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Abstract

Solution of large linear systems encountered in computational fluid dynamics often naturally leads to some
form of domain decomposition, especially when it is desired to use parallel machines. It has been proposed to
use approximate solvers to obtain fast but rough solutions on the separate subdomains. In this paper approximate
solutions via (1) an inner preconditioned GMRES iteration to fixed tolerance, and (2) incomplete factorization
(RILU, restricted to the diagonal) are considered. Numerical experiments for a fundamental test problem are
included which show speedups obtained on a cluster of workstations as well as on a distributed memory parallel
computer. Additionally, the parallel implementation of GCR is addressed, with particular focus on communication
costs associated with orthogonalization processes. This consideration brings up questions concerning the use of
Householder reflections with GCR. 1999 Elsevier Science B.V. and IMACS. All rights reserved.
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1. Introduction

Domain decomposition arises naturally in computational fluid dynamics applications on structured
grids: complicated geometries are broken down into (topologically) rectangular regions and discretized in
general coordinates, see, e.g., [30,39], applying domain decomposition to iteratively arrive at the solution
on the global domain. This approach provides easy exploitation of parallel computing resources, and
additionally offers a solution to memory limitation problems.

This paper addresses the parallel implementation of a domain decomposition method for the DeFT
Navier–Stokes solver described in [30], and is the continuation of work summarized in [7]. Results from
a parallel implementation of a Krylov-accelerated Schur complement domain decomposition method are
presented in [5]. A serial implementation of nonoverlapping, one-level additive Schwarz method with
approximate subdomain solution [6] gave more promising results. For the present research, our goal was
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to obtain an impression of the behavior of this method in parallel without incurring the programming
workload of a full implementation in the DeFT software; which would require fundamental changes. To
this end, we report preliminary results for a Poisson problem on a square domain, and refer the reader
to a forthcoming article with more realistic experiments. The Poisson problem is representative of the
system which must be solved for the pressure correction method used in DeFT.

Theoretical results on approximate solution of subdomain problems for Schur complement domain
decomposition methods are given by Börgers [4], Haase et al. [15–17,26], and Cheng [9]. Brakkee [7]
gives theoretical and experimental results for non-overlapping Schwarz iterations with variable
approximate inner solvers.

In this paper we demonstrate that a reasonable amount of parallel speedup can be observed for a
nonoverlapping, one-level additive Schwarz method if the subdomain problems are solved using only a
rough approximation. In Section 2 we briefly review the relevant mathematics and give some theoretical
motivation for approximate subdomain solution.

Much effort has focused on efficient parallelization of Krylov subspace methods. Aside from the
preconditioning, the main parallel operations required in these methods are distributed matrix-vector
multiplications and inner products. For many problems, the matrix-vector multiplications require only
nearest neighbor communications, and may be very efficient. Inner products, on the other hand, require
global communications; therefore, the focus has been on reducing the number of inner products [12,31],
overlapping inner product communications with computation [10], or increasing the number of inner
products that can be computed with a single communication [2,24].

Some practical points are brought out in Section 3 concerning parallel implementation of orthogo-
nalization procedures for the GCR method. A performance model is developed for comparison of these
methods, and the validity of the model is checked against experimental results in Section 4.

Additional results reported in Section 4 include speedup ratios, obtained by comparison of the parallel
multiblock computation times to both the single block serial time and the multiblock serial times, and
scalability tests for which the number of unknowns per processor is held constant as the number of
participating processors is increased. The timings were made on a cluster of workstations and a Cray T3E.
In particular, our results suggest that the most efficient subdomain approximation in terms of computation
time is a simple incomplete factorization.

2. Mathematical background

2.1. One-level, nonoverlapping domain decomposition

We consider an elliptic partial differential equation discretized using a finite volume or finite difference
method on a computational domainΩ. By a computational domain we mean the set of unknown values
to be approximated, together with their associated locations in space. Let the domain be the union ofM

nonoverlapping subdomainsΩm,m= 1, . . . ,M.
Discretization of the PDE results in a sparse linear system

Ax = b, (1)

with x, b ∈RN . The structure of the matrixA is determined by the stencil of the discretization. Even if
there is no overlap between the subdomains, there is an inter-subdomain coupling due to the stencil. That
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is, the equation for an unknown adjacent to a subdomain interface is dependent on an unknown across
the subdomain boundary.

One technique for solving this problem is to permute the system (1), grouping together into blocks
those unknowns which share a common subdomain to produce a block system: A11 . . . A1M

...
. . .

...

AM1 . . . AMM


 x1

...

xM

=
 b1

...

bM

 . (2)

In this system, one observes that the diagonal blocksAmm express coupling among the unknowns defined
on a common subdomain (Ωm), whereas the off-diagonal blocksAmn, m 6= n, represent coupling across
subdomain boundaries. The only nonzero off-diagonal blocks are those corresponding to neighboring
subdomains.

