R
gggg APPLIED
S NUMERICAL
MATHEMATICS

ELSEVIER Applied Numerical Mathematics 30 (1999) 403-423

www.elsevier.nl/locate/apnum

Parallel implementation of a multiblock method with approximate
subdomain solution

J. Frank®, C. Vuik

Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics,
P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

Solution of large linear systems encountered in computational fluid dynamics often naturally leads to some
form of domain decomposition, especially when it is desired to use parallel machines. It has been proposed to
use approximate solvers to obtain fast but rough solutions on the separate subdomains. In this paper approximat
solutions via (1) an inner preconditioned GMRES iteration to fixed tolerance, and (2) incomplete factorization
(RILU, restricted to the diagonal) are considered. Numerical experiments for a fundamental test problem are
included which show speedups obtained on a cluster of workstations as well as on a distributed memory parallel
computer. Additionally, the parallel implementation of GCR is addressed, with particular focus on communication
costs associated with orthogonalization processes. This consideration brings up questions concerning the use c
Householder reflections with GCR.1999 Elsevier Science B.V. and IMACS. All rights reserved.

Keywords:Domain decomposition; Approximate subdomain solution; Parallel Krylov subspace methods;
Orthogonalization methods

1. Introduction

Domain decomposition arises naturally in computational fluid dynamics applications on structured
grids: complicated geometries are broken down into (topologically) rectangular regions and discretized in
general coordinates, see, e.g., [30,39], applying domain decompaosition to iteratively arrive at the solution
on the global domain. This approach provides easy exploitation of parallel computing resources, and
additionally offers a solution to memory limitation problems.

This paper addresses the parallel implementation of a domain decomposition method for the DeFT
Navier—Stokes solver described in [30], and is the continuation of work summarized in [7]. Results from
a parallel implementation of a Krylov-accelerated Schur complement domain decomposition method are
presented in [5]. A serial implementation of nonoverlapping, one-level additive Schwarz method with
approximate subdomain solution [6] gave more promising results. For the present research, our goal was

* Corresponding author.

0168-9274/99/$20.00 1999 Elsevier Science B.V. and IMACS. All rights reserved.
PIl: S0168-9274(98)00095-6

404 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

to obtain an impression of the behavior of this method in parallel without incurring the programming
workload of a full implementation in the DeFT software; which would require fundamental changes. To
this end, we report preliminary results for a Poisson problem on a square domain, and refer the readel
to a forthcoming article with more realistic experiments. The Poisson problem is representative of the
system which must be solved for the pressure correction method used in DeFT.

Theoretical results on approximate solution of subdomain problems for Schur complement domain
decomposition methods are given by Bérgers [4], Haase et al. [15-17,26], and Cheng [9]. Brakkee [7]
gives theoretical and experimental results for non-overlapping Schwarz iterations with variable
approximate inner solvers.

In this paper we demonstrate that a reasonable amount of parallel speedup can be observed for
nonoverlapping, one-level additive Schwarz method if the subdomain problems are solved using only a
rough approximation. In Section 2 we briefly review the relevant mathematics and give some theoretical
motivation for approximate subdomain solution.

Much effort has focused on efficient parallelization of Krylov subspace methods. Aside from the
preconditioning, the main parallel operations required in these methods are distributed matrix-vector
multiplications and inner products. For many problems, the matrix-vector multiplications require only
nearest neighbor communications, and may be very efficient. Inner products, on the other hand, require
global communications; therefore, the focus has been on reducing the number of inner products [12,31],
overlapping inner product communications with computation [10], or increasing the number of inner
products that can be computed with a single communication [2,24].

Some practical points are brought out in Section 3 concerning parallel implementation of orthogo-
nalization procedures for the GCR method. A performance model is developed for comparison of these
methods, and the validity of the model is checked against experimental results in Section 4.

Additional results reported in Section 4 include speedup ratios, obtained by comparison of the parallel
multiblock computation times to both the single block serial time and the multiblock serial times, and
scalability tests for which the number of unknowns per processor is held constant as the nhumber of
participating processors is increased. The timings were made on a cluster of workstations and a Cray T3E
In particular, our results suggest that the most efficient subdomain approximation in terms of computation
time is a simple incomplete factorization.

2. Mathematical background
2.1. One-level, nonoverlapping domain decomposition

We consider an elliptic partial differential equation discretized using a finite volume or finite difference
method on a computational domaih By a computational domain we mean the set of unknown values
to be approximated, together with their associated locations in space. Let the domain be the #ion of
nonoverlapping subdomaing,,, m=1,..., M.

Discretization of the PDE results in a sparse linear system

Ax =b, 1)

with x, b € RV, The structure of the matriA is determined by the stencil of the discretization. Even if
there is no overlap between the subdomains, there is an inter-subdomain coupling due to the stencil. Tha

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 405

is, the equation for an unknown adjacent to a subdomain interface is dependent on an unknown acros:
the subdomain boundary.

One technique for solving this problem is to permute the system (1), grouping together into blocks
those unknowns which share a common subdomain to produce a block system:

All N AlM X1 bl
: =) 2
Apy1 ... Aum Xy by
In this system, one observes that the diagonal blegks express coupling among the unknowns defined
on a common subdomaii;,), whereas the off-diagonal blocls,,,, m # n, represent coupling across
subdomain boundaries. The only nonzero off-diagonal blocks are those corresponding to neighboring

subdomains.
The additive Schwarz iteration introduces the block Jacobi preconditioner

A1
K = s
Aum

which, together with the residual, defines a system whose solution provides an approximation of the
error. Note that this system may be efficiently solved on parallel computers. It is this form of domain
decomposition which we will consider in the rest of the paper.

