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Abstract

Numerical modeling of the melting and combustion process is an important tool in
gaining understanding of the physical and chemical phenomena which occur in a gas- or
oil-fired glass melting furnace. The incompressible Navier-Stokes equations are used to
model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the
SIMPLE(R) pressure-correction method. In our applications many SIMPLE(R) iterations
are necessary to obtain an accurate solution. In this paper Krylov accelerated versions
are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a
simple 2 dimensional flow. Thereafter the efficiency of the methods is compared for 3
dimensional flows in industrial glass melting furnaces.
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1 Introduction

The increasing demand in quality, production efficiency and environmental issues drive the
glass producer in optimizing their melting furnaces. The quality demand is so high and the
melting behavior so complex that a complete understanding of all important physical and
chemical phenomena during the melting process is required to help us further. A very impor-
tant and powerful tool in gaining this understanding is numerical modeling of the complete
melting and combustion process and their interaction. At the TNO Institute of Applied
Physics a ¢FD simulation model for gas- and oil-fired glass melting furnaces, WisSH3D-GTM,
has been developed. This is a complete model for glass melting furnaces, describing the com-
bustion space and glass bath, and predicting the effects on melting performance and glass
quality. The model is successfully used by the glass industry and furnace manufacturers for
product quality improvement, optimization of new furnace designs and trouble-shooting.

The simulation of a complete glass melting furnace often results in large computation times.
One of the reasons for this is that the model uses the, so-called, SIMPLE(R) pressure-correction
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method to solve the incompressible Navier-Stokes equations. It is well known that the siM-
PLE(R) method often needs many iterations before an accurate solution is obtained. To
reduce the large computation times of the SIMPLE(R) method, a Krylov subspace acceleration
of the sIMPLE(R) method has been developed. The GCR (Generalized Conjugate Residuals)
method has been used for this purpose since this method can be applied to the non-symmetric
matrices which result from discretization of the Navier-Stokes equations. The new method
presented in this paper is called GCR-SIMPLE(R).

2 Description mathematical model

The numerical model TNO-WISH3D takes into account all relevant phenomena in the combus-
tion chamber of glass melting furnaces. In the computercode the following submodels have
been implemented: three-dimensional flow is described by the Navier-Stokes equations; tur-
bulence is accounted for by the standard k-¢ model including wall-functions; combustion of
natural gas is described by the conserved scalar approach to high temperature, non-premixed
combustion; combustion of oil is described by a Lagrangian particle tracking method including
the vaporization of the oil droplets; chemistry is described with a one-step global reaction;
radiative heat transfer is modelled by the Discrete Transfer Method where a composition
dependent absorption-emission coefficient is used; a NOy -postprocessor for the prediction of
thermal NO-formation according to the Zel’dovich mechanism; a one-equation model predict-
ing soot formation and oxidation has been incorporated: conduction in the furnace walls has
been taken into account (conjugate heat transfer) and physical properties of the gas mixture
are both composition and temperature dependent. The convection-diffusion equations ob-
tained from the submodels are discretized by the finite volume method using a hybrid scheme
for the discretization of the convection terms. The pressure field is obtained by the SIMPLE or
SIMPLER algorithm [14]. For a more detailed description of the submodels and the numerical
procedure used in TNO-WIsH3D, the reader is referred to [4, 5].

3 The GCR-SIMPLE(R) method for the Stokes problem

After discretization of the incompressible Stokes equation the resulting linear system is sym-
metric and positive indefinite. Discretization of the continuity equation leads to a zero block
on the main diagonal. This leads to serious problems when linear problem solvers are used.
Various methods are known to overcome these difficulties: the pressure-matrix method [7],
Uzawa method [20, 24], SIMPLE-type methods [14, 9], penalty methods [3], pressure correc-
tion methods [23], etc. For an overview of these methods we refer to [16] Section 9.6. In cFD
packages, a popular method is the sSIMPLE method proposed by Patankar and Spalding [15]
or one of its variants SIMPLER [14], SIMPLEST [27], or SIMPLEC [22].

