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Abstract

We develop projection-based embedded discrete fracture model (pEDFM) on corner-point grids
(CPG) for fluid flow and heat transfer in subsurface geological formations. The coupling between
the flow and heat transfer is fully-implicit, to allow for stable simulations, specially in presence of
highly contrasting fractures. We define independent CPG-based mesh for matrix rock and all 3D frac-
tures, which allows for capturing geologically complex geometries. The connectivities between the
non-neighbouring cells are described such that a consistent discrete representation of the embedded
fractures are developed within the CPG geometry. Numerical rests are developed first to verify the CPG
grid implementation compared with the Cartesian structured ones, and then to illustrate the applicability
of the pEDFM for field-scale geologically complex reservoirs.

Significance and Technical Contributions to the Knowledge Base of the Mathematics of Oil Re-
covery:

• It develops a fully 3D projection-based embedded discrete fracture model (pEDFM).

• It extends pEDFM method for corner-point grid geometry.
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Introduction

Geothermal energy offers a lot of opportunities to transfer the energy supply of today to a greener mix
(Bertani, 2012; Lund et al., 2011; Burnell et al., 2012, 2015). Safe and efficient development of this
low-carbon-based Geo-energy resource depends on accurate and scalable modeling of coupled mass-
heat transport in heterogeneous porous media. When it comes to geoscience applications, the main
challenges stand as heterogeneity, scales and uncertainty (Moraes et al., 2017; McClure and Horne,
2014).

Simulation models should be able to accurately capture high contrasts in mass and heat heterogeneous
properties inside the porous media while providing computational efficiency and maintaining field-scale
applicability. Many reservoirs encompass complex geological features (e.g., networks of fractures and
faults) with extensive range of conductivities. Such high contrasts influence the flow and heat patterns
significantly. Therefore, high fidelity representation of the physical phenomena within the heteroge-
neous fractured reservoirs is crucial (Berkowitz, 2002). However, there are variety of complex chal-
lenges, as the models demand high-resolution grids to be imposed on the entire reservoir (in orders of
kilometres) (Praditia et al., 2018). Strong mass-heat coupling and the non-linear behavior of the system
results in poor stability and convergence. Multi-phase flow systems (e.g., in high-enthalpy systems)
cause more severe issues (Wong et al., 2018). The geo-mechanical processes (i.e., elastic and plastic
deformation) (Rossi et al., 2018; Garipov et al., 2016; Gholizadeh Doonechaly et al., 2016a), reactive
transport (e.g., geo-chemical interaction between the substances) (Morel and Morgan, 1972; Leal et al.,
2017; Salimzadeh and Nick, 2019) and compositional changes (Voskov and Tchelepi, 2012; Voskov,
2017; Cusini et al., 2018) are other among other challenges. The presence of fractures and faults (Gan
and Elsworth, 2016; Gholizadeh Doonechaly et al., 2016b; Salimzadeh et al., 2019; Hajibeygi et al.,
2011) with wide heterogeneity contrasts significantly increases the computational complexity. These
challenges introduce high demands for developing advanced simulation methods that are able to provide
efficiency while maintaining accuracy at the desired level (Lie, 2019; Wang et al., 2020; Kozlova et al.,
2016).

Geological formations are hardly representable on Cartesian grids, although these simplified gris allow
for many conceptual modeling analyses. Realistic formations, however, are more conveniently repre-
sented by flexible grids (Lie et al., 2020; Reichenberger et al., 2006). The grid geometry should create a
set of discrete cell volumes that approximate the reservoir volume, yet fit the transport process physics,
and avoid over complications as much as possible (Ahmed et al., 2015). Unstructured grids allow for
many flexibilities, which need to be carefully applied to a computational domain so that the discrete
systems do not become over complex (Karimi-Fard et al., 2004; Jiang and Younis, 2016). Without intro-
ducing the full flexibility (and at the same time complexity) of the fully unstructured grids, corner-point
grid geometries allow for many possibilities in better representation of geological structures. This has
made them quite attractive in geoscience industry-grade simulations (Ponting, 1989; Ding et al., 1995;
GeoQuest, 2014; Lie, 2019).

