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Abstract

In this paper an iterative solution method for the 3D Helmholtz equa-
tion is presented. The method is a generalization of the method presented
in [Erlangga, Oosterlee, Vuik, SIAM J. Sci. Comput., to appear] for the
2D heterogeneous Helmholtz equation. The method employs 3D multi-
grid with 2D semicoarsening as a preconditioner for a Krylov subspace
iteration method. This multigrid method is, however, not applied to the
Helmholtz operator directly, but to a Helmholtz operator with complex
shift, a so-called shifted Laplacian preconditioner. Numerical results ob-
tained on a sequential machine indicate the efficiency and the robustness
of the method.

Keywords. 3D Helmholtz equation, nonconstant high wavenumber, Krylov
subspace methods, complex multigrid preconditioner, semicoarsening
AMS subject classifications. 65N55, 65F10, 65N06, 65N22, 78A45, 76Q05

1 Introduction

Iterative methods have become very popular for solving sparse, large linear sys-
tems. Direct solution methods typically suffer from sparsity fill-in, especially for
systems with a wide bandwidth. This increases the amount of storage needed
and the computational work required for solving matrices drastically. Matrices
with a wide bandwidth occur particularly in 3D applications. Iterative meth-
ods, on the contrary, are usually constructed based on matrix-vector products,
that exploit the sparsity of a matrix. Highly efficient iterative methods, that are
commonly used are multigrid [16] and preconditioned Krylov subspace meth-
ods [14].

The multigrid method is known to be an efficient iterative method for solving
linear systems derived from nicely elliptic partial differential equations (PDEs).
A tuned multigrid method can result in O(N) complexity for solving Poisson
type equations.

The Helmholtz equation, however, does not belong to the class of PDEs
which multigrid can solve efficiently. Convergence degradation, and conse-
quently loss of O(N) complexity are caused by difficulties encountered in the
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smoothing and coarse grid correction components, the two basic principles of
multigrid; see [4, 8] for discussion. Since the Helmholtz equation appears in
many fields, e.g. in under-water acoustics, seismics and electromagnetics, the
need for an efficient 3D iterative solver is high. Many authors, e.g. [9, 3, 4, 10],
have contributed to the development of appropriate multigrid methods for the
Helmholtz equation. Multigrid is then used either as a solver or as a precondi-
tioner.

In [8] we have presented a 2D preconditioner based on the Helmholtz equa-
tion with an imaginary shift. The iterations are performed in the context of
Krylov subspace methods. This preconditioner is approximately inverted by
means of one iteration of multigrid, which is highly efficient. It appears as
a member of the family of shifted Laplacian operators introduced in [6, 7].
In [7, 8], we applied the iterative method to various 2D Helmholtz problems
with inhomogeneity in the medium, like to a Marmousi [2] problem arising from
geophysics and mimicking the Earth’s subsurface layer with strong contrasts.

Similar approaches have also been proposed in [9], where a Laplacian is used
as a preconditioner for Conjugate Gradients; In [11] the definite version of the
Helmholtz equation resulted in a faster convergence. The preconditioner in [8]
is an efficient generalization of these.

In this paper we generalize the 2D method to three spatial dimensions. We
solve 3D Helmholtz problems with heterogeneous media. Following the basics
from [6, 7, 8], the method presented here consists of a Krylov subspace method
(in our case Bi-CGSTAB), a preconditioning operator that is handled by multi-
grid. A 3D multigrid algorithm based on 2D semicoarsening, plus line-wise
smoothing in the third direction is used. This may seem not natural for prob-
lems without anisotropy, like the Helmholtz equation. However, anisotropies
may occur also here in the form of different numbers of grid points in different
spatial directions.

In Section 2 we briefly introduce the 3D Helmholtz equation, the precon-
ditioning operator, and their discrete finite difference formulations. Section 3
discusses the 3D multigrid method with semicoarsening. Numerical results are
presented in Section 4.

