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Abstract.
The fully automated generation of computational meshes for twin-screw machine geometries
constitutes a mandatory aspect for the numerical simulation (and shape-optimization) of these
devices but proves to be a challenging task in practice. Therefore, the successful generation
of computational meshes requires sophisticated mathematical tools. Commercially available
classical mesh generators can produce high quality meshes from no more than a description
of the rotor contours. However, since we are particularly interested in numerical simulations
using the principles of Isogeometric Analysis, a spline-based geometry description rather than
a classical mesh is needed.

In this paper, we propose a practical approach for the automated generation of spline-
based twin-screw machine geometry parameterizations in two dimensions. For this purpose, we
adopt the principles of Elliptic Grid Generation and present a parameterization algorithm that
is compatible with an automated simulation pipeline based on the principles of isogeometric
analysis.

To demonstrate the proposed techniques, we apply them to an example geometry and present
the resulting parameterizations. Finally, we give a qualitative explanation of how the discussed
techniques can be utilized to generate geometry parameterizations in three dimensions and their
applications to shape-optimization on a variable rotor-pitch.

1. Introduction
The generation of analysis-suitable meshes for twin-screw geometries constitutes the first step
towards the numerical simulation and shape-optimization of twin-screw machines. However,
the full automation of this process remains difficult, often contributing substantially to the
total amount of labour hours and computational costs. On the one hand, this is caused by
the inherent difficulty of generating a mesh from no more than a description of the boundary
contours, and, on the other hand, further aggravated by the challenging characteristics of twin-
screw geometries, such as tiny clearances and rapidly changing gap sizes (see figure 1). To the
best of our knowledge, there are two commercially available classical structured mesh generators
that only require a description of the geometry contours as input: twin-mesh [1] and SCORG
[2], both being capable of exporting directly into ANSYS CFX format [3]. We are particularly
interested in using Isogeometric Analysis (IgA) [4] techniques to perform shape-optimization on
twin-screw machine geometries with variable rotor pitch. Even though the commercial mesh
generators produce high-quality classical meshes, they cannot be used in an IgA-setting where a
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Figure 1. Rotary-screw compressor (Wikipedia, file: Lysholm screw rotors.jpg) (left) and a
cross section showing the rotor profiles with casing (right).

spline-based parameterization of the target geometry is mandatory. This is the main motivation
for the techniques presented in this paper.

The general idea of a spline-based parameterization is to build a continuous mapping operator
x : Ω̂→ Ω comprised of higher-order spline functions that maps the entire computational domain
Ω̂ onto the target geometry Ω (or an approximation thereof). The spline-parameterization x is
then directly used for an IgA-based simulation. Unlike in the classical case, application-specific
features such as boundary layers are added after the geometry description has been completed.
This is accomplished by performing knot-refinement on x (see section 2) and has a negligible
impact on the overall computational costs.

A volumetric parameterization of the geometry is accomplished by generating a large number
of planar parameterizations at various discrete rotational angles θi and stacking them in the z-
direction. Hereby, it is desirable to achieve a degree of smoothness in the cell boundaries of the
mesh corresponding to consecutive slices in order to achieve the same smoothness in the elements
of the resulting volumetric parameterization. This translates to the requirement of smoothly
varying control points of the mapping x as a function of the rotation angle θ. Therefore, it is
furthermore desirable to, if possible, avoid topology changes in the planar slices, even though
this may be a challenging task. Variable pitches are easily accomplished by a tighter or wider
stacking of the discrete slices.

It should be mentioned that a spline-based description can be turned back into a classical
mesh by performing a large number of function evaluations in x and connecting the resulting
point cloud by linear edges. Hereby, the evaluation points determine the properties of the mesh
and have to be chosen wisely. However, this topic will not be covered in this paper.

For the purpose of generating folding-free planar parameterizations using spline-functions,
we adopt the principles of Elliptic Grid Generation (EGG) and present a numerical scheme that
is suitable for an IgA-based computational approach. In section 2, we will briefly review the
concept of (B-)spline functions while in section 3, we present the various possible topologies along
with their advantages and disadvantages. In section 4, we discuss the principles of EGG and in
sections 7 and 8, we will present the computational approach along with the parameterization
strategy we employed for the results presented in section 9

2. B-Splines
B-splines are piecewise-polynomial functions that can be constructed so as to satisfy various
continuity properties at the places where the polynomial segments connect. Their properties are
determined by the entries of the so-called knot vector

Ξ = {ξ1, ξ2, . . . , ξn+p+1}. (1)
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Figure 2. The univariate B-spline basis resulting from the knot-vector Ξ3.