The additive Schwarz iteration introduces the block Jacobi preconditioner

K =
A11

. . .

AMM

 ,
which, together with the residual, defines a system whose solution provides an approximation of the
error. Note that this system may be efficiently solved on parallel computers. It is this form of domain
decomposition which we will consider in the rest of the paper.

For a thorough discussion of domain decomposition methods see the book [32] and the review
article [8]. Each of these publications contains an extensive bibliography. Convergence theory for
domain decomposition methods is discussed in [32]. Roughly speaking, the convergence rate suffers
proportionally to the number of subdomains in each direction. If a constant overlap (in physical units) is
maintained, the convergence rate is independent of grid size; however, for zero overlap the convergence
is relatively poor. The convergence rate may additionally be made independent of the number of
subdomains if a coarse subspace correction is applied: for example, the residual is projected onto
a single coarse grid domain, where a correction is computed which is then interpolated back to the
subdomains.

2.2. Krylov subspace acceleration

In practice (2) is solved iteratively, usingK as a preconditioner for a Krylov subspace method, such
as the conjugate gradient method for symmetric problems or the GMRES method [29] for nonsymmetric
problems. For our purposes a practical method is GCR [11], shown in Fig. 1. In the algorithm and
elsewhere in this paper the Euclidean inner product〈x, y〉 = xTy and associated norm‖x‖ = (xTx)1/2

are used.
The function orthonorm() takes input vectors̃q andṽ, orthonormalizes̃q with respect to theqi , i < k,

updatingṽ as necessary to preserve the relationq̃ = Aṽ, and returns the modified vectorsqk andvk . In
serial computations, the modified Gram–Schmidt method, Fig. 2, is often employed for the orthonorm()

function. We discuss alternative orthogonalization methods in later sections of this paper.
In exact arithmetic, and assuming it does not break down, GCR produces the same iterates as

GMRES. However, GCR does not take advantage of the Lanczos recursion, but instead requires
the storage of an extra set of orthogonalresidual search vectors. GCR has a number of benefits;
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Algorithm : GCR
Given: initial guessx0

r0= b−Ax0

for k = 1, . . . , convergence
SolveKṽ = rk−1 (approximately)
q̃ =Aṽ
[qk, vk] = orthonorm(q̃, ṽ, qi, vi, i < k)
γ = qT

k rk−1

Update:xk = xk−1+ γ vk
Update:rk = rk−1− γ qk

end

Fig. 1. The GCR algorithm.

Algorithm : Modified Gram–Schmidt
[qk, vk] = orthonorm(q̃, ṽ, qi, vi, i < k):

for i = 1, . . . , k − 1
α = 〈q̃, qi〉
q̃ = q̃ − αqi
ṽ = ṽ − αvi

end
β = ‖q̃‖
qk = q̃/β; vk = ṽ/β

return

Fig. 2. The modified Gram–Schmidt algorithm.

among them: (1) the preconditionerK need not remain constant (nor even be a linear operator;
the GMRESR algorithm in [34] uses GMRES(m) as a preconditioner); (2) one is free to employ
truncation strategies such as in [35]; and (3) if the LSQR switch is employed [34], the method will
not break down. The importance of allowing a variable preconditioner will be discussed in the next
section. In Fig. 1 the GCR method is defined for an unlimited number of iterations, and may incur
memory limitations. In practice, therefore, it is necessary either to restart the iteration periodically,
discarding all stored vectors, or to maintain only a fixed number of vectors, applying some criterion
to determine which vectors will be kept. This second option, referred to as truncation, is shown in [35]
to be very effective in reducing the number of iterations. In the numerical experiments of this paper
we do not use any truncation strategies, but simply restart; however, truncation is used in the DeFT
software.

2.3. Approximate subdomain solution

Solution for ṽ from the preconditioning equationKṽ = rk−1 in the GCR algorithm requires solution
of M subdomain systemsAmmṽm = rm, m = 1, . . . ,M. Since these problems have a nonzero structure
similar to that of the original matrixA, and since they may still be quite large, it is advantageous
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to solve them using an iterative method. A question which arises naturally, and for purely practical
reasons, addresses the tolerance to which theseinner iterationsshould converge. Perhaps a very rough
approximation would be sufficient. A number of authors have considered approximate solution of
subdomain problems. In particular, they have considered the consequences of using very fast, rough
approximations to reduce the total computing time necessary to solve the global problem.

Some possible strategies for approximating the subdomain solutions are:
• A second (inner) iterative method (possibly preconditioned) either to a fixed tolerance, to a variable

tolerance, or for a predetermined number of iterations.
• Approximate factorization or approximate inversion of the subdomain problems.
• Do nothing at all. In this case one uses the domain decomposition purely as a form of data

distribution and applies the unpreconditioned Krylov method.
Tan [33] shows that if the inner problems are solved to some tolerance in each outer iteration, then
the optimal strategy for choosing the tolerance is a fixed one. That is, it is not necessary to make the
subdomain solution tolerance smaller as the global solution converges.