2 3D Helmholtz equation and multigrid

We consider the three-dimensional Helmholtz equation in a cubic domain Ω ⊂
R3, with x = (x1, x2, x3):

Au(x) := −
(
∂x1x1

+ ∂x2x2
+ ∂x3x3

+ k2(x)
)
u(x) = f(x), (1)

where k is the wavenumber. The boundary conditions on Γ = ∂Ω are set on the
faces, edges and corners of the domain. On each part of Γ we set the following
absorbing boundary layer conditions (see [1, 5]):

Faces: Bu|face := ± ∂u

∂xi

− ĵku − ĵ

2k

∑

1≤j 6=i≤3

∂2u

∂x2
j

= 0, i = 1, . . . , 3, (2)
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where xi indicates the coordinate perpendicular to the face;

Edges: Bu|edge := −3

2
k2u − ĵk

3∑

j=1,j 6=i

(
± ∂u

∂xj

)
− 1

2

∂2u

∂x2
i

= 0, i = 1, . . . , 3, (3)

with xi the coordinate parallel to the edge.

Corners: Bu|corner := −2ĵku +
3∑

i=1

± ∂u

∂xi

= 0. (4)

In (2)–(4) ĵ is the complex identity, i.e. ĵ =
√
−1.

If (1) is discretized using the 7-point central finite difference scheme, a linear
system

Aφ = g, A ∈ C
N×N , φ, g ∈ C

N , (5)

is obtained. Stencil Ah corresponding to matrix A then reads:

Ah
∧
=

1

h2





0 0 0
0 −1 0
0 0 0




h

,




0 0 − 1 0
−1 6 − (kh)2 −1
0 0 − 1 0




h

,



0 0 0
0 −1 0
0 0 0






h

. (6)

One can also choose another discretization, e.g. a 19- or 27-point stencil.
Matrix A in (5) is sparse, large and symmetric, but indefinite and ill-conditioned

for sufficiently large k. A Krylov subspace method applied to (5) without a pre-
conditioner converges extremely slow. To improve the convergence a precondi-
tioner is used. Preconditioning based on an incomplete factorization of A does,
however, not lead to a robust iterative method in the case of high wavenum-
bers and heterogeneities; see the numerical results in [7]. Therefore, we use the
shifted Laplacian operator for preconditioning, which in 3D takes the form:

M := −
(
∂x1x1

+ ∂x2x2
+ ∂x3x3

+ (1 − 0.5ĵ)k2
)

. (7)

The preconditioning matrix M is constructed by discretization of (7) using
central differences. In the construction, the boundary conditions (2)–(4) are
also incorporated. With M as the preconditioner, the (right) preconditioned
linear system to be solved is given by:

AM−1(Mφ) = g. (8)

In practice, M is never inverted explicitly. We, for example, will use one
multigrid iteration to approximately invert M . System (8) is then solved using
a Krylov subspace method. We have chosen Bi-CGSTAB [18], which performed
best in 2D. Multigrid’s cycle type(V-, F- or W-cycle) and smoother (Jacobi or
Gauß-Seidel) have to be prescribed, as the number of pre- and post-smoothing
steps, ν1 and ν2, respectively.
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For three-dimensional problems, the choice of multigrid components is larger
than in 2D. In general, a multigrid method with standard coarsening, i.e. with
doubling the mesh size in all directions, results in highly efficient 3D Poisson
solvers. For anisotropic Poisson problems, standard coarsening combined with
pointwise smoothing does not converge well. In this case, the use of line (or
plane) smoothers is mandatory with standard coarsening. Point smoothers can
lead to a fast converging method if a proper semicoarsening strategy is incor-
porated (see [15]).

In more complicated situations, with strong anisotropies in arbitrary direc-
tions, the use of algebraic multigrid is natural. In this paper we use geomet-

ric multigrid. Operator (7) with boundary conditions (2), (3) and (4) does
not need a non-standard multigrid treatment; standard coarsening multigrid
method with point smoother may be sufficient. This is confirmed in 2D. How-
ever, as nonsquare grid cells may occur in one pre-defined direction, we employ
semicoarsening in two directions and linewise smoothing in the third direction.
Grid anisotropies occur, for example, if the domain of interest is of a different
height, compared to the domain widths. Further, all 2D multigrid components
are immediately usable in 3D setting. We only change the pointwise smoother
to a linewise smoother in the uncoarsened third dimension. The interpolation
operator can be built based on bilinear interpolation or 2D interpolation oper-
ator by de Zeeuw [20]. The restriction operator can also be determined as in
2D. The generalization of the pointwise damped Jacobi smoother in [8] is the
linewise damped Jacobi smoother. Notice that the number of grid points on
coarse grids now reduces only with a factor of four, as compared to a factor of
eight in the case of standard grid coarsening. The 3D multigrid method with