Representation of explicit fractures on structured Cartesian grids has been extensively addressed in the
literature, starting from the development of embedded discrete modelling approach (Lee et al., 1999; Li
and Lee, 2008; Hajibeygi et al., 2011; Lee et al., 2001; Moinfar et al., 2011; Ren et al., 2018). The de-
velopment of EDFM approach for CPG geometries, however, has not yet been fully addressed. The only
existing publication seems to be the one by Xu et al. (2019). The state-of-the-art EDFM formulations
have allowed for consistent treatment of fractures, from high to low conductive ranges. This is addressed
in projection EDFM (pEDFM) which was originally developed by Tene et al. (2017) for single and mul-
tiphase flows. pEDFM quickly was used in many research (Jiang and Younis, 2017; HosseiniMehr et al.,
2020a). It is to date yet unknown how the pEDFM formulation and implementation should look like in
presence of CPG geometries. The current paper addresses this important development.

In this article, a projection-based embedded discrete fracture model (pEDFM) on corner-point grid
(CPG) geometry is presented. Although this fracture model can be used on any flow model, the fo-
cus of this article is on simulation of non-isothermal single-phase mass-heat flow in fractured porous
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media. Due to the strong non-linearity of the system (mass-heat coupling), two sets of equations (mass
and energy balance) are coupled using the fully-implicit (FIM) approach. In the energy balance equa-
tion, conduction terms are described for both fluid and rock. To represent realistic and geologically
relevant domains, corner-point grid geometry is used. pEDFM is employed in order to explicitly and
consistently represent fractures and to provide independent gridding of matrix and fractures regardless
of complex geometrical shapes of domains. Here, the applicability of the pEDFM implementation (Tene
et al., 2017; HosseiniMehr et al., 2020b) has been extended to a fully generic 3D geometry where it
allows for including fractures (or flow barriers) with any orientation on the corner-point grid geometry.
This is crucial for practical field-scale applications. In addition to geometrical flexibility of EDFM,
the matrix-matrix and fracture-matrix connectivities are re-adjusted to account for projection of fracture
plates on the interfaces. This allows for consistent modelling of fractures with generic range of conduc-
tivity. The discrete system is obtained for two main unknowns, namely, pressure and temperature on
both matrix and fracture network. We assume local thermal equilibrium, meaning that the temperatures
in fluid and rock are considered to be equal. This assumption can be recognised as safe for the majority
(or perhaps all) of the geo-engineering applications (Coats, 1977) due to large contact area between the
liquid and solid phases. Using a number of homogeneous and heterogeneous test cases, the accuracy
and applicability of the devised method is demonstrated.

This article is arranged as the following. The governing equations and FIM approach are described in
Section 1. The corner-point grid geometry and pEDFM approach is covered in Section 2 and 3. The test
cases and their numerical results are shown in Section 4. The paper is concluded in Section 5.

Governing equations

The geothermal system discussed in this article consists of two main governing equations, namely mass
and energy conservation law. Assuming local thermal equilibrium, the temperatures of fluid and rock
are considered to be identical.

Mass Conservation

The mass balance equation for single-phase fluid flow in porous media with nfrac discrete fractures reads

∂

∂ t
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m
ρ f

)
−∇ ·
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ρ f
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Km ·∇pm
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on Ω fi ⊆ Ren−1 ∀ i ∈ {1, ...,nfrac}, (2)

for the lower dimensional fracture ( fi). The main unknown of this equation is the pressure p. Porosity
and permeability of each medium are denoted as φ and K. Note that K is a tensor to account for a
generic anisotropic case. Subscripts f and r denote fluid and rock. Superscripts m, fi and w correspond
to matrix, fracture i and well, respectively. ρ and µ are the density and viscosity of the fluid. Addi-
tionally, qmw and q fiw are the source terms (i.e., wells) on matrix m and fracture fi. Moreover, Qm fi

and Q fim are the so-called flux exchanges between matrix m and overlapping fracture fi corresponding
to the grid cells where overlap occurs. Q fi f j is the flux exchange from j-th fracture to the i-th fracture
on the intersecting elements. Mass conservation always holds, i.e.,

∫∫∫
V

Qm fidV = −
∫∫
A fi

Q fimdA, and

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery
14–17 September 2020, Edinburgh, UK



∫∫
A fi

Q fi f j dA =−
∫∫

A f j

Q f j fidA.

