
Efficient Two-Level Preconditioned Conjugate

Gradient Method on the GPU

Rohit Gupta, Martin B. van Gijzen, and Cornelis Kees Vuik

Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands
{rohit.gupta,m.b.vangijzen,c.vuik}@tudelft.nl

Abstract. We present an implementation of a Two-Level Precondi-
tioned Conjugate Gradient Method for the GPU. We investigate a Trun-
cated Neumann Series based preconditioner in combination with defla-
tion. This combination exhibits fine-grain parallelism and hence we gain
considerably in execution time when compared with a similar implemen-
tation on the CPU. Its numerical performance is comparable to the Block
Incomplete Cholesky approach. Our method provides a speedup of up to
16 for a system of one million unknowns when compared to an optimized
implementation on one core of the CPU.

1 Introduction

Our work is motivated by the Mass-Conserving Level Set approach [6] to solve
the Navier Stokes equations for multi-phase flow. The most time consuming step
in this approach is the solution of the (discretized) pressure-correction equation,
which is a Poisson equation with discontinuous coefficients. The discretized equa-
tion takes the form of a linear system,

Ax = b, A ∈ R
N×N , N ∈ N (1)

where N is the number of degrees of freedom. A is symmetric positive definite
(SPD). Due to the large contrast in the densities of the fluids involved, the matrix
A has a large condition number κ, which results in slow convergence when the
system (1) is solved using the iterative Conjugate Gradients (CG) method.

1.1 Focus of This Research

To overcome the slow convergence it is imperative to use preconditioning. The
resulting system then looks like, M−1Ax = M−1b, where the matrix M is sym-
metric and positive definite. The choice of M is such that the operation M−1y,
for some vector y, is computationally cheap and M can also be stored efficiently.
This research aims to find preconditioning schemes that can exploit the com-
puting power of the GPU. To this end the preconditioning schemes should offer
fine-grain parallelism. At the same time they should prove effective in bringing
down the condition number of M−1A. We use a two-level preconditioner. The

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 36–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 37

first level preconditioner is based on the Truncated Neumann series of the trian-
gular factors of the coefficient matrix A. After this, we apply Deflation to treat
the remaining small eigenvalues in the spectrum of the preconditioned matrix.We
compare our schemes with Block-Incomplete Cholesky (Block-IC) Precondition-
ers, as a benchmark to check their quality. The numerical performance of the
preconditioners we introduce in this paper comes close to their Block-IC coun-
terparts for our model problem and they also offer fine-grain parallelism making
them very suitable for the GPU.

1.2 Related Work

Preconditioning has been studied previously for GPU implementations of the
Conjugate Gradient method. The preconditioner in [2] offers as much parallelism
as the number of degrees of freedom, N (or the number of unknowns). However,
our experiments [1] show its use is limited for two-phase (high condition number,
(κ)) flow problems. An extension to [2] is provided in [8] wherein a relaxation
factor is utilized. In [9] an incomplete LU decomposition based preconditioner
with fill-in is used combined with reordering using multi-coloring.

One of the first works [4] using GPU computing used Multigrid with CG.
More recently in [3] also multigrid has been investigated for solving Poisson
type problems. In [11] a comparative study is presented between deflation and
multigrid. It shows that the former is a competitive technique in comparison
with the latter.

This paper is organized as follows: in the next section we present the test
problem. A brief overview of the preconditioning schemes and their features can
be found in Section 3. We discuss the approach of two level preconditioning in
Section 4. In Section 5 we introduce the Conjugate Gradient Algorithm with
Preconditioning and Deflation. Furthermore we comment on two different im-
plementations for this method in Section 5.1. In Section 6 we present our results
and we end with a discussion in Section 7.