2,2,3

3,3,3

1,1,3

x

x

x

1

2

3

Figure 1: Semicoarsening of three grid levels: standard coarsening in two direc-
tions (x1 and x2), the third (x3) direction is kept uncoarsened

(x1, x2)-semicoarsening is illustrated in Fig. 1 for three grid levels. As can be
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seen, doubling the mesh size only takes place in the x1- and x2-directions, while
the x3-direction is kept uncoarsened. We will show in the numerical results that
the choice of the coarsening directions is unimportant for Helmholtz problems
on square grids.

Semicoarsening strategies other than the one shown in Fig 1 also exist; see
e.g. [12] for a method called ‘Multiple Semicoarsened Grids (MSG) and [13] for
‘Multigrid also used as a Smoother’ (MG-S). These robust strategies are mostly
designed for problems with general anisotropies and for the Euler equations.
The strategy in [13] (later extended to 3D in [19]) requires smoothing in the
x1- and x2-directions before the grid is coarsened simultaneously in the x1- and
x2-directions. This process will give also for isotropic 3D Helmholtz problems a
slightly better convergence, but it requires substantially extra work on coarser
levels and extra information on coarse grids (thus, storage).

3 Multigrid to approximate M

The 3D multigrid method with (x1, x2)-semicoarsening and linewise smoothing
is designed as follows: Let us consider the preconditioner operator (7), dis-
cretized by the seven-point stencil on a grid Gh = {(i1h, i2h, i3h)|
i1, i2, i3 = 1, . . . , n}, with h = 1/n.

For a damped x3-line Jacobi relaxation with relaxation factor 0 < ωjac ≤ 1
we have the following iteration:

(Mx3
+ D)φ̃j+1 + (Mx1

+ Mx2
)φj = g, (9)

φj+1 = ωjacφ̃
j+1 + (1 − ωjac)φ

j , (10)

or

1

ωjac

(Mx3
+ D)φj+1 = g − (Mx1

+ Mx2
)φj +

1 − ωjac

ωjac

(Mx3
+ D)φj ,

= g − Mφj +
1

ωjac

(Mx3
+ D)φj , (11)

with

(Mx1
φ)i1 ,i2,i3 := − 1

h2
(ui1+1,i2,i3 + ui1−1,i2,i3) , (12)

(Mx2
φ)i1 ,i2,i3 := − 1

h2
(ui1,i2+1,i3 + ui1,i2−1,i3) , (13)

(Mx3
φ)i1 ,i2,i3 := − 1

h2
(ui1,i2,i3+1 + ui1,i2,i3−1) , (14)

(Dφ)i1 ,i2,i3 :=
1

h2

(
6 − (1 − 0.5ĵ)k2h2

)
ui1,i2,i3 . (15)

It is then possible to determine the smoothing factor of this method in the case
of semicoarsening.
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In [8] we analyze and show that 2D standard multigrid with point Jacobi
smoother results in a robust method for the 2D version of the preconditioner
(7) for various kh. For ωjac = 0.5 a 2D F(1,1)-multigrid algorithm with an
acceptable convergence factor (usually 0.5-0.7) is obtained. This convergence
is sufficient to approximately invert the preconditioner. As compared to exact
inversion, one multigrid iteration of this kind does not influence convergence
of a Krylov subspace method applied to the Helmholtz equation negatively.
Furthermore we use the following multigrid components:

(i) restriction, IH
h : Gh → GH , is 2D full weighting,

(ii) prolongation, Ih
H : GH → Gh, is either 2D bilinear interpolation or 2D

matrix-dependent interpolation,

(iii) coarse grid matrix is based on the Galerkin coarse grid discretization,
defined as MH = IH

h MhIh
H .