The Peaceman well model is used to obtain the flux between the wells and the reservoir:

qmw =
PI ·λ ∗ · (pw− pm)

∆V
(3)

and fractures

q fiw =
PI ·λ ∗ · (pw− p fi)

∆A
. (4)

Here, PI denotes well productivity index and λ ∗ is the effective mobility (λ = K/µ) between the well
and the penetrated grid cells in the medium. ∆V and ∆A are the control volume and control area used
in the discrete system for matrix m and fracture fi respectively. The flux exchange terms Qm fi , Q fim

(matrix-fracture) and Q fi f j (fracture-fracture) are given as:

Qm fi =CIm fi ·λ ∗ · (p fi− pm) (5)

Qm fi =CI fim ·λ ∗ · (pm− p fi) (6)

Q fi f j =CI fi f j ·λ ∗ · (p f j − p fi), (7)

where CI is the connectivity index between each two non-neighboring elements. For instance, the con-
nectivity index between i-th matrix element and j-th fracture element is calculated as CIi j =

Ai j
〈d〉i j

. Here,
Ai j is the area fraction of fracture cell j overlapping with matrix cell i and 〈d〉i j is the average distance
between these cells.

Energy Balance

Assuming local equilibrium, energy balance on the entire domain reads
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,

on Ω fi ⊆ Ren−1 ∀ i ∈ {1, ...,nfrac}, (9)

for the lower dimensional fracture ( fi). Here, the two main unknowns are pressure p and temperature T
(in both fluid and solid rock). (ρ U)e f f is the effective property defined as

(ρ U)e f f = φρ fU f +(1−φ)ρr Ur, (10)
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where U f and Ur are the specific internal energy in fluid and rock respectively. Distinctively, (ρ U)m
e f f =

φ mρ fU f +(1−φ m)ρr Ur and (ρ U) fi
e f f = φ fiρ fU f +(1−φ fi)ρr Ur. In addition, H f is the specific fluid

enthalpy. The three mentioned terms can be expressed as non-linear functions of pressure and tempera-
ture. Λe f f is the effective thermal conductivity of the saturated rock written as

Λe f f = φ Λ f +(1−φ)Λr. (11)

Here, Λ f and Λr are the thermal conductivities in fluid and rock, respectively. The subscripts f and r
indicate fluid and solid rock. Note that, Λm

e f f = φ m Λ f +(1−φ m)Λr and Λ
fi
e f f = φ fi Λ f +(1−φ fi)Λr.

Lastly, Rm fi and R fim are the conductive heat flux exchange between matrix m and the overlapping frac-
ture fi. R fi f j denotes the conductive heat flux exchange from j-th fracture to the i-th fracture where the
intersection occurs. Similar to mass flux exchange, the conductive flux exchange terms are non-zero only
for the existing matrix-fracture overlaps or fracture-fracture intersections.

∫∫∫
V

Rm fidV = −
∫∫
A fi

R fimdA,

and
∫∫
A fi

R fi f j dA =−
∫∫

A f j

Q f j fidA hold as well to honor the conservation of energy.

To obtain the conductive heat flux exchanges, i.e., Rm fi , R fim (matrix-fracture connectivities) and R fi f j

(fracture-fracture connectivities), the embedded discrete scheme is used, i.e.,

Rm fi =CIm fi ·Λ∗e f f · (T fi−T m) (12)

Rm fi =CI fim ·Λ∗e f f · (T m−T fi) (13)

R fi f j =CI fi f j ·Λ∗e f f · (T f j −T fi), (14)

where Λ∗e f f is obtained as harmonically-averaged property between the two non-neighboring elements.
CI is identical to the connectivity index used in Eq. (5).

Correlations

The following correlations are used to compute certain fluid and rock properties.