The knot vector is a monotone-increasing sequence of parametric values ξi ⊂ [0, 1] that determine
the boundaries of the segments on which the spline-basis is polynomial. Selecting some
polynomial order p, the p-th order spline-functions Ni,p are constructed recursively, utilizing
the relation (with 0

0 ≡ 0)

Ni,q(ξ) =
ξ − ξi
ξi+1 − ξi

Ni,q−1(ξ) +
ξi+q+1 − ξ
ξi+q+1 − ξi+1

Ni+1,q−1(ξ), (2)

starting from

Ni,0 =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
, (3)

and iterating until q = p. The support of basis function Ni,p is given by the interval
Ii,p = [ξi, ξi+p+1] and the amount of continuous derivatives across knot ξj is given by p −mj ,
where mj is the multiplicity of ξj in Ii,p. In practice, ξ1 = 0 is repeated p + 1 times as well as
ξn+p+1 such that ξ1 = . . . = ξp+1 = 0 and ξn+1 = . . . = ξn+p+1 = 1. As a result, the resulting
basis σ = {N1,p, . . . , Nn,p} forms a non-negative partition of unity on the entire parametric
domain [0, 1], that is:

n∑
i=1

Ni,p(ξ) = 1, (4)

with

Ni,p(ξ) ≥ 0, (5)

for all spline functions Ni,p [4]. Figure 2 shows the p = 3 B-spline basis resulting from the
knot-vector

Ξ =
{

0, 0, 0, 0, 1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1, 1, 1, 1

}
. (6)

The extension to bivariate spline bases is now straight-forward: given two univariate bases σΞ =
{N1, . . . , Nn} and σH = {M1, . . .Mm}, we build a bivariate basis Σ = {wi,j}(i,j)∈{1,...,n}×{1,...,m},
by means of a tensor-product, where

wi,j(ξ, η) = Ni(ξ)Mj(η). (7)
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The knots corresponding to the knot-vectors Ξ and H (without knot-repetitions) used to
construct σΞ and σH, respectively, hereby become the boundaries of the polynomial segments,
which can be regarded as the counterparts of classical elements.

We construct the mapping of a B-spline surface as follows:

x =
∑
i

∑
j

ci,jwi,j , (8)

where the ci,j ∈ R2 are referred to as the control points. We refer to the ci,j with i ∈ {1, n}
or j ∈ {1,m} as the boundary control points while the remaining ci,j are called inner control
points. As x is a linear combination of the wi ∈ Σ, it will inherit the local continuity properties
of the basis. This implies that many geometrical features can be better captured by a clever
choice of the knot multiplicities in Ξ and H.

An additional appealing feature of spline basis functions is the possibility of knot refinement.
Let

f =
∑
i

aiNi,p (9)

be a function from the linear span of the spline basis σ = {N1,p, . . . , Nn,p} with corresponding
knot-vector Ξ. We can refine σ by adding additional knots to Ξ, resulting in the refined basis σ̃.
It can be shown that spanσ ⊂ span σ̃. For an algorithm to prolong the ai to the refined basis,
see [4].

In the following, we shall drop the tensor-index notation and introduce a global index with
(i, j)→ i+ (j − 1)m. The mapping then simplifies to

x =
∑
i

ciwi. (10)

For many geometries a parameterization with only one mapping operator is not possible, which
is why several mappings that jointly parameterize the geometry have to be employed. The
individual geometry segments that result from each of the mappings are referred to as patches.

3. Choice of Topology
As discussed in section 1, we would like to parameterize the geometry from figure 1 (right) for all
rotational angles θ. The discrete angles θi then either correspond to the screw-machine at time-
instances ti in the planar case or to some cross-section of the screw-machine in the z-direction.
A volumetric parameterization can therefore be acquired by parameterizing the geometry for a
large number of θi and interpolating the planar cross-sections in the z-direction.
Figure 3 shows the possible topologies that come to mind. Here, black lines indicate boundaries
at which the grid is held fixed and red lines indicate boundaries that slide along the grid. The
various patches are indicated in different colors. Since the target geometry is of genus two (it
has two ‘holes’ ), at least two patches are needed.

