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[1] The development of scalable robust solvers for unstructured finite element applications related to
viscous flow problems in earth sciences is an active research area. Solving high-resolution convection
problems with order of magnitude 108 degrees of freedom requires solvers that scale well, with respect to
both the number of degrees of freedom as well as having optimal parallel scaling characteristics on
computer clusters. We investigate the use of a smoothed aggregation (SA) algebraic multigrid (AMG)-type
solution strategy to construct efficient preconditioners for the Stokes equation. We integrate AMG in our
solver scheme as a preconditioner to the conjugate gradient method (CG) used during the construction of a
block triangular preconditioner (BTR) to the Stokes equation, accelerating the convergence rate of the
generalized conjugate residual method (GCR). We abbreviate this procedure as BTA-GCR. For our
experiments, we use unstructured grids with quadratic finite elements, making the model flexible with
respect to geometry and topology and O(h3) accurate. We find that AMG-type methods scale linearly
(O(n)), with respect to the number of degrees of freedom, n. Although not all parts of AMG have preferred
parallel scaling characteristics, we show that it is possible to tune AMG, resulting in parallel scaling
characteristics that we consider optimal, for our experiments with up to 100 million degrees of freedom.
Furthermore, AMG-type methods are shown to be robust methods, allowing us to solve very ill-
conditioned systems resulting from strongly varying material properties over short distances in the model
interior.
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1. Introduction

[2] Solving the Stokes equation is the main time-
consuming computation in mantle convection
applications. The transition from 2-D to 3-D model
computations has only worsened this situation,
owing to the suboptimal scaling of popular solver
implementations with the number of degrees of
freedom, such as ILU-type preconditioned CG or
parallel direct solvers [Geenen and van den Berg,
2006] (by suboptimal, we mean that the amount of
effort spent in solving the system of equations does
not scale linearly with the number of degrees of
freedom). The use of classical geometric multigrid
(GMG)-type methods has overcome this issue
[Baumgardner, 1985], but suffers from erratic
robustness characteristics and constraints with
respect to the geometry and topology of the model
domain. In its conventional form (e.g., with Gauss-
Seidel relaxation and linear interpolation), the
performance of the GMG method usually deterio-
rates drastically when applied to problems more
difficult than a constant coefficient Poisson-type
equation [Kettler, 1982]. AMG-type solution strat-
egies [Vaněk et al., 1996] do not suffer from these
limitations and allow for arbitrary discretization
strategies. This is an advantage when the Stokes
equation is solved with the finite element method
(FEM), since this method implicitly allows for
arbitrary domain geometries.

[3] A key aspect of solving systems of equations,
Ax = b, with an iterative method is the use of a
preconditioner, P. Without the use of a suitable
preconditioner, the convergence of any solver will
be very slow for matrices that are ill-conditioned or
have an unfavorable eigenvalue spectrum. By ill-
conditioned, we refer to the presence of both large
and small eigenvalues in A. The ratio of the
smallest to the largest eigenvalue as well as the
eigenvalue spectrum determines to a large extent
how well an iterative solver converges. Even a
single small eigenvalue can stall convergence for
many iterations. A preconditioner is an operator

that improves the condition and eigenvalue spec-
trum properties of the matrix by reducing the
extreme eigenvalues prior to solving, by applying it
as P�1Ax = P�1b. A requirement of a suitable
preconditioner is that it must be computationally
inexpensive to construct and apply, with respect to
the time spent in solving the unpreconditioned
system.

[4] To solve problems with a large number of
degrees of freedom within a reasonable amount
of time, the use of parallel computers is necessary.
To solve problems on parallel systems, we subdi-
vide the model domain into so-called subdomains,
containing mutually disjoint (not overlapping) sub-
sets of finite elements. The parallel efficiency of
the method is determined by how well a solution
method, executed on a specific hardware configu-
ration, can exploit the parallel layout (domain
decomposition) of the problem, with respect to
end-to-end runtime reduction.

[5] Several authors have recently presented solu-
tion methods to solve the Stokes equation in large-
scale mantle convection applications on parallel
computers. Braun et al. [2008] use a parallel direct
solver, Choblet et al. [2007], Kameyama et al.
[2008], Zhong et al. [2007] and Tackley [1993,
2008] use geometric multigrid while Burstedde et
al. [2008], May and Moresi [2008] and Schmid et
al. [2008] propose to use a block preconditioned
Krylov method.