In many applications the sSIMPLE method needs many iterations before an accurate solu-
tion is reached. Various authors consider a multigrid acceleration of the sIMPLE method
[26, 19, 13, 12, 28, 10]. In this paper we consider a Krylov subspace acceleration of the sim-
PLE(R) method [18]. The reason for this is that Krylov methods have only a small amount
of overhead costs and are easy to implement in an existing cFD-package. Although the dis-
cretized Stokes equation leads to a symmetric coefficient matrix we use a Krylov subspace
method suitable for non-symmetric matrices, because we also apply the resulting method to



the discrete Navier-Stokes equations, where a non-symmetric coefficient matrix occurs. For
an overview of Krylov methods we refer to [2], [1], [6], and [17].

The discretized 3-dimensional incompressible Stokes equation is described by the following
linear system of equations:
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where u; are the vectors of the velocities in i-direction and the vector p contains the pressure
unknowns. In the remainder of this section this system is abbreviated as Az = b.

The diagonal of the matrices Q; is denoted by D; and R = =¥ GI' D 'G;. The siMpLE
method as proposed by Patankar [14] is given by the following algorithm:

SIMPLE algorithm

1. Choose an initial estimate p*.

2. Solve Q;uf = b; — G;p™.

3. Solve Rép = by — Z3_, Gl u?.

4. Compute u; = u; — D;lG,'(Sp and p:= p* + dop.
5. If not converged take p = p* and go to 2.

The solutions of the systems given in 2 and 3 are obtained by a small number of iterations
with a Block Gauss-Seidel method (TDMA solver [14, 9]).

The sIMPLE method can also be seen as a distributive iterative method [26]. Instead of solving
the system Az = b the system ABy = b,z = By will be solved. Choosing B and M as:
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and using the splitting AB = M — N the following iteration is obtained (SIMPLE method)
M =gk 4 BM™'(b - Aack)7 k=1,2,.., niter.

Below a Krylov acceleration of the SIMPLE method is derived. Many Krylov subspace methods
are known to solve non-symmetric linear systems. We choose the GCR method [8] because
the method is robust, minimizes the residual and allows a variable preconditioner [21, 25].
This final property is very important, since in practice the inverse of M is only computed
approximately. So, the postconditioner BM,;1 is a different operator in every iteration.

GCR-SIMPLE algorithm

O =b— AzY



for £ =0, 1,....,ngcr

st = BM 'r¥
Uk+1 — ASk—I—l

for:=0,1,..k

Uk-|—1 — Uk-|—1 _ (Uk-|—17 Ui)vi
8k-|—1 — 8k-|—1 _ (Uk+17 vi)si

end for

vk‘H — vk+1/||vk+1||2

Sk-|—1 — Sk-|—1/||vk+1||2

xk"H — wk + (rk, vk+1)8k+1

rk-l—l — rk _ (T‘k, Uk+1)vk+1

end for

Due to the modified Gram-Schmidt orthogonalization the amount of work and memory in-
creases when the number of iterations grows. To bound these quantities the method is
restarted after a small number of iterations. Comparing the amount of work with that of
the SIMPLE method, we note that GCR-SIMPLE requires nger? vector-updates and nger?/2
inner-products extra. Furthermore an additional 2nger vectors should be stored in memory.
When nger is small these costs are negligible.

In our implementation the Dirichlet boundary conditions for the velocities are incorporated
in the discretized equations as follows. Suppose the condition in point P is given by up = gp
where gp is given value, and ¢;,q4 is a large real number (of the order 1025). Then ¢4, is added
to the main diagonal entry corresponding to up and and ¢,,4,gp is added to the right-hand-
side vector. Applying the GCR-SIMPLE method to this system leads to disappointing results:
slow convergence, or in some cases divergence of the method. Therefore a diagonal scaling is
applied to system (1) before GCR-SIMPLE is used. When D 4p is defined by D 4p = diag(AB)
the following adaptations should be used: ¥ = D;&;(b — A0, M1 = BM,;IDABrk7 and
Rt = DZ%AS’“‘H. In exact arithmetic one obtains the same iterates, but in practice a much
better convergence is observed. The reasons for this are:

e the diagonal scaling leads to better convergence in the Block Gauss-Seidel methods used
in the sIMPLE method,

e the diagonal scaling leads to a better behavior with respect to rounding errors.