Even though figure 3 (right) takes advantage of the symmetries of the geometry, topology
changes are unavoidable. For instance, since the blue patch bounded by the region surrounding
the CUSP-points and the two rotor lobes (henceforth referred to as the separator) is static
while the others rotate, patches (such as the grey patch) will eventually disappear, making a
computational simulation with IgA-techniques difficult.

In figure 3 (center), two O-type patches are employed which lead to a sliding interface (in the
separator region). Sliding interfaces are generally difficult to handle since element conformity is
difficult to achieve. In an IgA-setting, the CUSP-points themselves pose an additional problem:



5

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012030 doi:10.1088/1757-899X/425/1/012030

Figure 3. The various possible topologies for the parameterization of the fluid-part of the
screw-machines.

as the patches slide along, the CUSP-point C0-continuities can only be captured by adding
repeated knots to the knot-vectors. If several cross sections are interpolated in the z-direction
for a volumetric parameterization, they all have to be prolonged to the same knot-vector, soon
leading to an infeasibly dense trivariate knot-vector.

Therefore, we are aiming for the topology of figure 3 (left) in which the patches are held
fixed at the casings while the rotors slide along and the separator is parameterized with one
static patch. Here, no topology changes are required and no sliding interface exists. In all
cases, we need to generate the dotted white curve connecting the two CUSP-points, in order
to parameterize the separator using two patches with mutual element conformity as well as
conformity to the C-type patches.

4. Elliptic Grid Generation
Having discussed the aimed-for topology in section 3, we need a tool to generate analysis-suitable
(i.e., bijective or folding-free) parameterizations at every discrete angle θi for geometries Ω from
no more than a boundary description ∂Ω.

As it is known to produce folding-free meshes in many applications, Elliptic Grid
Generation (EGG) is among the most popular meshing approaches, especially in settings where
computationally inexpensive algebraic methods such as [5] [6] and [7] fail due to the complexity
of the target geometry. However, due to the higher chance of success, higher computational
costs can be expected.

Assuming Ω is topologically equivalent to the unit quadrilateral Ω̂ = [0, 1] × [0, 1] ⊂ R2,

a mathematical operator x : Ω̂ → Ω that maps ∂Ω̂ onto ∂Ω, and is furthermore folding-free
exists and can be constructed. For this purpose, EGG imposes the Laplace-equation on the
components of the inverse mapping x−1. Assuming the free topological variables are given by
the tuple (ξ, η), the equation takes the form:{

∆ξ(x, y) = 0
∆η(x, y) = 0

s.t. x−1|∂Ω = ∂Ω̂. (11)
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This system of equations is scaled in order to yield an equation for x that is suitable for a
computational approach. The resulting equations read [8]:{

L(x, y, x) = 0
L(x, y, y) = 0

s.t. x|∂Ω̂ = ∂Ω, (12)

where

L(x, y, f) = g22fξξ − 2g12fξη + g11fηη, (13)

with g11(x, y) = ‖xξ‖2, g12(x, y) = xξ ·xη and g22(x, y) = ‖xη‖2. Since the target space of x−1 is
always convex, the bijectivity of the exact solution of (12) follows from the maximum principle
[9]. As a result, we may conclude that any sufficiently accurate approximation xh of x will also
be bijective. This property distinguishes EGG from most other meshing techniques, which may
tend to produce folded meshes, due to them being less grounded in mathematical theory.

4.1. Discretization
Traditionally, (12) is approximately solved using a finite-difference approach [8]. However, since
this only yields a finite collection of grid points that can serve as the vertices for a classical
mesh, we have to look for different options. We discretize the equations with FEM-techniques.
First, we introduce the operator

L̃(x, y, f) =
L(x, y, f)

g11 + g22
. (14)

As a next step, we select a p ≥ 2 bivariate B-spline basis Σ = {w1, . . . , wn} with global C1-

continuity (i.e., the wi ∈ Σ possess at least one continuous derivative in Ω̂). By Σ0, we denote
the subset of Σ consisting of inner basis functions, that is, the collection of wi ∈ Σ that vanish
on ∂Ω̂ (corresponding to the inner control points from section 2). We discretize (12) as follows:

∀wi ∈ Σ0 :

