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SUMMARY

To e�ciently compute weakly compressible magnetohydrodynamic �ows in astrophysical applications,
approximate low Mach number reduced forms of the compressible MHD equations are frequently used.
This is because standard characteristic-based schemes for the full compressible MHD equations are
ine�cient and inaccurate for computing low Mach number magnetohydrodynamic �ow, as a result of the
increasing sti�ness and weakening pressure=density coupling of the equations when M ↓ 0. Furthermore,
these schemes are colocated, so that additional and arti�cial measures have to be taken to ensure
solenoidality of the magnetic �eld. We present a new method with a staggered spatial discretization
and a pressure-correction solution algorithm that is more suitable for computing weakly compressible
MHD �ow, because of its Mach-uniformity and e�cient and accurate handling of the solenoidality
constraint on the magnetic �eld. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We will discuss a staggered scheme and a conservative pressure-correction solution algorithm
for the computation of magnetohydrodynamic and gasdynamic �ow at all speeds, with ac-
curacy and e�ciency uniform in the Mach number, which we refer to as a Mach-uniform
method.
The need for Mach-uniform methods for both the Euler and MHD equations is brie�y dis-

cussed. For the MHD equations, the staggered discretization that is an integral part of the
proposed Mach-uniform method has an additional advantage: e�cient and accurate preserva-
tion of the solenoidality of the magnetic �eld. This is discussed in Section 4. In Section 5 we
present the spatial discretization, followed by an explanation of an e�cient sequential solution
procedure in Section 6. In Section 7 we discuss results of numerical experiments that illustrate
the accuracy of the method and support our claim of Mach-uniformity.
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2. GOVERNING EQUATIONS

The equations of ideal magnetohydrodynamics describe the dynamics of an inviscid conducting
plasma under the in�uence of a magnetic �eld, and are given by
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Equations (1), (2) and (4) are the conservation equations for density �, momentum m and
total energy E, respectively, while (3) is the induction equation, relating the evolution of the
magnetic �eld B to the electric �eld E. The magnetic �eld has to respect the soledoinality
constraint (5). The system is closed with the equation of state (6), relating the thermal pressure
p to the density and the internal energy e. The ideal MHD equations reduce to the Euler
equations if initial and boundary conditions B≡ 0 are prescribed.

3. FLOW AT ALL SPEEDS: MACH-UNIFORM METHODS

Mach-uniform methods are required when in one �ow domain regions with weakly compress-
ible and compressible �ow occur simultaneously, as for instance, in �ow around aircraft in
take-o� or landing conditions, or when the small density variations in weakly compressible
�ow are of physical importance, as for instance in many astrophysical applications. In both
cases a compressible formulation has to be used, but this becomes increasingly di�cult to
solve e�ciently and accurately with a standard characteristic-based scheme, when M ↓ 0.
Apart from the expected loss of e�ciency because of the sti�ness of the equations, standard

density-based compressible formulations are not directly applicable to weakly compressible
�ow, because of loss of accuracy due to weak coupling between density and
pressure. Both e�ects can, at considerable computing cost, be neutralized to some degree
by preconditioning=pseudo-compressibility techniques.
To avoid the solution of the compressible MHD equations in the weakly compressible case,

a number of approximate low Mach number reduced models have been developed [1–3] to
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try to incorporate the e�ects of variable density in an incompressible formulation. However,
the assumptions for these approaches may be restrictive.
On the other hand, incompressible methods can be extended to incorporate compressibility

following the approach of Harlow and Amsden [4]. This is the approach we will pursue here
to formulate a Mach-uniform method.
Below, we formulate the demands we put on the Mach-uniform method and present a Mach-

uniform dimensionless pressure-based formulation of the governing equations. For brevity, we
assume temporarily B≡ 0. In Reference [5] a more elaborate discussion of the motivation of
the following Mach-uniform formulation is given.

3.1. Requirements for Mach-uniform methods

We distinguish between three regimes for the Mach number: incompressible �ow: M =0;
weakly compressible �ow: 0¡M60:3; and compressible �ow: M¿0:3.

• For M =0, we require that the scheme reduces to the classical MAC-scheme [6]. There-
fore, we adopt a pressure-based formulation. The MAC-scheme is the natural discretiza-
tion for incompressible �ow, because it does not require regularization to avoid odd–even
decoupling.

• Based on an asymptotic expansion of the variables we �nd that in the limit M ↓ 0 the
energy equation reduces to the (incompressible) solenoidality constraint, and the mass
conservation equation to a convection equation for the density. We require our scheme
to show the same behaviour.