The GCR acceleration is also applied to the SIMPLER method. First the SIMPLER method is
explained. Thereafter the combined method GCR-SIMPLER is specified. Suppose the velocities
u; are known. Then an easy calculation shows that p is a solution of the system:

Rp=b,— Y GID((D; — Q;)ui + b;).

k+1

This idea is used in the SIMPLER method. When uf is known, p* and u; " are calculated as

follows:

SIMPLER algorithm

1. Solve Rp* = by — 23 GTD; (D, — Q;)uk + b;).



2. Solve Quf =b; — G;p~.
3. Solve Rép = by — Z3_, Gl u?.
4. Compute uf"’l =u; — D;lG,'(Sp.

One iteration of the SIMPLER algorithm is approximately 1.3 times as expensive than one
SIMPLE iteration. Steps 2, 3, and 4 of both methods are comparable. This motivates us to
predict p* with step 1 of the SIMPLER method followed by a number of iterations with the
GCR-SIMPLE method. This new method is called the GCR-SIMPLER method.

The sSIMPLER method can also be described as a classical iterative method. Choosing Br and
Mp, as in equation (2) and By, and My, as:
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the SIMPLER method can be given by:
" = 2k L BRM'B'TBR M "B (b — Azh),

where T is the block diagonal part of the matrix My + Mpr — A. Note that the SIMPLER
method is closely related to the Symmetric Block Gauss-Seidel method.

In the following section GCR-SIMPLE(R) is generalized to the incompressible Navier-Stokes
equations. Thereafter these equations are combined with a turbulent combustion model in
order to predict flows in industrial furnaces.

4 The GCR-SIMPLE(R) method applied to Navier-Stokes

The discretization of the Navier-Stokes equations gives a non-linear system due to the con-
vection terms. The discretization equations for the velocities can be written as follows:

Ql(@)uz ‘I’ Glp = bi7 Wlth u= (Ul, U, u3>T . (4)

Various methods can be chosen to linearize Q;, like the Newton-Raphson method or the
Picard iteration method. We have used the Picard iteration method where Q;(u**!) is ap-
proximated by Q,(gk) A non-symmetric linear system is obtained with the same structure as
the discretized Stokes equations. Now, the GCR-SIMPLE(R) algorithm for the Navier-Stokes
equations can be summarized as follows:

2° guessed value
for £ =0,1,2..., niter
solve A (z¥)2**! = b with GCR-SIMPLE(R)

end for

During each iteration we do not need to solve this equation until convergence because the



matrix A is defined using an approximation of #*. This has the advantage that a small value
of nger can be chosen which leads to low memory requirements. The optimal value of nger
can be different for each problem.

Turbulence and combustion is described by a set of coupled second-order partial differential
equations together with the incompressible Navier-Stokes equations. Each of these equations
is of the convection diffusion type. The radiation modeling gives rise to integral equations
which require a different solution technique than the partial differential equations. In order
to solve the full set of coupled equations for flow, turbulence, combustion and radiation, first,
the Picard iteration method is used to linearize all equations. We then proceed as follows:

1. solve uy, ugz, uz and p with GCR-SIMPLE(R).

2. Solve the turbulent quantities, temperature and species concentrations using the Block
Gauss Seidel method (TDMA).

3. Solve for radiative heat transfer using the discrete transfer method.

4. Repeat this procedure until a converged solution is obtained.

5 Experimental results

In this section attention will be given to the application of the SIMPLE(R) and the GCR-
SIMPLE(R) methods. We will first investigate the properties of these methods for a 2D Navier-
Stokes flow between two flat plates. To compare the efficiency for more realistic testproblems
the IFRF furnace and the Ford Nashville float glass furnace are used.