{ ∫
Ω̂wiL̃(xh, yh, xh)dξ = 0∫
Ω̂wiL̃(xh, yh, yh)dξ = 0

, s.t. xh|∂Ω̂ ' ∂Ω. (15)

Denoting by I and I0 the index-sets of Σ and Σ0, respectively, xh will be of the form

xh =
∑
i∈I0

ciwi +
∑
i∈I\I0

diwi, (16)

where the ci denote the inner control points and the di the boundary control points, which follow
from a regression of the input point cloud and serve as to ensure that the mapping operator
satisfies xh|∂Ω̂ ' ∂Ω (see section 5). As the di are known, the objective is to find the ci such
that xh satisfies (15). Equation (15) leads to a nonlinear root finding problem of the form

F(c) = 0, (17)

where the vector c contains the unknown inner control points ci.
The scaling introduced in (14) has the advantage of allowing for a more scaleable convergence

criterion ‖F(c)‖ ≤ ε, that is, the value of ε that corresponds to a converged solution is
less sensitive to the characteristic length-scale of the geometry (and can therefore be taken
approximately equal in all cases). The choice of Σ and the optimal selection of the inner control
points di shall be the topic of section 5, while the computational approach for solving (17) will
be the topic of section 7.
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5. Contour Approximation and Choice of Basis
Given four input point clouds corresponding to each boundary of Ω: Pα = {piα}

Iα
i=1 with

α ∈ {s, e, n, w}, the selection of a suitable spline basis Σ and the corresponding boundary control
points di (see section 2) constitutes a preliminary step before (17) is tackled computationally.
For this purpose we select a coarse initial basis Σ� (resulting from two coarse univariate knot-
vectors) and four sets of monotone increasing parametric values {ξiα}

Iα
i=1, each starting on ξ1

α = 0
and ending on ξIαα = 1. Let ms(s) = (s, 0), me(s) = (1, s), mn(s) = (s, 1) and mw(s) = (0, s).
The objective is to select the di such that xh(mα(ξiα)) ' piα. To this purpose a least-squares
regression is carried out by minimizing the functional

R(∂Ω,d) =
1

2

∑
α∈{s,e,n,w}

Iα∑
i=1

∥∥xh(mα(ξiα))− piα
∥∥2

(18)

over the vector of boundary control points d = (. . . ,dj , . . .)
T . Hereby, it is advisable to constrain

the corner control points to the corners of the input control points in order to avoid mismatches.
In practice, (18) can suffer from instabilities. This is usually a result of the local amount of
DOFs exceeding the local amount of points. We add a small least-distance penalty term to (18)
in order to improve the stability:

R̃(∂Ω,d) =
1

2

∑
α∈{s,e,n,w}

(
Iα∑
i=1

∥∥xh(mα(ξiα))− piα
∥∥2

+ λ

∫
γα

∥∥∥∥∂xh∂ξ · t̂
∥∥∥∥2

ds

)
, (19)

where t̂ is the unit tangent vector and γα the subset of ∂Ω̂ that corresponds to side α. Here
λ > 0 is a small penalty factor whose value should be chosen small enough not to noticeably
alter the outcome of (19) while avoiding instabilities.

After (19) has been minimized, the mismatch

rα,i =
∥∥xh(mα(ξiα))− piα

∥∥ (20)

serves as a local refinement criterion. Whenever rα,i exceeds the approximation tolerance µ > 0,
we place a knot in the center of the element corresponding to the knot-vector of side α that
contains ξiα in order to locally increase the resolution of the basis.

Above steps are repeated until the convergence criterion is reached. Upon completion, we
are in the possession of the coarse- and fine-grid bases Σ� and Σ with corresponding vector of
boundary control points d� and d. The fine-grid basis then constitutes the coarsest possible
basis to properly resolve the boundary condition

x|∂Ω̂ = ∂Ω. (21)

The tuple (Σ�,d�) serves as a means to build initial guesses for the computational approach
employed to solve (17) (see section 7).

It should be noted that the choice of Σ is purely based on its capabilities to properly
approximate ∂Ω. However, this does not mean that it yields sufficient resolution to appropriately
approximate the solution of (12) at every point in Ω̂. Heuristically, folding due to insufficient
accuracy is uncommon. Should it nevertheless happen, we refine Σ by adding knots to the
knot-vectors and prolong d to the refined basis Σr. Equation (17) is solved with Σr to yield a

better approximation at internal points of Ω̂. This step can be repeated until the approximation
is sufficiently accurate and bijectivity is achieved.
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Figure 4. Skewed isolonies due to poorly parameterized boundary contours and improved
parametric properties resulting from reparameterization. Near the tiny gaps, it is of major
importance that the same parametric value is assumed on either side.