2 Problem Definition

We define a test problem in order to test our preconditioning schemes. We define
a unit square as our computational domain in 2D (Figure 2). It has two fluids
with a density contrast (ρ1 = 1000, ρ2 = 1). It has an interface layer (at y =
0.5), where there is a jump in coefficient values due to contrast in densities of
the two fluids. This jump is also visible in the eigenvalue spectrum as shown
in Figure 1. Boundary conditions are applied to this domain as indicated in
Figure 2. The resulting discretization matrix A is sparse and SPD. It has a
pentadiagonal structure due to the 5-point stencil discretization. For a grid of
dimensions (n+ 1)× n the matrix A is of size N = n× n. Stopping criteria are
defined for convergence as ‖ ri ‖2≤‖ b ‖2 ε, where ri is the residual at the i-th
step, b is the right-hand side and ε is the tolerance. For our experiments we have
kept ε at 10−6. The initial guess (x0) is a random vector to avoid artificially fast
convergence due to a smooth initial error.



38 R. Gupta, M.B. van Gijzen, and C. Vuik

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Index of eigenvalues

M
ag

ni
tu

de

 

 

eigenvalues of Single−Phase A
eigenvalues of Two−Phase A

Fig. 1. 2D grid (16× 16) with 256 un-
knowns. Jump at the interface due to
density contrast.

Fig. 2. unit square with boundary con-
ditions

Through this test case we can ascertain the effectiveness of deflation for such
problems on the GPU. The final goal however remains to be able to make a
solver capable of handling the linear systems arising in bubbly flow problems.

Fig. 3. Problem Definition. Unit cube in 3-D.

To this end we also define a test case with a unit cube with bubbles. This
3D formulation poses additional challenges and is a harder problem to solve due
to many more small eigenvalues corresponding to the number of bubbles in the
system. In Figure 4 we present two cases where there is a single bubble and 8
bubbles in the domain presented in Figure 3. The contrast between the densities
of the bubble and the surrounding medium is of the same order as in the 2D
problem.

In the 3D case we apply Neumann boundary conditions on all faces. The
matrix is SPD and has a septadiagonal structure. The problem size is N = n×
n×n. We maintain the same stopping criteria, tolerance and initial conditions as
the 2D problem. The bubbles are placed symmetrically in the test cases (depicted
in Figure 4) whose results we present in Section 6.2.



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 39

(a) 1 bubble (b) 8 bubble

Fig. 4. 3 Geometries for Realistic Problems

3 Preconditioning Schemes

Preconditioning operation yi = M−1ri involves the preconditioning matrix M
and the residual vector, ri at the i-th iteration. The preconditioner matrix M ,
for our problem, is sparse.

We compare our results to the standard Block Incomplete Cholesky precon-
ditioner (for which M = LLT ). We apply the block structure to A and generate
L as suggested in [10]. The Block Incomplete Cholesky preconditioners in our
results are suffixed with a number like 2n, 4n etc. which denotes the block-size.
So for example in a Block-IC preconditioner with blocksize 8n where the matrix
A has N = n× n unknowns the preconditioner will be named like M−1

Blk−IC(8n).

Since the data parallelism in Block Incomplete schemes is limited by the block-
size (refer [1] for details) we turn our attention to preconditioners that have more
inherent parallelism.

3.1 Neumann Series Based Preconditioning

We define the preconditioning matrix, M = (I +LD−1)D(I +(LD−1)
T
), where

L is the strictly lower triangular part and D is the diagonal of A, the coefficient
matrix. We apply the truncated Neumann Series for approximation of M−1.

Specifically for (I + LD−1) (and similarly for (I + (LD−1)
T
)) the series can be

defined as

(I + LD−1)
−1

= I − LD−1 + (LD−1)
2 − (LD−1)

3
+ · · · if ‖ LD−1 ‖∞< 1.

