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Abstract. In this paper we explore the performance of the SIMPLER, augmented
Lagrangian, ‘grad-div’ preconditioners and their new variants for the two-by-two

block systems arising in the incompressible Navier-Stokes equations. The lid-driven

cavity and flow over a finite flat plate are chosen as the benchmark problems. For
each problem the Reynolds number varies from a low to the limiting number for a

laminar flow.
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1. Introduction

In this paper we deal with efficient solution of the stationary, laminar incompress-

ible Navier-Stokes equations, discretized by the Finite Element (FE) method. Due to

the presence of the convective term, the Navier-Stokes problem is nonlinear and a suit-

able linearization technique is needed, like the Picard or Newton method [14]. Both

linearizations result in solving a sequence of linear systems with the two-by-two block

structure. Finding the solution of the linear system is the most time-consuming part of

the numerical simulations. Taking into account the high consumption of the compu-

tational time and the memory storage by using the direct solution method, the Krylov

subspace methods [1,14,31] become feasible to solve the large scale linear systems. It

is widely recognized that preconditioning is the most critical ingredient in the develop-

ment of efficient and reliable Krylov subspace methods.

In the past decades a number of preconditioners are proposed for the two-by-two

block systems arising in the incompressible Navier-Stokes equations. In this paper we

put our eyes on the block preconditioners, that are constructed by approximating the
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block factorization of the coefficient matrix and making full use of the available infor-

mation about the geometry and physics of the problem. Many state-of-the-art block pre-

conditioners have been devised, for example the SIMPLE-type preconditioners [20,35],

the Pressure-Convection-Diffusion commutator (PCD) [18], the Least Squares commu-

tator (LSC) [12], the augmented Lagrangian preconditioner (AL) [6] and the Gradient-

Divergence (‘grad-div’) preconditioner [9, 17]. For an overview of block precondition-

ers, we refer to [5,8,32,34].

Nowadays the AL and ‘grad-div’ preconditioners gain a lot of attention. In order to

overcome the bottleneck of the AL preconditioner and make it more efficient, a modi-

fied version is devised [7]. The analysis between the AL and ‘grad-div’ preconditioners

in this paper illustrate that the strategy leading to the modified AL preconditioner is

still applicable in the ‘grad-div’ preconditioner. In this way, a modified variant of the

‘grad-div’ preconditioner is realised in this paper. The SIMPLE-type preconditioner re-

mains attractive due to its simplicity and efficiency, and are widely utilised by engineers

to solve the industry applications [19]. The improvements of the SIMPLE-type precon-

ditioner are considered in this paper and the focus is on the numerical reliability and

efficiency. A comparison between the three preconditioners with their variants is car-

ried out on some academic benchmark problems in this paper. Numerical experiments

show that all the improvements advanced in this work are successful, and the modified

‘grad-div’ preconditioner is the most efficient in terms of the computational time and

memory storage.

The organization of the paper is as follows. In Section 2 we briefly state the prob-

lem formulation and the Newton and Picard linearization methods. The SIMPLER,

augmented Lagrangian, ‘grad-div’ preconditioners and their variants are introduced in

Section 3. Section 4 contains numerical illustrations and some conclusions are given in

Section 5.

2. Problem formulation and linearization

A mathematical model for the incompressible flows reads as follows:

− ν∆u + (u · ∇)u +∇p = f on Ω,

∇ · u = 0 on Ω,

u = g on ∂ΩD,

ν
∂u

∂n
− np = 0 on ∂ΩN .

(2.1)

Here u is the velocity, p is the pressure and the positive coefficient ν is the kinematic

viscosity, assumed here to be constant. Here Ω is a bounded and connected domain

Ω ⊂ R
d (d = 2, 3), and ∂Ω = ∂ΩD ∪ ∂ΩN is its boundary, where ∂ΩD and ∂ΩN denote

the parts of the boundary where Dirichlet and Neumann boundary conditions for u are

imposed, respectively. The terms f : Ω → R
d and g are a given force field and Dirichlet
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boundary data for the velocity. The term n denotes the outward-pointing unit normal

to the boundary.

For the weak formulation of the stationary Navier-Stokes equations (2.1), we define

the approximate solution and test spaces for the velocity as

H1
E =

{
u ∈ H1(Ω)d|u = g on ∂ΩD

}
,

H1
E0

=
{

v ∈ H1(Ω)d|v = 0 on ∂ΩD

}
,

H1(Ω)d =
{
ui : Ω → R

d | ui,
∂ui
∂xj

∈ L2(Ω), i, j = 1, · · ·, d
}
,

and for the pressure as

L2(Ω) =

{
p : Ω → R |

∫

Ω

p2 < ∞

}
.

Then the weak formulation reads as follows:

Find u ∈ H1
E and p ∈ L2(Ω) such that

ν

∫

Ω

∇u : ∇vdΩ+

∫

Ω

(u · ∇u)vdΩ−

∫

Ω

p∇ · vdΩ =

∫

Ω

fvdΩ, (2.2a)

∫

Ω

q∇ · udΩ = 0, (2.2b)

for all v ∈ H1
E0

and all q ∈ L2(Ω). The pressure is uniquely defined only up to a constant

term. To make it unique, one usually imposes an additional constraint
∫
Ω
p dΩ = 0. We

also assume that the discretization is done using a stable FE pair, satisfying the LBB

condition [14].

The nonlinearity of the considered problem is handled by a linearization method.

Two well-known and most often used linearization methods are the Newton and Picard

methods [14], briefly introduced below.

Let (u0, p0) be an initial guess and let (uk, pk) be the approximate solutions at the

kth nonlinear step. Then we update the velocity and the pressure on the (k+1) step as

uk+1 = uk + δuk, pk+1 = pk + δpk for k = 0, 1, · · · until convergence, where δuk ∈ H1
E0

and δpk ∈ L2(Ω) (provided uk ∈ H1
E and pk ∈ L2(Ω)). Substituting uk+1 and pk+1

into the weak formulation (??), the correction (δuk, δpk) should satisfy the following

problem: Find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that

ν

∫

Ω

∇δuk : ∇vdΩ +

∫

Ω

(uk · ∇δuk) · vdΩ+

∫

Ω

(δuk · ∇uk) · vdΩ

−

∫

Ω

δpk (∇ · v)dΩ = Rk (2.3a)

∫

Ω

q (∇ · δuk)dΩ = Pk, (2.3b)
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for all v ∈ H1
E0

and q ∈ L2(Ω). The residual terms are obtained as

Rk =

∫

Ω

f · vdΩ− ν

∫

Ω

∇uk : DvdΩ−

∫

Ω

(uk · ∇uk) · vdΩ +

∫

Ω

pk(∇ · v)dΩ, (2.4a)

Pk = −

∫

Ω

q (∇ · uk)dΩ. (2.4b)

This procedure is refereed to as the so-called the Newton linearization method.