6. Choice of Parametric Values
The parametric values {ξiα}

Iα
i=1 from section 5 have a profound influence on the parametric

properties of the resulting parameterization and have to be chosen wisely. By default, the input
point clouds are chord-length parameterized. Defining li recursively by

li+1 = li + ‖pi+1 − pi‖, (22)

starting with l1 = 0 and ending on lIα , a chord-length parameterization corresponds to taking

ξiα =
li
lIα
. (23)

Using (23) ensures that the parametric velocity at the boundaries is (approximately) constant
and therefore constitutes the default choice. In the presence of extreme aspect ratios (tiny
gaps), however, we have found (23) to lead to dissatisfactory results. To ensure the quality of
the resulting parameterization, we need to ensure that the (approximately) same parametric
value is assumed on either side of the gaps (see figure 4).
For this purpose, we employ the matching algorithm proposed in [10] to two opposite point clouds
Pw, Pe (or Pn, Ps) in order to match pairs of points that are too close. Let Iw = {2, . . . , Iw − 1}
and Ie = {2, . . . , Ie − 1}, upon completion of the matching, we are in the possession of a finite
set of matched tuples

Im = {(i, j) | pi ∈ Pw and pj ∈ Pe have been matched}. (24)

The tuples (i, j) ∈ Im, i ∈ Iw, j ∈ Ie can be utilized to build a reparameterization function

that improves the parametric properties of the mapping. By {ξ̂iα}Iαi=1, we denote the default

chord-length parameterization resulting from (23). We assign the parametric values {ξ̂iw}
Iw
i=1

to the points pi ∈ Pw. Furthermore, we set ξje = ξ̂iw whenever (i, j) ∈ Im. The question
remains what parametric value to impose on the unmatched points pj ∈ Pe. Given the set

Ik = {j | ξje is known} (note that ξ1
e = 0 and ξIee = 1), we carry out a monotone cubic spline-

interpolation [11] of the values {ξ̂ie}i, i ∈ Ik versus the known values {ξie}i, i ∈ Ik, to yield the

monotone reparameterization function ξ′e(ξ). The ξie then follow from evaluating ξ′e in the ξ̂ie,
that is

ξie = ξ′e

(
ξ̂ie

)
. (25)

In practice, reparameterization is a crucial ingredient for the successful parameterization of the
target geometry and should therefore always be employed along with the numerical approach
that is the topic of section 7.
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(a) Coarse-grid solution (b) Fine-grid solution

Figure 5. Coarse- (a) and fine-grid solution (b) of a challenging input geometry.

7. Computational Approach
After completion of the regression from section 5, possibly in conjunction with reparameteriza-
tion (see section 6), we are in the position to tackle the root-finding problem from equation (17).
The point cloud regression yields the tuples (Σ�,d�) and (Σ,d) of coarse- and fine-grid bases
with corresponding boundary control points. We tackle (17) with a truncated Newton-approach.
We first solve the coarse-grid problem F�(c�) = 0 using transfinite interpolation [5] to generate
an initial guess c0

�. Both the coarse- and the fine-grid problem are of the form G(c) = 0, where
G is nonlinear in c. Given some initial guess c0, the new iterate is computed using the following
recursive relation:

∂G

∂c

∣∣∣∣
c=ci

∆c = −G(ci), (26)

ci+1 = ci + δ∆c. (27)

Here 0 < δ ≤ 1 is a truncation parameter whose optimal value is estimated from the current
and updated tangents and residuals. Upon solution of the coarse-grid problem F�(c�) = 0, the
coarse-grid solution c� is prolonged to the fine-grid basis Σ and serves as an initial guess for the
fine-grid problem F(c) = 0.

In practice, the coarse-grid problem typically converges after 4− 6 iterations, while the fine-
grid problem requires an additional 2 − 3 iterations. Thanks to the relatively small number of
DOFs in Σ�, the impact of the large number of required coarse-grid iterations is manageable.
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Figure 6. Steps (i) and (ii) of the parameterization strategy.