Brakkee [7] has proven the following theorem. LetÃ−1
ii be the matrix which represents the approximate

inversion of theith block. In the case of a Krylov subspace method as inner solver, this would be the
actual value of the minimizing polynomial applied toA. Similarly defineK̃−1 to be the approximate
preconditioner consisting of the diagonal blocksÃ−1

ii . If for each subdomaini = 1, . . . ,M it holds that
‖I −AiiÃ−1

ii ‖< ε, then the condition number of the approximately preconditioned matrix satisfies

κ
(
AK̃−1)6 1+ ε

1− εκ
(
AK−1). (3)

whereκ(A)= ‖A‖‖A−1‖ is the condition number ofA. Unfortunately, the condition‖I −AiiÃ−1
ii ‖< ε

is nontrivial to check.
Essential to the proof of the above theorem is the fact that

κ
(
AK̃−1)= κ(AK−1KK̃−1)6 κ(AK−1)κ(KK̃−1).

This bound may be clarified by noting that the matrixB = KK̃−1 is a block diagonal matrix with
blocksBi = AiiÃ−1

ii , i = 1, . . . ,M. The spectrum of the block diagonal matrixBTB is a subset of the
union of the spectra of the blocks; thus, if there existα,β bounding the singular values of all blocks:
0< α 6mini σmin(Bi)6maxi σmax(Bi)6 β, then

κ
(
AK̃−1)6 β

α
κ
(
AK−1).

Competing against convergence rate for an efficient solution method is the expense of computing the
subdomain approximate solutions. The RILUD preconditioner, though a less effective approximate solver
than GMRES iterations in terms of convergence rate, is far cheaper, at least for the problems considered
here. Thus one makes a tradeoff between effectiveness of an approximate preconditioner in terms of
convergence rate and speed in terms of computational expense.

Note that if the subdomains are solved using a Krylov subspace method such as GMRES, then the
approximate solution is a function of the right hand side, which is the residual of the outer iteration.
Furthermore, if the subdomains are solved to a tolerance, the number of inner iterations may vary from
one subdomain to another, and in each outer iteration. The effective preconditioner is therefore nonlinear
and varies in each outer iteration. A variable preconditioner presents a problem for GMRES: namely, the
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Lanczos recurrence relation no longer holds. To allow the use of a variable preconditioner, Saad [28] has
developed the Flexible GMRES (FGMRES) method, which requires storage of an auxiliary set of vectors
such as with GCR. However, it is not possible to use truncation strategies with FGMRES. Because we
use truncation in our Navier–Stokes code, we consider GCR in the following.

Our choice of approximate solution methods is motivated by the results obtained in [6]. In that paper,
GMRES was used as to approximately solve subdomain problems to within fixed tolerances of 10−4,
10−3, 10−2 and 10−1. Additionally, a blockwise application of the RILUD preconditioner was used.
RILUD, a diagonal-restricted variant of the preconditioner introduced in [1], is a weighted average of an
ILUD preconditioner [25] and an MILUD preconditioner [14]. The weighting parameterω, was assigned
a value of 0.95 in our experiments. See also [37] for useful results with RILU factorizations applied to
Navier–Stokes equations. The use of incomplete factorizations to obtain subdomain approximations has
been advocated by Keyes [22] and Goossens et al. [13] among others. The results of [6] indicated that
coarser tolerances were more effective. However, all numerical results presented therein were obtained
from serial runs. In Section 4 we will present numerical results using the above approximate subdomain
solution methods in parallel.

2.4. Orthogonalization methods

The primary challenges to parallelization of GCR are parallelization of the preconditioning—a
difficulty which disappears when a block preconditionerK is used—and parallel computation of the
inner products. Inner products require global communication and therefore do not scale. Much of the
literature on parallel Krylov subspace methods and parallel orthogonalization methods is focused on
orthogonalizing a number of vectors simultaneously. See, e.g., [2,10,20,24,27]. However, this is not
possible using a preconditioner which varies in each iteration. For this reason, we need a method for
orthogonalizing one new vector against an orthonormal basis of vectors.

The modified Gram–Schmidt method of Fig. 2 suffers from the fact that the inner products must be
computed using successive communications, and the number of these inner products increases by one
with the iteration number. This is not the case if one uses the classical Gram–Schmidt method, Fig. 3.
In this algorithm all necessary inner products can be computed with a single global communication.

Algorithm : Classical Gram–Schmidt
[qk, vk] = orthonorm(q̃, ṽ, qi, vi, i < k):
β = 〈q̃, q̃〉
for i = 1, . . . , k− 1
αi = 〈q̃, qi〉

end

β =
√
β −∑k−1

i=1 α
2
i

qk = β−1(q̃ −∑k−1
i=1 αiqi)

vk = β−1(ṽ−∑k−1
i=1 αivi)

return

Fig. 3. The classical Gram–Schmidt algorithm.
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Unfortunately, as shown by Björck [3], the classical Gram–Schmidt method is unstable with respect to
rounding errors, so this method is rarely used.