At the outlet we distinguish two types of boundary conditions: normal velocity given or
pressure given. The other boundary conditions remain the same for all methods. In the
measurements the following quantities are used:

o C'PUtime: execution time of a used method measured in seconds on an HP-735 in
Section 5.1 and on an HP-J210 in Section 5.2 and 5.3,

o residu: absolute sum of residuals for a given variable,

e niter: number of iterations.

5.1 Flow between two flat plates

In this section we present some results obtained when applying the SIMPLE(R) and the GCR-
SIMPLE(R) method to the flow between two flat plates with distance D = 10 ¢m and length
L =500 ¢m. For this testproblem an equidistant grid will be used.

To apply the SIMPLER and the GCR-SIMPLER methods we first define some default values of
parameters used in these methods. For both methods the termination criterion is: stop when
the sum of the absolute residuals of each variable is less than or equal to 1076, The relaxation
factor for the pressure is always 1. The SIMPLER method will be used with relaxation factors
equal to 0.8 for the velocities u; and uy. For the GCR-SIMPLER method nger is taken equal
to 3 and the relaxation factors for the velocities uy and uy are equal to 1. The default TDMA



solver is PLANE TDMA.

In order to check the dependence of the methods on the outlet boundary conditions two
different boundary conditions are used. These methods have been applied using two TDMA
solvers. Several grids are used to check the grid dependence of the methods. Also the
dependence on the relaxation factors is checked.

5.1.1 Outlet boundary conditions dependence

In this section, attention will be focused on the dependence of the methods on the outlet
boundary conditions. The results for the two different boundary conditions are given in
Table 1. The siMPLER method using the velocity given condition gives a faster convergence

boundary condition SIMPLER GCR-SIMPLER
niter | CPU time | niter | CPU time

velocity given 139 16.9 966 204.5

pressure given 218 25.6 33 9.9

Table 1: Results for two different outlet boundary conditions. Grid (40 x 20)

than when the pressure given condition is used. Contrary to this GCR-SIMPLER converges
faster when the pressure is given at the outlet. For this reason the SIMPLE(R) method is used
with the velocity given and the GCR-SIMPLE(R) method is applied with the pressure given.

5.1.2 TDMA solvers dependence

Two TDMA solvers [14] will be used within the SIMPLER and the GCR-SIMPLER methods. Table
2 shows the influence of the choice of the TDMA solvers. For this problem the LINE TDMA

Method SIMPLER GCR-SIMPLER
niter | CPU time | niter | CPU time

LINE TDMA 78 7.4 33 7

PLANE TDMA | 139 16.9 33 9.9

Table 2: Results using LINE TDMA and PLANE TDMA solvers. Grid (40 x 20).

is more efficient than the PLANE TDMA solver. In general the PLANE TDMA solver is more
robust, therefore this method is used in the remainder of this paper.

5.1.3 Relaxation factors dependence

The optimal value of the relaxation factors is different for each problem. We only give
attention to the relaxation factors of the velocities. Notice that relaxation factors for wu
and ug are equal. From Table 3 it appears that SIMPLER does not convergence when the
relaxation factor is equal to 1, whereas GCR-SIMPLER is very efficient for this choice. These
results motivates the default values. Note that the relaxation factors can be chosen larger for
GCR-SIMPLER than for siMPLER which leads to less iterations and CPU time. Furthermore
GCR-SIMPLER is robust which means that it converges for a wide range of relaxation factors.



rel. factor SIMPLER GCR-SIMPLER
niter CPU time | niter | CPU time
1 | no conv. 33 9.9
0.9 80 10.3 78 23.3
0.8 139 16.9 130 33.9
0.7 205 24.0 162 42.0
0.6 281 32.3 220 56.4