[6] Here, we present an alternative solution scheme
to solve the Stokes equation. We follow a some-
what similar strategy as described by Burstedde et
al. [2008], May and Moresi [2008] and Schmid et
al. [2008], in that we use a block preconditioner,
the operation of which is approximated by a
limited accuracy solve, to accelerate a Krylov
solver for the Stokes equation. Our approach
differs from previous work in that each element
of the solver scheme has optimal characteristics.
The applied Krylov method (GCR) allows for a
block triangular preconditioner, making the con-
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vergence twice as fast compared to block diagonal
preconditioners [Elman and Silvester, 1996], a
characteristic of the preconditioner that is indepen-
dent of the Krylov method; see Table 1. For the
preconditioning operator construction, we use
AMG as a preconditioner to CG resulting in a
robust, scalable subsystem solver. We use spectral-
ly equivalent blocks (with respect to the system to
be solved) in the preconditioner, making the con-
vergence independent of the problem size. As a
result, our method shows a favorable combination
of characteristics, i.e., linear scaling with the num-
ber of degrees of freedom and optimal scaling with
the number of processing cores as well as being
robust for large localized viscosity contrasts.

[7] In this paper, we first give a description of the
model problem used for our experiments; next, we
give a brief overview of common solver strategies
that can handle unstructured grids, followed by a
detailed description of our solver implementation
(BTA-GCR), in section 3.3. Finally, we present
scaling results, illustrating linear scaling character-
istics of the BTA-GCR scheme with the number of
degrees of freedom, as expected from a (algebraic)
multigridmethod, as well as optimal scalingwith the
number of processing cores, and show its robustness
for sharp and localized viscosity contrasts of up to
seven orders of magnitude in two dimensions.

2. Description of the Solution Method

2.1. Mathematical Formulation
of the Problem

[8] For the analysis of the scaling relations of
BTA-GCR, we consider thermal convection in a
2-D Cartesian box. We assume the fluid to be
incompressible (Boussinesq approximation) and

the Prandtl number to be infinite. For the scaling
experiments, we focus on solving the nondimen-
sional Stokes equation and incorporate thermal
effects only through a contribution to the right-
hand side (rhs), with a given temperature field,

@jh @jui þ @iuj
� �

� @ip ¼ RaTdiz ð1Þ

and the incompressibility constraint

@juj ¼ 0 ð2Þ

Symbols used are defined in Table 2. For a list of
abbreviations refer to Table 3.

2.2. Discretization

[9] The solution of the Stokes equation is formu-
lated in a weak form, approximated by the Galerkin
formulation, and solved on an unstructured grid
consisting of quadratic isoparametric finite elements.

[10] We use quadratic third-order accurate Taylor-
Hood tetrahedral elements (P2-P1) [Segal, 2005].
The resulting coupled system of equations for the
velocity and the pressure with the incompressibility
constraint leads to a saddle point system of the form,

A

u

p

2
4

3
5 ¼

Q GT

G 0

2
4

3
5

u

p

2
4

3
5 ¼ b ð3Þ

Table 1. Number of Iterations for the SOLCX
Experiment of May and Moresi [2008]a

Problem Size

6 � 16 32 � 32 64 � 64

Preconditioner: BD
Solver
MINRES 8 8 8
GMRES 9 9 9

Preconditioner: BTR
Solver
GMRES 5 5 5
GCR 5 5 5

a
For a viscosity jump of 106. We compare the block diagonal

preconditioner used by Burstedde et al. [2008] with a block triangular
preconditioner, our preferred approach. We observe that the number of
iterations doubles with BD when compared to BTR.

Table 2. Symbols

Symbol Meaning

Ra thermal Rayleigh number
raDTh3

hk
T temperature
p pressure
h viscosity
E activation energy
R gas constant
u velocity
A constrained Stokes system
Q velocity subsystem
G gradient operator (within a FE context)
GT divergence operator (within a FE context)
Mp pressure mass matrix
f basis function
W model domain
P preconditioner
S Schur complement
b right hand side
x solution vector
r residual
h element discretization size
n number of degrees of freedom
Ep
n parallel efficiency
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in which Q, the velocity stiffness matrix, is sym-
metric positive definite. G and GT are associated
with minus the divergence of the velocity and
gradient of the pressure, respectively [Cuvelier et
al., 1986].

3. Solution Methods for the Stokes
Equation

[11] In order to put the BTA-GCR solution scheme
in perspective with solution techniques that have
been successfully applied to the Stokes equation
with up to 106 degrees of freedom on parallel
computers, we review several popular solution
methods and explain why they become less favor-
able for practical use when the number of degrees
of freedom increases.