On the other hand, Hoffmann [19] gives experimental evidence indicating that a two-fold application
of Fig. 3 is stable. Furthermore, it appears that if orthogonality is important, such a re-orthogonalization
is also required even for the more stable modified Gram–Schmidt algorithm.

A third method which has been suggested is the parallel implementation of Householder transforma-
tions, introduced by Walker [38]. We shall reformulate that method for GCR in the following section.
Additionally, we will present a simple parallel performance analysis for comparison of these three or-
thogonalization procedures.

3. Householder orthogonalization

Walker [38] has proposed a GMRES variant using a vectorized version of Householder transformations
as an alternative to the modified Gram–Schmidt procedure. The Householder method has the advantage
that it requires only a fixed number of communications per GMRES iteration. In this section we describe
the GCR implementation and discuss some practical details concerning its use.

3.1. Description of the method

In the following discussion we use the notionak to represent thekth column of a matrixA anda(i)

to represent theith component of a vectora. Let a matrixA ∈ Rn×m, m6 n, with linearly independent
columns be factored asQZ, whereQ is orthogonal andZ is upper triangular. Then thekth column ofA
is given byak =Qzk . It follows thatak ∈ span{q1, . . . , qk}. In other words, the columns ofQ form an
orthonormal basis for the span of the columns ofA.

We constructQ as the product of a series of Householder reflections,Q= P1 · · ·Pm, used to transform
A into Z. The matricesPi have the following properties:

(i) P 2
i = I = P T

i Pi ,
(ii) Piej = ej , if j < i,
(iii) Pi(Pi−1 · · ·P1)ai = zi.

In property (ii) ej is the j th canonical unit vector inRn. A Householder reflection is given byPi =
I − 2wiwT

i /(w
T
i wi), for somewi ∈Rn. Note that such a matrix has property (i). Property (ii) is ensured

by requiring the firsti − 1 components ofwi be zero:w(j)i = 0 for j < i.
Suppose one has already producedk orthogonal basis vectorsq1, . . . , qk and stored them along with

the transformation vectorsw1, . . . ,wk corresponding toP1, . . . , Pk . Given a candidate vectorak+1, one
must first apply the previous reflections as described in [38]:

ã = Pk · · ·P1ak+1= (I − 2WkL
−1
k W

T
k

)
ak+1,

where here and elsewhere we denote byWk the matrix whose columns arew1, . . . ,wk , and where

Lk =


1

2wT
2w1 1
...

. . .

2wT
k w1 . . . 2wT

k wk−1 1

 .
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Note especially that in the(k + 1)th iteration one must compute the last row ofLk , which is the vector
(2wT

k Wk−1,1), as well as the vectorWT
k ak+1. This requires 2k − 1 inner products, but they may all be

computed using only a single global communication.
Now having computed̃a one wishes to findwk+1 such thatPk+1 satisfies (iii):

Pk+1ã = zk+1= z(1)k+1e1+ · · · + z(k+1)
k+1 ek+1= ã(1)e1+ · · · + ã(k)ek + αek+1, (4)

where property (ii) has been used for the last equality.
Because of the relation

Pk+1ã =
(
I − 2

wk+1w
T
k+1

wT
k+1wk+1

)
ã = ã − 2

wT
k+1ã

wT
k+1wk+1

wk+1, (5)

one must havewk+1 ∈ span{ã, e1, . . . , ek+1}. However, Eq. (4) provides the relation which must hold
amongã, e1, . . . , ek . Let w̃ be the vector obtained by setting the firstk elements of̃a to zero. Formally,
one hasw̃= Jk+1ã, where

Jk+1=
[

0k
In−k

]
.

Thus, wk+1 ∈ span{w̃, ek+1}. The length ofwk+1 is a free parameter, so takewk+1 = w̃ + βek+1.
Substituting into (5) gives

Pk+1ã = ã − 2
wT
k+1ã

wT
k+1wk+1

(
Jk+1ã + βek+1

)= (I − 2
wT
k+1ã

wT
k+1wk+1

Jk+1

)
ã − 2β

wT
k+1ã

wT
k+1wk+1

ek+1.

To ensure that all elements below the(k+ 1)th are zero, one requires 1− 2wT
k+1ã/(w

T
k+1wk+1)= 0. But,

wT
k+1ã =

(
w̃+ βek+1

)T
ã = ∥∥w̃∥∥2+ βã(k+1),

and

wT
k+1wk+1=

∥∥(w̃+ βek+1
)∥∥2= ∥∥w̃∥∥2+ 2βã(k+1) + β2.

Substituting these numbers into the above relation, one findsβ =±‖w̃‖, and the sign ofβ is chosen to
be the same as that of̃w(k+1) to reduce the risk of subtractive cancellation:

wk+1= w̃+ sign
(
w̃(k+1))∥∥w̃∥∥ek+1.

