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Abstra
t

Numeri
al modeling of the melting and 
ombustion pro
ess is an important tool in

gaining understanding of the physi
al and 
hemi
al phenomena whi
h o

ur in a gas- or

oil-�red glass melting furna
e. The in
ompressible Navier-Stokes equations are used to

model the gas 
ow in the furna
e. The dis
rete Navier-Stokes equations are solved by the

simple(r) pressure-
orre
tion method. In our appli
ations many simple(r) iterations

are ne
essary to obtain an a

urate solution. In this paper Krylov a

elerated versions

are proposed: g
r-simple(r). The properties of these methods are investigated for a

simple 2 dimensional 
ow. Thereafter the eÆ
ien
y of the methods is 
ompared for 3

dimensional 
ows in industrial glass melting furna
es.
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1 Introdu
tion

The in
reasing demand in quality, produ
tion eÆ
ien
y and environmental issues drive the

glass produ
er in optimizing their melting furna
es. The quality demand is so high and the

melting behavior so 
omplex that a 
omplete understanding of all important physi
al and


hemi
al phenomena during the melting pro
ess is required to help us further. A very impor-

tant and powerful tool in gaining this understanding is numeri
al modeling of the 
omplete

melting and 
ombustion pro
ess and their intera
tion. At the TNO Institute of Applied

Physi
s a 
fd simulation model for gas- and oil-�red glass melting furna
es, wish3d-gtm,

has been developed. This is a 
omplete model for glass melting furna
es, des
ribing the 
om-

bustion spa
e and glass bath, and predi
ting the e�e
ts on melting performan
e and glass

quality. The model is su

essfully used by the glass industry and furna
e manufa
turers for

produ
t quality improvement, optimization of new furna
e designs and trouble-shooting.

The simulation of a 
omplete glass melting furna
e often results in large 
omputation times.

One of the reasons for this is that the model uses the, so-
alled, simple(r) pressure-
orre
tion

�
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method to solve the in
ompressible Navier-Stokes equations. It is well known that the sim-

ple(r) method often needs many iterations before an a

urate solution is obtained. To

redu
e the large 
omputation times of the simple(r) method, a Krylov subspa
e a

eleration

of the simple(r) method has been developed. The g
r (Generalized Conjugate Residuals)

method has been used for this purpose sin
e this method 
an be applied to the non-symmetri


matri
es whi
h result from dis
retization of the Navier-Stokes equations. The new method

presented in this paper is 
alled g
r-simple(r).

2 Des
ription mathemati
al model

The numeri
al model tno-wish3d takes into a

ount all relevant phenomena in the 
ombus-

tion 
hamber of glass melting furna
es. In the 
omputer
ode the following submodels have

been implemented: three-dimensional 
ow is des
ribed by the Navier-Stokes equations; tur-

bulen
e is a

ounted for by the standard k-" model in
luding wall-fun
tions; 
ombustion of

natural gas is des
ribed by the 
onserved s
alar approa
h to high temperature, non-premixed


ombustion; 
ombustion of oil is des
ribed by a Lagrangian parti
le tra
king method in
luding

the vaporization of the oil droplets; 
hemistry is des
ribed with a one-step global rea
tion;

radiative heat transfer is modelled by the Dis
rete Transfer Method where a 
omposition

dependent absorption-emission 
oeÆ
ient is used; a NO

x

-postpro
essor for the predi
tion of

thermal NO-formation a

ording to the Zel'dovi
h me
hanism; a one-equation model predi
t-

ing soot formation and oxidation has been in
orporated: 
ondu
tion in the furna
e walls has

been taken into a

ount (
onjugate heat transfer) and physi
al properties of the gas mixture

are both 
omposition and temperature dependent. The 
onve
tion-di�usion equations ob-

tained from the submodels are dis
retized by the �nite volume method using a hybrid s
heme

for the dis
retization of the 
onve
tion terms. The pressure �eld is obtained by the simple or

simpler algorithm [14℄. For a more detailed des
ription of the submodels and the numeri
al

pro
edure used in tno-wish3d, the reader is referred to [4, 5℄.