The Picard linearization is obtained in a similar way as the Newton method, except

that the term
∫
Ω
(δuk · ∇uk) · vdΩ is dropped. Thus, the linear problem in the Picard

method reads as follows: Find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that

ν

∫

Ω

∇δuk : ∇vdΩ+

∫

Ω

(uk · ∇δuk) · vdΩ−

∫

Ω

δpk (∇ · v)dΩ = Rk, (2.5a)

∫

Ω

q (∇ · δuk)dΩ = Pk, (2.5b)

for all v ∈ H1
E0

and q ∈ L2(Ω). Similarly, we update the approximations as uk+1 =
uk + δuk and pk+1 = pk + δpk for k = 0, 1, · · · until convergence.

The Newton iteration method gains its popularity due to its locally quadratical con-

vergence. This quadratical convergence is guaranteed if the initial estimation of the

unknown is sufficiently close to the solution [14]. In order to achieve the fast conver-

gence of the Newton method, the continuation method is utilised in this paper. On a

fixed mesh, we carry out numerical simulations by using the computed solution from

a lower Reynolds number as an initial guess for the next simulation with a higher

Reynolds number. The continuation method is also used in the Picard method.

3. Preconditioning techniques

Let Xh
E0

and P h be finite dimensional subspaces of H1
E0

and L2(Ω), and let {~ϕi}1≤i≤nu

be the nodal basis of Xh
E0

and {φi}1≤i≤np be the nodal basis of P h. According to the

Galerkin framework, the discrete corrections of the velocity and pressure are repre-

sented as

δuh =

nu∑

i=1

δui~ϕi, δph =

np∑

i=1

δpiφi,

where nu and np are the total number of degrees of freedom for the velocity and pres-

sure. The linear systems arising in the Newton and Picard linearizations are of the

form [
A BT

B O

] [
δuh

δph

]
=

[
f

g

]
or Ax = b, (3.1)

where the system matrix

A =

[
A BT

B O

]
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is nonsymmetric due to the non-symmetry of A and of a two-by-two block form. The

matrix B ∈ R
np×nu corresponds to the (negative) divergence operator and BT corre-

sponds to the gradient operator (e.g., [14]). Here we assume that the LBB condition

is satisfied, otherwise, the (2, 2) block becomes nonzero since some stabilization is re-

quired. When comparing the Newton and Picard linearization methods, the difference

appears in the pivot block A ∈ R
nu×nu , which is of the form A = Aν +N + δ1N̂ . Given

the approximation uh, the entries of Aν , N and N̂ are

Aν ∈ R
nu×nu , [Aν ]i,j = ν

∫

Ω

∇~ϕi : ∇~ϕj, (3.2a)

N ∈ R
nu×nu , [N ]i,j =

∫

Ω

(uh · ∇~ϕj)~ϕi, (3.2b)

N̂ ∈ R
nu×nu , [N̂ ]i,j =

∫

Ω

(~ϕj · ∇uh)~ϕi. (3.2c)

The Newton method corresponds to δ1 = 1, while the Picard method corresponds to

δ1 = 0. Also, in the Picard linearization, the velocity pivot block A is of a block diagonal

form. However, this block diagonal structure does not hold in the Newton linearization

due to the presence of N̂ . The linear system (3.1) arising in the Newton (??) or Picard

method (??) is often referred to as the Oseen problem.

Finding the solution of the linear system (3.1) is the kernel and most time-consuming

part in the numerical simulations. Therefore, fast and reliable solution techniques are

critical. In this paper Krylov subspace iterative solution methods [14, 31] accelerated

by numerically and computationally efficient preconditioners are utilised.

Linear systems of the form (3.1) are in a two-by-two block form, and how to pre-

condition such systems have been intensively studied. In this work we limit ourselves

to preconditioners, based on approximate block factorizations of the original matrix.

The literature on this class of preconditioners is huge. We refer for more details to the

articles [2–4, 21, 26], the surveys [5, 8, 32, 34] and the books [14, 31], with numerous

references therein. In general, the exact factorization of a two-by-two block matrix is

[
A11 A12

A21 A22

]
=

[
A11 O
A21 S

] [
I1 A−1

11 A12

O I2

]

=

[
I1 O

A21A
−1
11 I2

] [
A11 A12

O S

]
, (3.3)

where I1 and I2 are identity matrices of proper dimensions. The pivot block A11 is

assumed to be nonsingular and

S = A22 −A21A
−1
11 A12

is the exact Schur complement matrix. In our case (3.1), A11 = A, A12 = BT , A21 = B
and A22 = O. So, S = −BA−1BT .
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As preconditioners for such matrices of two-by-two block form, approximate block-

factorization and block lower- or upper-triangular approximate factors are often used

[
Ã11 O

A21 S̃

]
,

[
I1 Ã−1

11 A12

O I2

]
, (3.4)

[
Ã11 O

A21 S̃

]
,

[
Ã11 A12

O S̃

]
. (3.5)

Here the matrix Ã11 denotes some approximation of A11, given either in an explicit

form or implicitly defined via an inner iterative solution method with a proper stopping

tolerance. The matrix S̃ is some approximation of the exact Schur complement S.

Comparing to the approximation of the pivot velocity block A11, the most chal-

lenging task turns out to be the construction of approximations of the Schur comple-

ment S, which is in general dense and it is not practical to form it explicitly. For the

two-by-two block system arising in the incompressible Navier-Stokes equations, several

state-of-the-art approximations of the Schur complement are proposed and analysed,

c.f., [6, 7, 12, 13, 15, 16, 18, 20, 23, 27, 29, 30, 35]. In this paper we choose the SIM-

PLER, augmented Lagrangian and ‘grad-div’ preconditioners for study and furthermore

propose improved versions of those.

