and 15 smallest magnitude eigenvalues 
of these matrices. Let B = rand(m, s) and the stopping criterion is

‖R j‖F
< 10−7.
‖B‖F
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Table 1
Numerical results of Gl-CG and Def-Aug-Gl-CG.

Matrix m k Method s = 2 s = 4

NOS5 468 10 Def-Aug-Gl-CG 143 (0.42) 143 (0.48)

Gl-CG 336 (0.50) 365 (1.37)

GR-30-30 900 10 Def-Aug-Gl-CG 28 (0.35) 28 (0.41)

Gl-CG 52 (0.44) 52 (0.44)

BCSSTK06 420 10 Def-Aug-Gl-CG 1006 (1.87) 1006 (2.19)

Gl-CG 2397 (3.35) 1766 (4.84)

Fig. 1. The convergence history for NOS5 (on the left) and GR-30-30 (on the right).

Table 2
Numerical results of Gl-MINRES and Def-Aug-Gl-MINRES.

Matrix m k Method s = 2 s = 4

JAGMESH2 1009 15 Def-Aug-Gl-MINRES 877 (0.52) 889 (0.64)

10 Def-Aug-Gl-MINRES 1106 (0.62) 1140 (0.80)

Gl-MINRES 1741 (0.82) 1771 (1.03)

JAGMESH4 1440 15 Def-Aug-Gl-MINRES 1144 (0.82) 1156 (0.93)

10 Def-Aug-Gl-MINRES 1543 (0.90) 1556 (1.14)

Gl-MINRES 2531 (1.30) 2535 (1.91)

BLCKHOLE 2132 15 Def-Aug-Gl-MINRES 2350 (1.71) 2357 (2.54)

10 Def-Aug-Gl-MINRES 3284 (2.39) 3284 (3.34)

Gl-MINRES 4866 (2.89) 5030 (4.16)

As seen from Table 2, the Def-Aug-Gl-MINRES method requires less iteration steps and CPU-time than Gl-MINRES. Also, 
Def-Aug-Gl-MINRES is more effective for k = 15 than for k = 10. Table 2 shows that Def-Aug-Gl-MINRES and Gl-MINRES 
algorithms become expensive as s increases.

Fig. 2 shows that for s = 4 and k = 15, the Def-Aug-Gl-MINRES for matrices JAGMESH2 and BLCKHOLE gives a much 
smoother convergence behavior than Gl-MINRES.

Example 6.3. In this example, we use matrices SHERMAN1, SHERMAN4 and CAVITY01 and compare the performance of the 
Gl-GMRES(25) and the Def-Aug-Gl-GMRES(25) algorithms. We consider the 10 smallest eigenvalues of these matrices and 
let B = rand(m, s). The stopping criterion is

‖R j‖F

‖B‖F
< 10−7.

Also, we compare the Def-Aug-Gl-GMRES(25) and Def-Aug-Gl-GMRES(50) algorithms.
In Table 3, we observe that the iteration steps and CPU-time for Def-Aug-Gl-GMRES(25) are better than Gl-GMRES(25). 

As shown in Table 4, the Def-Aug-Gl-GMRES(50) algorithm requires less iteration steps and more CPU-time than Def-Aug-
Gl-GMRES(25). The results obtained in Tables 3 and 4 show the effectiveness of the choice s = 2.

Fig. 3 shows the results obtained with Gl-GMRES(25) and Def-Aug-Gl-GMRES(25) for matrices CAVITY01 and SHERMAN1 
for s = 2 and k = 10. As seen from this figure, Def-Aug-Gl-GMRES(25) converges faster than Gl-GMRES(25).
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Fig. 2. The convergence history for JAGMESH2 (on the left) and BLCKHOLE (on the right).

Table 3
Numerical results of Gl-GMRES(25) and Def-Aug-Gl-GMRES(25).

Matrix m k Method s = 2 s = 4

CAVITY01 317 10 Def-Aug-Gl-GMRES(25) 20 (0.89) 21 (0.95)

Gl-GMRES(25) 135 (4.65) 155 (5.16)

SHERMAN1 1000 10 Def-Aug-Gl-GMRES(25) 19 (4.10) 20 (4.50)

Gl-GMRES(25) 164 (6.12) 165 (7.87)

SHERMAN4 1104 10 Def-Aug-Gl-GMRES(25) 3 (0.90) 3 (0.91)

Gl-GMRES(25) 28 (1.11) 29 (1.48)

Table 4
Numerical results of Def-Aug-Gl-GMRES(25) and Def-Aug-Gl-GMRES(50).