For a thorough discussion of domain decomposition methods see the book [32] and the review
article [8]. Each of these publications contains an extensive bibliography. Convergence theory for
domain decomposition methods is discussed in [32]. Roughly speaking, the convergence rate suffers
proportionally to the number of subdomains in each direction. If a constant overlap (in physical units) is
maintained, the convergence rate is independent of grid size; however, for zero overlap the convergence
is relatively poor. The convergence rate may additionally be made independent of the number of
subdomains if a coarse subspace correction is applied: for example, the residual is projected onto
a single coarse grid domain, where a correction is computed which is then interpolated back to the
subdomains.

2.2. Krylov subspace acceleration

In practice (2) is solved iteratively, usinkj as a preconditioner for a Krylov subspace method, such
as the conjugate gradient method for symmetric problems or the GMRES method [29] for nonsymmetric
problems. For our purposes a practical method is GCR [11], shown in Fig. 1. In the algorithm and
elsewhere in this paper the Euclidean inner product) = x"y and associated norix | = (xTx)/?
are used.

The function orthonorrf) takes input vectorg andv, orthonormalizeg with respect to the;, i <k,
updatingv as necessary to preserve the relatjog Av, and returns the modified vectajs andvy. In
serial computations, the modified Gram-Schmidt method, Fig. 2, is often employed for the orthionorm
function. We discuss alternative orthogonalization methods in later sections of this paper.

In exact arithmetic, and assuming it does not break down, GCR produces the same iterates as
GMRES. However, GCR does not take advantage of the Lanczos recursion, but instead requires
the storage of an extra set of orthogomasidual search vectorsGCR has a number of benefits;

406 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Algorithm : GCR

Given: initial guess

ro= b— A)Co

for k=1,..., convergence
SolveKv = r;_1 (approximately)
qg=Av
[gk, vi] = orthonormg, v, g;, v;, i < k)
Y =41
Update:xk =Xp—1+ YU
Update:rk =rr—1— Yk

end

Fig. 1. The GCR algorithm.

Algorithm : Modified Gram—Schmidt
[gx, vi] = orthonorm(q, v, ¢;, v;, i <k):
fori=1,...,k—1
a={q,q)
9=9 g
V=0V —dv;
end
B=lqll
G =q/B;vi=10/B

return

Fig. 2. The modified Gram—-Schmidt algorithm.

among them: (1) the precondition&€ need not remain constant (nor even be a linear operator;
the GMRESR algorithm in [34] uses GMRE®)Y as a preconditioner); (2) one is free to employ
truncation strategies such as in [35]; and (3) if the LSQR switch is employed [34], the method will
not break down. The importance of allowing a variable preconditioner will be discussed in the next
section. In Fig. 1 the GCR method is defined for an unlimited number of iterations, and may incur
memory limitations. In practice, therefore, it is necessary either to restart the iteration periodically,
discarding all stored vectors, or to maintain only a fixed number of vectors, applying some criterion
to determine which vectors will be kept. This second option, referred to as truncation, is shown in [35]
to be very effective in reducing the number of iterations. In the numerical experiments of this paper
we do not use any truncation strategies, but simply restart; however, truncation is used in the DeFT
software.

2.3. Approximate subdomain solution
Solution forv from the preconditioning equatiokiv = r;_; in the GCR algorithm requires solution

of M subdomain systemas,,.v,, =r,, m =1,..., M. Since these problems have a nonzero structure
similar to that of the original matrix4, and since they may still be quite large, it is advantageous

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 407

to solve them using an iterative method. A question which arises naturally, and for purely practical
reasons, addresses the tolerance to which timese iterationsshould converge. Perhaps a very rough
approximation would be sufficient. A number of authors have considered approximate solution of
subdomain problems. In particular, they have considered the consequences of using very fast, rougt
approximations to reduce the total computing time necessary to solve the global problem.

Some possible strategies for approximating the subdomain solutions are:

e A second (inner) iterative method (possibly preconditioned) either to a fixed tolerance, to a variable

tolerance, or for a predetermined number of iterations.

e Approximate factorization or approximate inversion of the subdomain problems.

e Do nothing at all. In this case one uses the domain decomposition purely as a form of data

distribution and applies the unpreconditioned Krylov method.
Tan [33] shows that if the inner problems are solved to some tolerance in each outer iteration, then
the optimal strategy for choosing the tolerance is a fixed one. That is, it is not necessary to make the
subdomain solution tolerance smaller as the global solution converges.

Brakkee [7] has proven the following theorem. 451 be the matrix which represents the approximate
inversion of theith block. In the case of a Krylov subspace method as inner solver, this would be the
actual value of the minimizing polynomial applied #o Similarly defineX~* to be the approximate
preconditioner consisting of the diagonal blocks!. If for each subdomaith =1, ..., M it holds that
11— A,-,K;-ln < g, then the condition number of the approximately preconditioned matrix satisfies

1+¢

K(Alz_l) < —

K(AK™D). 3)

wherek (A) = ||A|||A~1|| is the condition number od. Unfortunately, the conditioj/ — A,-,-X;lll <€
is nontrivial to check.
Essential to the proof of the above theorem is the fact that

K(AK™Y) =k (AK KK 1) < (AK V(KK Y.

This bound may be clarified by noting that the matfix= KK!is a block diagonal matrix with
blocks B; = A,-,-Al-‘,-l, i=1,..., M. The spectrum of the block diagonal mat® B is a subset of the
union of the spectra of the blocks; thus, if there exisB bounding the singular values of all blocks:
0 < o < min; omin(B;) < Max omax(B;) < B, then

(AR < Le(ax .