3 The g
r-simple(r) method for the Stokes problem

After dis
retization of the in
ompressible Stokes equation the resulting linear system is sym-

metri
 and positive inde�nite. Dis
retization of the 
ontinuity equation leads to a zero blo
k

on the main diagonal. This leads to serious problems when linear problem solvers are used.

Various methods are known to over
ome these diÆ
ulties: the pressure-matrix method [7℄,

Uzawa method [20, 24℄, simple-type methods [14, 9℄, penalty methods [3℄, pressure 
orre
-

tion methods [23℄, et
. For an overview of these methods we refer to [16℄ Se
tion 9.6. In 
fd

pa
kages, a popular method is the simple method proposed by Patankar and Spalding [15℄

or one of its variants simpler [14℄, simplest [27℄, or simple
 [22℄.

In many appli
ations the simple method needs many iterations before an a

urate solu-

tion is rea
hed. Various authors 
onsider a multigrid a

eleration of the simple method

[26, 19, 13, 12, 28, 10℄. In this paper we 
onsider a Krylov subspa
e a

eleration of the sim-

ple(r) method [18℄. The reason for this is that Krylov methods have only a small amount

of overhead 
osts and are easy to implement in an existing 
fd-pa
kage. Although the dis-


retized Stokes equation leads to a symmetri
 
oeÆ
ient matrix we use a Krylov subspa
e

method suitable for non-symmetri
 matri
es, be
ause we also apply the resulting method to
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the dis
rete Navier-Stokes equations, where a non-symmetri
 
oeÆ
ient matrix o

urs. For

an overview of Krylov methods we refer to [2℄, [1℄, [6℄, and [17℄.

The dis
retized 3-dimensional in
ompressible Stokes equation is des
ribed by the following

linear system of equations:
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where u

i

are the ve
tors of the velo
ities in i-dire
tion and the ve
tor p 
ontains the pressure

unknowns. In the remainder of this se
tion this system is abbreviated as Ax = b.

The diagonal of the matri
es Q

i

is denoted by D

i

and R = ��

3

i=1

G

T

i

D

�1

i

G

i

. The simple

method as proposed by Patankar [14℄ is given by the following algorithm:

simple algorithm

1. Choose an initial estimate p

�

.

2. Solve Q

i

u
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�G

i
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�

.
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5. If not 
onverged take p = p

�

and go to 2.

The solutions of the systems given in 2 and 3 are obtained by a small number of iterations

with a Blo
k Gauss-Seidel method (tdma solver [14, 9℄).

The simple method 
an also be seen as a distributive iterative method [26℄. Instead of solving

the system Ax = b the system ABy = b; x = By will be solved. Choosing B and M as:
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and using the splitting AB =M�N the following iteration is obtained (simple method)

x

k+1

= x

k

+BM

�1

(b�Ax

k

); k = 1; 2; :::; niter:

Below a Krylov a

eleration of the simplemethod is derived. Many Krylov subspa
e methods

are known to solve non-symmetri
 linear systems. We 
hoose the g
r method [8℄ be
ause

the method is robust, minimizes the residual and allows a variable pre
onditioner [21, 25℄.

This �nal property is very important, sin
e in pra
ti
e the inverse of M is only 
omputed

approximately. So, the post
onditioner BM

�1

k

is a di�erent operator in every iteration.

g
r-simple algorithm

r

0

= b�Ax

0
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Due to the modi�ed Gram-S
hmidt orthogonalization the amount of work and memory in-


reases when the number of iterations grows. To bound these quantities the method is

restarted after a small number of iterations. Comparing the amount of work with that of

the simple method, we note that g
r-simple requires ng
r

2

ve
tor-updates and ng
r

2

=2

inner-produ
ts extra. Furthermore an additional 2ng
r ve
tors should be stored in memory.

When ng
r is small these 
osts are negligible.