Prolongation operator. Next to the bilinear interpolation, we consider a
matrix-dependent interpolation based on the operator proposed by de Zeeuw
in [20]. This type of prolongation is especially useful for problems with strong
heterogeneities. In the original formulation, this matrix dependent interpolation
is developed based on the splitting of symmetric and non-symmetric part of the
linear system. In our case, symmetry of the linear system reduces the repre-
sentation of the interpolation operator. Furthermore, we modify the operator
such that the weights are now based on the modulus of some complex-valued
constant.

1 2 3

4 5 6

7 8 9

iz = −1

iz = 0

iz = 1

x

x

x

1

2

3

Figure 2: The 27-point stencil
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To determine the 3D interpolation weights, we consider the 27-point stencil
matrix (see Fig. 2)

(Mφ)i1 ,i2,i3 =
∑

iz=−1,0,1

[m(iz)1i1,i2,i3
φi1−1,i2−1,i3+iz

+ m(iz)2i1,i2,i3
φi1 ,i2−1,i3+iz + m(iz)3i1,i2,i3

φi1+1,i2−1,i3+iz

+ m(iz)4i1,i2,i3
φi1−1,i2,i3+iz + m(iz)5i1,i2,i3

φi1,i2,i3+iz

+ m(iz)6i1,i2,i3
φi1+1,i2,i3+iz + m(iz)7i1,i2,i3

φi1−1,i2+1,i3+iz

+ m(iz)8i1,i2,i3
φi1 ,i2+1,i3+iz + m(iz)9i1,i2,i3

φi1+1,i2+1,i3+iz].(16)

Assuming that coarsening is only done in the (x1, x2)-directions, a lumped 9-

point stencil matrix M̃ in an (x1, x2)-plane is defined as:

(M̃φ)i1 ,i2,i3 = m̃1
i1,i2,i3

φi1−1,i2−1,i3

+m̃2
i1,i2,i3

φi1,i2−1,i3 + m̃3
i1,i2,i3

φi1+1,i2−1,i3

+m̃4
i1,i2,i3

φi1−1,i2,i3 + m̃5
i1,i2,i3

φi1 ,i2,i3

+m̃6
i1,i2,i3

φi1+1,i2,i3 + m̃7
i1,i2,i3

φi1−1,i2+1,i3

+m̃8
i1,i2,i3

φi1,i2+1,i3 + m̃9
i1,i2,i3

φi1+1,i2+1,i3 , (17)

with

m̃p
i1,i2,i3

= m(−1)p
i1,i2,i3

+ m(0)p
i1,i2,i3

+ m(1)p
i1,i2,i3

, p = 1, 2, . . . , 9. (18)

Based on the lumped 9-point stencil the coarse-to-fine grid operator can be
determined from the following:

v2i1−1,2i2−1,i3 = ui1,i2,i3

v2i1,2i2−1,i3 = w12i1,2i2−1,i3ui1,i2,i3 + w22i1,2i2−1,i3ui1+1,i2,i3

v2i1−1,2i2,i3 = w12i1−1,2i2,i3ui1,i2,i3 + w32i1−1,2i2,i3ui1,i2+1,i3

v2i1,2i2,i3 = w12i1,2i2,i3ui1,i2,i3 + w22i1,2i2,i3ui1+1,i2,i3

+ w32i1,2i2,i3ui1,i2+1,i3 + w42i1,2i2,i3ui1+1,i2+1,i3 ,

with the weights w1, . . . , w4 determined from the 2D interpolation weights [20],
see also [19]. Here we explain the matrix-dependent interpolation weights in
some more detail (for bilinear interpolation in multigrid we refer to, for exam-
ple, [16]).