Competing against convergence rate for an efficient solution method is the expense of computing the
subdomain approximate solutions. The RILUD preconditioner, though a less effective approximate solver
than GMRES iterations in terms of convergence rate, is far cheaper, at least for the problems considerec
here. Thus one makes a tradeoff between effectiveness of an approximate preconditioner in terms of
convergence rate and speed in terms of computational expense.

Note that if the subdomains are solved using a Krylov subspace method such as GMRES, then the
approximate solution is a function of the right hand side, which is the residual of the outer iteration.
Furthermore, if the subdomains are solved to a tolerance, the number of inner iterations may vary from
one subdomain to another, and in each outer iteration. The effective preconditioner is therefore nonlinear
and varies in each outer iteration. A variable preconditioner presents a problem for GMRES: namely, the

408 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Lanczos recurrence relation no longer holds. To allow the use of a variable preconditioner, Saad [28] has
developed the Flexible GMRES (FGMRES) method, which requires storage of an auxiliary set of vectors
such as with GCR. However, it is not possible to use truncation strategies with FGMRES. Because we
use truncation in our Navier—Stokes code, we consider GCR in the following.

Our choice of approximate solution methods is motivated by the results obtained in [6]. In that paper,
GMRES was used as to approximately solve subdomain problems to within fixed tolerances,of 10
1073, 1072 and 1G!. Additionally, a blockwise application of the RILUD preconditioner was used.
RILUD, a diagonal-restricted variant of the preconditioner introduced in [1], is a weighted average of an
ILUD preconditioner [25] and an MILUD preconditioner [14]. The weighting parametevas assigned
a value of 0.95 in our experiments. See also [37] for useful results with RILU factorizations applied to
Navier—Stokes equations. The use of incomplete factorizations to obtain subdomain approximations has
been advocated by Keyes [22] and Goossens et al. [13] among others. The results of [6] indicated that
coarser tolerances were more effective. However, all numerical results presented therein were obtainec
from serial runs. In Section 4 we will present numerical results using the above approximate subdomain
solution methods in parallel.

2.4. Orthogonalization methods

The primary challenges to parallelization of GCR are parallelization of the preconditioning—a
difficulty which disappears when a block preconditiorféris used—and parallel computation of the
inner products. Inner products require global communication and therefore do not scale. Much of the
literature on parallel Krylov subspace methods and parallel orthogonalization methods is focused on
orthogonalizing a number of vectors simultaneously. See, e.g., [2,10,20,24,27]. However, this is not
possible using a preconditioner which varies in each iteration. For this reason, we need a method for
orthogonalizing one new vector against an orthonormal basis of vectors.

The modified Gram—-Schmidt method of Fig. 2 suffers from the fact that the inner products must be
computed using successive communications, and the number of these inner products increases by or
with the iteration number. This is not the case if one uses the classical Gram—-Schmidt method, Fig. 3.
In this algorithm all necessary inner products can be computed with a single global communication.

Algorithm ; Classical Gram—Schmidt
[Qk, Uk] = Orthonorma’ F‘J’ qi, Vi, i < k)

B=1(q,9)

fori=1,...,k—1
Oli=<67,‘b'>

end

B=1\/B—>i1a?

a=PB7HG — i i)
ve=p"10 - S)
return

Fig. 3. The classical Gram—-Schmidt algorithm.

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 409

Unfortunately, as shown by Bjorck [3], the classical Gram—Schmidt method is unstable with respect to
rounding errors, so this method is rarely used.

On the other hand, Hoffmann [19] gives experimental evidence indicating that a two-fold application
of Fig. 3is stable. Furthermore, it appears that if orthogonality is important, such a re-orthogonalization
is also required even for the more stable modified Gram-Schmidt algorithm.

A third method which has been suggested is the parallel implementation of Householder transforma-
tions, introduced by Walker [38]. We shall reformulate that method for GCR in the following section.
Additionally, we will present a simple parallel performance analysis for comparison of these three or-
thogonalization procedures.

3. Householder orthogonalization

Walker [38] has proposed a GMRES variant using a vectorized version of Householder transformations
as an alternative to the modified Gram—-Schmidt procedure. The Householder method has the advantag
that it requires only a fixed number of communications per GMRES iteration. In this section we describe
the GCR implementation and discuss some practical details concerning its use.

3.1. Description of the method

In the following discussion we use the notiap to represent théth column of a matrixA anda®
to represent théth component of a vectar. Let a matrixA € R, m < n, with linearly independent
columns be factored a8Z, whereQ is orthogonal and is upper triangular. Then thgh column ofA
is given bya, = Qz,. It follows thata, € spariq, ..., g«}. In other words, the columns @ form an
orthonormal basis for the span of the columnsiof

We constructD as the product of a series of Householder reflectighs; P; - - - P,,, used to transform
A into Z. The matricesP; have the following properties:

(i) PP=I1=PTP,
(ll) Pl-ej =ej, if] < i,
(i) P(Pi_1---Pya; =z;.
In property (ii) e; is the jth canonical unit vector iiR". A Householder reflection is given by, =
1 —2w;w] /(w]w;), for somew; € R". Note that such a matrix has property (i). Property (ii) is ensured

by requiring the first — 1 components ofv; be zerow”’ =0 for j <.
Suppose one has already produéeagrthogonal basis vectois, ..., g, and stored them along with
the transformation vectors,, ..., w; corresponding taPs, ..., P;. Given a candidate vectas, 1, one

must first apply the previous reflections as described in [38]:

a=Pc - Puager= (I —2Wi L' W/) ar1,
where here and elsewhere we denotéifithe matrix whose columns ate, ..., w;, and where

1
2w;w1 1
Ly =)