3.1. The SIMPLER preconditioner

SIMPLE (Semi-Implicit Pressure Linked Equation) is used by Patanker [28] as an it-

erative method to solve the Navier-Stokes problem. The scheme belongs to the class of

basic iterative methods and exhibits slow convergence. Vuik et al [20,35] use SIMPLE

and its variant SIMPLER as a preconditioner in a Krylov subspace method to solve the

incompressible Navier-Stokes equations, achieving in this way, a much faster conver-

gence. SIMPLE and SIMPLER rely on an approximate block-factorization of the saddle

point matrices and due to their simplicity, remain attractive preconditioning techniques.

We briefly describe both formulations for the Oseen problem A in (3.1).

The SIMPLE preconditioner PSIMPLE reads:

PSIMPLE =

[
A O

B S̃

] [
I1 D−1BT

O I2

]
,

where D is the diagonal of the block A and S̃ = −BD−1BT . Solutions of systems with

PSIMPLE are straightforward, namely,
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Algorithm SIMPLE

Given y = [yu; yp], x = P−1
SIMPLEy is found within the following steps.

Step 1: Solve Ax⋆
u = yu

Step 2: Solve S̃xp = yp −Bx⋆u

Step 3: Compute xu = x⋆u −D−1BTxp

Step 4: Set x = [xu; xp]

The SIMPLER preconditioner PSIMPLER differs slightly from the SIMPLE one. It

includes a pressure prediction step and reads as

Algorithm SIMPLER

Given y = [yu; yp], x = P−1
SIMPLERy is found within the following steps.

Step 0: Solve S̃x⋆
p = yp −BD−1yu

Step 1: Solve Ax⋆
u = yu −BTx⋆p

Step 2: Solve S̃δxp = yp −Bx⋆u

Step 3: Update xp = x⋆p + δxp and xu = x⋆u −D−1BT δxp

Step 4: Set x = [xu; xp]

Some improvements related to the SIMPLE/SIMPLER preconditioners proposed in

this paper are presented as follows.

1. Numerical experiments show that at high Reynolds numbers, D=diag(A) can be-

come very small in certain elements leading to sudden divergence. Therefore, the veloc-

ity block A is approximated by a diagonal matrix D̃ =
∑

|A| in this paper, where
∑

|A|
denotes the row sum of absolute values of A. In this paper PSIMPLE and PSIMPLER

with D̃ =
∑

|A| are referred to as the ideal SIMPLE and SIMPLER preconditioners.

2. In the Newton linearization the velocity pivot block A is not of a block diagonal

form. For example, A :=

[
A11 A12

A21 A22

]
in the two dimensional case. We can approximate

A by

Ã =

[
A11 O
A21 A22

]
,

and replace it with Ã in step 1 of the two algorithms above. The SIMPLE and SIMPLER

preconditioners with Ã and D̃ =
∑

|Ã| is referred to as the modified SIMPLE and SIM-

PLER preconditioner in this paper. Since A is already of block diagonal structure in the
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Picard linearization, the strategy leading to the modified SIMPLE and SIMPLER precon-

ditioners is not necessary. Numerical results in Section 4 illustrate that compared to the

ideal SIMPLE/SIMPLER preconditioners, the average number of the linear iterations is

less or nearly the same by using the modified ones, depending on testing problems.

Thus, the computational time is reduced. To more clearly see this, we assume that the

computational complexity of iteratively solving a system with A ∈ R
nu×nu is O(n2

u).
Then, the complexity of solving systems with A11 and A22 is O(n2

u/2). In Fig. 1 we plot

the eigenvalues of the preconditioned matrix P−1
SIMPLEA by using the ideal and mod-

ified SIMPLE preconditioners. As seen, the modified SIMPLE preconditioner products

a similar spectrum compared to the ideal one. This explains the numerical results that

the average number of the linear iterations is not increased by using the modified SIM-

PLE/SIMPLER preconditioners. Theoretical analysis of the modified SIMPLE/SIMPLER

preconditioners is considered to be one research direction in future.

3. In the ideal and modified SIMPLE/SIMPLER preconditioners, one needs to solve

subsystems with A, A11 and A22. In this paper we test an algebraic multigrid (AMG)

solver. However, this AMG solver turns out to be less and less efficient when increas-

ing the Reynolds number. The reason is that these sunblocks become far away from

symmetry and diagonal dominance due to the strong effect of the convection term,

especially for high Reynolds numbers. The AMG is designed to work efficiently for di-

agonally dominant matrices, ideally symmetric and positive definite matrices. In order

to make the AMG solver work well for high Reynolds numbers, we change these blocks

by adding h2I to them, where h is the mesh size and I denotes the identity matrix with

a proper size. This perturbation makes these blocks more diagonally dominant and

the AMG solver is expected to work efficiently for diagonally dominant matrices. This

perturbation is only used in preconditioners, not in the coefficient matrix.

3.2. The augmented Lagrangian method

In the so-called augmented Lagrangian approach, we first transform the linear sys-

tem (3.1) into an equivalent one with the same solution, which is of the form

[
A+ γBTW−1B BT

B O

] [
uh

ph

]
=

[
f̂

g

]
or AALx = b̂, (3.6)

where f̂ = f+ γBTW−1 g, and γ > 0 and W are suitable scalar and matrix parameters.

Clearly, the transformed system (3.6) has the same solution as (3.1) for any value of γ
and any nonsingular matrix W .

The equivalent system (3.6) is what we intend to solve and the AL-type precondi-

tioner proposed for AAL in (3.6) is of a block lower-triangular form

MAL =

[
A+ γBTW−1B O

B − 1
γ
W

]
. (3.7)
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To distinguish from the modified AL preconditioner introduced later, the precondi-

tioner MAL is referred to as the ideal AL preconditioner [6]. It can be seen that the

exact Schur complement

SAAL
= −B(A+ γBTW−1B)−1BT

of the transformed matrix AAL is approximated by − 1
γ
W . As analysed in [6, 16], for

any non-singular matrix W the eigenvalues of the preconditioned matrix M−1
ALAAL will

cluster to one with large values of γ. This means that large γ results in a few iterations

for any W if subsystems with

AAL := A+ γBTW−1B

are solved accurately enough. However, AAL will be continually ill-conditioned by

increasing γ, and finding solutions of systems with it turns out to be more difficult.