(2)

In our problem ‖ LD−1 ‖∞< 1, hence the Neumann Series is a valid choice for
approximating the inverse of (I + LD−1). So we can redefine M−1 as

M−1 = (I −D−1LT + · · · )D−1(I − LD−1 + · · · ). (3)

For making our preconditioners (computationally) feasible we truncate the series
(2) after 1 or 2 terms. We refer to these as the Neu1 and Neu2 Preconditioners.
Note that

M−1
Neu1 = (I −D−1LT )D−1(I − LD−1) (4)



40 R. Gupta, M.B. van Gijzen, and C. Vuik

M−1
Neu2 = (I −D−1LT + (D−1LT )

2
)D−1(I − LD−1 + (LD−1)

2
). (5)

We define K = (I − LD−1) for M−1
Neu1 and K = (I − LD−1 + (LD−1)

2
) for

M−1
Neu2. For the preconditioners as given by (4) and (5) we only store LD−1

and calculate KTD−1Kx term-by-term every time required. Every term in the
expansion of M−1x = KTD−1Kx can be (roughly) computed at the cost of one
LD−1x operation. This is around 2N multiplications and N additions. This is
only true for the stencil we discuss in this paper.

4 Deflation

To improve the convergence of our method further we also use a second level of
preconditioning. Deflation aims to remove the remaining bad eigenvalues from
the preconditioned matrix, M−1A. This operation increases the convergence
rate of the Preconditioned Conjugate Gradient (PCG) method. We define the
matrices P = I − AQ,Q = ZE−1ZT , E = ZTAZ, where E ∈ R

d×d is the
invertible Galerkin matrix, Q ∈ R

N×N is the correction matrix, and P ∈ R
N×N

is the deflation operator. Z ∈ R
N×d is the so-called ’deflation-subspace matrix’

whose d columns are called ’deflation’ or ’projection’ vectors. The deflated system
is now

PAx̂ = Pb. (6)

The vector x̂ is not necessarily a solution of the original linear system, since
x might contain components in the null space of PA, N (PA). Therefore this
’deflated’ solution is denoted as x̂ rather than x. The final solution has to be
calculated using the expression x = Qb + PT x̂. The deflated system (6) can
be solved using a symmetric positive definite (SPD) preconditioner, M−1. We
therefore seek a solution of M−1PAx̂ = M−1Pb. The resulting method is called
the Deflated Preconditioned Conjugate Gradient (DPCG) method as listed in

Algorithm 1. Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.

2: for i:=0,..., until convergence do
3: ŵi := PApi
4: αi :=

(r̂i,yi)
(pi,ŵi)

5: x̂i+1 := x̂i + αipi
6: r̂i+1 := r̂i − αiŵi

7: Solve Myi+1 = r̂i+1

8: βi :=
(r̂i+1,yi+1)

(r̂i,yi)

9: pi+1 := yi+1 + βipi
10: end for
11: xit := Qb+ P Txi+1



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 41

Algorithm 1. We choose Sub-domain Deflation and use piecewise constant de-
flation vectors.We make stripe-wise deflation vectors (see Figure 7) unlike the
block deflation vectors suggested in [7]. These deflation vectors lead to a regular
structure for AZ and, therefore, an efficient storage of AZ.

In order to implement deflation on the GPU we have to break it down into a
series of operations,

a1 = ZT r, (7a)

a2 = E−1a1, (7b)

a3 = AZa2, (7c)

s = r − a3. (7d)

(7b) shows the solution of the inner system that results during the implementa-
tion of deflation.

5 Two Level Preconditioned Conjugate Gradient
Implementation

The implementation of the Deflated Preconditioned Conjugate Gradient(DPCG)
method follows Algorithm 1. The deflation operation requires solving the system
Ea2 = a1 in every iteration. Also a matrix-vector product, AZa2 is required in
every iteration. The first operation can be performed in two different ways as we
will see in Section 5.1. To optimize the second operation we store AZ in such a
format such that we get the same number of operations, memory access pattern
and (approximately) performance as the sparse matrix vector product Ax.

5.1 GPU Implementation of Deflation

We store the matrix A in the Diagonal (DIA) format and follow the implementa-
tion as detailed in [5]. For deflation, every iteration we have to solve the system
Ea2 = a1. This can be done in two ways.

1. Calculating E−1 explicitly so that the E−1a1 becomes a dense matrix-vector
product which can be calculated using the gemv routine from MAGMA
BLAS library for the GPU.

2. Using triangular solve routines from the MAGMA BLAS library. Specifically
we use the dpotrs and dpotrf functions ([12]).