In practice, thewk are normalized to length one. Sinceα is the (k + 1)th component ofPk+1ã,
substitution of the above relation into (5), and noting that

2
wT
k+1ã

wT
k+1wk+1

= 1,

gives

α = ã(k+1) − w̃(k+1)− sign
(
w̃(k+1))∥∥w̃∥∥=−sign

(
w̃(k+1))∥∥w̃∥∥=−β,

and the length ofwk+1 can be expressed as

‖wk+1‖ =
√

2α2− 2αw̃(k+1) .

The(k+ 1)th column ofQ is the new orthonormal basis vector,

Qek+1= P1 · · ·Pk+1ek+1,
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and because of property (ii), the yet to be computed reflections will not affect this column. Multiplying
both sides of (4) byP1 · · ·Pk+1 gives

ak+1= ã(1)q1+ · · · + ã(k)qk + αqk+1,

from which it follows that

qk+1= 1

α

[
ak+1−

k∑
i=1

ã(i)qi

]
. (6)

Within the GCR algorithm, the same linear combination must be applied to thevi to obtainvk+1. As
pointed out by an anonymous referee, use of Eq. (6) may result in subtractive cancellation, causing the
reduced stability of this Householder implementation observed in the next section. However, a relation
of this form is needed to be able to enforce the identityqk+1=Avk+1, necessary for GCR.

Our implementation requires three communications in the(k + 1)th iteration, namely:
(1) The computation of̃a using Walker’s approach, requires 2k − 1 inner products, all of which can

be performed with a single communication.
(2) A second communication is necessary to broadcast the firstk + 1 elements of̃a.
(3) A communication is required to compute‖w̃‖ for determiningα.

The algorithm is shown in Fig. 4, with̃q playing the role ofa in the above discussion.
Comparing the Householder implementation with modified Gram–Schmidt,
• In thekth iteration the Householder method requires three communications, whereas Gram–Schmidt

requiresk+ 1.
• Householder requires approximately twice as many inner products as Gram–Schmidt, plus 11

2 times
the number of ‘axpy’ operations.
• The Householder method requires the storage of an extra set ofk vectors.
A drawback of the Householder method is that there appears to be no simple way to incorporate

truncation schemes in the GCR method if Householder is used for orthogonalization.
In the next section we develop a performance model for comparison of the Householder and Gram–

Schmidt methods.

3.2. Performance model

To give insight into the choice of an orthogonalization procedure, consider a simple performance
model. Let the time required for communication of a message ofn floating point numbers be given by

tcomm= t0+ βn,
where t0 is the fixed time required for a message of length zero, andβ is the time per floating point
number (bandwidth). Let the time forn floating point operations be given by

tcomp= φn,
whereφ is the time for one floating point operation. Similar computation/communication models are
used, for example, in [10,18,23,27].

Let p denote the number of processes, and define a functionf (p) which gives the maximum number
of non-simultaneous sends necessary for any given process participating in a broadcast operation top−1
processes. The functionf (p) is machine-dependent and also dependent on the distribution of processes
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Algorithm : Householder orthogonalization
[qk, vk] = orthonorm(q̃, ṽ, qi, vi, i < k):

if k == 1
w1= q̃

else
if k == 2
L1= 1

else

Lk−1=
[

Lk−2 0
2wT

k−1Wk−2 1

]
end
y =WT

k−1q̃

SolveLk−1d = y
wk = q̃ − 2Wk−1d

end
ã(i) =w(i)k , i = 1, . . . , k
Broadcast(ã)
qk = q̃ −∑i<k ã

(i)qi
vk = ṽ−∑i<k ã

(i)vi

Setw(i)k = 0, i = 1, . . . , k− 1
α =−sign(ã(k))‖wk‖
w
(k)
k =w(k)k − α

qk = qk/α
vk = vk/α
wk =wk/

√
2α(α− ã(k))

return

Fig. 4. The Householder orthogonalization algorithm.

on the machine. For example, assuming perfect connectivity and that processes not participating in a
given communication are free to participate in a concurrent communication, the broadcast of a message
amongp processes requiresf (p)= dlog2pe consecutive send operations from the broadcasting process.
An Ethernet broadcast requiresf (p)= p− 1 consecutive send operations.

Assume each processor is responsible for ann×n subdomain withn2 unknowns. Define the times for
some basic operations, see Table 1.

