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Abstrat

Numerial modeling of the melting and ombustion proess is an important tool in

gaining understanding of the physial and hemial phenomena whih our in a gas- or

oil-�red glass melting furnae. The inompressible Navier-Stokes equations are used to

model the gas ow in the furnae. The disrete Navier-Stokes equations are solved by the

simple(r) pressure-orretion method. In our appliations many simple(r) iterations

are neessary to obtain an aurate solution. In this paper Krylov aelerated versions

are proposed: gr-simple(r). The properties of these methods are investigated for a

simple 2 dimensional ow. Thereafter the eÆieny of the methods is ompared for 3

dimensional ows in industrial glass melting furnaes.
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1 Introdution

The inreasing demand in quality, prodution eÆieny and environmental issues drive the

glass produer in optimizing their melting furnaes. The quality demand is so high and the

melting behavior so omplex that a omplete understanding of all important physial and

hemial phenomena during the melting proess is required to help us further. A very impor-

tant and powerful tool in gaining this understanding is numerial modeling of the omplete

melting and ombustion proess and their interation. At the TNO Institute of Applied

Physis a fd simulation model for gas- and oil-�red glass melting furnaes, wish3d-gtm,

has been developed. This is a omplete model for glass melting furnaes, desribing the om-

bustion spae and glass bath, and prediting the e�ets on melting performane and glass

quality. The model is suessfully used by the glass industry and furnae manufaturers for

produt quality improvement, optimization of new furnae designs and trouble-shooting.

The simulation of a omplete glass melting furnae often results in large omputation times.

One of the reasons for this is that the model uses the, so-alled, simple(r) pressure-orretion
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method to solve the inompressible Navier-Stokes equations. It is well known that the sim-

ple(r) method often needs many iterations before an aurate solution is obtained. To

redue the large omputation times of the simple(r) method, a Krylov subspae aeleration

of the simple(r) method has been developed. The gr (Generalized Conjugate Residuals)

method has been used for this purpose sine this method an be applied to the non-symmetri

matries whih result from disretization of the Navier-Stokes equations. The new method

presented in this paper is alled gr-simple(r).

2 Desription mathematial model

The numerial model tno-wish3d takes into aount all relevant phenomena in the ombus-

tion hamber of glass melting furnaes. In the omputerode the following submodels have

been implemented: three-dimensional ow is desribed by the Navier-Stokes equations; tur-

bulene is aounted for by the standard k-" model inluding wall-funtions; ombustion of

natural gas is desribed by the onserved salar approah to high temperature, non-premixed

ombustion; ombustion of oil is desribed by a Lagrangian partile traking method inluding

the vaporization of the oil droplets; hemistry is desribed with a one-step global reation;

radiative heat transfer is modelled by the Disrete Transfer Method where a omposition

dependent absorption-emission oeÆient is used; a NO

x

-postproessor for the predition of

thermal NO-formation aording to the Zel'dovih mehanism; a one-equation model predit-

ing soot formation and oxidation has been inorporated: ondution in the furnae walls has

been taken into aount (onjugate heat transfer) and physial properties of the gas mixture

are both omposition and temperature dependent. The onvetion-di�usion equations ob-

tained from the submodels are disretized by the �nite volume method using a hybrid sheme

for the disretization of the onvetion terms. The pressure �eld is obtained by the simple or

simpler algorithm [14℄. For a more detailed desription of the submodels and the numerial

proedure used in tno-wish3d, the reader is referred to [4, 5℄.

3 The gr-simple(r) method for the Stokes problem

After disretization of the inompressible Stokes equation the resulting linear system is sym-

metri and positive inde�nite. Disretization of the ontinuity equation leads to a zero blok

on the main diagonal. This leads to serious problems when linear problem solvers are used.

Various methods are known to overome these diÆulties: the pressure-matrix method [7℄,

Uzawa method [20, 24℄, simple-type methods [14, 9℄, penalty methods [3℄, pressure orre-

tion methods [23℄, et. For an overview of these methods we refer to [16℄ Setion 9.6. In fd

pakages, a popular method is the simple method proposed by Patankar and Spalding [15℄

or one of its variants simpler [14℄, simplest [27℄, or simple [22℄.