[12] We will consider three classes of solvers for
the saddle point problem (3): (1) integrated, or
holistic methods either using an incomplete lower
and upper triangular decomposition (ILU)-type
preconditioned Krylov methods or a penalty ap-
proach with a direct solver, (2) multigrid-type
methods and (3) block triangular preconditioners,
using AMG preconditioned Krylov methods during
the preconditioner construction phase, our pre-
ferred solution method.

3.1. Direct Solvers, Krylov Methods,
and Penalty Approach

[13] For problems with O(105) degrees of freedom,
both a parallel direct solver such as MUMPS

[Amestoy et al., 2000], and ILU preconditioned
Krylov-type methods [Saad, 2003] are efficient
solvers. In combination with direct solvers, the
zero block resulting from the incompressibility
constraint, equation (3), can be effectively elimi-
nated with the penalty method [Cuvelier et al.,
1986], while at the same time reducing the problem
size. However the increase in the condition number
of the matrix, resulting from the penalty method,
renders iterative solution strategies impossible,
restricting this approach to direct solution methods.
A straightforward and effective method to elimi-
nate the effect of the zero block of equation (3) for
iterative methods is to renumber the degrees of
freedom in such a way that pressure unknowns are
put at the end. This gives the ILU preconditioner
the opportunity to fill the diagonal entries of the
zero block during the factorization phase [Dahl
and Wille, 1992; ur Rehman et al., 2008].

[14] For classical block Jacobi domain decomposi-
tion [Saad, 2003], ILU-type preconditioners dete-
riorate significantly with increasing number of
subdomains. To overcome this, Additive Schwartz-
type domain decomposition [Saad, 2003] can be
used. This class of preconditioners implements a
predetermined amount of overlap between sub-
domains to limit the deterioration of the precondi-
tioner when a significant amount of interconnectivity
between subdomains is present.

[15] We found this strategy to be effective in
preserving the quality of the ILU decomposition
with increasing number of subdomains [Geenen and
van den Berg, 2006]. The quality of the precondi-
tioner is determined, in general, by the ratio of
iterations of the iterative solver for the precondi-
tioned and unpreconditioned system.

[16] However, another property of ILU-type pre-
conditioners is the deterioration of the quality with
increasing number of degrees of freedom. The
degree of deterioration is determined by the capa-
bility of the ILU preconditioner to reduce the error
associated with the longest wavelengths in the
solution. How well this can be achieved is highly
problem dependent [Saad, 2003]. We found that,
for our system of equations using quadratic finite
elements in two dimensions, ILU preconditioned
methods break down for over 5 � 105 degrees of
freedom. With large viscosity contrasts, the amount
of ILU fill-in needed to guarantee reasonable
convergence of the Krylov solver increases, which
reduces the efficiency of the method considerably.

[17] The limitation in the number of degrees of
freedom, for parallel direct solvers, results from the

Table 3. Abbreviations

Abbreviation Meaning

AMG algebraic multigrid method
BTA-GCR BTR with CG preconditioned with AMG

as inner and GCR as outer solver
BTR block triangular preconditioner
CG conjugate gradient, a Krylov solver
FEM finite element method
FGMRES flexible generalized minimal residual,

a Krylov solver
GCR generalized conjugate residual, a Krylov solver
GMG geometrical multigrid method
GMRES generalized minimal residual, a Krylov solver
LU lower and upper triangular decomposition
ILU incomplete lower and upper triangular

decomposition
MINRES minimal residual, a Krylov solver
MUMPS Multifrontal Massively Parallel Sparse

direct Solver
SPD symmetric positive definite
SA smoothed aggregation, an algebraic

multigrid method

Geochemistry
Geophysics
Geosystems G3G3

geenen et al.: a scalable robust solver for the stokes equation 10.1029/2009GC002526

4 of 12



suboptimal scaling with increasing number of sub-
domains, and the substantial amounts of memory
needed to do a complete LU decomposition. For
problems with a large number of degrees of free-
dom, order 106 and larger, Multigrid-type methods
become favorable.

3.2. Multigrid

[18] Multigrid-type methods ideally scale like
O(n) with the number of degrees of freedom,
n [Wesseling, 1992], making them the preferred
solver method for many problems with over roughly
1million degrees of freedom.Multigrid methods are
efficient solution schemes because they exploit the
fact that (cheap) iterative solvers can reduce the error
in the short wavelength part of the solution very
efficiently. By mapping the error to subsequent coars-
er meshes, the long wavelength part of the fine-grid
error can be represented as short wavelengths on
subsequent coarser grids. This guarantees fast con-
vergence of the iterative solver on all resolution levels
and therefore for all wavelengths in the solution.