In our implementation the Diri
hlet boundary 
onditions for the velo
ities are in
orporated

in the dis
retized equations as follows. Suppose the 
ondition in point P is given by u

P

= g

P

where g

P

is given value, and 


max

is a large real number (of the order 10

25

). Then 


max

is added

to the main diagonal entry 
orresponding to u

P

and and 


max

g

P

is added to the right-hand-

side ve
tor. Applying the g
r-simple method to this system leads to disappointing results:

slow 
onvergen
e, or in some 
ases divergen
e of the method. Therefore a diagonal s
aling is

applied to system (1) before g
r-simple is used. When D

AB

is de�ned by D

AB

= diag(AB)

the following adaptations should be used: r

0

= D

�1

AB

(b � Ax

0

), s

k+1

= BM

�1

k

D

AB

r

k

, and

v

k+1

= D

�1

AB

As

k+1

. In exa
t arithmeti
 one obtains the same iterates, but in pra
ti
e a mu
h

better 
onvergen
e is observed. The reasons for this are:

� the diagonal s
aling leads to better 
onvergen
e in the Blo
k Gauss-Seidel methods used

in the simple method,

� the diagonal s
aling leads to a better behavior with respe
t to rounding errors.

The g
r a

eleration is also applied to the simpler method. First the simpler method is

explained. Thereafter the 
ombined method g
r-simpler is spe
i�ed. Suppose the velo
ities

u

i

are known. Then an easy 
al
ulation shows that p is a solution of the system:

Rp = b

4

� �

3

i=1

G

T

i

D
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i
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i

�Q

i

)u

i

+ b

i

):

This idea is used in the simpler method. When u

k

i

is known, p

k

and u

k+1

i

are 
al
ulated as

follows:

simpler algorithm

1. Solve Rp

k
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4

� �
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G
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D
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i
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i

�Q

i
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k

i
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i
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i
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�
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i

p

k

.

3. Solve RÆp = b

4
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G
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�

i

.
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k+1

i

= u

�

i

�D

�1

i

G

i

Æp.

One iteration of the simpler algorithm is approximately 1.3 times as expensive than one

simple iteration. Steps 2, 3, and 4 of both methods are 
omparable. This motivates us to

predi
t p

k

with step 1 of the simpler method followed by a number of iterations with the

g
r-simple method. This new method is 
alled the g
r-simpler method.

The simpler method 
an also be des
ribed as a 
lassi
al iterative method. Choosing B

R
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M

R

as in equation (2) and B
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the simpler method 
an be given by:
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where T is the blo
k diagonal part of the matrix M

L

+M

R

� A. Note that the simpler

method is 
losely related to the Symmetri
 Blo
k Gauss-Seidel method.

In the following se
tion g
r-simple(r) is generalized to the in
ompressible Navier-Stokes

equations. Thereafter these equations are 
ombined with a turbulent 
ombustion model in

order to predi
t 
ows in industrial furna
es.

4 The g
r-simple(r) method applied to Navier-Stokes

The dis
retization of the Navier-Stokes equations gives a non-linear system due to the 
on-

ve
tion terms. The dis
retization equations for the velo
ities 
an be written as follows:

Q

i

(u)u

i

+G

i

p = b

i

; with u =

�

u

1

; u

2

; u

3

�

T

: (4)

Various methods 
an be 
hosen to linearize Q

i

, like the Newton-Raphson method or the

Pi
ard iteration method. We have used the Pi
ard iteration method where Q

i

(u

k+1

) is ap-

proximated by Q

i

(u

k

). A non-symmetri
 linear system is obtained with the same stru
ture as

the dis
retized Stokes equations. Now, the g
r-simple(r) algorithm for the Navier-Stokes

equations 
an be summarized as follows:

x

0

guessed value

for k = 0; 1; 2 : : : ; niter

solve A(x

k

)x

k+1

= b with g
r-simple(r)

end for

During ea
h iteration we do not need to solve this equation until 
onvergen
e be
ause the
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matrix A is de�ned using an approximation of x

k

. This has the advantage that a small value

of ng
r 
an be 
hosen whi
h leads to low memory requirements. The optimal value of ng
r


an be di�erent for ea
h problem.

Turbulen
e and 
ombustion is des
ribed by a set of 
oupled se
ond-order partial di�erential

equations together with the in
ompressible Navier-Stokes equations. Ea
h of these equations

is of the 
onve
tion di�usion type. The radiation modeling gives rise to integral equations

whi
h require a di�erent solution te
hnique than the partial di�erential equations. In order

to solve the full set of 
oupled equations for 
ow, turbulen
e, 
ombustion and radiation, �rst,

the Pi
ard iteration method is used to linearize all equations. We then pro
eed as follows:

1. solve u

1

; u

2

; u

3

and p with g
r-simple(r).