Table 3: Results for various relaxation factors. Grid (40 x 20)

5.1.4 Dependence of GCR-SIMPLER on the value of ngcr

In this section we investigate the dependence of GCR-SIMPLER on the value of nger. The

nger | Grid (40 x 20) Grid (40 x 40)
niter | CPU time | niter | CPU time
2| 43 10.3 96 39.9
3 33 9.9 67 35.6
41 30 10.4 59 37.4
6 21 9.8 38 33.4
8 17 9.9 31 35
14 11 10.6 14 27.5

Table 4: Results of the GCR-SIMPLER method for various values of nger.

results are given in Table 4. When nger increases the number of GCR-SIMPLER iterations
decreases, but every iteration becomes more expensive. On the 40 X 20 grid we see that the
CPU time is more or less the same for all values of nger. For the 40 x 40 grid there are larger
differences. The choice nger = 14 leads to a minimal amount of CPU time however many
vectors should be stored in memory. Therefore the value nger = 3 is a good compromise.
When convergence problems occur for the GCR-SIMPLER method it helps when the value of
nger is increased.

5.1.5 Grid size dependence

In Table 5 the results are given for various grid sizes. Both methods need more iterations

Grid size SIMPLER GCR-SIMPLER
niter | CPU time | niter | CPU time
20 x 20 61 5.2 29 5.9
40 x 20 | 139 16.9 33 9.9
80 x 20 | 303 68.5 80 40.2

Table 5: Results for various grid sizes

when the grid size increases. For a small grid size the CPU times are comparable, whereas



for a large grid size GCR-SIMPLER needs less CPU time than the SIMPLER method.

5.2 The IFRF furnace

In this section attention will be given to the application of the SIMPLE(R) and the GCR-
SIMPLE(R) methods to the IFRF furnace as given in Figure 1 (for more details see [4]).
In order to achieve a fair comparison of the SIMPLE(R) and the GCR-SIMPLE(R) the same
relaxation factors have been used for each variable. Notice that we can increase the value
of the relaxation factors when the GCR-SIMPLE(R) method is used, which makes the method
more efficient. The same convergence criterion is used for each method. The SPACE TDMA
method has been used in all methods. The GCR-SIMPLE(R) method is used with nger = 3.
In addition to this the sIMPLE(R) method uses a given velocity at the outlet, whereas in
GCR-SIMPLE(R) the pressure is prescribed.

5.2.1 Coarse grid ( 24 x 20 x 16)

In this problem the methods are terminated when the absolute sum of residuals of each
variable is less than or equal to 1073, The finite volume grid consists of 24 x 20 x 16 = 7680

air inlet outlet

gas inlet

Figure 1: The symmetry plane of the furnace. Grid ( 24 x 20 x 16)

points. The grid at the symmetry plane of the furnace is shown in Figure 1. The results
are given in Table 6. For this problem SIMPLE needs less iterations than SIMPLER. However,

method niter | CPU time (hours)
SIMPLE 2047 4.8
SIMPLER 2415 6.9
GCR-SIMPLE 623 2.4
GCR-SIMPLER 578 2.0

Table 6: Results for the IFRF furnace. Grid ( 24 X 20 X 16)

when we increase the values of the relaxation factors we obtain a better convergence for
the sIMPLER method than for the sSIMPLE method. The Krylov accelerated methods (GCR-
SIMPLE(R)) are much more efficient. For GCR-SIMPLE the gain is a factor 2 in CPU time,
whereas for GCR-SIMPLER the gain is a factor 3.5.