The parallelism available in the second method drops for larger systems com-
pared to the first method which is embarrassingly parallel on the GPU. On the
other hand, in the first method calculation of E−1 (which is only done once
in the setup phase) becomes expensive as the number of deflation vectors in-
creases. In case of our test problem the setup times for the second method are
one-third when compared to the first method (details in [1]). However, this one



42 R. Gupta, M.B. van Gijzen, and C. Vuik

time calculation can make the operation a2 = E−1a1 very quick on the GPU.
So a selection of high-quality deflation vectors (such that d << N), which lead
to a smaller E matrix and hence computationally cheaper inversion provides an
advantage for a GPU implementation.

5.2 Storage of the Matrix AZ

The structure of the matrix AZ stored as an N × d matrix, where d is the
number of domains/deflation vectors, can be seen in Figure 5. In Figures 5 to
7 it must be noted that d = 2n here and N = n × n = 64, n = 8. The AZ
matrix is formed by multiplying the Z matrix (a part of which is shown in the
adjoining figure of matrix AZ in Figure 5) with the coefficient matrix, A. The
colored boxes indicate non-zero elements in AZ. They have been color coded to
provide reference for how they are stored in the compact form. The red elements
are in the same space as the deflation vector. The green elements result from
the horizontal fill-in and the blue elements result from the vertical fill-in. The
arrangement of the deflation vectors (on the grid) is shown in Figure 7. Each
ellipse corresponds to the non-zero part of the corresponding deflation vector in
matrix Z. The trick to store AZ in an efficient way (for the GPU) is to make
sure that memory accesses are coalesced. For this we need to have a look at how
the operation a3 = AZa2 works, where a2 is a d × 1 vector. For each element
of the resulting vector a3 we need an element from at most 5 different columns
of the AZ matrix. Now it must be recalled that in case of A times x we have 5
elements of A in a single row multiplied with 5 elements of x as detailed in [5].
So we start looking at the different colored elements and group them so that the
access pattern to calculate each element of a3 is similar to the Sparse-Matrix

Fig. 5. Parts of Z and AZ matrix. number
of deflation vectors =2n.

Fig. 6. AZ matrix after compression

Fig. 7. Deflation vectors for the 8×8
grid



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 43

Vector Product operation. Wherever there is no element in AZ we can store a
zero. Thus in the compacted form the N × d matrix AZ can be stored in 5N
elements as illustrated in Figure 6. The golden arrows in Figure 6 show how
each thread on the GPU can compute one element when the operation AZa2 is
performed where a2 is a d× 1 vector. The black arrows show the accesses done
by multiple threads. This is similar to the DIA format of storage and calculating
Sparse Matrix Vector Product as suggested in [5].

5.3 Extension to Real (Bubble) Problems and 3D

This storage format can be extended to include bubbles in the domain. In this
case, only the values of coefficients change but the structure of the matrix remains
the same. For a 3D problem, deflation vectors that correspond to planes or stripes
can lead to an AZ matrix that is similar in structure compared to the matrix A
and hence can be stored using the ideas presented in the previous section.

In Figure 8 we provide an example for a 3D scenario in order to explain what
planar and stripe-wise vectors look like. One can notice that stripe wise vectors
are piecewise constant vectors. We briefly talk about stripe-wise vectors. Every
vector has length N . Each vector has ones for the row on which it is defined and
zeroes for the rest of the column. Planar vectors are an extension of stripe-wise
vectors and are defined on n2 cells (have n2 ones and rest of the column has
zeroes). It must be noted that for a 3D problem the number of unknowns or
problem size is N = n3 where n is the size of the grid in any one dimension.

For our experiments in Section 6.2 we use n2 stripe-wise and n planar vectors.

Fig. 8. Planes and stripes for a 83 uniform cubic mesh

6 Numerical Results

We performed our experiments on the hardware available with the Delft Institute
of Applied Mathematics.

– For the CPU version of the code we used a single core of Q9550 @ 2.83 Ghz
with 12MB L2 cache and 8 GB main memory.



44 R. Gupta, M.B. van Gijzen, and C. Vuik

– For the GPU version we used a NVIDIA Tesla(Fermi) C2070 with 6GB
memory.