Fluid viscosity: Viscosity as a function of temperature is calculated via the following correlation (Al-
Shemmeri, 2012),

µ f (T ) = 2.414×10−5×10
247.8

T−140 .

Fluid density: The density of fluid is a function of pressure and temperature, defined as (Coats, 1977)

ρ f (P,T ) = ρ f s (T ) [1+ cw (T )(P−Ps)] ,

where PS = 1bar. cw (T ) and ρ f s (T ) are computed from the following empirical correlations
(Praditia et al., 2018; Wagner and Kretzschmar, 2008)

cw (T ) =
(
0.0839T 2 +652.73T −203714

)
×10−12

ρ f s (T ) =−0.0032T 2 +1.7508T +757.5.

Fluid Entalphy: Fluid enthalpy is obtained via (Coats, 1977)

H f (P,T ) = uws +Cp f (T −Ts)+
P
ρ f

,

where uws = 420000 J/kg.
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Corner-point Grid

A corner-point grid is defined with a set of straight pillars outlined by their endpoints over a Cartesian
2D mesh in the lateral direction (Lie, 2019). On every pillar, a constant number of nodes (corner-points)
is set, and each cell in the grid is set between 4 neighbouring pillars and two neighbouring points on
each pillar. Every cell can be identified by integer coordinates (i,j,k); where the k coordinate runs along
the pillars, and i and j span each layer. The cells are ordered naturally with the i-index (x-axis) cycling
fastest, then the j -index (y-axis), and finally the k-index (negative z-direction).

For establishing more accurately vertical and inclined faulting, it is advantageous to define the position
of the grid cell by its corner point locations and displace them along the pillars that have been aligned
with faults surfaces. Similarly, for modelling erosion surfaces and pinch-outs of geological layers, the
corner point format allows points to collapse along coordinate lines. The corner points can collapse
along all four lines of a pillar so that a cell completely disappears in the presence of erosion surfaces.
If the collapse is in some pillars, the degenerate hexahedral cells may have less than six faces. This
procedure creates non-matching geometries and non-neighbouring connections in the underlying i j k
topology (Lie, 2019).

Figure 1: Construction of a corner-point grid: Starting from the coordinate lines defining pillars (left),
the corner-points are added to them (middle). A stack of cells is created for each set of four lines defining
a pillar and at last the full grid is obtained.

Two-Point Flux-Approximation

The linear elliptic equation serves a model pressure equation for incompressible fluids, i.e.,

∇ ·u = f , (15)

where f is the source/sink term (wells), and u is the Darcy velocity, defined as

u =−K∇p. (16)

Finite volume discrete systems can be obtained by rewriting the equation in integral form, on discrete
cell Ωi, as ∫

∂Ωi

~u ·~n dS =−
∫

Ωi

q d~x. (17)

The flux between the two neighbouring cells i and k can be then written as

ui,k =
∫

Γi,k

~u ·~n dS. (18)

The faces Γi,k are denominated half face as they are linked with a grid cell Ωi and a normal vector~ni,k.
It is assumed that the grid is matching to another one so that each interior half face will have a twin half
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face Γk,i that also has an identical area Ai,k = Ak,i but opposite normal vector ~ni,k = −~nk,i. The integral
over the cell face is approximated by the midpoint rule, and Darcy’s law, i.e.,

ui,k ≈ Ai,k
(
K∇p

)(
~xi,k
)
·~ni,k (19)

where~xi,k indicates the centroid of Γi,k.

The one-sided finite difference is used to determine the pressure gradient as the difference between
the pressure πi,k at the face centroid and the pressure at some point inside the cell. The reconstructed
pressure value at the cell centre is equal to the average pressure pi inside the cell, thus,

ui,k ≈ Ai,kKi
(pi−πi,k)~ck,i

|~ck,i |2
·~ni,k ⇒ ui,k ≈ Ti,k(pi−πi,k). (20)

The vectors ~ck,i are defined from cell centroids to face centroids. Face normals are assumed to have a
length equal to the corresponding face areas Ai,k ·~ni,k, i.e.,

Ti,k = Ai,kKi
~ck,i ·~ni,k

|~ck,i |2
(21)

Figure 2: Two cells used to define the two-point discretization on general polyhedral cells.