2. Solve the turbulent quantities, temperature and spe
ies 
on
entrations using the Blo
k

Gauss Seidel method (tdma).

3. Solve for radiative heat transfer using the dis
rete transfer method.

4. Repeat this pro
edure until a 
onverged solution is obtained.

5 Experimental results

In this se
tion attention will be given to the appli
ation of the simple(r) and the g
r-

simple(r) methods. We will �rst investigate the properties of these methods for a 2D Navier-

Stokes 
ow between two 
at plates. To 
ompare the eÆ
ien
y for more realisti
 testproblems

the IFRF furna
e and the Ford Nashville 
oat glass furna
e are used.

At the outlet we distinguish two types of boundary 
onditions: normal velo
ity given or

pressure given. The other boundary 
onditions remain the same for all methods. In the

measurements the following quantities are used:

� CPUtime: exe
ution time of a used method measured in se
onds on an HP-735 in

Se
tion 5.1 and on an HP-J210 in Se
tion 5.2 and 5.3,

� residu: absolute sum of residuals for a given variable,

� niter: number of iterations.

5.1 Flow between two 
at plates

In this se
tion we present some results obtained when applying the simple(r) and the g
r-

simple(r) method to the 
ow between two 
at plates with distan
e D = 10 
m and length

L = 500 
m. For this testproblem an equidistant grid will be used.

To apply the simpler and the g
r-simpler methods we �rst de�ne some default values of

parameters used in these methods. For both methods the termination 
riterion is: stop when

the sum of the absolute residuals of ea
h variable is less than or equal to 10

�6

. The relaxation

fa
tor for the pressure is always 1. The simpler method will be used with relaxation fa
tors

equal to 0:8 for the velo
ities u

1

and u

2

. For the g
r-simpler method ng
r is taken equal

to 3 and the relaxation fa
tors for the velo
ities u

1

and u

2

are equal to 1. The default tdma
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solver is plane tdma.

In order to 
he
k the dependen
e of the methods on the outlet boundary 
onditions two

di�erent boundary 
onditions are used. These methods have been applied using two tdma

solvers. Several grids are used to 
he
k the grid dependen
e of the methods. Also the

dependen
e on the relaxation fa
tors is 
he
ked.

5.1.1 Outlet boundary 
onditions dependen
e

In this se
tion, attention will be fo
used on the dependen
e of the methods on the outlet

boundary 
onditions. The results for the two di�erent boundary 
onditions are given in

Table 1. The simpler method using the velo
ity given 
ondition gives a faster 
onvergen
e

boundary 
ondition simpler g
r-simpler

niter CPU time niter CPU time

velo
ity given 139 16.9 966 204.5

pressure given 218 25.6 33 9.9

Table 1: Results for two di�erent outlet boundary 
onditions. Grid (40� 20)

than when the pressure given 
ondition is used. Contrary to this g
r-simpler 
onverges

faster when the pressure is given at the outlet. For this reason the simple(r) method is used

with the velo
ity given and the g
r-simple(r) method is applied with the pressure given.

5.1.2 tdma solvers dependen
e

Two tdma solvers [14℄ will be used within the simpler and the g
r-simpler methods. Table

2 shows the in
uen
e of the 
hoi
e of the tdma solvers. For this problem the line tdma

Method simpler g
r-simpler

niter CPU time niter CPU time

line tdma 78 7.4 33 7

plane tdma 139 16.9 33 9.9

Table 2: Results using line tdma and plane tdma solvers. Grid (40� 20).

is more eÆ
ient than the plane tdma solver. In general the plane tdma solver is more

robust, therefore this method is used in the remainder of this paper.