5.2.2 Fine grid ( 42 x 37 x 27)

We consider now a stop criterion such that the absolute sum of residuals of each variable is
less than or equal to 10™*. The finite volume grid consists of 42 x 37 x 27 = 41958 points.
The grid at the symmetry plane of the furnace is shown in Figure 2 and the results are given

air inlet outlet

gas inlet

Figure 2: The symmetry plane of the furnace. Grid ( 42 x 37 x 27)

method niter | CPU time (hours)
SIMPLER 11390 80.4
GCR-SIMPLER 3124 26.7

Table 7: Results for the IFRF furnace. Grid ( 42 x 37 X 27)

in Table 7. Again the CPU time of GCR-SIMPLER is a factor 3 less than that of SIMPLER. In
Figure 3 the convergence behavior of the sSIMPLER method is given. In this simulation the
reduction of the pressure residual is very slow. In Figure 4 the GCR-SIMPLER residuals are
plotted. The horizontal scaling of both figures is different. For the GCR-SIMPLER method the
pressure residual is between the other residuals. The computed velocities, temperatures, etc
are the same for both methods. Temperature contours at the symmetry plane are given in
Figure 5.
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Figure 3: The absolute sum of the residuals for each variable using the SIMPLER method
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Figure 4: The absolute sum of the residuals for each variable using the GCR-SIMPLER method
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Figure 5: The temperature contours of the IFRF furnace using the GCR-SIMPLER method
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5.3 The Ford Nashville furnace

In this section the SIMPLER and the GCR-SIMPLER method are used to simulate the combustion
chamber of the Ford furnace [11]. The geometry of the Ford furnace is sketched in Figure 6.
The internal length, width and maximum height of the combustion chamber are 34.7 x 10.1 x
2.3 m. The same convergence criterion is used for each method. In this problem the iteration

oxy-burner
hotspot

oxy-b
b);%'chumer

Figure 6: Geometry of the Ford float glass furnace

process is stopped when the absolute sum of the residuals of each variable is less than or
equal to 10*. The finite volume grid consists of 130 x 40 x 40 = 208000 points. The same
relaxation factors are used for both methods. In the siMPLER and the GCR-SIMPLER method
the same SPACE TDMA solver is used. The first simulation has been done using the GCR-
SIMPLER method. The results are: niter = 3390, C'PUtime ~ 3.3 days. Using the SIMPLER
method the simulation has been stopped after 7.5 days, because the maximum number of
iterations has been reached. We see again a large decrease in CPU time when the Krylov
acceleration is used. The temperature contours in a plane just above the glass surface are
shown in Figure 7.

Figure 7: The temperature contours of the Ford float furnace using the GCR-SIMPLER method

5.4 Memory storage

Using the GCR-SIMPLER method instead of the SIMPLER method leads to more memory stor-
age. In Table 8 the memory requirements are given for various problems. For a 3 dimensional
problem the increase is approximately 50 %. When nger is increased the CPU time may
decrease but the memory requirements increase.
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problem SIMPLER | GCR-SIMPLER (ngcr = 3)
Flat plates (120 x 120) 31 39
IFRF furnace (42X 37 X 27) 52 78
Ford furnace (130 x 40 x 40) 202 333

Table 8: Memory requirements for various problems measured in Megabytes

6 Conclusions

An efficient method to simulate glass-melting furnaces is considered. In this method the
incompressible Navier-Stokes equations are used. SIMPLE-type methods are very popular to
solve the discretized incompressible Navier-Stokes equations. In this paper SIMPLE and SIM-
PLER are rewritten as classical iteration methods for linear systems. Two Krylov accelerated
methods are proposed: GCR-SIMPLE and GCR-SIMPLER.

The dependence of these methods on grid-size, outlet boundary condition, etc. is investigated
by numerical experiments. The insights obtained from this analysis are used to propose a
number of default parameters (nger = 3, TDMA solver, outlet boundary condition, etc.) for
the GCR-SIMPLE(R) methods. Finally the efficiency of the methods is compared using a sim-
ulation of two industrial furnaces. For these simulations the GCR-SIMPLER method appears
to be three times as fast as the SIMPLER method. Additionally larger relaxation factors
can be used for the GCR-SIMPLE(R) methods, which leads to a still higher efficiency. The
GCR-SIMPLER method requires more memory than the sSIMPLER method.
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