In many appliations the simple method needs many iterations before an aurate solu-

tion is reahed. Various authors onsider a multigrid aeleration of the simple method

[26, 19, 13, 12, 28, 10℄. In this paper we onsider a Krylov subspae aeleration of the sim-

ple(r) method [18℄. The reason for this is that Krylov methods have only a small amount

of overhead osts and are easy to implement in an existing fd-pakage. Although the dis-

retized Stokes equation leads to a symmetri oeÆient matrix we use a Krylov subspae

method suitable for non-symmetri matries, beause we also apply the resulting method to
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the disrete Navier-Stokes equations, where a non-symmetri oeÆient matrix ours. For

an overview of Krylov methods we refer to [2℄, [1℄, [6℄, and [17℄.

The disretized 3-dimensional inompressible Stokes equation is desribed by the following

linear system of equations:
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where u

i

are the vetors of the veloities in i-diretion and the vetor p ontains the pressure

unknowns. In the remainder of this setion this system is abbreviated as Ax = b.
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�

and go to 2.

The solutions of the systems given in 2 and 3 are obtained by a small number of iterations

with a Blok Gauss-Seidel method (tdma solver [14, 9℄).

The simple method an also be seen as a distributive iterative method [26℄. Instead of solving

the system Ax = b the system ABy = b; x = By will be solved. Choosing B and M as:
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and using the splitting AB =M�N the following iteration is obtained (simple method)

x

k+1

= x

k

+BM

�1

(b�Ax

k

); k = 1; 2; :::; niter:

Below a Krylov aeleration of the simplemethod is derived. Many Krylov subspae methods

are known to solve non-symmetri linear systems. We hoose the gr method [8℄ beause

the method is robust, minimizes the residual and allows a variable preonditioner [21, 25℄.

This �nal property is very important, sine in pratie the inverse of M is only omputed

approximately. So, the postonditioner BM

�1

k

is a di�erent operator in every iteration.

gr-simple algorithm

r
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Due to the modi�ed Gram-Shmidt orthogonalization the amount of work and memory in-

reases when the number of iterations grows. To bound these quantities the method is

restarted after a small number of iterations. Comparing the amount of work with that of

the simple method, we note that gr-simple requires ngr

2

vetor-updates and ngr

2

=2

inner-produts extra. Furthermore an additional 2ngr vetors should be stored in memory.

When ngr is small these osts are negligible.

In our implementation the Dirihlet boundary onditions for the veloities are inorporated

in the disretized equations as follows. Suppose the ondition in point P is given by u

P

= g

P
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P

is given value, and 
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is a large real number (of the order 10

25

). Then 
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to the main diagonal entry orresponding to u
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is added to the right-hand-

side vetor. Applying the gr-simple method to this system leads to disappointing results:

slow onvergene, or in some ases divergene of the method. Therefore a diagonal saling is

applied to system (1) before gr-simple is used. When D
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. In exat arithmeti one obtains the same iterates, but in pratie a muh

better onvergene is observed. The reasons for this are:

� the diagonal saling leads to better onvergene in the Blok Gauss-Seidel methods used

in the simple method,

� the diagonal saling leads to a better behavior with respet to rounding errors.

The gr aeleration is also applied to the simpler method. First the simpler method is

explained. Thereafter the ombined method gr-simpler is spei�ed. Suppose the veloities
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This idea is used in the simpler method. When u

k

i

is known, p
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are alulated as
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One iteration of the simpler algorithm is approximately 1.3 times as expensive than one

simple iteration. Steps 2, 3, and 4 of both methods are omparable. This motivates us to

predit p

k

with step 1 of the simpler method followed by a number of iterations with the

gr-simple method. This new method is alled the gr-simpler method.

The simpler method an also be desribed as a lassial iterative method. Choosing B
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the simpler method an be given by:
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where T is the blok diagonal part of the matrix M

L

+M

R

� A. Note that the simpler

method is losely related to the Symmetri Blok Gauss-Seidel method.

In the following setion gr-simple(r) is generalized to the inompressible Navier-Stokes

equations. Thereafter these equations are ombined with a turbulent ombustion model in

order to predit ows in industrial furnaes.

