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Abstract In this study a new type of non-reflective boundary condition (NRBC) for
the Lattice Boltzmann Method (LBM) is proposed; the Non-equilibrium Symmetry
Boundary Condition (NSBC). The idea behind this boundary condition is to utilize
the characteristics of the non-equilibrium distribution function to assign values to
the incoming populations. A simple gradient based extrapolation technique and a
far-field criterion are used to predict the macroscopic fluid variables. To demonstrate
the non-reflective behaviour of the NSBC, two different tests have been carried
out, examining the capability of the boundary to absorb acoustic waves respectively
vortices. The results for both tests show that the amount of reflection generated by
the NSBC is nearly zero.

1 Introduction

In many fluid dynamics applications the region of interest comprises of only a small
subdomain in space and time. When modelling such applications using numerical
methods, ideally, one would like to isolate this region, as to minimize computational
expenses and to allow for a sufficiently fine grained discretization. Isolating this
region often requires advanced boundary treatment, in which continuity of the flow
field is assumed. In other words, the amount of energy being reflected at the boundary
has to be zero. This is where the so-called Non-Reflective Boundary Conditions
(NRBC’s) come into practise. Focusing on compressible flow solvers like LBM,
the NRBC’s can be divided into two different groups. The first group, known as
the Characteristic Boundary Conditions (CBC’s), aims at canceling out reflections
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by suppressing any incoming waves. The second group, the Absorbing Layer (AL)
approach, uses a layer of several nodes thick to absorb any outgoing waves. Over
the years, various efforts have been made to model such NRBC’s with LBM. In
2006 Chikatamarla et al. proposed Grad’s approximation for missing data [1], in
which incoming populations are assigned values based on a low-dimensional sub-
manifold in distribution function space. Shortly thereafter Kam et al. [2, 3] published
about the use of NRBC’s for aeroacoustics simulations, in which he compares several
boundary treatments based on extrapolation [4, 5], filtering [6, 7] and absorbing layers
[8, 9]. By the end of 2008 Izquierdo and Fueyo [10] proposed an LBM formulation
for the Characteristic Boundary Condition (CBC), based on the one-dimensional
(LODI) characteristics of the Euler equations and their extension to the Navier-
Stokes equivalent (NS-CBC) [11, 12]. Following the work of Hu [13, 14, 15, 16],
Najafi-Yazdi and Mongeau [17, 18] developed a direction independent AL-NRBC
based on the Perfectly Matched Layer (PML) approach. In 2013 Schlaffer [19]
presented an extensive research on NRBC’s, in which he introduced the Impedence
Boundary Condition (IBC). To continue with the CBC developments, Heubes et
al. [20] proposed a linear combination between Thompson’s boundary conditions
[21] and the LODI relations. Comparing the approaches of Izquierdo and Heubes,
Puig-Arànega et al. [22] found that the LODI equations become inappropriate when
the dimensionality of the flow increases. Consequently, Jung et al. [23] developed a
two-dimensional generalization of the CBC, by recovering the transverse and viscous
terms in the characteristics analysis [24, 25, 26]. Extending on the above approaches,
Wissocq et al. [27] were able to improve the numerical stability of the CBC at high
Reynolds numbers by taking advantage of a regularized collision scheme [28]. In this
study a new type of boundary concept is proposed to approximate non-reflective flow
behavior at the boundary. The idea of this concept is to utilize the characteristics of the
non-equilibrium distribution function to assign values to the incoming populations.
A simple gradient extrapolation technique coupled with a far-field reference vector
is used to predict the macroscopic fluid variables.

2 The Boltzmann Transport Equation

Based on kinetic theory, the Boltzmann Transport Equation (BTE) (1) decribes the
statistical behavior ofmolecularmotion inside a system by using a seven-dimensional
probability density function f , also referred to a particle distribution function (PDF)
or simply distribution function when using the concept of fictituous particles:

∂ f
∂t
+ ξα

∂ f
∂xα
+

Fα
ρ

∂ f
∂ξα
= Ω( f ) (1)

where f is a function of time (t) space (x) and velocity space (ξ). Whenever a
medium relaxes towards steady state, the solution of the BTE becomes the equilib-
rium distribution function f eq (EDF):
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f eq(ρ, u, θ, ξ) = ρ

(2πθ)d/2
e−
|ξ−u|2

2θ (2)

where all quantities are non-dimensional; ρ is the density and θ is the temperature,
equal to RT/u0, in which R and u0 are respectively the gas constant and characteristic
velocity; u is the macroscopic velocity of the medium and d the number of spatial
dimensions. A key component of equation (1) is the collision operator Ω( f ), which
represents all possible ways in which particles can collide with one another:

Ω( f ) = −1
τ
( f − f eq) (3)

where τ is the relaxation time, a direct function of the transport coefficients of a
medium, such as viscosity and heat diffusivity. Themacrosocopic moments likemass
density (4) and momentum density (5) can be obtained by integrating the moments
of f respectively f eq over the d-dimensional velocity space:

ρ =

∫
f ddξ =

∫
f eq ddξ (4)

ρuα =
∫

ξα f ddξ =

∫
ξα f eq ddξ (5)

3 The Lattice Boltzmann Method

Based on the Lattice Boltzmann equation (LBE) (6), the Lattice Boltzmann method
(LBM) is a direct discretization of the BTE in both time, space and velocity space:

fi(x + ci∆t, t + ∆t) − fi(x, t) = Ωi(x, t) (6)

The method constructs numerical approximations by iteratively streaming and col-
liding discrete distribution functions fi , confined by the discrete velocities ci of
a lattice (Figure 1). By introducing compact notation for (6) and substituting the
collision operator (3), the LBE can be rewritten as:

f ∗i = fi −
∆t
τ

(
fi − f eq

i

)
(7)

where f ∗i are the discrete post-collision distribution functions and ∆t is the discrete
time step. The discrete equilibrium distribution function f eq

i is given by:

f eq
i = wiρ

(
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
2c2

s

)
(8)

where cs = 1√
3
is the LBM speed of sound and wi are the discreteweights, associated

with the lattice velocities ci .
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c0 c1c2

c3

c4

c5

c6

c7

c8

i ci wi

0 (0, 0) 4/9
1–2 (±1, 0) 1/9
3–4 (0, ±1) 1/9
5–8 (±1, ±1) 1/36

Fig. 1 D2Q9 model – Lattice configuration (left) and exchange between lattices (right)

4 The Multiple-Relaxation-Time collision model

To increase the accuracy and stability of the current solution, the so-called Multiple-
relaxation-time (MRT) collision model has been added. By relaxing the velocity
moments of f at different rates, rather than relaxing f itself at a single rate, the MRT
collision model is capable of modelling a large range of Reynolds numbers. Similar
to (7) the MRT LBE is given by:

f∗ = f −M−1S (m −meq)∆t (9)

where m and meq are respectively the velocity moments and the equilibrium velocity
moments:

m =M · f meq =M · feq (10)

The quantity M is a Q × Q transformation matrix, whose entries can be found
by constraining the moments of m. Following the Gram-Schmidt (GS) procedure
[29], M can be formed by constructing a set of mutually orthogonal vectors, each
corresponding to a certainmoment of f. The quantityS in (9) represents the relaxation
matrix and is used to relax the different velocity moments. In the case of the GS
approach, this matrix has the following diagonal form:

S = diag
(
Cρ, ωe, ωε,Cjx , ωq,Cjy , ωq, ων, ων

)
(11)

where ωe and ωε are the enery relaxation rates; ωq is the relaxation rate for the
energy flux and ων is the viscous relaxation rate. The constants Cρ, Cjx and Cjy

represent the conserved quantities and can be assigned any value.

5 The non-equilibrium symmetry boundary

Based upon the approximately symmetrical shape of the non-equilibrium distribution
function f neq, a new type of non-reflective boundary condition (NRBC) has been
constructed, known as theNon-equilibriumSymmetryBoundaryCondition (NSBC).
The key behind the NSBC is the approximation that the discrete non-equilibrium
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populations f neq
i are assumed to be equal to their anti-symmetric counterparts f neq

ī
:

f neq
i = f neq

ī
(12)

As a result the incoming populations fin at the boundary nodes can be calculated
using the non-equilibrium contributions of the outgoing populations fout:

fin = f eq
in + f neq

out (13)

As this approach requires the equilibrium populations f eq
in to be computed first,

correct values for the macroscopic fluid vector m = (ρ, u) need to be predicted in
advance. Although there exist various approaches to accomplish this [20, 23], good
results were obtained by simply taking the gradient of m along the normal n of the
boundary, multiplied by the coefficient γ, a relaxation parameter used to minimize
the amount of reflection. As for the D2Q9 model γ = 0.6 was found to give the best
results:

mp = m − γ ∂nm (14)

To allow for m to convergence towards a certain reference fluid vector, a so-called
far-field flow criterion is introduced, yielding:

m f = (1 − β)mp + βm0 (15)

where the coefficient β is the far-field factor and m0 the reference fluid vector.
After all boundary populations have been assigned they are corrected by rescaling
them with respect to the predicted density ρm and shifting them with respect to the
predicted velocity um, as to guarantee conservation of the macroscopic moments:

f̃i = fi − wi [∆ρ + ci∆(ρu)] (16)

∆ρ =
∑
i

fi − ρm (17)

∆(ρu) =
∑
i

ci fi − ρmum (18)

After the correction has been performed, the standard collision procedure can be
carried out, in which there is no distinction between the boundary and the internal
fluid.