Therefore, a nature choice of γ = 1 or O(1) has been used in the numerical tests

in many studies, for example [6, 16]. In this paper γ = 1 is chosen in the ideal AL

preconditioner.

Efficient solution of the system with the modified pivot block AAL is still an open

question in the AL framework. Although the components A and B are sparse, the mod-

ified pivot block AAL is in general much denser. Furthermore, AAL contains discretiza-

tions of mixed derivatives, and AAL is not block-diagonal in the Picard and Newton

linearizations. Some approximation of the block AAL leads to the modified AL pre-

conditioner as follows. Here we take two dimensions as an example to illustrate the

modified AL preconditioner, originally proposed in [7]. The original pivot matrix A is

A =

[
A11 A12

A21 A22

]

(A12 and A21 are zero in the Picard linearization) and B =
[
B1 B2

]
.

Then the modified pivot block AAL can be written as

AAL :=

[
AAL,11 AAL,12

AAL,21 AAL,22

]

=

[
A11 + γBT

1 W
−1B1 A12 + γBT

1 W
−1B2

A21 + γBT
2 W

−1B1 A22 + γBT
2 W

−1B2

]
,

and its approximation can be obtained by neglecting one of the off-diagonal block

ÃAL =

[
AAL,11 O
AAL,21 AAL,22

]
.

Given the approximation ÃAL, the modified AL preconditioner is obtained as

M̃AL =



AAL,11 O O
AAL,21 AAL,22 O
B1 B2 − 1

γ
W


 , (3.8)
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The modified AL preconditioner offers two main advantages compared to the ideal

one. When solving systems with ÃAL one needs to solve two sub-systems with AAL,11

and AAL,22. In this way, the size of the linear system to be solved and the computational

time are reduced. Besides, there are approximations of mixed derivatives in AAL, i.e.,

AAL,21 and AAL,12. This can be an obstacle when applying known solution techniques,

such as AMG methods. On the other hand, there exists an optimal value of γ which

minimizes the iterations of the Krylov subspace methods by using the modified AL

preconditioner. Although there exists some theoretical prediction of the optimal value

in [7], the optimal value is problem dependent and expensive to calculate. Therefore,

the optimal γ are determined through numerical experiments in this paper.

An other parameter in the AL framework is the matrix parameter W . The transfor-

mation (3.6) holds true for any nonsingular matrix W . In practice W is often chosen to

be the pressure mass matrix M , or its diagonal–diag(M) [6,7,16]. Theoretical analysis

and numerical experiments therein show that the ideal and modified AL precondition-

ers with W = M or diag(M) are independent of the mesh refinement. In this paper,

W = diag(M) is utilised in modified and ideal AL preconditioners.

Improvements related to the modified AL preconditioner are introduced here. In [7]

systems with AAL,11 and AAL,22 involved in the modified AL preconditioner are solved

by using the direct solution method, which is not feasible for large simulations in terms

of the total solution time and memory storage. In this paper we test an AMG solver with

a proper stopping tolerance. In this way we have a deeper insight of the performance of

the modified AL preconditioner related to the inner inaccurate solutions of the systems

with AAL,11 and AAL,22. Also, for a high Reynolds number the perturbations to AAL,11

and AAL,22 are done in a same way as in SIMPLE/SIMPLER preconditioners. The reason

is still to make the AMG solver work efficiently when the Reynolds number is high.

More details on the comparison between the modified and ideal AL preconditioners

are shown in Section 4.

3.3. The ‘grad-div’ preconditioner

The augmented Lagrangian framework is also known as ‘First-Discretize-Then-Stabi-

lize’ technique. There are also other techniques, known as ‘First-Stabilize-Then-Discretize’,

which are briefly described here. Adding a stabilization term −γ∇(∇·u) to the momen-

tum equation in (2.1), one can obtain the so-called ‘grad-div’ stabilization formulation

(cf. e.g., [9,17])

− ν∆u + (u · ∇)u − γ∇(∇ · u) +∇p = f on Ω,

∇ · u = 0 on Ω.
(3.9)

The added term is zero since the velocity is divergence free. The set of the ‘grad-div’

stabilized Navier-Stokes equations is nonlinear and we still use the Picard and Newton

methods to linearize it. After discretizing the linearized equations with stable FE pairs,
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the system at each nonlinear step is still of two-by-two block form, namely,

[
FGD BT

B O

] [
δuh

δph

]
=

[
f

g

]
or FGDx = b, (3.10)

where the block FGD is of the form FGD = Aν+N+γG+δ1N̂ . The matrices Aν , N and

N̂ are the same as given in (??). The term γG is the discrete operator of γ(∇· δu,∇·v)
(v is the test function).

The preconditioner proposed for FGD is of the same form as the ideal AL precondi-

tioner

MGD =

[
FGD O
B − 1

γ
W

]
. (3.11)

In this paper the preconditioner MGD is referred to as the ideal ‘grad-div’ precondi-

tioner. So far, the quite often used choices of W and γ has been the pressure mass

matrix M (or diag(M)) and γ = 1 in [9,17]. In this paper W = diag(M) and γ = 1 are

chosen in the ideal ‘grad-div’ preconditioner.

The difference between the AL and ‘grad-div’ methods is in the velocity pivot block.

It is clear that FGD is sparser than AAL since FGD arises in the discretization of an

operator (also noted in [9]). On the other hand, G is analogous to the matrix BTB.

Thus, the matrix FGD is analogous to AAL with W being the identity matrix. This

indicates that the means to tune the ‘grad-div’ stabilization is only the constant γ, while

in the AL framework we possess γ and W to play with.

In this paper we improve the ideal ‘grad-div’ preconditioner by using the same strat-

egy which leads to the modified AL preconditioner. Here, we still take two dimensions

as an example. The pivot block is defined as

FGD :=

[
FGD,11 FGD,12

FGD,21 FGD,22

]
,

which is not block diagonal in both the Picard and Newton linearizations due to the

presence of the matrix G. We approximate it as

F̃GD =

[
FGD,11 O
FGD,21 FGD,22

]

and the modified ‘grad-div’ preconditioner is obtained as

M̃GD =



FGD,11 O O
FGD,21 FGD,22 O
B1 B2 − 1

γ
W


 , (3.12)

We still choose W = diag(M) in the modified ‘grad-div’ preconditioner. Numerical

experiments show that the performance of the modified ‘grad-div’ preconditioner is de-

pendent of the parameter γ. In this paper we use numerical experiments to determine
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the optimal γ. Theoretical prediction on the effect of γ is an on-going research by the

authors.