Note that we distinguish between inner products that can be computed simultaneously (i.e., with a
single communication) and inner products that cannot. For example,k simultaneous inner products are
denoted SIP(k), whereask non-simultaneous inner products are denotedk SIP(1). The modified and re-
orthogonalized classical Gram–Schmidt and Householder routines can be broken down into components
as given in Table 2. We have implemented the re-orthogonalized classical Gram–Schmidt method so
that in thekth iteration, the candidate residual search vectorq̃ is twice orthogonalized against the basis
q1, . . . , qk−1 to obtainqk , and only then is the search vectorvk computed. This eliminates a series of
vector updates and explains why there are only 3k− 1 ‘axpy’ operations.
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Table 1

Operation Communication Computation Definition

send (k) t0+ βk send a message of lengthk

flop (n) nφ n floating point operations

B(p,k) f (p)(t0+ βk) broadcastk elements

G(p,k) 2f (p)(t0+ βk) global sumk elements

SIP(k) G(p,k) 2kn2φ k inner prod. simult. comms.

FS(k) k2φ forward substitution, orderk

axpy 2n2φ z= ax + y, scalara

Table 2
Number of operations in thekth iteration of GCR

Modified Gram–Schmidt k SIP(1)

2k− 1 axpy

Re-orthogonalized CGS 2 SIP(k)

3k− 1 axpy

Householder SIP(2k− 3)

SIP(1)

FS(k− 1)

3k− 3/2 axpy

1B(p,k)

Based on the communication model outlined in Tables 1 and 2 the orthogonalization time required
for s iterations of GCR (without restart) using the modified Gram–Schmidt (MGS), re-orthogonalized
classical Gram–Schmidt (CGS2) and Householder (HH) methods, respectively, is given by

tMGS= s(s + 1)

2

[
6n2φ+ 2f (p)(t0+ β)]− s(2n2φ

)
, (7)

tCGS2= s(s + 1)

2

[
10n2φ+ 4f (p)β

]+ s[4f (p)t0− 2n2φ
]
, (8)

tHH = φ s(s + 1/2)(s + 1)

3
+ s(s + 1)

2

[(
10n2− 2

)
φ + 5f (p)β

]
+ s[f (p)(6t0− 4β)− (7n2− 1)φ

]
. (9)
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If the forward substitution in the Householder algorithm is negligible, the model becomes

tHH = s(s + 1)

2

[
10n2φ + 5f (p)β

]+ s[f (p)(6t0− 4β)− 7n2φ
]
.

Comparing this expression with (8) for the re-orthogonalized classical Gram–Schmidt algorithm, we see
that the two methods are very similar in cost, while we shall see later that re-orthogonalized Gram–
Schmidt is much more stable than Householder for the standard test problem. The similarity in cost is
confirmed by our experiments.

Tests were performed on a cluster of HP workstations to obtain representative values for the parameters
t0, β andφ:

t0≈ 4.7× 10−4, β ≈ 7.5× 10−6, φ ≈ 4.9× 10−8.

Similar tests were performed on a Cray T3E using MPI communications with the results

t0≈ 2.4× 10−5, β ≈ 5.4× 10−8, φ ≈ 5.8× 10−8.

Assuming the models (7)–(9), and assumingf (p) = p − 1 for the workstation cluster andf (p) =
dlog2pe for the Cray T3E, the quantities

FHH = orthog. time MGS

orthog. time HH
, (10)

FCGS2= orthog. time MGS

orthog. time CGS2
(11)

are plotted as functions ofn for s = 60 andp = 4,9 (p = 4,9,25 for the Cray T3E) in Fig. 5. The
Householder (respectively CGS2) method is faster at points in the figure whereFHH > 1 (respectively
FCGS2> 1). The model predicts that the alternative methods (HH) and (CGS2) are only advantageous for
small enough subdomain size. On the workstation cluster this size may be about 10000 unknowns on 4
processors and somewhat more on 9 processors. On the Cray T3E, the number of unknowns per processor
should be fewer than 1000 for 9 or even 25 processors. For larger problems the smaller amount of work
involved in modified Gram–Schmidt orthogonalization outweighs the increased communication cost.
Note also that the model indicates that the computational efforts of Householder and re-orthogonalized
classical Gram–Schmidt are very similar, with the Gram–Schmidt variant to be preferred in the useful
range.

In the following section we shall see that, while the model is qualitatively correct, the observed
performance curves are lower than the ones predicted here. Another issue of relevance to the choice
of an orthogonalization method is the stability of the method with respect to rounding errors. Fig. 6
shows a comparison of the classical, modified, and re-orthogonalized classical Gram–Schmidt methods
and the Householder implementation for the test matrix of [3]:

A=


1 1 . . .

ε

ε
. . .

 .
The comparison method is theQR decomposition function of Matlab, based on the traditional
Householder implementation. We see that the re-orthogonalized classical Gram–Schmidt method gives
the smallest orthogonalization error of all methods for this test case.
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Fig. 5. Predicted speedup with Householder orthogonalization.

In conclusion, we mention that there does not seem to be any reason to prefer the parallel Householder
method over the re-orthogonalized classical Gram–Schmidt method, at least in this context. In terms of
parallel efficiency the two methods are almost identical. However, the Gram–Schmidt variant is simpler
to implement, provides significantly less orthogonalization error, and allows truncation strategies to be
employed in a natural way.