The one-sided transmissibilities Ti,k are related to a single cell and provide a two-point relation between
the flux across a cell face and the pressure difference between the cell and face centroids. The proper
name for these one-sided transmissibilities is half-transmissibilities as they are associated with a half
face (Karimi-Fard et al., 2004; Bosma et al., 2017).

Finally, the continuity of fluxes across all faces, ui,k = −uk,i, as well as the continuity of face pressures
πi,k = πk,i = πik are set. This leads to

T−1
i,k uik = pi−πik (22)

−T−1
k,i uik = pk−πik. (23)

The interface pressure πik is then eliminated and the two-point flux approximation (TPFA) scheme is
defined as

uik =
[
T−1

i,k +T−1
k,i

]−1
(pi− pk) = Tik (pi− pk). (24)

Tik is the transmissibility associated with the connection between the two cells. The TPFA scheme uses
two "points", the cell averages pi and pk, to approximate the flux across the interface Γi,k between cells
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Ωi and Ωk. The TPFA scheme in a compact form obtains a set of cell averages that meet the following
system of equations

∑
k

Tik (pi− pk) = qi , ∀Ωi ⊂Ω. (25)

Projection-based Embedded Discrete Fracture Model (pEDFM) for Corner-point Gird Geometry

As stated in the section of governing equations, sets of flux exchange terms are defined between matrix
and explicit fractures. Inside each term, the connectivity index (CIi j =

Ai j
〈d〉i j

) is considered. To calculate
the area fraction (Ai j) of each overlapping fracture element inside the corresponding matrix grid cell,
various geometrical functions are defined which can obtain the intersection between a tetragon (the 2D
planar fracture grid cell in 3D geometry) and a hexahedron (the matrix grid cell in corner-point grid ge-
ometry). Once the intersection is obtained and the area fraction is calculated, the avergae distance (〈d〉i j)
between the two overlapping elements is calculated as well. Figures 3 and 4 illustrate the geometry of
CPG-based pEDFM grids. Note that the fractures can have any orientations in 3D, and arbitrary crossing
lines with other fractures.

(a) matrix grid (b) fracture grids

Figure 3: An example of a fractured domain on corner-point grid geometry. The domain presented in the
left image is the well-known Norne oil-field which is a true representative of the real-field geometry (Lie,
2019). The figure on the right is a realisation of a fracture network inside the domain that was exclusively
designed by the authors of this paper. Note that each sub domain (matrix, and individual fractures) entail
independent grid resolutions, and can have independent complexities (e.g. 3D orientation).

Figure 4: The intersection between to fractures and a hexahedron from corner-point grid geometry is
illustrated here. The figure on the right highlights the area fraction of the two separate fracture plates
inside the matrix grid cell. The overlapping segment of green fracture forms an irregular pentagon
where the orange fracture has a tetragon overlapping segment.

To develop pEDFM for CPG geometries, first, all the connectivities between each two neighbouring
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matrix cells that are disconnected due to the overlapping fractures are detected. Due to geometrical
algorithm devised during the development of this method, a continuous projection path (visible in Fig.
5 as solid lines in light-blue colour) is automatically obtained on the interfaces. As such it disconnects
the neighbouring connections letting the flux occur only on one consistent route (i.e., through matrix-
fracture-matrix). Please note that despite the structured grid representation of pEDFM projections in
this figure, the general corner-point grid is used in this method. However, structured grid is used for the
sake of simplicity of the illustration.