[19] Multigrid solvers come in different types
which can be divided into two main groups,
geometric multigrid(GMG) and algebraic multigrid
(AMG). Geometric and algebraic methods differ in
the way they construct coarse grids and interpola-
tion operators between grids. Geometric methods
use geometric information to construct interpola-
tion operators and coarse grids, while AMG meth-
ods only use information contained in the fine grid
operator, A, without explicitly using any geometric
information. For isoviscous models, GMG is argu-
ably the fastest solution method for problems with
over 10 million degrees of freedom [MacLachlan
et al., 2008]. However for problems with several
orders of magnitude viscosity contrasts, classical
GMG has the tendency to break down [Kettler,
1982]. The reasons why GMG might break down
are related to the interpolation between coarse grids
and the construction of these grids. The reason why
interpolation between grids can break down for
sharp coefficient variations is illustrated by Falgout
[2006]. This issue was first addressed by Alcouffe
et al. [1981].

[20] Alcouffe et al. [1981] proposed to use the
continuity of n � hru rather than that of n � ru
for the interpolation between grids, which is
similar to applying the methodology of AMG for
the interpolation between grids and GMG for the
coarse-grid construction [Tackley, 2008].

[21] This is an effective way of dealing with strong
coefficient jumps in the model interior. However,

this method can still break down when contrast in
viscosity are captured at the finest resolution but
not well represented at the coarser levels. Sharp
viscosity contrasts are a marked example. In such
cases, the construction of the coarse grids should
also reflect the distribution of viscosity contrasts
and hence should be constructed on the basis of the
fine-grid operator.

[22] AMG constructs coarse grids on the basis of
so-called strong connections [Vaněk et al., 1996],
where a connection is called strong if aij is signif-
icant relative to

ffiffiffiffiffiffiffiffiffi
aiiajj

p
. The coarse grid is formed

by an aggregation strategy based on these strong
connections [Gee et al., 2006]. This ensures that
parts of the solution domain that exhibit strong
interdependence are represented on the coarse
grids, providing a proper representation of the
problem on subsequent coarse grids.

[23] The use of AMG provides us with a solution
strategy that is robust for fine-scale large viscosity
contrasts, associated with localization phenomena,
when the use of parallel direct solvers become
prohibitive.

[24] A further advantage of AMG-type methods is
their ability to handle unstructured grids with
arbitrary geometry, which is especially relevant
for unstructured finite elements applications.

[25] A disadvantage of using AMG, thus refraining
from using geometric information altogether, is the
limitation to solve only problems with a single
physical unknown (in our case, velocity or pres-
sure). Therefore, any coupled system of equations
such as the constrained Stokes equation must be
decoupled and solved for the velocity and pressure
unknowns separately. Recent attempts to use AMG
methods for the integrated solution of the saddle
point problem arising from the Stokes equation
[Janka, 2008; Webster, 2007] are promising, but
have so far only been applied successfully to well-
conditioned isoviscous test problems.

3.3. BTA-GCR Method

[26] An efficient approach to decouple velocity and
pressure unknowns is by applying a Krylov meth-
od combined with a so-called block preconditioner
for the saddle point problem (3) [Benzi et al.,
2005], based on an incomplete block triangular
factorization of the matrix A of the form,

P ¼
Q GT

0 �~S

2
4

3
5 ð4Þ
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With ~S an approximation to the Schur complement,
GQ�1GT.

[27] We solve the saddle point problem arising
from the constrained Stokes equation (3) with a
Krylov method, GCR [van der Vorst and Vuik,
1994], right preconditioned (postconditioned) with
a block triangular preconditioner (BTR) [Bramble
and Pasciak, 1988].

[28] The GCR algorithm (taken from Vuik et al.
[2000]) contains the block triangular precondi-
tioner P in the term P�1rk:
r0 = b � Ax0

for k = 0, 1, . . ., ngcr
sk+1 = P�1rk

vk+1 = Ask+1

for i = 0, 1, . . ., k
vk+1 = vk+1 � (vi, vk+1)vi

sk+1 = sk+1 � (vk+1, vi)si

end for
vk+1 = vk+1/kvk+1k2
sk+1 = sk+1kvk+1k2
xk+1 = xk + (vk+1, rk)sk+1

rk+1 = rk � (vk+1, rk)vk+1

end for

[29] Instead of constructing P�1 explicitly, and
applying it to the residual r = b � Ax, we solve