2wiwy ... 2wlwig 1

410 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Note especially that in thé + 1)th iteration one must compute the last rowIqf, which is the vector
(2w] W;_1, 1), as well as the vectow ;1. This requires 2 — 1 inner products, but they may all be
computed using only a single global communication.
Now having computed one wishes to findv1 such thatP,; satisfies (iii):
Pepd=zia=zer+ -+ g0 e =aVer + -+ Ve + aerp, (4)
where property (ii) has been used for the last equality.
Because of the relation

T T =
~ Wi41W ~ ~ w a
Pepa=(1-2——)a=a-2—"—w ., ©)
wl w wl w
k+1Wk+1 k+1Wk+1

one must havev,,, € spara, ey, ..., e;+1}. However, Eq. (4) provides the relation which must hold
amonga, e, ..., e;. Let w be the vector obtained by setting the fikstlements of: to zero. Formally,
one hasw = Jy,1a, where

0
Jk+1=[k I_k]'

Thus, w1 € spaqw, e;;1}. The length ofw,,, is a free parameter, so take,,; = w + Beiis.
Substituting into (5) gives

T ~ T ~ T~
w a w a w a
~ k1 ~ k1 ~ k1
Pipa=a—2————(hpna+pe1) =1 —2—"—"—h1)ad —2——"——ep41.
ol w T T
k+1Wk+1 W41 Wk+1 W1 Wi+1

To ensure that all elements below tfte+ 1)th are zero, one requires12w;, ,a/(w],,wi4+1) = 0. But,
a 0 T~ (2 ~
wiga = (W+ Bersr) a=|w|” + pa*t?,
and
> 2 1~12 -
Wi Wit = || (0 + Bersa)||” = ||w]|” +28a% + g2

Substituting these numbers into the above relation, one findst-|w||, and the sign of8 is chosen to
be the same as that af**? to reduce the risk of subtractive cancellation:

Wil =w + sign(@(k+l)) HII)H@]H_L

In practice, thew, are normalized to length one. Sinaeis the (k + 1)th component ofP1a,
substitution of the above relation into (5), and noting that

g vl _y
Wi 1 W1
gives
o =a" P — " —sign(v V)]| = —sign(@“*?) [w|| = —p.

and the length ofv;,;, can be expressed as

lwisall = V202 — 200w *+D

The (k + 1)th column ofQ is the new orthonormal basis vector,

Qepy1= P1--- Pryrepsa,

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 411

and because of property (ii), the yet to be computed reflections will not affect this column. Multiplying
both sides of (4) byP; - - - P, gives

a1 =aPqr+ - +aPq + agiy,

from which it follows that

k
qk+1= é [ak+l - 25(1)%’] . (6)
i=1

Within the GCR algorithm, the same linear combination must be applied to; tteeobtainv, 1. As
pointed out by an anonymous referee, use of Eq. (6) may result in subtractive cancellation, causing the
reduced stability of this Householder implementation observed in the next section. However, a relation
of this form is needed to be able to enforce the identjtyy = Av,.1, hecessary for GCR.

Our implementation requires three communications in(khe 1)th iteration, namely:

(1) The computation of using Walker’s approach, requireg 2 1 inner products, all of which can

be performed with a single communication.

(2) A second communication is necessary to broadcast thé first elements of:.

(3) A communication is required to compute | for determininge.
The algorithm is shown in Fig. 4, with playing the role of: in the above discussion.

Comparing the Householder implementation with modified Gram-Schmidt,

¢ Inthekth iteration the Householder method requires three communications, whereas Gram—Schmidt

requiresk + 1.
e Householder requires approximately twice as many inner products as Gram—Schmidg,t]imgsl
the number of ‘axpy’ operations.

e The Householder method requires the storage of an extra geteoftors.

A drawback of the Householder method is that there appears to be no simple way to incorporate
truncation schemes in the GCR method if Householder is used for orthogonalization.

In the next section we develop a performance model for comparison of the Householder and Gram—
Schmidt methods.

3.2. Performance model

To give insight into the choice of an orthogonalization procedure, consider a simple performance
model. Let the time required for communication of a messageflafating point numbers be given by

fcomm=Io + Bn,

whererg is the fixed time required for a message of length zero, @nsl the time per floating point
number (bandwidth). Let the time farfloating point operations be given by

fcomp= ¢n,
where¢ is the time for one floating point operation. Similar computation/communication models are
used, for example, in [10,18,23,27].
Let p denote the number of processes, and define a fungtipn which gives the maximum number

of non-simultaneous sends necessary for any given process participating in a broadcast opegratibn to
processes. The functiofi(p) is machine-dependent and also dependent on the distribution of processes

412 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Algorithm : Householder orthogonalization
gk, v] = orthonormg, v, ¢;, v;, i <k):
if k==
w1 =q
else
if k==2
Li=1
else

Li1= {
end
=Ww!.q
y k—19
SolveL;_1d=y
wy=¢q —2Wy_1d
end _
aV=w’,i=1...k
Broadcasia)
qe=q — ,
ve=0—;_a®v
Setw!’=0,i=1,...,k—1
a = —sign@®) ||w||
k)

Lo O
2w,j_ka_2 1

ol = uf

o
Gk = qi /o
v = v/
wi = wy /v 20 (a —a®)
return

Fig. 4. The Householder orthogonalization algorithm.

on the machine. For example, assuming perfect connectivity and that processes not participating in a
given communication are free to participate in a concurrent communication, the broadcast of a message
amongp processes require(p) = [log, p1 consecutive send operations from the broadcasting process.
An Ethernet broadcast requirggp) = p — 1 consecutive send operations.

Assume each processor is responsible fot am subdomain with:? unknowns. Define the times for
some basic operations, see Table 1.