The derivation of the matrix-dependent prolongation weights starts by split-
ting M̃ into a symmetric and an antisymmetric part:

M̃S =
1

2

(
M̃ + M̃T

)
, M̃T =

1

2

(
M̃ − M̃T

)
. (19)

The elements of the symmetric and the antisymmetric parts are denoted by
m̃s and m̃t, respectively. In our case, M̃T = 0 on the finest grid only. On
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(2i   )

(2i   −1)
2

2

2i   +1
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Figure 3: Coarse and fine grid cells for (x1, x2)-semicoarsening

the coarse grids, due to the lumping, unsymmetry enters the the definition of
the matrices and thus the computations. Therefore, we adopt the unsymmetric
strategy as presented in [19] in the definition of the interpolation weights. For
the symmetric part, we have

dw = max(|m̃1
s,2i1,2i2−1,i3

+ m̃4
s,2i1,2i2−1,i3

+ m̃7
s,2i1,2i2−1,i3

|,
|m̃1

s,2i1,2i2−1,i3
|, |m̃7

s,2i1,2i2−1,i3
|),

de = max(|m̃3
s,2ii,2i2−1,i3

+ m̃6
s,2i1,2i2−1,i3

+ m̃9
s,2i1,2i2−1,i3

|,
|m̃3

s,2i1,2i2−1,i3
|, |m̃9

s,2i1,2i2−1,i3
|),

dn = max(|m̃7
s,2i1−1,2i2,i3

+ m̃8
s,2i1−1,2i2,i3

+ m̃9
s,2i1−1,2i2,i3

|,
|m̃7

s,2i1−1,2i2,i3
|, |m̃9

s,2i1−1,2i2,i3
|),

ds = max(|m̃1
s,2i1−1,2i2,i3

+ m̃2
s,2i1−1,2i2,i3

+ m̃3
s,2i1−1,2i2,i3

|,
|m̃1

s,2i1−1,2i2,i3
|, |m̃3

s,2i1−1,2i2,i3
|),

σ1 =
1

2
min

(
1,

∣∣∣∣∣1 −
∑9

p=1

∣∣m̃p
s,2i1,2i2−1,i3

∣∣
m̃5

s,2i1,2i2−1,i3

∣∣∣∣∣

)
,

σ2 =
1

2
min

(
1,

∣∣∣∣∣1 −
∑9

p=1

∣∣m̃p
s,2i1−1,2i2,i3

∣∣
m̃5

s,2i1−1,2i2,i3

∣∣∣∣∣

)
.
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For the unsymmetric part, two parameters c1 and c2 are defined as:

c1 = m̃3
t,2i,2j−1,k + m̃6

t,2i,2j−1,k + m̃9
t,2i,2j−1,k − (m̃1

t,2i,2j−1,k + m̃4
t,2i,2j−1,k + m̃7

t,2i,2j−1,k)

c2 = m̃7
t,2i−1,2j,k + m̃8

t,2i−1,2j,k + m̃9
t,2i−1,2j,k − (m̃1

t,2i−1,2j,k + m̃2
t,2i−1,2j,k + m̃3

t,2i−1,2j,k).

As mentioned, the elements of the symmetric and the antisymmetric parts are
denoted by subscript s and t, respectively. Using these quantities the matrix-
dependent weights on the west, east, north and south are determined as follows:

ww = σ1

(
1 +

dw − de

dw + de

+
c1

dw + de + dn + ds

)
, we = 2σ1 − ww,

wn = σ2

(
1 +

ds − dn

ds + dn

+
c2

dw + de + dn + ds

)
, ws = 2σ2 − wn.

The weights w1, . . . , w4 can now be computed, i.e.,

• for (2i1, 2i2 − 1, i3)

w12i1,2i2−1,i3 = min(2σ1, max(0, ww)), w22i1,2i2−1,i3 = min(2σ1, max(0, we)).

• for (2i1 − 1, 2i2, i3)

w12i1−1,2i2,i3 = min(2σ1, max(0, ws)), w32i1−1,2i2,i3 = min(2σ1, max(0, wn)).