Ps ¼ r

s ¼ s1; s2½ �

r ¼ r1; r2½ �

ð5Þ

resulting in the distributed solution scheme,

~Sskþ1
2 ¼ rk2 ð6Þ

Qskþ1
1 ¼ rk1 �GTskþ1

2 ð7Þ

We take Mp, the pressure mass matrix [Cuvelier et
al., 1986], scaled with the inverse of viscosity as an
approximation to the Schur complement ~S, which
is spectrally equivalent. Verfurth [1984] proved this
for the isoviscous case. The proof for variable
viscosity is provided by M. Olshanskii and P.
Grinevich (An iterative method for the Stokes type
problem with variable viscosity, submitted to SIAM
Journal on Scientific Computing, 2008). This proof
only holds under certain smoothness conditions of
the viscosity variations. We present numerical
support that for the viscosity contrasts we consider
in our experiments this relation holds. The pressure
mass matrix is scaled with the viscosity during

assembly, Mpi, j =
R
W

1
hfifj dA, where fi are the

pressure basis functions. Using the scaled pressure
mass matrix, guarantees h (i.e., element size)-
independent convergence of the Krylov method for
system (3) [Janka, 2008]. The use of the pressure
mass matrix is known to be sensitive for elongated
computational domains and element shapes, result-
ing in a larger number of iterations [Janka, 2008].
However, for typical domains and element shapes
used in our experiments, this effect is not observed.
Experiments byBurstedde et al. [2008] show that this
effect is also not observed in 3-D spherical domains.

3.3.1. Solving the Subsystems
for the Preconditioner

[30] We employ AMG from the ML library [Gee et
al., 2006] as a preconditioner to CG for the approx-
imate solution of the subsystems during the precon-
ditioner construction phase, equations (6) and (7);
refer to Table 4 for ML settings. We use AMG as a
preconditioner, rather than as a solver, based on the
robustness of this approach, resulting in faster
convergence [Oosterlee and Washio, 1998]. This
is especially relevant for localized viscosity anoma-
lies [MacLachlan et al., 2008]. Using AMG as a
preconditioner to CG for the subsystem solution
guarantees h-independent convergence of the solver
during the preconditioner construction phase.
Figure 1 illustrates the fixed number of CG itera-
tions for increasing problem size.

[31] The efficiency of AMG as a preconditioner to
CG for ill-conditioned symmetric positive definite
(SPD) systems, arising in geodynamic applications,
on parallel computers was previously shown by
[Geenen et al., 2007, 2008].

Table 4. Settings Used for the AMG V Cycle
Construction and Application Phasea

Setting Value/Description

Coarsening uncoupled
Strong threshold 0.25
P damping factor 1.33
Smoother drop tolerance 0.25
Number of PDEs 2
Smoother SOR
Smoother relaxation 1.01
Coarse grid solver redundant
Redundant subsolver MUMPS
Size of redundant blocks 16

a
We use the ML library through the PETSc interface (S. Balay

et al., http://www.mcs.anl.gov/petsc).
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3.3.2. Solving the BTR Preconditioned
System

[32] The Krylov method used to solve the precon-
ditioned saddle point problem (3), must be able to
handle an asymmetric preconditioner, since the
BTR preconditioner is asymmetric. For a thorough
discussion on the subject of suitable Krylov meth-
ods for BTR preconditioners, we refer to May and
Moresi [2008, section 1.1].

[33] MINRES, the Krylov solver used by Burstedde
et al. [2008] and Schmid et al. [2008], is not
designed to handle asymmetric preconditioners.
Their choice to use MINRES with a block diag-
onal (BD) preconditioner results in approximately
twice the number of iterations compared to BTR
[Elman and Silvester, 1996]. Our experiment
comparing BD with MINRES and BTR with
GCR (Table 1) shows that this is a robust feature
of the preconditioner.

[34] We use GCR, a Krylov method similar to
FGMRES [Saad, 2003; Vuik, 1995], for the solu-
tion of (3) right preconditioned by (4). Since GCR
has an increasing storage requirement with increas-
ing number of iterations, unlike CG or MINRES,
this method can become impracticable when large
number (more than several tens) of iterations are
needed to solve the system to an acceptable accu-
racy. In our proposed solution method, we can keep
the number of iterations for GCR low, not more

than 30, since we solve the velocity subsystem in
the preconditioner phase to a high accuracy; see
Tables 5 and 6. This has the added advantage that
we do not have to apply the preconditioner for the
velocity subsystem as often as would be the case
with a lower-accuracy subsystem solve. In our
example, we can perform on average 10 CG
iterations within the same amount of wall time as

Figure 1. The solution of equation (7) with CG preconditioned with one AMG V cycle scales optimally with the
number of degrees of freedom. A difference of one iteration between experiments with different number of degrees of
freedom can be discarded.