Since the required number of fine-grid iterations is approximately halved, the expected speed-up
is ∼ 50%. Furthermore, the robustness of the approach is greatly improved: thanks to the
high quality of the initial guess, failure of convergence is extremely uncommon. As an example,
figures 7 (a) and (b) show the mapping corresponding to the coarse- and fine-grid solution of a
challenging geometry. Here, we performed reparameterization (see section 6) on the western and
eastern boundaries, keeping the western boundary chord-length parameterized while letting the
eastern boundary float. Convergence on the fine grid is reached within 3 nonlinear iterations.

8. Application to Twin-Screw Machine Geometries
The computational approach discussed in section 7 constitutes the basic ingredient for the
parameterization approach that will be the topic of this section. When no good initial guess is
available, we will employ the hierarchical approach from section 7. Else, we will use the initial
guess to solve the fine-grid problem right away. Selecting K uniformly-spaced discrete angles
θk from the interval [0, π/2], the objective is to compute a planar paramterization for every θk.
The approach consists of the following steps:

(i) Generate separate O-type parameterization for the male and female rotors with casing for
every θk.

(ii) Cut the O-parameterizations at the CUSP-points in order to produce two C-
parameterizations for every discrete angle.

(iii) Combine the cuts with the male and female rotor parts to form a contour description of the
separator.

(iv) Compute single-patch parameterizations for the separator at every discrete angle.

(v) Use the single-patch parameterized separators to generate curves, connecting the two CUSP-
points and splitting the separator in half.

(vi) Generate parameterizations on the left and on the right of the splitting curves using the
same knot vector as for the C-grids to acquire a conforming parameterization.

The key-steps are depicted in figures 6 and 7.
To generate the O-parameterizations from (i), we first generate exact (chord-length

parameterized) cubic spline-fits through the input point clouds of the rotors and casings, using
one of the FITPACK [12] routines. We evaluate both spline fits in N uniformly-spaced points
over the parametric interval [0, 1] and utilize the resulting point clouds to build male and female
reparameterization functions η′m and η′f , respectively (see section 6). Hereby the casings are

held chord-length parameterized (i.e., their reparameterization functions are simply given by
the identity function) while we let the rotor parameterizations float.

At every discrete angle θk, we act with the canonical rotation matrix on the control points
of the fitted spline-curves and reparameterize such that the CUSP-points always coincide with
the same parametric values η1 and η2. Since the casings are chord-length parameterized, we
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Figure 7. Steps (iii) to (vi) of the parameterization strategy.

Figure 8. At every angle θk we act with the canonical rotation matrix on the control points
of the spline-fit and reparameterize such that the CUSP-points always correspond to the same
parametric values η1 and η2.

reparameterize simply by a shift of −θk/(2π) in the parametric domain. The rotor spline-fits
have to be shifted by the same value in the reparameterized η′-domain. Therefore, we compute
the shift in η by inverting η′m,f (see figure 8). As a next step, we utilize the shifted spline fits
to generate a large number of uniformly-spaced points which serve as an input point cloud. We
utilize the reparameterization functions η′m,f , which we shift in a way similar to the spline fits,
to assign parametric values to the rotor point clouds.

For the O-parameterizations, we utilize a p ≥ 2-th order knot-vector which is periodic
in the η-direction while disregarding the northern and southern boundaries. We compute
parameterizations corresponding to θk, k = 1, . . . , 6 utilizing the hierarchical approach from
section 7. Upon completion, for each θk+1, we extrapolate the inner control points of θk−6, . . . , θk
to θk+1 and utilize them as an initial guess.
Upon completion of the K slices for each rotor, we add the p+1-times repeated knots η1 and η2,
the η-values that correspond to the CUSP-points in Ω̂, to the knot vectors of the O-grids. This
way, the two separate male and female rotor O-grids are each split into two parts: one C-grid
and one grid which is discarded. By cutting in the domain, we avoid accidentally cutting the
rotor lobes twice, as a result, the cuts are not (necessarily) straight.