4. Numerical experiments

In this section, we give numerical results which provide useful insights into approximate solution
techniques. Numerical results were obtained from both a cluster of HP-735 and HP-755 workstations
(99–125 MHz) and from a Cray T3E parallel computer. All communications were handled with MPI.
Reported times are obtained from the MPI timing functions, and are the minimum time achieved over
three runs. For our interests, the workstation results are as important (or more so) than those from the
parallel machine, due to the immediate availability and relative cheapness of workstations.
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Fig. 6. Comparison of orthogonalization error for classical (CGS), modified (MGS), re-orthogonalized (CGS2)
Gram–Schmidt methods, Householder (HH) method, and Matlab QR function on Björck test problem.

As a test example, we consider a Poisson problem, discretized with the finite volume method on a
square domain. The pressure correction matrix, which we solve in each time step of an incompressible
Navier–Stokes simulation to enforce the divergence-free constraint [21], is similar to a Poisson problem,
but with asymmetry arising from the use of curvilinear coordinates. Solution of this system requires
about 75% of the computing effort. So that we can obtain a useful indication of the performance of our
method on the pressure correction matrix, we do not exploit the symmetry of the Poisson matrix in these
experiments. The domain is composed of anM ×M array of subdomains, each with ann× n grid. With
h=1x =1y = 1.0/(Mn) the discretization is

4uij − ui+1j − ui−1j − uij−1− uij+1= h2fij .

The right-hand side function isfij = f (ih, jh), where f (x, y) = −32(x(1 − x) + y(1 − y)).
Homogeneous Dirichlet boundary conditionsu = 0 are defined on∂Ω, implemented by adding a row
of ghost cells around the domain, and enforcing the condition, for example,u0j =−u1j on boundaries.
This ghost cell scheme allows natural implementation of the domain decomposition as well.

4.1. Evaluation of performance model, Householder orthogonalization

The performance model for the orthogonalization methods in the previous section predicts that
the modified Gram–Schmidt algorithm is to be preferred for large subdomain problems. We wish
to investigate this experimentally, to confirm the model predictions. The results presented here were
computed for a fixed number of iterationss, equal to the restart value.

Fig. 7 is the experimental analog of Fig. 5. The parametersFHH andFCGS2are plotted for subdomain
grid sizes ofn= 20,40,60,80,100 and a fixed number of iterationss = 60. Measurements were made
for 4 and 9 processors (M = 2 and 3, respectively) on the HP cluster and 4, 9 and 25 processors (M = 2,3
and 5, respectively) on the Cray T3E.
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Fig. 7. Measured speedup with Householder (HH) orthogonalization and re-orthogonalized classical
Gram–Schmidt (CGS2), restart values = 60.

By comparison one sees that the model developed in the previous section is qualitatively correct, but
is rather optimistic with respect to the range of problem sizes for which Householder is more effective
than Gram–Schmidt.

4.2. Evaluation of approximate subdomain solvers

In this section we compare speedups obtained with a number of approximate subdomain solvers to get
an impression of which solvers might be effectively used with the Navier–Stokes equations. For the tests
of this section, a fixed restart value ofs = 30 was used, and modified Gram–Schmidt was used as the
orthogonalization method for all computations. The solution was computed to a fixed tolerance of 10−6

unless noted otherwise. The performance measure is computation time, after initialization, taken as the
minimum achieved over three runs.

The subdomain approximations will be denoted as follows:
• GMR6= restarted GMRES with a tolerance of 10−6 (preconditioned with RILUD),
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Table 3

n= 60 120 180 240 300

GMR6 0.788 7.56 28.1 82.5 195

GMR2 0.862 8.00 34.7 75.8 180

GMR1 0.815 6.75 29.3 82.1 166

RILUD 1.10 11.0 41.6 117 292

Table 4

n= 60 120 180 240 300

GMR6 0.483 3.98 11.9 34.7 80.6

GMR2 0.563 4.24 14.8 32.0 74.9

GMR1 0.552 3.62 13.2 35.4 69.3

RILUD 0.666 5.49 17.2 49.9 119

• GMR2= restarted GMRES with a tolerance of 10−2 (preconditioned with RILUD),
• GMR1= restarted GMRES with a tolerance of 10−1 (preconditioned with RILUD),
• RILUD = one application of an RILUD preconditioner.

Speedups are compared both to single and multiblock serial computations.

4.2.1. Single block serial case
The single block serial solution times in seconds on grids of dimensionn = 60, 120, 180, 240 and

300 for the HP cluster and for the Cray T3E are given in Tables 3 and 4, respectively. Note that GCR
preconditioned with GMRES iterations gives a variation of the GMRESR method of [34]. All three
lead to approximately the same solution time. This is in agreement with the findings of [34–36] for the
GMRESR method. The fourth case is equivalent to solving the problem with GCR, preconditioned with
the RILUD preconditioner. It is also in keeping with the findings of the above papers that this method is
slower than GMRESR.