Let fracture element f overlap matrix grid cell i (as shown in Fig. 5) with an area fraction of Ai f . A set of
projections is defined on the interface between the overlapped matrix grid cell i and its neighbouring grid
cells (in orange) that are affected by the crossing (i.e., j and k). Please note that in the 3D dimensional
case, there will be three projections. For each dimension (i.e., x, y and z) the projection area fractions
are obtained via

Ai f⊥xe = Ai f × cos(γ), xe ∈ {x,y,z}, (26)

where γ is the angle between the fracture element and the interface connecting the matrix grid cell i and
the neighbouring grid cell in the corresponding dimension on the zoomed-in section and highlighted in
red color as Ai f⊥x and Ai f⊥y). New transmissibilities are defined to connect the fracture element f to
each non-neighboring matrix grid cells (i.e., j and k in the 2D example shown in Fig. 5):

Tie f =
Ai f⊥xe

〈d〉ie f
λie f , xe ∈ {x,y,z}, (27)

where, 〈d〉ie f is the average distance between the fracture element f and matrix grid cell ie. λie f is the
effective fluid mobility between these cells. As a result of the new transmissibilities, the connectivity
between the matrix grid cell i and its corresponding neighboring cells is modified:

Tiie =
Aiie−Ai f⊥xe

∆xe
λie f , X ∈ {x,y,z}. (28)

For simplicity of the implementation, the modified transmissiblities are obtained by multiplication of
coefficient α as a fraction of the projected cross-section area, and the cross-section area of the corre-
sponding interface. Please note that for all overlapping fracture elements (except for the boundaries of
the fractures), the projection will cover the whole interface. Therefore, α is 1.0 for most of the cases,
resulting in zero transmissibility between the matrix grid cells (i.e., Tiie = 0), thus removing the parallel
transmissibilities (Tene et al., 2017).

Results

Numerical results of three test cases are presented in this section. The first two test cases compare
the pEDFM model on Cartesian grid and corner-point grid geometry visually. The third test cases
demonstrates the pEDFM result on a geologically relevant field using corner-point grid geometry.

Table 1 shows the input parameters that are used for all the test cases mutually.

Test Case 1: 2D Heterogeneous fractured reservoir (box)

In this test case, pEDFM on Cartesian grid versus corner-point grid geometry is visually compared.
For this reason, a box-shaped heterogeneous 100m×100m domain containing 30 fractures with mixed
conductivities is considered. The length of each fracture is different but the size of their aperture is
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Figure 5: pEDFM Illustration for a 2D matrix and a 1D overlapping fracture. The overlapped matrix
cells are highlighted in yellow color. With classical EDFM method, these cells are connected to each
overlapping fracture element via the connectivity index in the matrix-fracture flux exchange. pEDFM
introduces extra non-neighboring connections between fracture elements and matrix cells highlighted in
orange.

Table 1: Input parameters of fluid and rock properties used in all test cases.

Property value
Rock thermal conductivity (Λr) 4 [W/m.K]
Fluid thermal conductivity (Λ f ) 0.591 [W/m.K]
Rock density (ρr) 2750 [kg/m3]
Fluid specific heat (Cp f ) 4200 [J/kg.K]
Rock specific heat (Cpr ) 790 [J/kg.K]
Matrix porosity (φ ) 0.2
fractures permeability (min) 10−20 [m2]
fractures permeability (max) 10−8 [m2]
Fractures aperture 5×10−3 [m]
Initial pressure of the reservoir 2×107 [Pa]
Initial temperature of the reservoir 400 [K]
Injection Pressure 5×107 [Pa]
Injection Temperature 300 [K]
Production Pressure 1×107 [Pa]

identical and set to a f = 5 · 10−3 m. A 136× 136 grid is imposed on the rock matrix and the fracture
network consists of 1024 grid cells (in total 19520 cells). The permeability of the matrix ranges from
Kmmin = 1.2×10−15 m2 to Kmmax = 1.2×10−12 m2. and the permeability of the fracture network has the
range of K fmin = 10−20 m2 and K fmax = 10−8 m2. Two injection wells are located at the bottom left and
top left corners with injection pressure of pinj = 2 ·107 Pa. additionally, there are two production wells
at the bottom right and the top right corners with pressure of pprod = 1 ·107 Pa. Table 1 demonstrates the
input parameters of this test case. Figure 6 shows the results of the simulation using both Cartesian Grid
and corner-point geometry.