We use optimized BLAS libraries (MAGMA and ATLAS) on both GPU and
CPU for daxpys, dot products and calculation of norms.

All times reported in this section are measured in seconds. The time we report
for our implementations is the time taken (this excludes the setup time, specif-
ically the steps 2 to 10 in Algorithm 1) for iterations required for convergence.
In our results, speedup is measured as a ratio of this iteration time on the CPU
versus the GPU. The effect of setup time vis-a-vis the iteration time is reported
in detail in [1] (Figure 11 and 12 in Appendix A for quick reference). The setup
phase includes the assigning and initializing the memory and the operations
required to be done before entering the iteration loop, namely,

1. Assigning space to variables required for temporary storage during the iter-
ations.

2. Making matrix AZ.
3. Making matrix E.
4. Populating x, b.
5. Doing the operations as specified in the first line of Algorithm 1 in Section 4.

It also involves the setup for the operation Ea2 = a1 using either of the two
approaches mentioned in Section 5.1.

6.1 Stripe-Wise Deflation Vectors - Experiments with 2D Test
Problem

For the 2D problem we have used 2n deflation vectors unless otherwise men-
tioned. For the DPCG implementation which uses Block Incomplete Cholesky
as the first-level preconditioner, the difference in speedup between the two differ-
ent implementations to compute coarse grid solution (Ea1 = a2) as mentioned
in the previous section is negligible (Figure 9 in Appendix A). This is due to the
fact that in this case the majority of the time is spent in the preconditioning step
and it dominates the iteration time, so the effect of the deflation operation is
overshadowed. However, for the Truncated Neumann Series based precondition-
ers the difference between GPU and CPU execution times is significant (Figure
10 in Appendix A) since preconditioner is highly parallelizable. Consequently
the choice of inner solve in the deflation step becomes decisive in the length
of execution time. The speedup attainable for the complete solver with explicit
inverse (E−1) based calculation of a2 is four times that of the triangular solve
strategy (Figure 10 in Appendix A). A comparison of how the wall-clock times
for the different preconditioning algorithms vary for the DPCG method is pre-
sented in Table 1. Grid Size is N = 1024 × 1024, n = 1024 and 2n deflation
vectors have been used. These times and number of iterations shown in Table 2
are presented for the deflation implementation with explicit E−1 calculation.

In Table 2 we present the number of iterations required for convergence of
different preconditioning schemes. The number of iterations is not affected by



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 45

Table 1. Wall Clock Times for DPCG on a 2D problem with N = 1024 × 1024

Preconditioning Variant CPU GPU

M−1
Blk−IC(2n) 28.4 9.8

M−1
Blk−IC(4n) 25.48 10.15

M−1
Blk−IC(8n) 22.8 11.28

M−1
Neu1 20.15 1.29

M−1
Neu2 25.99 1.47

Table 2. Iterations required for Convergence of 2D problem using DPCG with 2n
deflation vectors

Grid Sizes

Preconditioning Variant 1282 2562 5122 10242

M−1
Blk−IC(2n) 76 118 118 203

M−1
Blk−IC(4n) 61 98 98 178

M−1
Blk−IC(8n) 56 86 91 156

M−1
Neu1 76 117 129 224

M−1
Neu2 61 92 101 175

the choice of implementations for the Deflation Method discussed in Section
5.1. It can be noticed that the results for the second type (Neu2) of Neumann

Series based Preconditioner (with K = (I − LD−1 + (LD−1)
2
)) lie between the

Block-IC scheme with block sizes 4n and 8n.

6.2 Stripe and Plane-Wise Deflation Vectors - Experiments with
3D Problems

It is possible to use stripes for 3D problems and problems involving bubbles as
well. However, stripe-wise deflation vectors are not the best choice one can make
for the deflation subspace. For 3D experiments we measure our results against
an optimized CPU implementation that utilizes Sub-domain deflation vectors
(block-shaped vectors). Block vectors do not suit the storage pattern that we
have utilised for this study but they can also give good results. In Table 3 and
4 we see the results for a case when we have 3D geometries. For the first set of
results presented in Table 3 the geometry is that of slabs of different material. It
must be noted now that N = n3 and not n2. The computational domain is now
a unit cube. We present the results with n plane and n2 stripe-wise deflation
vectors. There are three slabs in the unit cube. The middle slab is 0.5 units thick.
Its density is 10−3 times the density of the surrounding slabs.