5.1.3 Relaxation fa
tors dependen
e

The optimal value of the relaxation fa
tors is di�erent for ea
h problem. We only give

attention to the relaxation fa
tors of the velo
ities. Noti
e that relaxation fa
tors for u

1

and u

2

are equal. From Table 3 it appears that simpler does not 
onvergen
e when the

relaxation fa
tor is equal to 1, whereas g
r-simpler is very eÆ
ient for this 
hoi
e. These

results motivates the default values. Note that the relaxation fa
tors 
an be 
hosen larger for

g
r-simpler than for simpler whi
h leads to less iterations and CPU time. Furthermore

g
r-simpler is robust whi
h means that it 
onverges for a wide range of relaxation fa
tors.
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rel. fa
tor simpler g
r-simpler

niter CPU time niter CPU time

1 no 
onv. 33 9.9

0.9 80 10.3 78 23.3

0.8 139 16.9 130 33.9

0.7 205 24.0 162 42.0

0.6 281 32.3 220 56.4

Table 3: Results for various relaxation fa
tors. Grid (40� 20)

5.1.4 Dependen
e of g
r-simpler on the value of ng
r

In this se
tion we investigate the dependen
e of g
r-simpler on the value of ng
r. The

ng
r Grid (40� 20) Grid (40� 40)

niter CPU time niter CPU time

2 43 10.3 96 39.9

3 33 9.9 67 35.6

4 30 10.4 59 37.4

6 21 9.8 38 33.4

8 17 9.9 31 35

14 11 10.6 14 27.5

Table 4: Results of the g
r-simpler method for various values of ng
r.

results are given in Table 4. When ng
r in
reases the number of g
r-simpler iterations

de
reases, but every iteration be
omes more expensive. On the 40� 20 grid we see that the

CPU time is more or less the same for all values of ng
r. For the 40� 40 grid there are larger

di�eren
es. The 
hoi
e ng
r = 14 leads to a minimal amount of CPU time however many

ve
tors should be stored in memory. Therefore the value ng
r = 3 is a good 
ompromise.

When 
onvergen
e problems o

ur for the g
r-simpler method it helps when the value of

ng
r is in
reased.

5.1.5 Grid size dependen
e

In Table 5 the results are given for various grid sizes. Both methods need more iterations

Grid size simpler g
r-simpler

niter CPU time niter CPU time

20� 20 61 5.2 29 5.9

40� 20 139 16.9 33 9.9

80� 20 303 68.5 80 40.2

Table 5: Results for various grid sizes

when the grid size in
reases. For a small grid size the CPU times are 
omparable, whereas
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for a large grid size g
r-simpler needs less CPU time than the simpler method.

5.2 The IFRF furna
e

In this se
tion attention will be given to the appli
ation of the simple(r) and the g
r-

simple(r) methods to the IFRF furna
e as given in Figure 1 (for more details see [4℄).

In order to a
hieve a fair 
omparison of the simple(r) and the g
r-simple(r) the same

relaxation fa
tors have been used for ea
h variable. Noti
e that we 
an in
rease the value

of the relaxation fa
tors when the g
r-simple(r) method is used, whi
h makes the method

more eÆ
ient. The same 
onvergen
e 
riterion is used for ea
h method. The spa
e tdma

method has been used in all methods. The g
r-simple(r) method is used with ng
r = 3.

In addition to this the simple(r) method uses a given velo
ity at the outlet, whereas in

g
r-simple(r) the pressure is pres
ribed.

5.2.1 Coarse grid ( 24� 20� 16)

In this problem the methods are terminated when the absolute sum of residuals of ea
h

variable is less than or equal to 10

�3

. The �nite volume grid 
onsists of 24� 20� 16 = 7680

outlet

gas inlet

air inlet

Figure 1: The symmetry plane of the furna
e. Grid ( 24� 20� 16)

points. The grid at the symmetry plane of the furna
e is shown in Figure 1. The results

are given in Table 6. For this problem simple needs less iterations than simpler. However,

method niter CPU time (hours)

simple 2047 4.8

simpler 2415 6.9

g
r-simple 623 2.4

g
r-simpler 578 2.0

Table 6: Results for the IFRF furna
e. Grid ( 24� 20� 16)

when we in
rease the values of the relaxation fa
tors we obtain a better 
onvergen
e for

the simpler method than for the simple method. The Krylov a

elerated methods (g
r-

simple(r)) are mu
h more eÆ
ient. For g
r-simple the gain is a fa
tor 2 in CPU time,

whereas for g
r-simpler the gain is a fa
tor 3.5.
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5.2.2 Fine grid ( 42� 37� 27)

We 
onsider now a stop 
riterion su
h that the absolute sum of residuals of ea
h variable is

less than or equal to 10

�4

. The �nite volume grid 
onsists of 42� 37� 27 = 41958 points.