Note that we distinguish between inner products that can be computed simultaneously (i.e., with a
single communication) and inner products that cannot. For examgieultaneous inner products are
denoted SIR(), whereas non-simultaneous inner products are dendt&iP(1). The modified and re-
orthogonalized classical Gram—Schmidt and Householder routines can be broken down into components
as given in Table 2. We have implemented the re-orthogonalized classical Gram—Schmidt method so
that in thekth iteration, the candidate residual search vegt twice orthogonalized against the basis
g1, ..., qr_1 to obtaing,, and only then is the search vectqr computed. This eliminates a series of
vector updates and explains why there are orly-3 ‘axpy’ operations.

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 413

Table 1

Operation ~ Communication Computation Definition

send k) to+ Bk send a message of length
flop (n) neo n floating point operations
B(p,k) f(p)(to+ Bk) broadcast elements
G(p,k) 2f(p)(to + Bk) global sumk elements
SIPk) G(p,k) 2kn¢ k inner prod. simult. comms.
FSk) k%¢ forward substitution, order
axpy X% z=ax +y, scalam
Table 2
Number of operations in thh iteration of GCR
Modified Gram—-Schmidt k SIP(1)
2k — 1 axpy
Re-orthogonalized CGS 2 SIB(
3k — 1 axpy
Householder SIP@— 3)
SIP(1)
FSk —1)
3k — 3/2 axpy
1B(p,k)

Based on the communication model outlined in Tables 1 and 2 the orthogonalization time required
for s iterations of GCR (without restart) using the modified Gram—-Schmidt (MGS), re-orthogonalized
classical Gram-Schmidt (CGS2) and Householder (HH) methods, respectively, is given by

1

twos = 0D 16,20 L5 £ ()0 + B)] — s(20%). @)
1

teasz= S 11002 1 47 ()] + s [4f (p)io — 2429, ®
1/2 1 1

[HH:¢S(S+ /3)(S+)+S(s;_)[(10112—2)¢+5f(p),3]

+s[f(p)(6to — 4B) — (Tn* — 1)¢].)

414 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

If the forward substitution in the Householder algorithm is negligible, the model becomes

s(s+1)
IHH =

[10n°p + 57 (p)B] + 5[/ (p) (610 — 4B) — Tn’¢].

Comparing this expression with (8) for the re-orthogonalized classical Gram—Schmidt algorithm, we see
that the two methods are very similar in cost, while we shall see later that re-orthogonalized Gram—
Schmidt is much more stable than Householder for the standard test problem. The similarity in cost is
confirmed by our experiments.
Tests were performed on a cluster of HP workstations to obtain representative values for the parameter:

to, B ande:

fo~ 4.7 x 1074, B~75x10°, $p~49x 108,
Similar tests were performed on a Cray T3E using MPI communications with the results

1o~ 2.4 % 107>, B~54x10¢, $~58x1078,

Assuming the models (7)—(9), and assumifigp) = p — 1 for the workstation cluster and(p) =
[log, p] for the Cray T3E, the quantities

orthog. time MGS

orthog. time HH’
orthog. time MGS

orthog. time CGS2

are plotted as functions of for s =60 andp = 4,9 (p = 4,9, 25 for the Cray T3E) in Fig. 5. The
Householder (respectively CGS2) method is faster at points in the figure Wheare 1 (respectively
Feesz2> 1). The model predicts that the alternative methods (HH) and (CGS2) are only advantageous for
small enough subdomain size. On the workstation cluster this size may be about 10000 unknowns on 4
processors and somewhat more on 9 processors. On the Cray T3E, the number of unknowns per process:
should be fewer than 1000 for 9 or even 25 processors. For larger problems the smaller amount of work
involved in modified Gram—-Schmidt orthogonalization outweighs the increased communication cost.
Note also that the model indicates that the computational efforts of Householder and re-orthogonalized
classical Gram—Schmidt are very similar, with the Gram—Schmidt variant to be preferred in the useful
range.

In the following section we shall see that, while the model is qualitatively correct, the observed
performance curves are lower than the ones predicted here. Another issue of relevance to the choice
of an orthogonalization method is the stability of the method with respect to rounding errors. Fig. 6
shows a comparison of the classical, modified, and re-orthogonalized classical Gram—-Schmidt methods
and the Householder implementation for the test matrix of [3]:

11
€

i = (10)

CGS2= (11)

A=

The comparison method is th@ R decomposition function of Matlab, based on the traditional
Householder implementation. We see that the re-orthogonalized classical Gram—Schmidt method gives
the smallest orthogonalization error of all methods for this test case.

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 415

HP cluster

,f
£65% o N o

H

f

N

-

30 40 50 60 70 80 90 100
subdomain gridsize, n

e
o

Cray T3E

T T

-
»
T

HH
--- CGS8s2

_L
Now
:
°
il
N
a
.

fHH’ ngSZ N
T
T
©
L

20 30 40 50 60 70 80 90 100
subdomain gridsize, n

Fig. 5. Predicted speedup with Householder orthogonalization.

In conclusion, we mention that there does not seem to be any reason to prefer the parallel Householde
method over the re-orthogonalized classical Gram—Schmidt method, at least in this context. In terms of
parallel efficiency the two methods are almost identical. However, the Gram—Schmidt variant is simpler
to implement, provides significantly less orthogonalization error, and allows truncation strategies to be
employed in a natural way.

4. Numerical experiments

In this section, we give numerical results which provide useful insights into approximate solution
techniques. Numerical results were obtained from both a cluster of HP-735 and HP-755 workstations
(99-125 MHz) and from a Cray T3E parallel computer. All communications were handled with MPI.
Reported times are obtained from the MPI timing functions, and are the minimum time achieved over
three runs. For our interests, the workstation results are as important (or more so) than those from the
parallel machine, due to the immediate availability and relative cheapness of workstations.