Upon completion, our database is filled with left and right C-grid parameterizations for each
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Figure 9. The exact rotor spline-fits are evaluated from η1 to η2 and the resulting point clouds
are combined with the C-grid cuts

discrete angle θk. Having completed steps (i) and (ii), a description of the separator contours can
be acquired by evaluating the exact rotor spline-fits from η1 to η2 (on both sides) and combining
the resulting point clouds with the C-grid cuts (see figure 9).
The resulting geometries are parameterized with one patch. Instead of sequentially
parameterizing all K slices, we start off by building parameterizations for each L-th slice
(with L � K), keeping the western boundary chord length parameterized. Here, we employ
the hierarchical approach from section 7. Let η′k, denote the reparameterization function for
the k-th slice. Upon completion of every L-th parameterization, we are in the possession of
K/L single-patch parameterizations for the separator as well as a reparameterization function
η′k, k = 1, L, 2L, . . . for every L-th slice. We build reparameterization functions for the
remaining slices by blending the available η′k to achieve full smoothness of the parametetric
properties in θ.

We use the K/L available single-patch parameterations and interpolate them in θ. The inner
control points of the resulting interpolation function are extracted and serve as an initial guess
for the remaining slices, in a way similar to the rotor O-grids.

Upon completion of all K-slices, we traverse Ω̂ from one CUSP-point to the other, leaving
splitting-curves in our wake (see figure 10).
Their properties are fully determined by the path taken. To maximize the quality of the
parameterizations in step (vi), we traverse Ω̂ such that the separator is split most-evenly on
both sides of the small gaps. Upon completion, we are in the possession of a splitting-curve
for all discrete angles θk. As a last step, we utilize the resulting database to parameterize the
separator with two patches, one on each side of the splitting curve. Hereby, we employ the same
computational approach as for the single-patch parameterized separator. To achieve boundary
conformity between separator and C-grids, we employ the same knot-vector(s) in the ξ-direction.

9. Results
We have implemented the parameterization approach proposed in section 8 in the FEM python-
library Nutils [13]. The geometry has been parameterized for K = 200 discrete angles over the
interval [0, π/2] (corresponding to a quarter rotation on the male rotor after which the initial
position is again assumed). Figures 11 to 13 show the two rotor C-grids at θ = θ1, θ = θ75 and
θ = θ150.
We have used L = 5 to fill database with 40 single-patch parameterizations of the separator.
The single-patch parameterized separator along with the computed splitting-curve is plotted for
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Figure 10. A splitting curve can be generated by traversing the computational domain from
one CUSP-point to the other. The properties of this splitting curve is tuned by changing the
path taken. We choose the path such that the separator is split most-evenly at the narrow gaps.

Figure 11. The two C-grids at θ = θ1

θ = θ1, θ = θ75 and θ = θ150 in figure 14. Here, we do not plot the isolines for improved visibility.
Figure 15 shows the final geometry at θ = θ100 and 17 figure (b) a zoom-in on the conforming
separator showing the parametric properties by the splitting curve.
Finally, figure 16 shows the final geometry at θ = θ1 and 17 (a) a zoom-in on the separator.

With K = 200, the computation of the rotor O-grids converges after 1 iteration as soon as
enough slices for a 5-th order extrapolation are available. The 40 (L = 5) initial single-patch
parameterized separators that we utilize to build an interpolation function typically converge
within 3 iterations on the fine-grid using the hierarchical approach from section 7. Using the
interpolation function to build an initial guess, for the remaining slices convergence is typically
reached within 1 iteration with a maximum of 2. The same level of efficiency is achieved for the
two-patch parameterized separator.
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Figure 12. The two C-grids at θ = θ75

Figure 13. The two C-grids at θ = θ150

10. Discussion
We have successfully implemented the approach proposed in section 8 utilizing the principles
from sections 4 to 7. Here, inter- and extrapolation in the rotational angle θ greatly improves the
efficiency since the number iterations is reduced to only 1 in almost all cases (against typically
3 without interpolation). The quality of the interpolation (and by that the expected number
of required iterations) greatly depends on the value of K. Here, we used K = 200 which is a
realistic number for an accurate flow-simulation. The reduction to only 1 iteration is remarkable
since it implies that in this setting, EGG is nearly as efficient as algebraic parameterization
techniques while yielding superior results.

The properties of the splitting curve, which are fully determined by the path taken in Ω̂, have
a profound influence on the parametric properties of the two-patch parameterized separator as
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(a) θ = θ1 (b) θ = θ75 (c) θ = θ150

Figure 14. The single-patch parameterized separator along with the generated splitting curve
for various values of θ.