• for (2i1, 2i2, i3)

w12i1,2i2,i3 =
m̃1

2i1,2i2,i3
+ m̃2

2i1,2i2,i3
· w12i1,2i2−1,i3 + m̃4

2i1,2i2,i3
· w12i1−1,2i2,i3

m̃5
2i1,2i2,i3

,

w22i1,2i2,i3 =
m̃3

2i1,2i2,i3
+ m̃2

2i1,2i2,i3
· w22i1,2i2−1,i3 + m̃6

2i1,2i2,i3
· w12i1+1,2i2,i3

m̃5
2i1,2i2,i3

,

w32i1,2i2,i3 =
m̃7

2i1,2i2,i3
+ m̃4

2i1,2i2,i3
· w32i1−1,2i2,i3 + m̃8

2i1,2i2,i3
· w12i1,2i2+1,i3

m̃5
2i1,2i2,i3

,

w42i1,2i2,i3 =
m̃9

2i1,2i2,i3
+ m̃6

2i1,2i2,i3
· w32i1+1,2i2,i3 + m̃8

2i1,2i2,i3
· w22i1,2i2+1,i3

m̃5
2i1,2i2,i3

.

Restriction operator. In the definition of Galerkin coarse grid matrices, the
restriction operator is most naturally defined as the transpose conjugate of the
interpolation operator. It is, however, not always necessary to chose this op-
tion. In our numerical tests in [8], we found that the full weighting restriction
in combination with either bilinear or matrix-dependent prolongation operator,
resulted in a robust overall solution method for Helmholtz problems with irregu-
lar heterogenieties and strong contrast. With the choice, IH

h 6= (Ih
H)∗, however,

we cannot guarantee the symmetry of coarse grid matrices after Galerkin coarse
grid process, eventhough Mh is symmetric.

The full weighting restriction operator is defined, in stencil notation, by:

IH
h

∧
=

1

16



1 2 1
2 4 2
1 2 1




H

h

. (20)
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4 Numerical results

In this section we present numerical results for several 3D Helmholtz model
problems, as schematically shown in Figures 4 and 5. Since the numerical ex-
periments are performed on a single processor machine, the problem sizes that
can be resolved when setting the accuracy law “kh constant” are limited. A par-
allel implementation in 3D becomes inevitable and is on its way. The examples
here are, however, representative to show the robustness of the shifted Laplacian
preconditioner and it gives a first glance of its effectiveness in combination with
Bi-CGSTAB to accelerate the numerical solution of the 3D Helmholtz equation
with regular heterogeneities. There is no reason to believe that the solver will
not perform well for problems with irregular heterogeneities.

x

x
x

b

(a) (b)

unit source
1

2

3

ka
k

k

Figure 4: Three-dimensional problems: (a) constant k (b) three layers, k is
varied in the x2-direction.

4.1 3D constant wavenumber

We first consider a problem at constant wavenumber in Ω = (0, 1)3. At the
boundaries Γ = ∂Ω the first-order radiation conditions are prescribed. They are
discretized by a one-sided finite difference scheme. A unit source is situated at
x = ( 1

2
, 1

2
, 1

2
). Starting with a zero initial guess, Bi-CGSTAB iterates until the

residual at the j-th iteration is reduced by 7 orders of magnitude:

‖rj‖2 ≤ 10−7‖r0‖2. (21)

The numerical performance for this first test case is presented in Table 1 for
various wavenumbers k, obtained on grids with mesh size resolution h, satisfying
kh = 0.625 (∼ 10 grid points per wavelength). Compared to solving an equiv-
alent problem in 2D, the 3D convergence results show a very similar trend as
their 2D counterparts (or even faster 3D convergence is observed). In the con-
stant wavenumber case, the use of bilinear or operator-dependent interpolation
in multigrid does, in this example, not lead to a substantially different compu-
tational performance. The effect of different grid resolutions on the numerical
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performance is shown in Table 2 for k = 10, 20 and 30. Except for k = 10, for
which the number of iterations increases slightly on the finer grids, the results
indicate an almost h-independent convergence of preconditioned Bi-CGSTAB
in combination with multigrid.

However, with the operator-dependent interpolation an increasing number of
iterations is observed for fine grids. For example, for k = 10 on a 963 mesh (∼ 60
grid points per wavelength), Bi-CGSTAB does not converge in 30 iterations. In
this case, we find that the multigrid method defined with (x1, x2)-semicoarsening
and linewise Jacobi, does not converge as a stand-alone solver for the precon-
ditioner. The h-independent convergence is, however, again recovered for high
wavenumbers. Further investigation of this phenomenon is needed in the near
future.