• The limit M ↓ 0 must be regular. This can be accomplished by choosing the dimensionless
pressure in the following way:

p=
p∗ − pr
�rw2r

(7)

where pr , �r and wr are the reference pressure, density and velocity, respectively, to be
speci�ed later.

• For M¿0:3, we require that the scheme is conservative, to ensure convergence to phys-
ical weak solutions.

3.2. Mach-uniform formulation

With (7) and E= e+
1
2
|u|2 the dimensionless conservative Mach-uniform pressure-based Euler

equations in Cartesian co-ordinates are given by
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where m�=�u� and Mr is the reference Mach number de�ned as

Mr =
wr√
�pr=�r

(11)

The dimensionless equation of state is given by

�(p; T )= �M 2
r
p
T
+
1
T

(12)

We see that density becomes independent of pressure in the limit Mr ↓ 0, as expected for
incompressible �ow without acoustics.

4. SOLENOIDALITY CONSTRAINT ∇ · B=0

Although the use of a staggered discretization is crucial for Mach-uniformity, staggered place-
ment of the components of the magnetic �eld has an extra advantage, namely accurate and
e�cient treatment of the solenoidality constraint on the magnetic �eld B. If solenoidality of the
magnetic �eld is not guaranteed, unphysical e�ects, e.g. magnetic monopoles [7], will arise.
The constrained transport method of Reference [8] uses a discrete version of the Stokes
theorem to discretize the induction equation on a staggered grid in a way that guarantees
solenoidality of a staggered magnetic �eld to machine precision. For simplicity, we illustrate
the approach for a coplanar problem (E=(0; 0; Ez)) discretized on a uniform Cartesian mesh
(Figure 1). Under the condition that ∇·Bn=0, straightforward �nite di�erence discretization
of (3) and summation leads to

−(Bn+1xij−1=2 − Bnxij−1=2) = �
h (Ezij − Ezij−1)

(Bn+1xi+1j−1=2 − Bnxi+1j−1=2) = − �
h (Ezi+1j − Ezi+1j−1)

−(Bn+1yi+(1=2)j−1 − Bnyi+(1=2)j−1) = − �
h (Ezi+1j−1 − Ezij−1)

(Bn+1yi+(1=2)j − Bnyi+(1=2)j) = �
h (Ezi+1j − Ezij) +

∇·Bn+1 = 0

(13)

To impose the solenoidality constraint two other ways can be followed: An advanced form of
the Hodge projection [9] or the non-conservative approach of Powell [10]. The �rst approach
will substantially increase the computational cost, because an additional Poisson equation has
to be solved, while the second approach is reported to give unsatisfactory results for strong
shocks [11].
Because the constrained transport method is so attractive, this has led to the development

of algorithms that combine extensions of popular colocated schemes for the Euler equations
as base schemes with a constrained transport method to update a staggered magnetic �eld
b, using the discrete Stokes theorem [7, 12]. To compute the �uxes for the base scheme b
is interpolated to the cell centres. In the review paper [11], a variation to this approach is
described that circumvents the explicit use of the staggered help variable b altogether.
The aim of these methods is clearly to mimic the advantageous behaviour of staggered

schemes, while using the proven technology of standard characteristic-based colocated
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Figure 1. Illustration of the constrained transport approach.

schemes. This is based on the general (mis)conception that staggered schemes are inher-
ently less accurate and robust for fully compressible �ow than colocated schemes and that
staggered discretization in general co-ordinates is inaccurate. However, in References [13–16]
a staggered scheme for the Euler and Navier–Stokes equations is presented that is accurate
on non-smooth non-orthogonal grids.

5. STAGGERED DISCRETIZATION

Although there is general consensus that in a staggered scheme the unknowns u�; m�; �; p
should be positioned according to the arrangement of Reference [6] (Marker-and-Cell or
ARAKAWA-C grid) and the constrained transport method dictates the relative positions of
B�, there is still freedom in the mutual positioning of the magnetic grid (coloured blue in
Figure 2) with respect to the hydrodynamic grid (coloured black in Figure 2).
We employ the staggered arrangement of unknowns of Figure 2(a), with colocation of