416 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Bjorck test case

CGS2

-7 -6 -5 -4 -3 -2 -1 0
log 10

Fig. 6. Comparison of orthogonalization error for classical (CGS), modified (MGS), re-orthogonalized (CGS2)
Gram-Schmidt methods, Householder (HH) method, and Matlab QR function on Bj6rck test problem.

As a test example, we consider a Poisson problem, discretized with the finite volume method on a
square domain. The pressure correction matrix, which we solve in each time step of an incompressible
Navier—Stokes simulation to enforce the divergence-free constraint [21], is similar to a Poisson problem,
but with asymmetry arising from the use of curvilinear coordinates. Solution of this system requires
about 75% of the computing effort. So that we can obtain a useful indication of the performance of our
method on the pressure correction matrix, we do not exploit the symmetry of the Poisson matrix in these
experiments. The domain is composed ofiéirx M array of subdomains, each with arx n grid. With
h = Ax = Ay =1.0/(Mn) the discretization is

Quyj — wip1j — i1j — Wij—1 — Ugje1 = h° fij.
The right-hand side function isf;; = f(ih, jh), where f(x,y) = —=32(x(1 — x) + y(1 — y)).
Homogeneous Dirichlet boundary conditioms= 0 are defined 0@ 2, implemented by adding a row

of ghost cells around the domain, and enforcing the condition, for examyles —u1; on boundaries.
This ghost cell scheme allows natural implementation of the domain decomposition as well.

4.1. Evaluation of performance model, Householder orthogonalization

The performance model for the orthogonalization methods in the previous section predicts that
the modified Gram-Schmidt algorithm is to be preferred for large subdomain problems. We wish
to investigate this experimentally, to confirm the model predictions. The results presented here were
computed for a fixed number of iterationsequal to the restart value.

Fig. 7 is the experimental analog of Fig. 5. The paramefgis and Fcgsz are plotted for subdomain
grid sizes ofn = 20, 40, 60, 80, 100 and a fixed number of iterations= 60. Measurements were made
for 4 and 9 processord{ = 2 and 3, respectively) on the HP cluster and 4, 9 and 25 procegdossy, 3
and 5, respectively) on the Cray T3E.

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 417

HP cluster
45 T T .

HH
N o --- (CGSs2
35 \\\P= 1

251 \ N b

151 < 1

0.5 : ’
20 40 60 80 100

subdomain gridsize, n

Cray T3E

HH
N --- CGSs2

20 40 60 80 100
subdomain gridsize, n

Fig. 7. Measured speedup with Householder (HH) orthogonalization and re-orthogonalized -classical
Gram-Schmidt (CGS2), restart value- 60.

By comparison one sees that the model developed in the previous section is qualitatively correct, but
is rather optimistic with respect to the range of problem sizes for which Householder is more effective
than Gram-Schmidt.

4.2. Evaluation of approximate subdomain solvers

In this section we compare speedups obtained with a number of approximate subdomain solvers to ge
an impression of which solvers might be effectively used with the Navier—Stokes equations. For the tests
of this section, a fixed restart value of= 30 was used, and modified Gram-Schmidt was used as the
orthogonalization method for all computations. The solution was computed to a fixed tolerancé of 10
unless noted otherwise. The performance measure is computation time, after initialization, taken as the
minimum achieved over three runs.

The subdomain approximations will be denoted as follows:

e GMRG6 = restarted GMRES with a tolerance of £Qpreconditioned with RILUD),

418 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

Table 3
n =60 120 180 240 300
GMR6 0.788 7.56 28.1 82.5 195
GMR2 0.862 8.00 34.7 75.8 180
GMR1 0.815 6.75 29.3 82.1 166
RILUD 1.10 11.0 41.6 117 292
Table 4
n =60 120 180 240 300
GMR6 0.483 3.98 119 34.7 80.6
GMR2 0.563 4.24 14.8 32.0 74.9
GMR1 0.552 3.62 13.2 354 69.3

RILUD 0.666 5.49 17.2 49.9 119

e GMR2 = restarted GMRES with a tolerance of ZQpreconditioned with RILUD),
¢ GMRL1 = restarted GMRES with a tolerance of ZQpreconditioned with RILUD),
e RILUD = one application of an RILUD preconditioner.

Speedups are compared both to single and multiblock serial computations.

4.2.1. Single block serial case

The single block serial solution times in seconds on grids of dimensien60, 120, 180, 240 and
300 for the HP cluster and for the Cray T3E are given in Tables 3 and 4, respectively. Note that GCR
preconditioned with GMRES iterations gives a variation of the GMRESR method of [34]. All three
lead to approximately the same solution time. This is in agreement with the findings of [34—36] for the
GMRESR method. The fourth case is equivalent to solving the problem with GCR, preconditioned with
the RILUD preconditioner. It is also in keeping with the findings of the above papers that this method is
slower than GMRESR.

4.2.2. Multiblock solution, fixed problem size

In this section we compare results for a fixed problem size on thex3800 grid with 4 and 9
processors on the workstation cluster and 4, 9, 16 and 25 processors on the Cray T3E. We use on
processor per block. The timing results in seconds for the HP cluster and for the Cray T3E are given in
Tables 5 and 6, respectively.

On both systems one observes that the method using RILUD as the subdomain approximation gives
a faster computation time than the fastest serial computation times from the previous subsection. On
the Cray T3E, the methods GMR1 and GMR2 are also somewhat faster than the fastest serial time, for
p =16 andp = 25 processors.