Table 1: Performance of preconditioned Bi-CGSTAB in terms of the number
of iterations and CPU time (in sec.) to reach convergence for the Helmholtz
equation with constant wavenumber k, kh = 0.625

BI MD
k Iter Time Iter Time

10 9 0.65 9 0.71
20 13 6.89 13 6.64
30 17 25.52 18 27.63
40 21 75.99 21 71.35
50 24 136.31 24 136.33
60 26 251.62 27 276.88

Table 2: Number of iterations of preconditioned Bi-CGSTAB to reach con-
vergence for the constant wavenumber Helmholtz equation, solved for different
grid resolutions. The “–” means that the computation is not performed because
kh > 0.625

BI MD
Grid: Grid:

k 163 323 483 643 963 163 323 483 643 963

10 9 9 10 11 18 9 10 15 16 >30
20 – 13 13 12 14 – 13 13 13 19
30 – – 17 16 17 – – 17 17 17
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4.2 3D three-layer problems

A second problem considered is a so-called three-layer problem. The medium is
divided into three parts, where the wavenumber varies in Ω according to

k =





akref 0 ≤ x2 < 1/3,

kref 1/3 ≤ x2 < 2/3,

bkref 2/3 ≤ x2 ≤ 1.

(22)

Constants a and b in (22) are prescribed in the tables below.
The problem is presented in Figure 4b. A source is located at x = ( 1

2
, 1

2
, 0).

With this model problem we investigate the influence of different semicoarsen-
ing strategies on the convergence of the preconditioned Bi-CGSTAB solver in
the presence of a simple heterogeneity. We first consider the case where the
coarsening is done in the direction of the strong variation in k, i.e. we apply
(x1, x2)-semicoarsening. We prescribe again a zero initial guess and terminate
the iterations when criterion (21) is satisfied.

Table 3 presents the convergence results for two pairs of numbers (a, b), that
determine the physical contrast in the media (22). For the (a, b) values pre-
scribed in Table 3 we observe a significant effect of an increasing contrast on the
numerical performance. The number of iterations increases almost linearly with
respect to kref. Here, the use of the operator-dependent interpolation is found
to be slightly more effective than bilinear interpolation. For small wavenumbers
the bilinear interpolation outperforms the operator-dependent interpolation.

Table 3: Bi-CGSTAB iteration to reach convergence for three layers prob-
lems with (x1, x2)-semicoarsening, krefh = 0.625, BI is bilinear, MD matrix-
dependent interpolation

(a, b) = (1.2, 1.5) (a, b) = (1.2, 2.0)
kref Iter Time(s) Iter Time(s)

BI MD BI MD BI MD BI MD

10 9 12 0.71 0.81 14 16 0.98 0.99
20 18 19 8.47 9.02 24 29 12.07 12.89
30 30 29 42.50 41.91 36 43 57.07 53.33
40 36 33 114.44 107.68 49 56 173.50 172.07
50 49 40 261.18 218.40 65 68 382.73 381.49
60 51 48 470.62 449.48 78 75 736.10 713.43

We also apply (x1, x3)-semicoarsening, in order to see the effect of differ-
ent coarsening strategies on the numerical convergence. This means that the
direction with variation in k (i.e. x2) is now uncoarsened. The convergence
results are shown in Table 4. Compared with the convergence results in Ta-
ble 3, we see that the results from the two semicoarsening strategies are more
or less identical. This implies that the semicoarsening directions can be chosen

12



independently of the direction of contrast. Similar convergence results as the
(x1, x2)-semicoarsening case are also obtained for variation in the interpolation
operator.