Test Case 2: 3D Heterogeneous fractured reservoir (box)

This test cases, similar to the test case 1, shows a visual comparison for pEDFM on Cartesian gird
versus corner-point grid geometry. A 3D 100m×100m×40m domain containing 15 lower dimensional
fractures with different geometrical properties is considered. An 50× 50× 20 grid is imposed on rock
matrix. The fracture network contains 1414 grid cells (total of 51414 grid cells). The rock matrix has
permeability of Km = 10−14 m2. Fracture network consists of both highly conductive fractures with
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(a) Permeability

(b) Pressure - Cartesian Grid (c) Pressure - Corner-point Grid

(d) Temperature - Cartesian Grid (e) Temperature - Corner-point Grid

Figure 6: Test case 1: 2D Heterogeneous. Fig. 6a illustrates the permeability map of the system. The
figures 6b and 6c show the pressure solution on a specific time-step for Cartesian grid and corner-point
grid geometry respectively. The figures on the bottom row (6d and 6e) visualize the temperature solutions
on the same time-step.
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permeability of K f = 10−8 m2 and flow barriers with permeability of K f = 10−20 m2. Two injection
wells exist on the bottom left and top left boundaries with pressure of pinj = 5 · 107 Pa. Similarly, two
production wells are located at the bottom right and top right boundaries with pressure of pprod = 1 ·
107 Pa. All wells are vertical and perforate the entire thickness of the reservoir. Figure 7 illustrates the
results of the simulation using both Cartesian Grid and corner-point geometry.

(a) Pressure - Cartesian Grid (b) Pressure - Corner-point Grid

(c) Temperature - Cartesian Grid (d) Temperature - Corner-point Grid

Figure 7: Test case 2: 3D Homogeneous. The figures 7a and 7b show the pressure solution on a specific
time-step for Cartesian grid and corner-point grid geometry respectively. The figures on the bottom row
(7c and 7d) visualize the temperature solutions on the same time-step.

Test Case 3: Norne oil-field with highly conductive fractures

This test case demonstrates the capability of pEDFM model on geologically relevant discrete system us-
ing corner-point grid geometry. The CPG data was extracted from the input files of MATLAB Reservoir
Simulation Toolbox (MRST) (Lie, 2019).

Norne is an oil field located around 80 kilometers north of the Heidrun oil field in the Norwegian Sea
(Lie, 2019). As described in the MRST (Lie, 2019), the extent of this oil field is 10Km×2Km×100m.
The corner-point grid skeleton consists of 46×112×22 grid cells from which 44915 grid cells are active
forming the complex geometrical shape of this oil field (Fig. 3). A network of 15 fractures (designed by
the author as a realization) is considered inside this domain. The permeability of the Norne rock matrix
in this test case is assumed to be constant at Km = 10−14 m2. All fractures are highly conductive with
permeability of K f = 10−8 m2. Two injection wells with pressure of pinj = 5 ·107 Pa and two production
wells with pressure of pprod = 1 · 107 Pa are located in the outer skirts of the reservoir as it can be seen
on Fig. 8a. All wells are vertical and perforate the entire thickness of the reservoir.

Conclusions

A projection-based embedded discrete fracture model (pEDFM) for corner-point grid (CPG) geometry
was developed and presented for fully-implicit simulation of single-phase coupled mass-heat flow in
fractured heterogeneous porous media. First, the pEDFM model Tene et al. (2017); HosseiniMehr et al.
(2020b) is extended to account for fully 3D fracture geometries on generic corner-point grid discrete
system. Through a number of homogeneous and heterogeneous test cases, the performance of pEDFM
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(a) Pressure - Matrix (b) Pressure - Fractures

(c) Temperature - Cartesian Grid

Figure 8: Test case 3: Norne oil field. The figures 8a and 8b show the pressure solutions of the matrix
and the embedded fractures. The figure on the bottom row (8c) visualizes the temperature solution on
the same time-step.
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on CPG was briefly demonstrated.

Moreover, numerical results are obtained for 2D and 3D geothermal reservoirs. These fine-scale simula-
tion for a 2D and 3D geothermal system allows for both highly conductive and flow-barrier fractures. It
is shown that pEDFM can accurately capture the physical influence of both highly conductive fractures
and flow barriers on the flow patterns.

All software developments of this work is made available open source at https://gitlab.com/DARSim2simulator.
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