Table 5. Scaling of Outer, GCR, and Inner, CG,
Iterations for Increasing Number of Degrees of Freedom
and Viscosity Contrasta

Number
of Elements

Iterations GCR/CG(Wall Time in Seconds)

Dh =10 Dh =103 Dh =106 Dh =107 Dh = 108

32 � 32 5/11
64 � 64 18(50) 19(52) 21(56) 28(72) 35(88)
64 � 64 6/8(31) 4/9(24) 5/11(30) 5/16(36) 5/20(40)
128 � 128 5/11
256 � 256 5/11

a
We reproduced the SOLCX experiment from May and Moresi

[2008]. For a viscosity jump of 106, the number of iterations of the
outer GCR and average number for inner CG solver, preconditioned
with AMG, for the solution of the velocity subsystem (7) is h-
independent. For increasing viscosity contrast, we observe a mild
increase for both inner and outer iterations. For a large viscosity
contrast, the amount of inner iterations increases sharply. In
parentheses we present the total wall time for the GCR iteration,
AMG setup, CG iteration, and AMG application for a high-accuracy
inner CG solve for the velocity subsystem (six orders of magnitude
relative residual reduction) and for a run where there is no inner CG
solve, and we just apply the AMG V cycle. Solving the velocity
subsystem to a high accuracy approximately halves the wall time.
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a single AMG V cycle. This means that if we can
reduce the number of GCR iterations by one by
doing less than 10 CG iterations for the velocity
subsystem, we will gain in terms off wall time. For
a comprehensive analysis of the characteristics of
BTR as a preconditioner to GCR for the Stokes
equation, we refer to M. ur Rehman et al. (On
iterative methods for the incompressible Stokes
problem, submitted to International Journal for
Numerical Methods in Fluids, 2009). They show
that BTR is a robust preconditioner for the SINKER
model of May and Moresi [2008] and an example
from an aluminium extrusion model. They also
explain in more detail the way the pressure mass
matrix is scaled with viscosity.

4. Numerical Experiments
and Performance Tests

[35] We performed experiments to analyze the
scaling of BTA-GCR with (1) number of degrees
of freedom, (2) number of parallel processing
cores, and (3) order of magnitude viscosity contrasts.

4.1. Scaling With Respect to the Number of
Degrees of Freedom

[36] For these scaling experiments, we choose a
2-D isoviscous Cartesian setup based on the
model by Yang and Baumgardner [2000], in
which a smooth initial temperature depth profile
is perturbed by a small-amplitude periodic tem-
perature field, driving the thermal convection.

[37] The h-independent scaling characteristics of
both CG (preconditioned with one AMG V cycle

for the velocity subsystem of BTR, equation (7))
and GCR preconditioned with BTR, are shown in
Figure 1 and Table 5, the number of iterations
remain constant for increasing problem size.

4.2. Scaling With Respect to the Number
of Processing Cores

[38] For these scaling experiments, we choose the
same problem setup as for the previous experiment.

[39] We found that the parallel efficiency Ep
n = Ts

Tn
p

(with Ts the wall time for the sequential run and Tp
n

wall time for parallel run with n processing cores
and n times the number of degrees of freedom)
scales almost linearly for both the application of
the AMG V cycle preconditioner as well as CG as
shown in Figures 2 and 3. The setup of the AMG V
cycle does not scale linearly partly because of the
sequential nature of the analysis part of the parallel
direct solver we use on the coarsest grid [Amestoy
et al., 2006] as well as the nonlinear scaling of the
factorization for the parallel direct solver (Figure 4).
With the next release of MUMPS, the analysis
phase will be made parallel, possibly making this
part of the computation more efficient. Fortunately,
the AMG setup phase has to be performed only
once per time step where the AMG application and
CG solve have to be performed for each outer GCR
iteration.