Furthermore, one sees that among those methods in which GMRES is used to solve the subdomair
problems, a tolerance of 1dgives a faster solution time than a tolerance of ‘10’ hus some subdomain

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 419

Table 5

p=4 p=9

GMR6 1430 386

GMR2 346 220

GMR1 457 261

RILUD 157 89

Table 6
p=4 p=9 p=16 p=25
GMR6 685 178 143 79.3
GMR2 167 102 63.3 37.1
GMR1 222 118 65.6 38.9
RILUD 65.3 25.9 21.9 14.9
Table 7

p=4 p=9 p=16 p=25
GMR6 78(68.4) 83(38.7) 145(31.4) 168(26.4)
GMR2 86(15.7) 118(15.7) 168(13.7) 192(10.9)
GMR1 139(13.6) 225(9.3) 287(7.1) 303(5.9)
RILUD 341(1) 291(1) 439(1) 437(1)

convergence appears to be desirable. On the other hand, the fastest solutions in each case are obtain
with the least accurate subdomain approximation—namely, the RILUD preconditioner.

To give insight into these results, it is useful to look at the iteration counts: both the number of outer
iterations and the average number of inner iterations (in parentheses), see Table 7. Note the large increas
in the number of outer iterations incurred for GMR1 over GMR2, which helps to explain the faster time
for GMR2. Apparently, an inner loop tolerance of 10s insufficient for fast global convergence, yet is
still a very expensive subdomain approximation. The RILUD approximation, on the other hand, though it
gives the worst convergence rate of the outer loop, is very cheap to apply; in fact, cheap enough to make
it the fastest method.

Fig. 8 illustrates the speedup against the multiblock serial solution, obtained on the workstation cluster
and on the Cray using GMR6, GMR2, GMR1 and RILUD subdomain approximations. We would expect
nearly perfect speedup, especially for large problems, since the work required for preconditioning is
proportional to the total number of unknowns, while the amount of communication is proportional to
the length of subdomain interfaces. The observed speedup is quite good on the Cray; however, on the
workstation cluster, especially fgr = 9 the subdomain grid size needs to be quite large to obtain a
high speedup. In any case we can conclude that if domain decomposition is going to be used anyway

420 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

HP cluster

50 100 150 200 250 300
grid size

Cray T3E
25

201

speedup
4
1
3

O 1 L
50 100 150 200 250 300
grid size

Fig. 8. Speedup versus multiblock solution on the cluster of workstations and the Cray T3E.

for geometric reasons or due to memory limitations, a speedup can be achieved by parallelization and
subdomain approximation with an RILUD preconditioner.

4.2.3. Multiblock case, scaled problem size

Fig. 9 shows a comparison of the parallel scalability of the domain decomposition method with
approximate subdomain solution. The figure shows computation times on 1, 4 and 9 processors (1, 4,
9, 16 and 25 processors for the Cray T3E) with a fixed subdomain size of 120. A fixed number
of outer iterations (30) were computed. Note that the method scales almost perfectly on the Cray for this
range of processors. On the workstation cluster, the scaling is somewhat poorer, but reasonable.

5. Conclusions

For applications which require domain decomposition for some reason other than parallelism,
it is possible to achieve a great reduction of computation time by solving subdomain problems

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 421

HP cluster

processors, p

Cray T3E

10°L~ . . .
1 4 9 16 25

processors, p

Fig. 9. Computation time for fixed subdomain size of 22020.

approximately. A reasonable speedup with respect to the single block serial solution method is also
attainable, particularly when using many processors of a massively parallel distributed memory machine.
This speedup is less impressive when computing on a cluster of workstations, due to the increased
communication latency.

In our experience, the best subdomain approximation method in parallel is a simple incomplete
factorization restricted to the diagonal: the RILUD factorization. With this preconditioner used as a
subdomain approximation, the approximate solves become so cheap (and yet sufficiently accurate) tha
they offset the increased number of global iterations resulting from inaccurate subdomain solution.

A performance model for the modified Gram—Schmidt, re-orthogonalized classical Gram—-Schmidt,
and Householder orthogonalization methods indicates that classical Gram—-Schmidt and Householdel
require approximately the same amount of work and communication, making the classical Gram—
Schmidt more attractive, since it is easier to implement and more stable. The Householder and re-
orthogonalized Gram-Schmidt methods are most effective for relatively small problems: using nine
processors, up to about 900 unknowns per processor for a Cray T3E, or 8000 unknowns per processo

422 J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423

for a cluster of workstations. One promising area of application for these procedures is in long-time
simulations of systems of this size.

Acknowledgements

The authors are indebted to Pieter Wesseling and an anonymous referee for critical remarks on the
manuscript.

References

[1] O. Axelsson and G. Linskog, On the eigenvalue distribution of a class of preconditioning mebhaaiey.
Math.48 (1986) 479-498.

[2] Z. Bai, D. Hu and L. Reichel, A Newton-basis GMRES implementatitdA J. Numer. Anall4 (1994)
563-581.

[3] A. Bjorck, Solving linear least squares problems by Gram-Schmidt orthogonalizBtioa, (1967) 1-21.

[4] C. Borgers, The Neumann-Dirichlet domain decomposition method with inexact solvers on the subdomain,
Numer. Math55 (1989) 123-136.

[5] E. Brakkee, A. Segal and C.G.M. Kassels, A parallel domain decomposition algorithm for the incompressible
Navier—Stokes equationSjmulation Practice and Theo/(1995) 185—-205.

[6] E. Brakkee, C. Vuik and P. Wesseling, Domain decomposition for the incompressible Navier—Stokes
equations: Solving subdomain problems accurately and inaccuraligigrnat. J. Numer. Methods Fluids
26 (1998) 1217-1237.