As we can see in the results of Table 3 the speedup drops. This is a consequence
of the fact that the inner system takes a lot of time to solve now and the data
structure and the associated kernels for the operation AZa2 do not perform
very well for very large number of deflation vectors. Moreover, if more (n2)
vectors are used the setup times become prohibitive and there is no speedup



46 R. Gupta, M.B. van Gijzen, and C. Vuik

Table 3. 3D Problem (1283 points in the grid) with 3 layers. Middle layer 0.5 units
thick. Tolerance set at 10−6. Density contrast 10−3. Comparison of CPU and GPU
implementations.

CPU1 GPU2

8 block vectors 128 plane vectors 16384 stripe vectors

DICCG(0) DPCG(neu2)

Number of Iterations 206 324 259

Setup Time 0.3 0.36 148.5

Iteration Time 35.18 7.66 112

Speedup - 4.59 −

at all. The iteration times are high since we use the triangular solve method
for inner system. In Table 4 we continue to have a unit cube but instead of
slabs of different material we now consider bubbles in the system. In particular,
we have a single bubble with its center coinciding with the center of the cube
and another case when we have eight bubbles, 2 in each dimension and equally
spaced (refer Figure 4). It can be noticed from the results that the speedup
becomes worse for the problem with more bubbles and that can be explained by
the fact that stripe-wise vectors cut the bubbles and are poor approximations of
the eigenvectors of the preconditioned matrix.

Table 4. 3D Problem (1283 points in the grid) with 1 and 8 bubbles. Tolerance set at
10−6. Density contrast 10−3. Comparison of CPU and GPU implementations.

1 bubble

CPU1 GPU2

8 block vectors 128 plane vectors

DICCG(0) DPCG(neu2)

Number of Iterations 237 287

Setup Time 0.31 0.64

Iteration Time 40.44 6.79

Speedup - 5.95

8 bubble

Number of Iterations 142 402

Setup Time 0.3 0.36

Iteration Time 24.4 9.51

Speedup - 2.56

In Tables 3 and 4 the GPU version uses triangular solves for the inner system
since with explicit solve and stripe-wise vectors the round-off errors in the solu-
tion of the inner system (due to explicit inverse calculation) grow very quickly

1 CPU version uses CG for inner system solve.
2 GPU version uses triangular factorization based inner solve.



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 47

and convergence is never achieved. We only show the results with n vectors in
Table 4 since with n2 vectors there is no speedup.

7 Conclusions and Future Work

We have shown how two level preconditioning can be adapted to the GPU for
computational efficiency. In order to achieve this we have investigated precondi-
tioners that are suited to the GPU. At the same time we have made new data
structures in order to optimize deflation operations.

Through our results we demonstrate that the combination of Truncated Neu-
mann based preconditioning and deflation proves to be computationally efficient
on the GPU. At the same time its numerical performance is also comparable to
the established method of Block-Incomplete Cholesky Preconditioning.

The approach of using stripe-wise vectors is applicable to 3D problems and
problems with bubbles in the domain. However, these deflation vectors, though
simple to implement are not the most effective choice for the deflation of more
ill-conditioned problems.

Through this study we have learnt that the choice made in the implementation
of deflation method is crucial for the overall run-time of the method. We are now
continuing to extend our work on 3D problems with bubbles. We believe that the
approach of calculating inverse of the matrix E explicitly can be very effective
for the GPU. In order to overcome the possibly large setup time of this scheme
and to avoid delayed convergence we are now working on better deflation vectors
based on Level-Set Sub-domain deflation. A small number of these vectors can
capture the small eigenvalues and result in an effective deflation step (this is
discussed in [7]). This directly translates to a low setup time and overall gain in
this approach of implementing deflation.