Figure 15. The two-patch parameterized separator along with the splitting curve at θ = θ100

can be seen in figure 17. In (a), we clearly see the steep inter-element angles at the splitting
curve interface. In (b) this is less pronounced. We conclude that an approximate halving of the
separator by the splitting curve may not be the best quality criterion for all rotational angles θ
and that further optimization is necessary. Hereby, it will be important to make a good trade-off
between the steepness of the inter-elements angles at the splitting curve and C-grid interfaces
which can, in turn, serve as a splitting curve selection criterion. A posteriori smoothing may be
an option, too.
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Figure 16. The two-patch parameterized separator along with the splitting curve at θ = θ1

(a) θ = θ1 (b) θ = θ100

Figure 17. A zoom-in on the two-patch parameterized separator at θ = θ1 (a) and θ = θ100

(b).

10.1. Shape Optimization
As stated in section 1, we are particularly interested in performing shape optimization on a
variable pitch-function. Given a particular rotor profile input, the objective is to minimize the
objective function over the three-vector of shape parameters α comprised of left- and right
pitches θ̇l,r and the z-coordinate lz at which the pitch changes. We base our approach on the
observation that the planar slices at angle θk coincide with planar cross-sections of a volumetric
parameterization in the z-direction.

The idea is to parameterize the geometry at a large number of discrete angles θk with angular
increment ∆θ and fill the database with a large number of planar slices xθh. A parameterization
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Figure 18. Part of a volumetric parameterization acquired by stacking a large number of planar
slices.

for a particular configuration of α =
(
θ̇l, θ̇r, lz

)T
is accomplished by a proper stacking of the

slices in the z-direction. Hereby, a (locally) larger pitch will require a higher density of slices for
an accurate description of the geometry, while a lower pitch allows for less slices. A database
should therefore be generated with a slice-density that corresponds to the largest admissible
pitch in the design space. Lower-pitched segments can be parameterized using a subset of the
available slices xθh. Since interpolation in the z-direction is a relatively cheap operation, a decent
parameterization for a certain α comes at a relatively low cost.

Figure 18 shows a segment of a volumetric geometry with constant pitch, generated by the
stacking of a large number of planar slices in the z-direction.
Finally, figure 19 shows a segment of the separator with non-constant pitch along with a dotted
red line to indicate the z-coordinate at which the pitch changes. This geometry has been
constructed using the same planar slices as figure 18 but with a tighter stacking in the stronger-
ptiched region.

11. Conclusion
In this article we presented a practical approach for the parameterization of twin-screw machine
geometries with spline functions. For this, we adopted the principles of Elliptic Grid Generation
and presented a computational approach that is compatible with the principles of Isogeometric
Analysis. We presented automated boundary contour reparameterization techniques that further
improve quality of the resulting parameterization.

We have successfully applied the approach to a twin-screw machine geometry. We have
concluded that the parametric properties can be improved by optimizing the properties of the
splitting curve that is a necessary ingredient for the parameterization of the separator. Finally,
we have given a qualitative explanation of how the proposed techniques may be employed for
a database-driven shape-optimization on a variable rotor pitch and presented an example of a



18

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012030 doi:10.1088/1757-899X/425/1/012030

Figure 19. Part of a volumetric parameterization of the separator with non-constant pitch.
The coordinate at which the pitch changes is indicated by the dotted red line.

volumetric parameterization resulting from the stacking of a large number of planar slices.
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List of Symbols

Symbol Property
Ω target geometry
∂Ω boundary of the target geometry

Ω̂ computational domain (unit quadrilateral in Rn)

x mapping operator from Ω̂ onto Ω
xh numerical approximation of x
Ξ (univariate) knot-vector
σ univariate spline basis
p polynomial order
Ni,p i-th spline function in σ with polynomial order p
Σ bivariate spline basis
Σ0 bivariate spline basis comprised of inner basis functions only
wi i-th spline function in Σ
θ rotational angle
(ξ, η) tuple of free topological variables
(ξ′, η′) reparameterization function in ξ and η direction, respectively
c vector of inner control points
d vector of boundary control points
R(∂Ω,d) projection residual
K number of planar slices
L spacing between the slices used to build an interpolation function
α vector of shape parameters

Subscript Property
k k-th index in the total number of planar slices K
(s, e, n, w) south, east, north, west
(m, f) male, female