4.2.2. Multiblock solution, fixed problem size
In this section we compare results for a fixed problem size on the 300× 300 grid with 4 and 9

processors on the workstation cluster and 4, 9, 16 and 25 processors on the Cray T3E. We use one
processor per block. The timing results in seconds for the HP cluster and for the Cray T3E are given in
Tables 5 and 6, respectively.

On both systems one observes that the method using RILUD as the subdomain approximation gives
a faster computation time than the fastest serial computation times from the previous subsection. On
the Cray T3E, the methods GMR1 and GMR2 are also somewhat faster than the fastest serial time, for
p = 16 andp= 25 processors.

Furthermore, one sees that among those methods in which GMRES is used to solve the subdomain
problems, a tolerance of 10−2 gives a faster solution time than a tolerance of 10−1. Thus some subdomain
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Table 5

p = 4 p = 9

GMR6 1430 386

GMR2 346 220

GMR1 457 261

RILUD 157 89

Table 6

p = 4 p = 9 p = 16 p = 25

GMR6 685 178 143 79.3

GMR2 167 102 63.3 37.1

GMR1 222 118 65.6 38.9

RILUD 65.3 25.9 21.9 14.9

Table 7

p = 4 p = 9 p = 16 p = 25

GMR6 78(68.4) 83(38.7) 145(31.4) 168(26.4)

GMR2 86(15.7) 118(15.7) 168(13.7) 192(10.9)

GMR1 139(13.6) 225(9.3) 287(7.1) 303(5.9)

RILUD 341(1) 291(1) 439(1) 437(1)

convergence appears to be desirable. On the other hand, the fastest solutions in each case are obtained
with the least accurate subdomain approximation—namely, the RILUD preconditioner.

To give insight into these results, it is useful to look at the iteration counts: both the number of outer
iterations and the average number of inner iterations (in parentheses), see Table 7. Note the large increase
in the number of outer iterations incurred for GMR1 over GMR2, which helps to explain the faster time
for GMR2. Apparently, an inner loop tolerance of 10−1 is insufficient for fast global convergence, yet is
still a very expensive subdomain approximation. The RILUD approximation, on the other hand, though it
gives the worst convergence rate of the outer loop, is very cheap to apply; in fact, cheap enough to make
it the fastest method.

Fig. 8 illustrates the speedup against the multiblock serial solution, obtained on the workstation cluster
and on the Cray using GMR6, GMR2, GMR1 and RILUD subdomain approximations. We would expect
nearly perfect speedup, especially for large problems, since the work required for preconditioning is
proportional to the total number of unknowns, while the amount of communication is proportional to
the length of subdomain interfaces. The observed speedup is quite good on the Cray; however, on the
workstation cluster, especially forp = 9 the subdomain grid size needs to be quite large to obtain a
high speedup. In any case we can conclude that if domain decomposition is going to be used anyway
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Fig. 8. Speedup versus multiblock solution on the cluster of workstations and the Cray T3E.

for geometric reasons or due to memory limitations, a speedup can be achieved by parallelization and
subdomain approximation with an RILUD preconditioner.

4.2.3. Multiblock case, scaled problem size
Fig. 9 shows a comparison of the parallel scalability of the domain decomposition method with

approximate subdomain solution. The figure shows computation times on 1, 4 and 9 processors (1, 4,
9, 16 and 25 processors for the Cray T3E) with a fixed subdomain size of 120× 120. A fixed number
of outer iterations (30) were computed. Note that the method scales almost perfectly on the Cray for this
range of processors. On the workstation cluster, the scaling is somewhat poorer, but reasonable.

5. Conclusions

For applications which require domain decomposition for some reason other than parallelism,
it is possible to achieve a great reduction of computation time by solving subdomain problems
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Fig. 9. Computation time for fixed subdomain size of 120× 120.

approximately. A reasonable speedup with respect to the single block serial solution method is also
attainable, particularly when using many processors of a massively parallel distributed memory machine.
This speedup is less impressive when computing on a cluster of workstations, due to the increased
communication latency.

In our experience, the best subdomain approximation method in parallel is a simple incomplete
factorization restricted to the diagonal: the RILUD factorization. With this preconditioner used as a
subdomain approximation, the approximate solves become so cheap (and yet sufficiently accurate) that
they offset the increased number of global iterations resulting from inaccurate subdomain solution.

A performance model for the modified Gram–Schmidt, re-orthogonalized classical Gram–Schmidt,
and Householder orthogonalization methods indicates that classical Gram–Schmidt and Householder
require approximately the same amount of work and communication, making the classical Gram–
Schmidt more attractive, since it is easier to implement and more stable. The Householder and re-
orthogonalized Gram–Schmidt methods are most effective for relatively small problems: using nine
processors, up to about 900 unknowns per processor for a Cray T3E, or 8000 unknowns per processor
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for a cluster of workstations. One promising area of application for these procedures is in long-time
simulations of systems of this size.
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