Matrix m k Method s = 2 s = 4

CAVITY01 317 10 Def-Aug-Gl-GMRES(25) 20 (0.89) 21 (0.95)

Def-Aug-Gl-GMRES(50) 5 (1.00) 5 (1.00)

SHERMAN4 1104 10 Def-Aug-Gl-GMRES(25) 3 (0.90) 3 (0.91)

Def-Aug-Gl-GMRES(50) 2 (1.30) 2 (1.32)

Fig. 3. The convergence history for CAVITY01 (on the left) and SHERMAN1 (on the right).
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Table 5
Numerical results of Example 6.4 for n1 = 30, p1 = 5, p2 = 10 and p3 = 20.

Matrix k Method s = 10 s = 20 s = 30

A 10 Def-Aug-Gl-GMRES(25) 3 (0.76) 3 (0.98) 3 (1.37)

Gl-GMRES(25) 7 (0.56) 7 (1.07) 7 (1.47)

A 20 Def-Aug-Gl-GMRES(25) 2 (0.54) 2 (0.72) 2 (0.93)

Gl-GMRES(25) 7 (0.56) 7 (1.07) 7 (1.47)

Table 6
Numerical results of Def-Aug-Gl-GMRES(25) with s = 2.

Matrix k Tolerance of eigenvectors Iteration Residual norm

CAVITY01 15 10−16 11 (0.48) 2.1495 × 10−6

10−5 12 (0.49) 1.6012 × 10−6

CAVITY01 20 10−16 12 (0.52) 1.6795 × 10−6

10−4 13 (0.54) 2.3249 × 10−6

Example 6.4. In this example, we consider constant convection-diffusion partial differential operator [33]

−�u(x, y) + 2p1ux(x, y) + 2p2u y(x, y) − p3u(x, y) = λu(x, y)

on a square region [0, 1] × [0, 1] with the boundary condition u(x, y) = 0, where p1, p2 and p3 are positive constant. 
Discretizing by five differences on uniform n1 × n1 grid points using the row wise natural ordering gives rise to a block 
tridiagonal matrix A for order m = n2

1. Therefore we get

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

T (β + 1)I
(−β + 1)I T (β + 1)I

. . .
. . .

. . .

. . .
. . . (β + 1)I

(−β + 1)I T

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 − θ γ − 1
−γ − 1 4 − θ γ − 1

. . .
. . .

. . .

. . .
. . . γ − 1

−γ − 1 4 − θ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and β = p1h, γ = p2h, θ = p3h2 and h = 1
n1+1 .

We let B = rand(m, s) and the stopping criterion is

‖R j‖F

‖B‖F
< 10−7.

Table 5 shows that the number of iterations and CPU-time for Def-Aug-Gl-GMRES(25) are better than Gl-GMRES(25) as 
s increases. Also, Def-Aug-Gl-GMRES(25), for choice k = 20 is faster than k = 10.

Example 6.5. In this example, we consider matrix CAVITY01 and compare the performance of Def-Aug-Gl-GMRES(25) algo-
rithm with computed eigenvectors by eigs with different accuracies. The right-hand side B is chosen such that the exact 
solution X is a matrix of order m × s whose ith column has all entries equal to one except the ith entry which is zero. The 
stopping criterion is

‖R j‖F

‖B‖F
≤ 10−7.

Table 6, shows that the number of iterations, CPU-time and residual norm in Def-Aug-Gl-GMRES(25) algorithm depend 
on the accuracy of computed eigenvectors by eigs.
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7. Conclusions

In this paper, to accelerate the convergence of global Krylov subspace methods, we presented a framework for deflated 
and augmented global methods and present the algorithm of this method. Therefore, we theoretically analyzed versions 
of this method for the global OR-type methods and the global MR-type methods. Also, for symmetric matrices, we pre-
sented deflated and augmented Gl-MINRES which uses a symmetric deflated matrix and without breakdown gives (in 
exact arithmetic) the exact solution of the matrix equation (1). In Example 6.5, we compared the performance of Def-
Aug-Gl-GMRES(25) algorithm with computed eigenvectors by eigs in Matlab with different accuracies. Finally, our numerical 
experiments illustrate the effectiveness of different versions of the new algorithm.
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