[7] E. Brakkee, Domain decomposition for the incompressible Navier—Stokes equations, Ph.D. Thesis, Delft
University of Technology, Delft, The Netherlands (April 1996).

[8] T.F. Chan and T.P. Mathew, Domain decomposition algorithms, in: A. Iserlef\&d. Numericq University
Press, Cambridge, 1994) 61-143.

[9] H. Cheng, On the effect of using inexact solvers for certain domain decomposition algorHastsWest J.
Numer. Math2 (4) (1994) 257-284.

[10] E. de Sturler and H.A. van der Vorst, Reducing the effect of global communication in GMRES&(CG on
parallel distributed memory computeisppl. Numer. Math18 (1995) 441-459.

[11] S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of
linear equationsSIAM J. Numer. AnaRO0 (2) (1983) 345-357.

[12] J. Erhel, A parallel GMRES version for general sparse matriégdsctronic Trans. Numer. AnaB (1995)
160-176 lttp://etha.mcs.kent.edu).

[13] S. Goossens, E. Issman, G. Degrez and D. Roose, Blbék LU (0) preconditioning for a GMRES based
Euler/Navier—Stokes solver, in: H. Liddell, A. Colbrook, B. Herzberger and P. Sloot,Rrdsgedings High
Performance Computing and Networking ;9 cture Notes in Computer Science, Vol. 1067 (Springer, New
York, 1996) 619-626.

[14] I. Gustafsson, A class of first order factorization methdig, 18 (1978) 142—-156.

[15] G. Haase, U. Langer and A. Meyer, The approximate Dirichlet domain decomposition method, Part I: An
algebraic approactComputingd7 (1991) 137-151.

[16] G. Haase, U. Langer and A. Meyer, The approximate Dirichlet domain decomposition method, Part I:
Applications to 2nd-order elliptic BVP<Computingd7 (1991) 153-167.

[17] G. Haase, U. Langer and A. Meyer, Domain decomposition preconditioners with inexact subdomain solvers,
J. Numer. Linear Algebra Appl (1) (1991) 27-41.

J. Frank, C. Vuik / Applied Numerical Mathematics 30 (1999) 403—-423 423

[18] R.W. Hockney and C.R. Jesshograllel Computers 2: Architecture, Programming and AlgorithfAslam
Hilger, Bristol, 1988).

[19] W. Hoffman, Iterative algorithms for Gram—-Schmidt orthogonalizat@amputingd1 (1989) 335-348.

[20] W. Jalby and B. Philippe, Stability analysis and improvement of the block Gram—Schmidt algo8ti,

J. Sci. Statist. Comput2 (5) (1991) 1058-1073.

[21] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressitaéAidw,
Sci. Statist. Comput. (3) (1986) 870-891.

[22] D.E. Keyes, Aerodynamic applications of Newton—Krylov—Schwarz solvers, in: S.M. Despande, S.S. Desai
and R. Narasimha, eds€Proceedings of 14th International Conference on Numerical Methods in Fluid
Dynamicg(Springer, Berlin, 1995) 1-20.

[23] V. Kumar, A. Grama, A. Gupta and G. Karypiktroduction to Parallel Computing; Design and Analysis of
Algorithms(Benjamin/Cummings, Redwood City, 1994).

[24] G. Li, A block variant of the GMRES method on massively parallel procesBarajlel Computing?3 (1997)
1005-1019.

[25] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient
matrix is a symmetric M-matrixMath. Comp31 (1977) 148-162.

[26] A. Meyer, A parallel preconditioned conjugate gradient method using domain decomposition and inexact
solvers on each subdomai@pmputingd5 (1990) 217-234.

[27] D.P. O’Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram—-Schmidt
algorithms,Parallel Computingl6 (1990) 99-112.

[28] Y. Saad, A flexible inner—outer preconditioned GMRES algoritt8PAM J. Sci. Statist. Compuit4 (1993)
461-469.

[29] Y. Saad and M.H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric
linear systemsSIAM J. Sci. Statist. Comput.(3) (1986) 856—869.

[30] A. Segal, P. Wesseling, J. van Kan, C.W. Oosterlee and K. Kassels, Invariant discretization of the incompress-
ible Navier—Stokes equations in boundary-fitted co-ordindtgsrnat. J. Numer. Methods Fluids$ (1992)
411-426.

[31] R.B. Sidje, Alternatives for parallel Krylov subspace basis computatimer. Linear Algebra App# (4)

(1997) 305-331.

[32] B.F. Smith, P.E. Bjgrstad and W.D. Gropppmain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential EquationgCambridge University Press, Cambridge, 1996).

[33] K.H. Tan, Local coupling in domain decomposition, Ph.D. Thesis, Utrecht University, Utrecht, The
Netherlands (April 1996).

[34] H.A. van der Vorst and C. Vuik, GMRESR: A family of nested GMRES methddsmer. Linear Algebra
Appl.1 (4) (1994) 369-386.

[35] C. Vuik, Further experiences with GMRESBupercomputes5 (1993) 13-27.

[36] C. Vuik, New insights in GMRES-like methods with variable preconditiongtsComput. Appl. Math61
(1995) 189-204.

[37] C. Vuik, Fast iterative solvers for the discretized incompressible Navier—Stokes equhattensat. J. Numer.
Methods Fluid22 (1996) 195-210.

[38] H.F. Walker, Implementation of the GMRES method using Householder transformagiéid,J. Sci. Statist.
Comput9 (1) (1988) 152-163.

[39] P. Wesseling, A. Segal, C.G.M. Kassels and H. Bijl, Computing flows on general two-dimensional nonsmooth
staggered grids]. Engrg. Math34 (1998) 21-44.