4 The gr-simple(r) method applied to Navier-Stokes

The disretization of the Navier-Stokes equations gives a non-linear system due to the on-

vetion terms. The disretization equations for the veloities an be written as follows:

Q

i

(u)u

i

+G

i

p = b

i

; with u =

�

u

1

; u

2

; u

3

�

T

: (4)

Various methods an be hosen to linearize Q

i

, like the Newton-Raphson method or the

Piard iteration method. We have used the Piard iteration method where Q

i

(u

k+1

) is ap-

proximated by Q

i

(u

k

). A non-symmetri linear system is obtained with the same struture as

the disretized Stokes equations. Now, the gr-simple(r) algorithm for the Navier-Stokes

equations an be summarized as follows:

x

0

guessed value

for k = 0; 1; 2 : : : ; niter

solve A(x

k

)x

k+1

= b with gr-simple(r)

end for

During eah iteration we do not need to solve this equation until onvergene beause the
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matrix A is de�ned using an approximation of x

k

. This has the advantage that a small value

of ngr an be hosen whih leads to low memory requirements. The optimal value of ngr

an be di�erent for eah problem.

Turbulene and ombustion is desribed by a set of oupled seond-order partial di�erential

equations together with the inompressible Navier-Stokes equations. Eah of these equations

is of the onvetion di�usion type. The radiation modeling gives rise to integral equations

whih require a di�erent solution tehnique than the partial di�erential equations. In order

to solve the full set of oupled equations for ow, turbulene, ombustion and radiation, �rst,

the Piard iteration method is used to linearize all equations. We then proeed as follows:

1. solve u

1

; u

2

; u

3

and p with gr-simple(r).

2. Solve the turbulent quantities, temperature and speies onentrations using the Blok

Gauss Seidel method (tdma).

3. Solve for radiative heat transfer using the disrete transfer method.

4. Repeat this proedure until a onverged solution is obtained.

5 Experimental results

In this setion attention will be given to the appliation of the simple(r) and the gr-

simple(r) methods. We will �rst investigate the properties of these methods for a 2D Navier-

Stokes ow between two at plates. To ompare the eÆieny for more realisti testproblems

the IFRF furnae and the Ford Nashville oat glass furnae are used.

At the outlet we distinguish two types of boundary onditions: normal veloity given or

pressure given. The other boundary onditions remain the same for all methods. In the

measurements the following quantities are used:

� CPUtime: exeution time of a used method measured in seonds on an HP-735 in

Setion 5.1 and on an HP-J210 in Setion 5.2 and 5.3,

� residu: absolute sum of residuals for a given variable,

� niter: number of iterations.

5.1 Flow between two at plates

In this setion we present some results obtained when applying the simple(r) and the gr-

simple(r) method to the ow between two at plates with distane D = 10 m and length

L = 500 m. For this testproblem an equidistant grid will be used.

To apply the simpler and the gr-simpler methods we �rst de�ne some default values of

parameters used in these methods. For both methods the termination riterion is: stop when

the sum of the absolute residuals of eah variable is less than or equal to 10

�6

. The relaxation

fator for the pressure is always 1. The simpler method will be used with relaxation fators

equal to 0:8 for the veloities u

1

and u

2

. For the gr-simpler method ngr is taken equal

to 3 and the relaxation fators for the veloities u

1

and u

2

are equal to 1. The default tdma
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solver is plane tdma.

In order to hek the dependene of the methods on the outlet boundary onditions two

di�erent boundary onditions are used. These methods have been applied using two tdma

solvers. Several grids are used to hek the grid dependene of the methods. Also the

dependene on the relaxation fators is heked.

5.1.1 Outlet boundary onditions dependene

In this setion, attention will be foused on the dependene of the methods on the outlet

boundary onditions. The results for the two di�erent boundary onditions are given in

Table 1. The simpler method using the veloity given ondition gives a faster onvergene

boundary ondition simpler gr-simpler

niter CPU time niter CPU time

veloity given 139 16.9 966 204.5

pressure given 218 25.6 33 9.9

Table 1: Results for two di�erent outlet boundary onditions. Grid (40� 20)

than when the pressure given ondition is used. Contrary to this gr-simpler onverges

faster when the pressure is given at the outlet. For this reason the simple(r) method is used

with the veloity given and the gr-simple(r) method is applied with the pressure given.