6 Test case 1 – Propagation of acoustic waves

Acoustic waves, also known as sound waves, are characterised by local pressure
variations propagating at a certain speed cs through a medium. When considering
this medium to be a fluid with negligible viscosity, the propagation of such waves is
governed by the ideal wave equation:
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∇2s =
1
c2
s

∂2
t s (19)

A possible solution of (19) is the one-dimensional Gaussian plane wave given by:

p(x, t) = ρ0c2
s [1 + s(x, t)] (20)

u(x, t) = ∓css(x, t) (21)

s(x, t) =
√

eζ
ρ0λ
(x ± cst) e−

(x±cs t )2
2λ2 (22)

where p is the total wave pressure, u thewave velocity, s the condensation, ζ thewave
amplitude and λ a steepness factor. To examine the capability of the NSBC to absorb
such a wave, a two-dimensional square domain of fluid is considered, containing an
initially inhomogeneous distribution of density and velocity, representing a plane
wave. To observe the behaviour of the NSBC under different angles of incidence, the
wave is configured to approach the boundary under an angle of 60°with respect to the
horizontal axis. The domain consists of 128 × 128 lattice units and is fully bounded
by NSBC’s (γ = 0.6 and ff = 0.0). The wave properties are set to ρ0 = 1.0, ζ = 0.01
and λ = l/32. To approximate equation (19), the fluid viscosity is assumed to be zero
(e.g. τ = 0.5). The MRT relaxation rates have been chosen as ωe = ωε = ωq = 1.9.
The pressure results of Figure 2 show that the reflectivity of the NSBC is nearly zero.
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Fig. 2 Test case 1: Propagation of a plane wave under an angle – Pressure results

7 Test case 2 – Convected vortex

Formed in stirred fluids, vortices are a major component in many flow applications.
Due to their characteristics and complex interaction with the surrounding fluid,
absorption of vortices can be challenging. To examine the capability of the NSBC in
this area, a two-dimensional Lamb-Oseen vortex [30] is convected towards the right
boundary of a square domain with a grid size of 128 × 128 lattice units [27]. The
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vortex is initialized by introducing a local perturbation of the flow field according
to:

u = u0 − βu0
(y − y0)

Rc
e−

r2
2Rc (23)

v = βu0
(x − x0)

Rc
e−

r2
2Rc (24)

ρ =

[
1 − (βu0)2

2Cv
e−

r2
2

] 1
γ−1

(25)

r = (x − x0)2 + (y − y0)2 (26)

where u0 = 0.1 is the reference velocity, β = 0.5 a coefficient and Rc = 20 the vortex
radius (All quantities are in lattice units). The gas constant γ and the volumetric heat
capacity Cv are defined by:

γ =
d + 2

d
Cv =

d
2

c2
s (27)

where d is the number of spatial dimensions. The Reynolds number equals Re = 103

and is based on u0 and the size of the computational domain. Concerning the domain
boundaries; a Dirichlet velocity boundary [29] is defined at the left and an NSBC
with γ = 0.6 and ff = 0.0 is defined at the right; the bottom and top boundaries are
assumed to be periodic. The MRT relaxation rates are ωe = ωε = 1.4 and ωq = 1.2.
The results from Figure 3 show that the vortex is fully absorbed by the boundary.

8 Summary

A new type of non-reflective boundary formulation (NSBC) is proposed, based on
the approximately symmetrical shape of the non-equilibrium distribution function. In
this formulation, the incoming populations at a boundary node are assigned the non-
equilibrium contributions of the outgoing populations. The equilibrium contributions
of these incoming populations are computed using a predicted macroscopic fluid
vector, determined by a simple gradient based extrapolation method. Additionally, a
far-field flow criterion can be applied to this fluid vector, to allow for convergence
towards a certain reference value. After all populations have been assigned, they are
rescaled and shifted with respect to the fluid vector, as to satisfy conservation of
the macroscopic moments. To examine the non-reflectiveness of proposed boundary
condition, two different tests have been carried out. In the first test the capability
of the NSBC to absorb acoustic waves has been studied. Results show that the
reflections are nearly zero, even when considering a large angle of incidence. As a
second test the aborption of a convected vortex has been modelled. Isovalues of the
longitudinal velocity indicate that the vortex is completely absorbed by the boundary.
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Fig. 3 Test case 5: Convected vortex – Isovalues of longitudinal velocity

To summarize, the NSBC has found to be an interesting alternative for modelling
non-reflective boundaries. However further investigations are needed to determine
the validity of present boundary formulation.
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