4.3. Robustness

[40] To test the robustness of BTA-GCR, we
performed a number of experiments with differ-
ent viscosity contrasts, similar to Yang and
Baumgardner [2000] and May and Moresi

Table 6. Effect of Increased Accuracy for the Inner Solver With Increasing Viscosity Contrast on the Wall Time to
Solve the Velocity Subsystem, Equation (7)a

Accuracy Outer/Inner

Iterations (Inner/Outer) (Wall Time in Seconds on 1/100 Processing Cores)

b = 0 b = 0.2 b = 0.3 b = 0.4

10�6/ 46(113/264) 59(143/334) 57(138/323) 70(168/394)
10�6/10�2 38/6(135/266) 39/7(146/282) 38/8(151/284) 43/9(179/330)
10�6/10�3 29/8(117/220) 30/9(127/235) 33/10(146/265) 34/11(157/280)
10�6/10�4 27/9(115/213) 29/11(135/241) 30/13(152/263) 31/13(157/272)
10�6/10�5 26/11(122/218) 28/13(143/247) 29/15(160/269) 30/16(171/285)
10�6/10�6 26/12(128/224) 27/15(149/251) 28/17(166/274) 29/18(178/290)

a
We analyze the robustness of BTA-GCR for sharp, large-amplitude viscosity jumps resulting from the relation T(x, y) = T(y)[(1 � b

2
) + br], with

r a random distribution between 0 and 1. The wall time is minimal for inner accuracy 10�2–10�3 for small values of b (in some cases just applying
the preconditioner without solving with CG at all results in the lowest wall time). For larger values of b, it pays off to solve the inner problems with
an accuracy of 10�3–10�4. In parentheses, we present the total wall time for the GCR iteration, AMG setup, CG iteration, and AMG application for
a run on a single and a run on 100 processing cores with 720,000 degrees of freedom per processing core. This illustrates that it pays off to reduce
the number of outer iterations when increasing the number of processing cores due to the (initial) nonlinear scaling of the preconditioner application
phase. This can be achieved by solving the velocity subsystem to a higher accuracy.
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[2008]. These include the following configurations:
(1) a step function for the viscosity in the x
direction across element boundaries and (2) a
random viscosity perturbation across element
boundaries [Yang and Baumgardner, 2000]. We
kept the viscosity constant per element, for all
experiments, to prevent steep viscosity gradients
in the element interior. Steep gradients in the

interior of an element can otherwise be prevented
by using an adequate, local, mesh resolution. For
the first case, we reproduced the experiment
SOLCX [May and Moresi, 2008]. We solve the
subsystems for the construction of the BTR with

high relative accuracy
krkk
kr0k 
 10�5 and outer GCR

solver with 10�6. For increasing viscosity contrast,
we observe that the number of outer iterations

Figure 3. The amount of wall time for one AMG V cycle. We observe that after an initial increase in wall time with
increasing number of processing cores, this relation flattens out to become roughly linear.

Figure 2. The scaling of CG with increasing number of processing cores. The number of degrees of freedom is kept
fixed per processing core. The timing results are for a single CG iteration step. Although we observe a sometimes
erratic wall time behavior with respect to the number of processing cores, the general trend is linear up to several
hundred processing cores. The maximum numbers of degrees of freedom for these experiments with 180,000,
400,000, and 720,000 degrees of freedom per processing core are 72, 102.4, and 72 million, respectively.
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remains almost constant. The number of inner
iterations to solve the BTR subsystems is constant
for low viscosity contrasts, increases slightly for a
high viscosity contrast, and increases sharply for
very high viscosity contrast Dh = 108; see Table 5.
However, models with extremely high viscosity
contrast across a single element will result in
inaccurate results for the FE method [Moresi et
al., 1996] and should therefore be avoided. The
inaccuracy is most notable in high-amplitude spu-
rious pressure oscillations in the high-viscosity
area but is also, though to a much lesser extent,
present in the solution for the velocity. Table 5 also
shows the constant number of iterations with
increasing problem size similar to our experiments
with an isoviscous model. This illustrates in a
numerical sense the spectral equivalency of the
scaled PMM to the Schur complement. This was
also shown by Burstedde et al. [2008] and ur
Rehman et al. (submitted manuscript, 2009).

[41] The second experiment has the same setup as
the scaling experiments in sections 4.1 and 4.2, but
this time the viscosity is temperature dependent

through the relation h = h0e
E
R

1
T
� 1

T0

	 

with R the gas

constant and E = 101.1 kJmol�1, the activation
energy. A smooth background temperature field is
randomly perturbed T(x, y) = T(y)[(1 � b

2
) + br]

with b a constant between 0 and 0.4 and r a random
distribution between 0 and 1 which gives rise to

viscosity jumps of up to 4.4 orders of magnitude
across element boundaries. Table 6 shows that our
solution method is only mildly sensitive to increas-
ing viscosity contrasts across element boundaries.
This experiment also illustrates the relation be-
tween the accuracy of the subsystem solution and
the number of outer GCR iterations. For small
viscosity jumps, the subsystem can be solved
inaccurately (with tolerance 10�2–10�3) with a
small number of inner iterations, without increas-
ing the number of outer iterations, but for larger
jumps the optimum, in terms of wall time, occur
with an inner accuracy between 10�3–10�4. This
results from the higher computational costs of
doing an outer GCR iterations (which involves
applying an AMG V cycle) compared to a CG
iterations which is relatively computationally
inexpensive.