B�;m�; � �=�. This arrangement corresponds to the original constrained transport discretization
[8]. However, Stone et al. [17, 18] changed the original staggering, in a way that enables
them to use a colocated characteristic-based scheme to solve the coupled momentum and
induction equation. Our choice for the �rst approach is motivated in Section 6. A key feature
of the staggered scheme is that no use is made of the eigensystem of the Jacobian of the
�ux function to project the unknowns on characteristic variables. This results in very simple
expressions for the �ux, even for a rather complicated hyperbolic system like the equations
of magnetohydrodynamics. The convective terms are upwind interpolated in the direction of
the �uid velocity, while non-convective terms are centrally discretized. Because the time-
integration method we use has strong A-stability, the central discretization does not produce
wiggles in the vicinity of discontinuities. Higher order spatial discretization of the convective
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Figure 2. Staggered placement of unknowns: (a) Arrangement of Reference [8] and current approach.
(b) Arrangement of References [17, 18].

terms can be obtained with the MUSCL strategy [19, 20]. Unlike the staggered scheme of
Stone et al. [17, 18] there is no need to introduce arti�cial viscosity.

6. SOLUTION PROCEDURE

The solution procedure we use is extensively discussed for the Euler equations discretized
in general co-ordinates in Reference [5]. For simplicity, we will discuss the one-dimensional
case. The solution procedure consists of the following steps:
First, the density at the new time-level is computed:

�n+1 − �n
�t

+ (unx�
n+1); x=0 (14)

Then the equation for mx is advanced in time using the thermal pressure p and magnetic
pressure P≡B2y + B2z − B2x at the previous time level:

m∗
x −mnx
�t

+ (unxm
∗
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Next, the two subsystems for (By;my) and (Bz; mz) are solved in a coupled manner:
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In the case of one-dimensional �ow with ux=0 and Bx; x=0, both subsystems reduce to a
system similar to the linearized shallow-water equations. For the latter system staggering of
both unknowns is essential if a central discretization is utilized to avoid odd–even decoupling
such as occur with the Lax–Friedrichs scheme [21]. This motivates our choice to adopt the
staggered discretization of Figure 2(a) [8] instead of the one of Figure 2(b) [17, 18]. We
postulate the following pressure correction:
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The postulate is substituted in the energy equation:
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where ��=− 1
2BxB�. Linearization of (19) leads to a modi�ed Poisson’s equation for the

pressure correction with a stencil identical to the MAC-scheme [5], as required in Section 3.
Finally the pressure and momentum are updated:

pn+1 =pn + �p (20)

mn+1� =m∗
� − �t�p;� (21)

In the one-dimensional case we use a direct solution method to solve the implicit equations,
while in the two-dimensional case a preconditioned Krylov method is utilized.

7. NUMERICAL RESULTS

Because staggered schemes are well established for computing incompressible �ow, because
of their accuracy and robustness, it remains to be shown here that the Mach-uniform method
also produces accurate results for the compressible case. In Reference [5] we present results
for the Euler equations, for a number of Riemann problems and two-dimensional test cases
with 06Mr61:65. The new conservative pressure-correction method shows improved accu-
racy for computing weak solutions with respect to earlier non-conservative methods [13, 22]. In
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Figure 3. Results for Brio and Wu test case, 400 cells, �t=�x=0:05, tend = 0:15, �= 5
3 .

Figure 4. Results for Dai and Woodward test case, 400 cells, �t=�x=0:05, tend = 0:10, �= 5
3 .

Figures 3 and 4, results are shown for two classic Riemann problems for magnetohydrody-
namic �ow: the Brio and Wu test case [23] and the second test case of Dai and Woodward
[24]. We have chosen to show results for these test cases because the situation ux=0, dis-
cussed in the previous section occurs locally. Although central discretization is used, no wig-
gles occur in the vicinity of the discontinuities. Close comparison with the results computed
with colocated methods presented in References [23, 24] shows that the numerical solutions
converge to the correct weak solutions and have comparable accuracy.

8. CONCLUSIONS AND FUTURE EXTENSIONS

We have presented a new conservative pressure-correction method for the Euler and ideal
MHD equations that has e�ciency and accuracy nearly uniform in the Mach number. The
staggered scheme guarantees solenoidality of the magnetic �eld to machine precision. By
numerical experiments, solutions obtained with the new method are shown to converge to
the correct weak solutions for a number of Riemann problems for the Euler and ideal MHD
equations. The claim of Mach-uniform e�ciency is supported by two-dimensional test cases
for the Euler equations.
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Apart from the extension of the method to second order in space and time, the behaviour
of the method for di�erent ranges of the plasma �=M 2

A=�M
2, ��1, �∼ 1 and ��1 has still

to be studied.
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