Inaccurate solutions of systems with FGD,11 and FGD,22 are obtained by using the

AMG solver with a proper stopping tolerance. Perturbations to FGD,11 and FGD,22, as

introduced before are necessary when the Reynolds number is high. We explore the

performance of the ideal and modified ‘grad-div’ preconditioners and more details are

presented in Section 4.

4. Numerical experiments

In this section we present numerical results by using these three preconditioners

and their variants as introduced in Section 3. The academic test problems are the

lid-driven cavity and the flow over a finite flat plate. When the Newton or Picard

linearization method is used, the number of nonlinear iterations is refereed to as the

Newton or Picard iterations. The stopping tolerance for the nonlinear solver is relative

and chosen to be 10−10. Such a small tolerance is used in this paper in order to exhibit

the efficiency of the linear and nonlinear solvers. In practice a larger number of the

tolerance can be sufficient, for example 10−6. In order to achieve a fast convergence

rate of the nonlinear solver, the continuation method is utilised. This method means

that in the Newton and Picard linearization methods, the computed solution from a

lower Reynolds number is given as a ‘good’ initial guess for the next simulation with

a higher Reynolds number. To solve the linear system at each nonlinear iteration, the

Generalized Conjugate Residual method (GCR) [11] is used since it allows variable

preconditioners. The relative stopping tolerance for GCR is chosen to be 10−2 and the

number of iterations is denoted as GCR iterations. The reported GCR iterations are

averaged over the total number of nonlinear iterations.

Besides a direct solution method, in this paper we also test an aggregation based al-

gebraic multigrid method– agmg (see [22,24,25]) to solve the subsystems in these three

preconditioners. The implementation of agmg is in Fortran and a Matlab interface is

provided. Its performance in terms of CPU time is comparable with that of ‘backslash’

sparse direct solver in Matlab. For nonsymmetric matrices agmg uses the GCR method

accelerated by the multigrid preconditioner. For systems with symmetric and positive

definite matrices the conjugate gradient (CG) method is chosen in agmg. When the agmg

solver is used to solve the subsystems corresponding to the velocity and the pressure

unknowns, the relative stopping tolerance is denoted as ǫagmg,u and ǫagmg,p.

All experiments in this paper are carried out by using Matlab 7.13 (R2011b), and

performed on a Linux-64 platform with 4 Intel(R) Core i5 CPUs, 660@3.33GHz. All

reported execution times are in seconds. Whenever agmg is used, its setup time is

included in the reported times.

The finite element pair used in this paper is Q2-Q1. The flow Reynolds number is

defined by Re = UL/ν, where U is the reference velocity, and L is the reference length

of the computational domain. For each test problem, stretched grids are used. The

stretching function is given in every test problem.
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Table 1: LDC: Picard and average GCR iterations by using the ideal AL, ‘grad-div’ and SIMPLER precondi-
tioners. Sub-systems are solved directly.

Re 100 400 1000 2500 5000

Grid Picard / GCR iterations

642

AL: 14/2 29/2 32/2 57/2 stagnation

GD: 14/4 28/3 31/3 51/3 stagnation

SIMPLER: 15/23 28/32 32/30 58/29 stagnation

1282

AL: 13/2 28/2 31/2 48/2 308/2

GD: 14/4 27/3 30/3 50/3 282/3

SIMPLER: 17/32 32/41 32/41 48/42 284/42

2562

AL: 13/2 26/2 28/2 45/2 202/2

GD: 14/4 26/3 29/3 50/3 218/3

SIMPLER: 19/40 41/58 52/58 55/62 212/62

4.1. Lid Driven Cavity (LDC)

The first benchmark problem is the two-dimensional lid-driven cavity problem,

equipped with the boundary conditions u1 = u2 = 0 for x = 0, x = 1 and y = 0;

u1 = 1, u2 = 0 for y = 1. The reference velocity and the reference length are chosen

as U = 1 and L = 1. Thus, the Reynolds number is Re = ν−1. The stretched grids

are generated based on the uniform Cartesian grids with n × n cells. The stretching

function is applied in both directions with parameters a = 1/2 and b = 1.1 [19]

x =
(b+ 2a)c − b+ 2a

(2a+ 1)(1 + c)
, c =

(
b+ 1

b− 1

) x̄−a
1−a

, x̄ = 0,
1

n
,
2

n
, · · · , 1.

The results in Tables 1-4 are obtained by solving subsystems in these three pre-

conditioners through the direct solution method. The direct solution method is not

practical in large scale simulations due to its limitations in solution time and memory

requirements. The reason by using it is that we want to illustrate the ‘best’ perfor-

mance of these preconditioners, without effected by inaccurate solutions of subsystems

computed via an iterative solution method with a proper stopping tolerance.

The average number of GCR iterations by using the ideal AL and ‘grad-div’ precon-

ditioners is fully independent of the mesh size and the Reynolds number in both the

Newton and Picard linearization methods, see Tables 1-2. Results in Table 3 show that

in the Picard linearization, the modified AL and ‘grad-div’ preconditioners are indepen-

dent of the mesh size and the Reynolds number too. In the Newton linearization, the

modified AL and ‘grad-div’ preconditioners are independent of the mesh size but de-

pendent of the Reynolds number, see Table 4. We see from Table 4 that in the Newton

linearization the number of GCR iterations by using the modified AL preconditioner is
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Table 2: LDC: Newton and average GCR iterations by using the ideal AL, ‘grad-div’ and SIMPLER precon-
ditioners. Sub-systems are solved directly.

Re 100 400 1000 2500 5000

Grid Newton / GCR iterations

642

AL: 5/2 7/2 7/2 7/3 6/3

GD: 7/6 7/6 8/6 7/6 7/6

SIMPLER: 7/35 8/50 9/72 9/108 10/167

1282

AL: 5/2 7/2 6/2 6/3 6/3

GD: 7/6 8/6 7/6 8/6 7/6

SIMPLER: 7/56 8/66 9/90 9/140 10/232

2562

AL: 5/2 7/2 6/2 6/3 6/3

GD: 7/6 8/6 7/6 7/6 7/6

SIMPLER: 8/73 8/102 11/122 8/174 10/251

Table 3: LDC: Picard and average GCR iterations by using the modified AL and ‘grad-div’ preconditioners
with optimal γ. Sub-systems are solved directly.