5.1.2 tdma solvers dependene

Two tdma solvers [14℄ will be used within the simpler and the gr-simpler methods. Table

2 shows the inuene of the hoie of the tdma solvers. For this problem the line tdma

Method simpler gr-simpler

niter CPU time niter CPU time

line tdma 78 7.4 33 7

plane tdma 139 16.9 33 9.9

Table 2: Results using line tdma and plane tdma solvers. Grid (40� 20).

is more eÆient than the plane tdma solver. In general the plane tdma solver is more

robust, therefore this method is used in the remainder of this paper.

5.1.3 Relaxation fators dependene

The optimal value of the relaxation fators is di�erent for eah problem. We only give

attention to the relaxation fators of the veloities. Notie that relaxation fators for u

1

and u

2

are equal. From Table 3 it appears that simpler does not onvergene when the

relaxation fator is equal to 1, whereas gr-simpler is very eÆient for this hoie. These

results motivates the default values. Note that the relaxation fators an be hosen larger for

gr-simpler than for simpler whih leads to less iterations and CPU time. Furthermore

gr-simpler is robust whih means that it onverges for a wide range of relaxation fators.
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rel. fator simpler gr-simpler

niter CPU time niter CPU time

1 no onv. 33 9.9

0.9 80 10.3 78 23.3

0.8 139 16.9 130 33.9

0.7 205 24.0 162 42.0

0.6 281 32.3 220 56.4

Table 3: Results for various relaxation fators. Grid (40� 20)

5.1.4 Dependene of gr-simpler on the value of ngr

In this setion we investigate the dependene of gr-simpler on the value of ngr. The

ngr Grid (40� 20) Grid (40� 40)

niter CPU time niter CPU time

2 43 10.3 96 39.9

3 33 9.9 67 35.6

4 30 10.4 59 37.4

6 21 9.8 38 33.4

8 17 9.9 31 35

14 11 10.6 14 27.5

Table 4: Results of the gr-simpler method for various values of ngr.

results are given in Table 4. When ngr inreases the number of gr-simpler iterations

dereases, but every iteration beomes more expensive. On the 40� 20 grid we see that the

CPU time is more or less the same for all values of ngr. For the 40� 40 grid there are larger

di�erenes. The hoie ngr = 14 leads to a minimal amount of CPU time however many

vetors should be stored in memory. Therefore the value ngr = 3 is a good ompromise.

When onvergene problems our for the gr-simpler method it helps when the value of

ngr is inreased.

5.1.5 Grid size dependene

In Table 5 the results are given for various grid sizes. Both methods need more iterations

Grid size simpler gr-simpler

niter CPU time niter CPU time

20� 20 61 5.2 29 5.9

40� 20 139 16.9 33 9.9

80� 20 303 68.5 80 40.2

Table 5: Results for various grid sizes

when the grid size inreases. For a small grid size the CPU times are omparable, whereas
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for a large grid size gr-simpler needs less CPU time than the simpler method.

5.2 The IFRF furnae

In this setion attention will be given to the appliation of the simple(r) and the gr-

simple(r) methods to the IFRF furnae as given in Figure 1 (for more details see [4℄).

In order to ahieve a fair omparison of the simple(r) and the gr-simple(r) the same

relaxation fators have been used for eah variable. Notie that we an inrease the value

of the relaxation fators when the gr-simple(r) method is used, whih makes the method

more eÆient. The same onvergene riterion is used for eah method. The spae tdma

method has been used in all methods. The gr-simple(r) method is used with ngr = 3.

In addition to this the simple(r) method uses a given veloity at the outlet, whereas in

gr-simple(r) the pressure is presribed.

5.2.1 Coarse grid ( 24� 20� 16)

In this problem the methods are terminated when the absolute sum of residuals of eah

variable is less than or equal to 10

�3

. The �nite volume grid onsists of 24� 20� 16 = 7680

outlet

gas inlet

air inlet

Figure 1: The symmetry plane of the furnae. Grid ( 24� 20� 16)

points. The grid at the symmetry plane of the furnae is shown in Figure 1. The results

are given in Table 6. For this problem simple needs less iterations than simpler. However,

method niter CPU time (hours)

simple 2047 4.8

simpler 2415 6.9

gr-simple 623 2.4

gr-simpler 578 2.0

Table 6: Results for the IFRF furnae. Grid ( 24� 20� 16)

when we inrease the values of the relaxation fators we obtain a better onvergene for

the simpler method than for the simple method. The Krylov aelerated methods (gr-

simple(r)) are muh more eÆient. For gr-simple the gain is a fator 2 in CPU time,

whereas for gr-simpler the gain is a fator 3.5.
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5.2.2 Fine grid ( 42� 37� 27)

We onsider now a stop riterion suh that the absolute sum of residuals of eah variable is

less than or equal to 10

�4

. The �nite volume grid onsists of 42� 37� 27 = 41958 points.