A Detailed Results

Fig. 9. Comparison of Explicit versus
triangular solve strategy for DPCG.
Block-IC Preconditioning with 2n, 4n
and 8n block sizes.

Fig. 10. Comparison of Explicit ver-
sus triangular solve strategy for DPCG.
Neumann Series based Preconditioners
M−1 = KTD−1K, where K = (I −
LD−1 + (LD−1)

2
)



48 R. Gupta, M.B. van Gijzen, and C. Vuik

(a) CPU (b) GPU

Fig. 11. Setup Time as percentage of the total (iteration+setup) time for triangular
solve approach across different sizes of deflation vectors for DPCG

(a) CPU (b) GPU

Fig. 12. Setup Time as percentage of the total (iteration+setup) time for explicit E−1

approach across different sizes of deflation vectors for DPCG

References

1. Gupta, R., van Gijzen, M.B., Vuik, C.: Efficient Two-Level Preconditioned Conju-
gate Gradient Method on the GPU, Reports of the Department of Applied Math-
ematical Analysis, Delft University of Technology, Delft, The Netherlands. Report
11–15 (2011)

2. Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A Parallel Preconditioned
Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform.
In: Proceedings of the 18th Euromicro Conference on Parallel, Distributed, and
Network-based Processing, pp. 583–592 (2010)

3. Jacobsen, D.A., Senocak, I.: A Full-Depth Amalgamated Parallel 3D Geometric
Multigrid Solver for GPU Clusters. In: Proceedings of 49th AIAA Aerospace Sci-
ences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA
2011-946, pp. 1–17 (January 2011)

4. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Trans.Graph. 22, 917–924 (2003)

5. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA,
NVR-2008-04, NVIDIA Corporation (2008)



Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU 49

6. Van der Pijl, S.P., Segal, A., Vuik, C., Wesseling, P.: A mass conserving Level-
Set Method for modeling of multi-phase flows. International Journal for Numerical
Methods in Fluids 47, 339–361 (2005)

7. Tang, J.M., Vuik, C.: New Variants of Deflation Techniques for Pressure Correction
in Bubbly Flow Problems. Journal of Numerical Analysis, Industrial and Applied
Mathematics 2, 227–249 (2007)

8. Helfenstein, R., Koko, J.: Parallel preconditioned conjugate gradient algorithm on
GPU. Journal of Computational and Applied Mathematics 236, 3584–3590 (2011)

9. Heuveline, V., Lukarski, D., Subramanian, C., Weiss, J.P.: Parallel Preconditioning
and Modular Finite Element Solvers on Hybrid CPU-GPU Systems. In: Proceed-
ings of the Second International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering, paper 36 (2011)

10. Meijerink, J.A., van der Vorst, H.A.: An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M -Matrix. Mathematics
of Computation 31, 148–162 (1977)

11. Jönsthövel, T.B., van Gijzen, M., MacLachlan, S., Vuik, C., Scarpas, A.: Com-
parison of the deflated preconditioned conjugate gradient method and algebraic
multigrid for composite materials. Computational Mechanics 50, 321–333 (2012)

12. MAGMABLAS documentation, http://icl.cs.utk.edu/magma/docs/

http://icl.cs.utk.edu/magma/docs/

	Efficient Two-Level Preconditioned Conjugate
Gradient Method on the GPU
	1 Introduction
	1.1 Focus of This Research
	1.2 Related Work

	2 Problem Definition
	3 Preconditioning Schemes
	3.1 Neumann Series Based Preconditioning

	4 Deflation
	5 Two Level Preconditioned Conjugate Gradient Implementation
	5.1 GPU Implementation of Deflation
	5.2 Storage of the Matrix
	5.3 Extension to Real (Bubble) Problems and 3D

	6 Numerical Results
	6.1 Stripe-Wise Deflation Vectors - Experiments with 2D Test Problem
	6.2 Stripe and Plane-Wise Deflation Vectors - Experiments with 3D Problems


	7 Conclusions and Future Work
	References