Re 100 400 1000 2500 5000

Grid Picard / GCR iterations (optimal γ)

642

AL: 14/5(0.02) 29/9(0.01) 35/11(0.008) 55/9(0.006) stagnation

GD: 14/7(0.06) 27/11(0.04) 32/15(0.02) 66/14(0.01) stagnation

1282

AL: 14/5(0.02) 28/9(0.01) 33/11(0.008) 45/9(0.006) 306/14(0.004)

GD: 13/7(0.06) 27/11(0.04) 31/16(0.02) 55/15(0.01) 296/18(0.01)

2562

AL: 14/5(0.02) 28/9(0.01) 33/10(0.008) 45/10(0.006) 202/12(0.004)

GD: 13/7(0.06) 26/10(0.04) 30/15(0.02) 55/14(0.01) 218/17(0.01)

40, which is acceptable for the ‘worst’ situation with Re = 5000 and 2562 grids. The

optimal value of γ involved in the modified AL and ‘grad-div’ preconditioners is inde-

pendent of the mesh refinement. Therefore, we can carry out numerical experiments

on a coarse grid to determine the optimal γ, then use this choice also on a fine mesh.

On a coarse mesh the user does not need to pay so many efforts to find the precisely

optimal γ, since relatively small differences from the precisely optimal γ do not result

in a significant change of the number of GCR iterations.

From Tables 3-4, we see that the optimal value of γ for the modified AL and ‘grad-

div’ preconditioners changes with varying Reynolds numbers. We see that for the mod-

ified AL preconditioner the optimal value of γ lies in the interval [0.004, 0.02] in the
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Table 4: LDC: Newton and average GCR iterations by using the modified AL, ‘grad-div’ preconditioners with
optimal γ and the modified SIMPLER preconditioner. Sub-systems are solved directly.

Re 100 400 1000 2500 5000

Grid Newton / GCR iterations (optimal γ)

642

AL: 6/7(0.04) 7/14(0.04) 7/21(0.02) 9/34(0.01) 9/45(0.01)

GD: 6/10(0.06) 7/16(0.04) 7/27(0.04) 8/41(0.02) 8/55(0.02)

SIMPLER: 8/34 9/43 11/47 17/63 21/67

1282

AL: 6/7(0.04) 7/15(0.04) 7/22(0.02) 8/33(0.01) 9/43(0.01)

GD: 6/10(0.06) 7/17(0.04) 7/29(0.04) 8/45(0.02) 8/64(0.02)

SIMPLER: 9/52 9/71 13/67 18/64 26/71

2562

AL: 6/7(0.04) 6/15(0.04) 7/22(0.02) 8/34(0.01) 9/40(0.01)

GD: 6/10(0.06) 6/17(0.04) 7/29(0.04) 8/45(0.02) 8/65(0.02)

SIMPLER: 9/70 10/112 14/99 16/94 31/77

Picard linearization, and in [0.01, 0.04] in the Newton linearization. For the modified

‘grad-div’ preconditioner, the optimal γ lies in the interval [0.01, 0.06] in the Picard lin-

earization, and in [0.02, 0.06] in the Newton linearization. The meaning of finding out

these intervals is that in practice they can help us to ‘easily’ choose a good γ, although

these intervals containing the optimal values of γ are problem dependent.

The ideal SIMPLER preconditioner is independent of the Reynolds number in the

Picard linearization, but depends on the Reynolds number in the Newton linearization,

see Tables 1-2. Also, the Newton linearization results in more GCR iterations by using

the ideal SIMPLER preconditioner, compared to the Picard linearization. The reason

is that in the SIMPLER preconditioner, the approximation of the velocity sub-block is

needed and it is taken as a diagonal matrix with the row sum of its absolute values

in the corresponding diagonal positions. In the Newton linearization, the velocity sub-

block is more complicated and this type of approximation does not work as well as in

the Picard linearization. Independence of the mesh size by using the ideal SIMPLER

preconditioner is not obtained in both the Picard and Newton linearizations, see Tables

1-2. Results in Table 4 show that in the Newton linearization, the number of GCR iter-

ations by using the modified SIMPLER preconditioner is independent of the Reynolds

number, and is also much less than that by using the ideal SIMPLER preconditioner.

This result shows that the modified SIMPLER preconditioner is more efficient in terms

of total solution time, compared to the ideal SIMPLER preconditioner in this test prob-

lem.

As mentioned already, the strategy leading to the modified SIMPLER preconditioner

is only valid in the Newton linearization, not in the Picard linearization. This is the

reason why we only present the modified AL and ‘grad-div’ preconditioners in Table 3.
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For the Picard linearization it is reasonable to compare the modified AL and ‘grad-div’

preconditioners with the ideal SIMPLER preconditioner, as in Table 5.

Results in Tables 5-6 are obtained by using agmg for subsystems. As seen, the mod-

ified ‘grad-div’ preconditioner is most efficient in terms of total computational time,

followed by the modified AL preconditioner. We see from Tables 5-6 that the number

of GCR iterations by using the modified ‘grad-div’ preconditioner is more than that with

the modified AL preconditioner. As mentioned already, the modified ‘grad-div’ precon-

ditioner gains its superiority due to its relatively sparse structure. agmg is expected to

work more efficiently for sparse matrices, and this pays off the more GCR iterations.

For a higher Reynolds number, such as Re ≥ 2500, agmg fails for the velocity subsys-

tems in these three preconditioners. It takes more than 1000 agmg iterations to converge

to the desired accuracy. The reason is that for a large Reynolds number, the convection

term is dominant and the diffusion term is weak. The velocity sub-block turns to be

far away from diagonal dominance. agmg is designed to work well for diagonally dom-

inant matrices, such as Laplacian matrix. In order to make agmg work, we perturb the

velocity sub-blocks in the three preconditioners. This perturbation is done by adding

h2I to them, where h is the mesh size and I denotes the identity matrix with a proper

size. By using this perturbation the sub-blocks become more diagonally dominant in

those ‘difficult’ situations (Re ≥ 2500) and agmg can work. This perturbation is only

used in the preconditioners, not in the coefficient matrices. On the other hand, this

perturbation changes the original preconditioner and its efficiency can be attenuated.