4.4. Domain Decomposition

[42] For the aggregation phase of the AMG pre-
conditioner, we apply an uncoupled strategy. This
reduces the parallel overhead of the AMG setup
phase but could lead to so called bad aggregates.
We performed a number of tests to assess the effect
of the domain decomposition with respect to the
viscosity configuration on the quality of the AMG
preconditioner.

[43] To this end, we put a narrow high-viscosity
band (six orders of magnitude viscosity contrast) in

Figure 4. The amount of wall time for the AMG construction phase. With increasing number of processing cores
the wall time increases nonlinearly. We can attribute this effect to the analysis phase of the direct solver, used to solve
the coarse system, and to a lesser extent to its factorization phase. The other parts of the AMG setup phase have much
weaker nonlinear scaling characteristics.
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a unit square domain, that is subdivided in four
equal area subdomains. We investigated the effect
of the position of the high-viscosity band, relative
to the subdomain boundary, on the convergence of
the solver, compared to the single domain, sequen-
tial, solution. We found that the number of iter-
ations is constant for all configurations, illustrating
the robustness of our implementation with respect
to domain decomposition strategies.

5. Discussion and Concluding Remarks

[44] We showed that BTA-GCR scales linearly
with the number of degrees of freedom and has
optimal scaling characteristics with increasing
number of processing cores. We also showed that
our method is robust with respect to large localized
viscosity contrasts.

[45] An essential part of BTA-GCR is the use of
AMG as a preconditioner to CG during the pre-
conditioner (BTR) construction phase which is the
only scalable method currently known for unstruc-
tured grid models.

[46] Recently authors have reported results with
block preconditioners for saddle point problems in
geodynamical applications [May and Moresi,
2008; Burstedde et al., 2008; Schmid et al.,
2008]. The method employed by May and Moresi
[2008] uses a preconditioner for the pressure
part based on the velocity matrix, leading to
h-dependent scaling of the number of iterations
making the method suboptimal for large-scale
models. Burstedde et al. [2008] present a method
that is the most closely related to our approach;
however, their use of a block diagonal rather than a
block triangular preconditioner makes the conver-
gence rate on average twice as small for the outer
Krylov solver [Elman and Silvester, 1996], com-
pared to block diagonal preconditioners (Table 1).
The only extra operation for BTR preconditioners
is one vector update and one matrix vector product,
which are negligible compared to the overall solu-
tion scheme. They apply AMG directly to the
velocity subsystem rather than using it as pre-
conditioner to CG, which clearly scales subopti-
mally for increasing number of processing cores
[Burstedde et al., 2008, Figure 8] (Tables 5 and 6).
Their results are, however, unique in the size of the
problem they have solved and the number of
processing cores they have employed for their
calculation. This illustrates the potential of BTR
in combination with AMG (i.e., BTA-GCR) to
solve problems with several billion degrees of

freedom efficiently on large numbers of processing
cores in parallel [Burstedde et al., 2009, Table 3].

[47] Schmid et al. [2008] present a diagonal pre-
conditioner where the subblock for the velocity is
preconditioned with its diagonal and a lumped
pressure mass matrix scaled with the viscosity is
used for the pressure block. This class of precondi-
tioners can only be used efficiently for isoviscous
models or models with minimal viscosity contrasts
in the model interior. We found that for large
viscosity contrast convergence of the outer Krylov
solver depends critically on the approximation of
the BTR preconditioner with respect to the solution
of the velocity subsystem, equation (7).

[48] Our approach does not suffer from any of the
limitations of the above mentioned approaches and
scales optimally both with the number of degrees
of freedom and with the number of processing
cores. The method is able to handle large viscosity
contrasts, to the extent that the numerical accuracy
of the FE method is the limiting factor, not the
convergence of the numerical scheme.

[49] Modeling geodynamic processes that incor-
porate localization phenomena requires a high-
resolution model with robust scalable solvers. By
employing AMG-type methods to construct a pre-
conditioner to solve the constrained Stokes equa-
tion, we are able to solve this kind of problems
within a reasonable wall time.
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