The grid at the symmetry plane of the furna
e is shown in Figure 2 and the results are given

outlet

gas inlet

air inlet

Figure 2: The symmetry plane of the furna
e. Grid ( 42� 37� 27)

method niter CPU time (hours)

simpler 11390 80.4

g
r-simpler 3124 26.7

Table 7: Results for the IFRF furna
e. Grid ( 42� 37� 27)

in Table 7. Again the CPU time of g
r-simpler is a fa
tor 3 less than that of simpler. In

Figure 3 the 
onvergen
e behavior of the simpler method is given. In this simulation the

redu
tion of the pressure residual is very slow. In Figure 4 the g
r-simpler residuals are

plotted. The horizontal s
aling of both �gures is di�erent. For the g
r-simpler method the

pressure residual is between the other residuals. The 
omputed velo
ities, temperatures, et


are the same for both methods. Temperature 
ontours at the symmetry plane are given in

Figure 5.
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Figure 3: The absolute sum of the residuals for ea
h variable using the simpler method
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Figure 4: The absolute sum of the residuals for ea
h variable using the g
r-simpler method

Fluid Temperature [oC]: 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Figure 5: The temperature 
ontours of the IFRF furna
e using the g
r-simpler method
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5.3 The Ford Nashville furna
e

In this se
tion the simpler and the g
r-simpler method are used to simulate the 
ombustion


hamber of the Ford furna
e [11℄. The geometry of the Ford furna
e is sket
hed in Figure 6.

The internal length, width and maximum height of the 
ombustion 
hamber are 34:7�10:1�

2:3 m. The same 
onvergen
e 
riterion is used for ea
h method. In this problem the iteration

Figure 6: Geometry of the Ford 
oat glass furna
e

pro
ess is stopped when the absolute sum of the residuals of ea
h variable is less than or

equal to 10

�4

. The �nite volume grid 
onsists of 130� 40� 40 = 208000 points. The same

relaxation fa
tors are used for both methods. In the simpler and the g
r-simpler method

the same spa
e tdma solver is used. The �rst simulation has been done using the g
r-

simpler method. The results are: niter = 3390; CPUtime � 3:3 days. Using the simpler

method the simulation has been stopped after 7.5 days, be
ause the maximum number of

iterations has been rea
hed. We see again a large de
rease in CPU time when the Krylov

a

eleration is used. The temperature 
ontours in a plane just above the glass surfa
e are

shown in Figure 7.

Fluid Temperature [oC]: 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

Figure 7: The temperature 
ontours of the Ford 
oat furna
e using the g
r-simpler method

5.4 Memory storage

Using the g
r-simpler method instead of the simpler method leads to more memory stor-

age. In Table 8 the memory requirements are given for various problems. For a 3 dimensional

problem the in
rease is approximately 50 %. When ng
r is in
reased the CPU time may

de
rease but the memory requirements in
rease.
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problem simpler g
r-simpler (ng
r = 3)

Flat plates (120� 120) 31 39

IFRF furna
e ( 42� 37� 27) 52 78

Ford furna
e ( 130� 40� 40) 202 333

Table 8: Memory requirements for various problems measured in Megabytes

6 Con
lusions

An eÆ
ient method to simulate glass-melting furna
es is 
onsidered. In this method the

in
ompressible Navier-Stokes equations are used. simple-type methods are very popular to

solve the dis
retized in
ompressible Navier-Stokes equations. In this paper simple and sim-

pler are rewritten as 
lassi
al iteration methods for linear systems. Two Krylov a

elerated

methods are proposed: g
r-simple and g
r-simpler.

The dependen
e of these methods on grid-size, outlet boundary 
ondition, et
. is investigated

by numeri
al experiments. The insights obtained from this analysis are used to propose a

number of default parameters (ng
r = 3, tdma solver, outlet boundary 
ondition, et
.) for

the g
r-simple(r) methods. Finally the eÆ
ien
y of the methods is 
ompared using a sim-

ulation of two industrial furna
es. For these simulations the g
r-simpler method appears

to be three times as fast as the simpler method. Additionally larger relaxation fa
tors


an be used for the g
r-simple(r) methods, whi
h leads to a still higher eÆ
ien
y. The

g
r-simpler method requires more memory than the simpler method.
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