When the perturbation is applied, more GCR iterations are needed. The results marked

by ⋆ in Tables 5-6 are obtained by adding this perturbation. In Table 6 this perturbation

starts from Re = 400 for the modified SIMPLER preconditioner.

Efficient solvers for subsystems are crucial. The performance of these three precon-

ditioners can be quite different by using different inner solvers for subsystems involved

therein. Improving some already known solution methods, such as agmg, for velocity

subsystems with a high Reynolds number is an on-going research.

There are many references testing these three preconditioners and their variants on

the LDC problem, c.f. [7, 9, 16, 17, 19]. It is not easy to compare the results given in

this paper and other references, because different settings are used in different papers.

For the ideal and modified AL preconditioners, the number of linear iterations given

in this paper is close to that in [7, 16] when the same settings are used, such as the

same stopping tolerance, the same mesh and the same inner solver for the subsystems.

For the ideal and modified ‘grad-div’ preconditioner, we compare our results with [9,

17]. The same settings also result in a comparable result, in terms of the number

of linear iterations. To the SIMPLER preconditioner, the reference [19] is chosen for

a comparison. A Finite volume method is used in [19] while the number of linear

iterations is still close to that shown in this paper. Again, the same settings are crucial

to have a fair comparison.
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Table 5: LDC: Picard, average GCR iterations and total solution time by using the modified AL, ‘grad-div’
preconditioners with optimal γ and the ideal SIMPLER preconditioner. Sub-systems are solved by agmg,
ǫagmg,u = 10

−2, ǫagmg,p = 10
−4, grids: 128

2.

Re 100 400 1000 2500⋆ 5000⋆

modified AL preconditioner

Picard iterations: 14 27 33 66 286

GCR iterations: 5 9 11 17 19

total time: 22.7 65.1 119.6 457.7 2636.3

modified ‘grad-div’ preconditioner

Picard iterations: 13 27 31 51 308

GCR iterations: 7 11 16 28 24

total time: 10.8 35.8 64.4 159.5 812.5

ideal SIMPLER preconditioner

Picard iterations: 14 27 31 51 325

GCR iterations: 40 53 63 92 107

total time: 81.5 235.2 508.4 929.7 9548.7

Table 6: LDC: Newton, average GCR iterations and total solution time by using the modified AL, ‘grad-div’
preconditioners with optimal γ and the modified SIMPLER preconditioner. Sub-systems are solved by agmg,
ǫagmg,u = 10

−2, ǫagmg,p = 10
−4, grids: 128

2.

Re 100 400 1000 2500⋆ 5000⋆

modified AL preconditioner

Newton iterations: 6 7 7 8 9

GCR iterations: 8 14 21 33 50

total time: 14.8 26.2 74.6 194.2 277.1

modified ‘grad-div’ preconditioner

Newton iterations: 6 7 8 9 9

GCR iterations: 10 17 28 53 77

total time: 8.5 15.7 32.7 119.1 167.9

modified SIMPLER preconditioner

Newton iterations: 10 8⋆ 8⋆ 11 15

GCR iterations: 43 82 84 80 90

total time: 68.3 102.9 232.8 203.2 561.6

4.2. Flow over a finite flat plate (FP) [14]

This example, known as Blasius flow, models a boundary layer flow over a flat

plate. To model this flow, the Dirichlet boundary condition ux = 1, uy = 0 is imposed

at the inflow boundary (x = −1; −1 ≤ y ≤ 1) and also on the top and bottom of the

channel (−1 ≤ x ≤ 5; y = ±1), representing walls moving from left to right with speed

unity. The plate is modelled by imposing a no-flow condition on the internal boundary
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Table 7: FP: Picard and average GCR iterations by using the ideal AL, ‘grad-div’ and SIMPLER precondi-
tioners. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000

Grid Picard / GCR iterations

96× 32
AL: 14/4 16/4 18/3 29/4 47/4

GD: 13/6 14/6 14/6 16/5 16/4

SIMPLER: 16/66 28/63 29/78 142/70 433/48

192× 64
AL: 13/4 14/4 15/3 29/2 33/3

GD: 13/6 14/5 14/5 16/4 16/4

SIMPLER: 16/95 21/123 34/106 38/153 74/132

384× 128
AL: 13/4 13/4 15/3 29/3 30/3

GD: 13/5 14/5 14/5 15/5 17/5

SIMPLER: 15/123 19/184 27/183 42/226 40/219

Table 8: FP: Newton and average GCR iterations by using the ideal AL, ‘grad-div’ and SIMPLER precondi-
tioners. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000

Grid Newton / GCR iterations

96 × 32
AL: 6/4 6/4 5/5 7/7 6/9

GD: 7/7 7/9 6/9 6/9 7/9

SIMPLER: 11/94 8/123 8/182 11/215 11/241

192× 64
AL: 6/4 5/4 5/4 6/5 6/6

GD: 7/7 6/8 6/8 6/7 6/8

SIMPLER: 10/139 8/216 8/232 12/327 14/362

384 × 128
AL: 6/4 5/4 5/4 6/5 6/5

GD: 7/7 6/8 6/8 6/8 6/8

SIMPLER: 9/185 7/344 8/369 12/395 14/433

(0 ≤ x ≤ 5; y = 0), and the Neumann condition is applied at the outflow boundary

(x = 5; −1 < y < 1), i.e., ν ∂u
∂n

− np = 0. The reference velocity and length are chosen

as U = 1 and L = 5. Thus, the Reynolds number is Re = 5/ν. The non-uniform

grid is generated by applying the stretching function in the y-direction with b = 1.01
[c.f., [19]]:

y =
(b+ 1)− (b− 1)c

(c+ 1)
, c =

(
b+ 1

b− 1

)1−ȳ

, ȳ = 0,
1

n
,
2

n
, · · · , 1.
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The results in Tables 7-8 illustrate that the ideal AL and ‘grad-div’ preconditioners

are fully independent of the mesh size and the Reynolds number in both the Picard and

Newton linearization methods.