The grid at the symmetry plane of the furnae is shown in Figure 2 and the results are given

outlet

gas inlet

air inlet

Figure 2: The symmetry plane of the furnae. Grid ( 42� 37� 27)

method niter CPU time (hours)

simpler 11390 80.4

gr-simpler 3124 26.7

Table 7: Results for the IFRF furnae. Grid ( 42� 37� 27)

in Table 7. Again the CPU time of gr-simpler is a fator 3 less than that of simpler. In

Figure 3 the onvergene behavior of the simpler method is given. In this simulation the

redution of the pressure residual is very slow. In Figure 4 the gr-simpler residuals are

plotted. The horizontal saling of both �gures is di�erent. For the gr-simpler method the

pressure residual is between the other residuals. The omputed veloities, temperatures, et

are the same for both methods. Temperature ontours at the symmetry plane are given in

Figure 5.
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Figure 3: The absolute sum of the residuals for eah variable using the simpler method
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Figure 4: The absolute sum of the residuals for eah variable using the gr-simpler method
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Figure 5: The temperature ontours of the IFRF furnae using the gr-simpler method
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5.3 The Ford Nashville furnae

In this setion the simpler and the gr-simpler method are used to simulate the ombustion

hamber of the Ford furnae [11℄. The geometry of the Ford furnae is skethed in Figure 6.

The internal length, width and maximum height of the ombustion hamber are 34:7�10:1�

2:3 m. The same onvergene riterion is used for eah method. In this problem the iteration

Figure 6: Geometry of the Ford oat glass furnae

proess is stopped when the absolute sum of the residuals of eah variable is less than or

equal to 10

�4

. The �nite volume grid onsists of 130� 40� 40 = 208000 points. The same

relaxation fators are used for both methods. In the simpler and the gr-simpler method

the same spae tdma solver is used. The �rst simulation has been done using the gr-

simpler method. The results are: niter = 3390; CPUtime � 3:3 days. Using the simpler

method the simulation has been stopped after 7.5 days, beause the maximum number of

iterations has been reahed. We see again a large derease in CPU time when the Krylov

aeleration is used. The temperature ontours in a plane just above the glass surfae are

shown in Figure 7.

Fluid Temperature [oC]: 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

Figure 7: The temperature ontours of the Ford oat furnae using the gr-simpler method

5.4 Memory storage

Using the gr-simpler method instead of the simpler method leads to more memory stor-

age. In Table 8 the memory requirements are given for various problems. For a 3 dimensional

problem the inrease is approximately 50 %. When ngr is inreased the CPU time may

derease but the memory requirements inrease.
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problem simpler gr-simpler (ngr = 3)

Flat plates (120� 120) 31 39

IFRF furnae ( 42� 37� 27) 52 78

Ford furnae ( 130� 40� 40) 202 333

Table 8: Memory requirements for various problems measured in Megabytes

6 Conlusions

An eÆient method to simulate glass-melting furnaes is onsidered. In this method the

inompressible Navier-Stokes equations are used. simple-type methods are very popular to

solve the disretized inompressible Navier-Stokes equations. In this paper simple and sim-

pler are rewritten as lassial iteration methods for linear systems. Two Krylov aelerated

methods are proposed: gr-simple and gr-simpler.

The dependene of these methods on grid-size, outlet boundary ondition, et. is investigated

by numerial experiments. The insights obtained from this analysis are used to propose a

number of default parameters (ngr = 3, tdma solver, outlet boundary ondition, et.) for

the gr-simple(r) methods. Finally the eÆieny of the methods is ompared using a sim-

ulation of two industrial furnaes. For these simulations the gr-simpler method appears

to be three times as fast as the simpler method. Additionally larger relaxation fators

an be used for the gr-simple(r) methods, whih leads to a still higher eÆieny. The

gr-simpler method requires more memory than the simpler method.
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