Table 4: Bi-CGSTAB iteration to reach convergence for three layers problems
with (x1, x3)-semicoarsening, krefh = 0.625

(a, b) = (1.2, 1.5) (1.5, 2.0)
kref BI MD BI MD

10 11 12 13 14
20 18 18 23 25
30 30 28 36 35
40 36 34 50 49
50 49 40 65 62
60 51 49 79 68

The numerical tests in Tables 3 and 4 are obtained on grids whose resolution
is based on criterion krefh ≤ 0.625. This is related to the minimal number of
grid points per wavelength for a 7-point O(h2)-stencil. However, on the top and
bottom layers of the three layer problem the grid resolution drops below this cri-
terion. It is therefore safest to prescribe the grid resolution based on the largest
wavenumber in the medium. For example, in the case of (a, b) = (1.2, 1.5) and
k = 20, kmax = 30. Hence, instead of using h−1 = 32 we now require h−1 = 48.
Table 5 then displays results with these finer meshes, for kref = 10, 20 and
30. We use the operator-dependent interpolation and observe a convergence
dependence on h only for kref = 10. This may be due to the fact that the pre-
conditioner is not accurately inverted by multigrid for the lower wavenumbers.
The h-dependence becomes much less significant as the wavenumber increases.
The convergence is then asymptotically independent of h.

Table 5: Number of Bi-CGSTAB iterations to reach convergence on finer grids
for a three layers problem with (x1, x2)-semicoarsening. The “–” means that
the computation is not performed because krefh > 0.625

(a, b) = (1.2, 1.5)
kref 163 323 483 643 803 963

10 12 12 11 14 19 35
20 – 19 16 23 14 16
30 – – 29 23 20 20
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4.3 The 3D wedge problem

A third and final 3D example is the so-called 3D wedge problem, depicted in
Figure 5. A unit source is located at x = ( 1

2
, 1

2
, 0). For multigrid iteration, the

bilinear (BI) and operator-dependent interpolation (MD) are compared. The
restriction operator is the full weighting (FW) operator. The convergence results
are presented in Table 6 for various values of kref.

(0,0.6,0)

f

f

Unit sourcex

x

2

1a

b

k

k

k

1

2

x3

(0,0.25,1)

(0,0.8,1)

(1,0.2,0)

(1,0.7,0)

(0,0.4,0)

Figure 5: Wedge problem: fa(x1, x2, x3) = 0.5x1 + 2.5x2 + 0.375x3 − 1 = 0,
fb(x1, x2, x3) = − 1

6
x1 + 5

3
x2 − 1

3
x3 − 1 = 0

For this problem, similar convergence results as for the previous problems
are observed. For high wavenumbers the operator-dependent interpolation is
superior to the bilinear interpolation.

Table 6: Bi-CGSTAB iteration to reach convergence for a three-dimensional
wedge problem with (x1, x2)-semicoarsening, krefh = 0.625

(a, b) = (1.2, 1.5) (a, b) = (1.2, 2.0)
Iter Time(s) Iter Time(s)

kref BI MD BI MD BI MD BI MD

10 11 12 0.80 0.86 14 14 0.96 0.97
20 17 18 8.83 9.06 27 28 13.09 13.76
30 25 23 40.03 37.89 37 36 56.68 55.94
40 31 29 111.27 106.27 53 50 181.05 175.53
50 40 38 258.67 249.64 66 62 413.04 392.29
60 47 43 510.92 474.95 79 76 831.94 808.33

These results compare very well with the results obtained for the three layer
problem. For reasonably high wavenumbers we obtain a robust and efficient
convergence with the 3D shifted Laplacian preconditioner.
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5 Conclusion

In this paper we have described an iterative method for solving 3D Helmholtz
problems with heterogeneities at possibly at high wavenumbers. The method is
based on Bi-CGSTAB, preconditioned by a complex-shifted Laplacian operator.
The latter operator is approximately inverted by a special multigrid variant with
(x1, x2)-semicoarsening. Numerical results have been presented for several 3D
problems, which indicate the robustness and effectiveness of the method.

In this paper, convergence results of a sequential algorithm on one processor
have been shown. Therefore, the 3D problems presented are not yet realistic
real-life problems. The method proposed is, however, easily parallelizable, as
all components in the current implementation are well parallelizable: e.g., the
matrix-vector products, inner products, and line Jacobi for smoothing in the
multigrid algorithm. In 2D, the parallel implementation is finalized. Following
that parallel implementation, we expect that a similar numerical and parallel
performance also in three dimensions.
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