The performance of the modified AL and ‘grad-div’ preconditioners, see Tables 9-10,

is independent of the mesh size in both the Picard and Newton linearizations. Inde-

pendence of the Reynolds number is clearly seen in the Picard linearization, and more

clearly exhibited in the Newton linearization on the finest grid. Still we see that the

optimal γ involved therein changes with varying Reynolds numbers, but does not de-

pend on the mesh size. For the modified AL preconditioner, the interval containing

the optimal values of γ is [0.06, 0.3] in the Picard linearization, and is [0.05, 0.1] in

the Newton linearization. For the modified ‘grad-div’ preconditioner, the intervals are

the same as the modified AL preconditioner in both the Picard and Newton lineariza-

tions. The intervals are different from those in LDC problem, and this observation also

confirms that the optimal values of γ are problem dependent.

Results in Tables 7-8 show that the ideal SIMPLER preconditioner is nearly inde-

pendent of the Reynolds number in the Picard linearization, but this is not valid in the

Newton method. In both the Picard and Newton methods, the ideal SIMPLER precon-

ditioner is not independent of the mesh size. Still, more GCR iterations are needed in

the Newton linearization, the same reason as given in the LDC problem.

For the Newton linearization, the number of GCR iterations by using the modified

SIMPLER preconditioner is nearly the same as that by using the ideal SIMPLER pre-

conditioner, see Table 8 and Table 10. This illustrates that the modified SIMPLER

preconditioner is also a successful improvement to the ideal one in this test case.

The results in Tables 11-12 are computed by using agmg for subsystems. The place

where noted with ⋆ denotes that the perturbation technique is added there. The per-

turbation is the same and added due to the already mentioned reason as for the LDC
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(b) modified PSIMPLE

Figure 1: FP: the spectrum of the preconditioned matrix P−1

SIMPLEA by using the ideal and modified
SIMPLE preconditioners (at the last Newton iteration) on the grid 96× 32.
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Table 9: FP: Picard and average GCR iterations by using the modified AL and ‘grad-div’ preconditioners with
optimal γ. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000

Grid Picard / GCR iterations (optimal γ)

96× 32
AL: 14/8(0.3) 16/12(0.1) 18/12(0.1) 29/12(0.08) 47/16(0.06)

GD: 14/16(0.3) 14/22(0.1) 14/22(0.1) 17/22(0.08) 17/24(0.06)

192 × 64
AL: 13/10(0.3) 15/12(0.1) 16/12(0.1) 30/10(0.08) 35/14(0.06)

GD: 14/16(0.3) 14/22(0.1) 14/22(0.1) 17/22(0.08) 16/26(0.06)

384× 128
AL: 14/14(0.3) 14/13(0.1) 14/13(0.1) 22/14(0.08) 30/13(0.06)

GD: 14/18(0.3) 14/24(0.1) 14/24(0.1) 17/31(0.08) 15/32(0.06)

Table 10: FP: Newton and average GCR iterations by using the modified AL, ‘grad-div’ preconditioners with
optimal γ and the modified SIMPLER preconditioner. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000

Grid Newton / GCR iterations (optimal γ)

96× 32
AL: 7/17(0.1) 6/20(0.08) 6/25(0.08) 7/50(0.05) 7/55(0.05)

GD: 7/22(0.1) 6/28(0.08) 6/34(0.06) 7/39(0.04) 7/40(0.04)

SIMPLER: 11/93 8/135 7/166 10/233 9/270

192 × 64
AL: 7/14(0.1) 6/19(0.08) 6/21(0.08) 7/51(0.05) 7/55(0.05)

GD: 7/25(0.1) 6/32(0.08) 6/41(0.06) 7/48(0.04) 7/50(0.04)

SIMPLER: 10/140 7/208 7/230 11/314 11/354

384 × 128
AL: 7/14(0.1) 6/21(0.08) 6/26(0.08) 7/32(0.05) 6/41(0.05)

GD: 7/26(0.1) 6/41(0.08) 6/47(0.06) 7/56(0.04) 6/55(0.04)

SIMPLER: 9/179 7/333 8/364 12/390 14/426

problem. Still, we see that the modified ‘grad-div’ preconditioner is most efficient in

terms of the total solution time for this test problem. Again, this conclusion may change

if other solution methods are used for subsystems involved in these preconditioners.

5. Conclusions

In this paper we consider to use the AL, ‘grad-div’ and SIMPLER preconditioners and

new variants of them for the two-by-two block systems arising in the incompressible

Navier-Stokes equations. The experiments in this paper confirm that the improvements

for these three preconditioner are very successful. The modified ‘grad-div’ precondi-



Comparison of Some Preconditioners for Equations 259

Table 11: FP: Picard, average GCR iterations and total solution time by using the modified AL, ‘grad-div’
preconditioners with optimal γ and the ideal SIMPLER preconditioner. Sub-systems are solved by agmg,
ǫagmg,u = 10

−2, ǫagmg,p = 10
−4, grids: 192× 64.

Re 1000 5000 10000 50000 100000

modified AL preconditioner

Picard iterations: 14 21 26 33 38

GCR iterations: 10 11 10 19 22

total time: 40.8 87.5 97.9 201.4 311.3

modified ‘grad-div’ preconditioner

Picard iterations: 14 14 14 17 16

GCR iterations: 17 23 22 22 24

total time: 27.1 34.0 32.7 89.5 69.8

ideal SIMPLER preconditioner

Picard iterations: 19 34 39 43 74

GCR iterations: 88 105 105 152 130

total time: 294.3 1154.8 1483.2 1375.3 2652.6

Table 12: FP: Newton, average GCR iterations and total solution time by using the modified AL, ‘grad-div’
preconditioners with optimal γ and the modified SIMPLER preconditioner. Sub-systems are solved by agmg,
ǫagmg,u = 10

−2, ǫagmg,p = 10
−4, grids: 192× 64.

Re 1000 5000 10000 50000 100000

modified AL preconditioner⋆

Newton iterations: 8 7 7 8 8

GCR iterations: 19 23 27 59 89

total time: 69.3 51.9 65.3 115.1 214.5

modified ‘grad-div’ preconditioner

Newton iterations: 8 7 7 9 8

GCR iterations: 25 32 39 44 44

total time: 27.5 22.9 82.7 102.8 97.4

modified SIMPLER preconditioner

Newton iterations: 14 9 9 11 12

GCR iterations: 108 146 172 269 373

total time: 290.3 267.3 317.8 518.3 788.8

tioner turns out to be the most efficient in terms of total solution time and the memory

storage. This conclusion may change if other solution methods are used for subsystems

involved in the tested preconditioners. Improving some already known solvers, such as

agmg, to make them more efficient is very crucial typically when the Reynolds number

is high.
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