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Summary

A new method to solve multi-phase fluid flow problems is developed at TNO and presented in [A. R. J. Arendsen,
A. I. van Berkel, A. B. M. Heesink, and G. F. Versteeg. Dynamicmodelling of thermal processes with phase
transitions by means of a density-enthalpy phase diagram. 7th World Congress of Chem. Eng., Glasgow, 2005]
for spatially homogeneous systems. In the current paper, weapply this method for up to 2D fluid systems
by using finite elements for spatial discretization. The density-enthalpy method eliminates the requirement of
separate sets of equations for various phases and necessitates fewer parametric assumptions.
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1. Introduction

In this paper, a new method for modeling multi-phase flows, ispresented for 0-, 1- and 2-dimensional fluid sys-
tems. We will call this methodthe density-enthalpy method because a density-enthalpy phase diagram (hence-
forth ρ-h diagram) plays an important role in it. Physical models for multi-phase fluid systems in porous media
have applications in industrial processes such as drying, steam production, and freezing. These models are
meant to simulate the processes and to enhance the quality ofproducts. Food items, in general, can be con-
sidered as porous medium (bread, potato etc). In the contextof the density-enthalpy method, Arendsen has
presented many applications in his work [1, 2, 3] (a boiler system, potato drying etc). The so called Stefan
problems are typically solved by methods such as the level-set, moving-grid, and the phase-field model. For the
description, application, and the comparison of these models, see [6, 7, 8] and the references therein. Level-set
and moving-grid models use a sharp interface between adjacent phases. In contrast, the phase-field model al-
lows a diffuse region where, for example, the mass density between the two coexisting phases varies smoothly
from one phase to the other [7]. Advantages and disadvantages of common approaches for modeling thermal
processes with phase change are compared with the density-enthalpy method in [1, 2]. It is common practice to
solve the heat or mass balance equations alone or to assume constant boiling pressure and temperature. Arend-
sen also explained that only taking heat or mass balance is valid for a limited range and that their physical basis
is incomplete. Furthermore, the assumption of constant ambient pressure and a fixed phase-change temperature
profile cannot always be justified [1, 4]. Another drawback ofthe aforementioned approaches is that they keep
track of the phase change, which might take place only for a small time interval as compared to the whole
process. Then these methods switch to another set of equations with a change in phase, which might cause
numerical instabilities.

In this paper we use the mass and energy balances together anduse density and enthalpy as our state vari-
ables. These coupled partial differential equations are solved by using finite elements, with a Streamline Upwind
Petrov-Galerkin approach for the convective part. Aρ-h diagram is then used to determine temperature, pres-
sure and mass fractions [1]. The obtained results are explained qualitatively on the basis of physical laws. This
method does not require a constant ambient pressure or a constant phase change temperature. In our view, the
density-enthalpy method is potentially a better approach to model multi-phase fluid systems.
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2. Problem Definition

We consider the flow of propane(C3H8) in a unit square and theρ-h diagrams used are therefore only for this
substance. The mathematical model for the two-dimensionalsystem is given by the following partial differential
equations.

∂ρ

∂t
+

−→
∇ · (ρ−→v ) = 0, x ∈ Ω, t > t0, (mass conservation), (1)

∂(ρh)

∂t
+

−→
∇ · (ρh−→v ) =

−→
∇ · (λ

−→
∇T ) + q, x ∈ Ω, t > t0, (energy conservation), (2)

−→v = −
K

µ

−→
∇P, (Darcy Law), (3)

where the permeabilityK, dynamic viscosityµ, and heat diffusivityλ are assumed to be constants andq is
a heat source. We neglected gravitational effects. Density(ρ) and enthalpy(h) are taken as state variables.
All other variables, temperature(T ), pressure(P ), and gas mass fraction(XG) are computed by using theρ-h
diagram [1]. Along with initial conditions, we use Robin boundary conditions. The external mass transfer is
proportional to the difference in the internal density(ρ) and the ambient density(ρa),

ρ−→v .−→n = km(ρ − ρa), t > t0, x ∈ Γ,

wherekm is a mass transfer coefficient. The heat transport across theboundaries takes place if there is a
difference in temperature or a difference in density, across boundaries, i.e.,

(ρh)−→v .−→n =

{

h|Γkm(ρ − ρa), if ρ − ρa > 0 onΓ,

hakm(ρ − ρa), if ρ − ρa < 0 onΓ,
(heat transport, convective part),

λ
−→
∇T.−→n = kh(T − Ta), t > t0, x ∈ Γ, (heat transport, diffusive part),

where−→n is a unit vector normal to the boundaryΓ andkh is a heat transfer coefficient. For the one-dimensional
case, we assume that there is no mass and heat gradient iny andz-directions.

3. Method Description

In the domainΩ, the density is approximated by,

ρ(x, t) ≈
N

∑

j=1

ρj(t)φj(x),

whereφj(x) is a piecewise linear basis function andρj(t) is the nodal density. We takes = ρh and discretize
all variables in a similar way. For the computation of the mass matrixM (1), the stiffness matrixS(1) and the
vectorF (1), we refer to [5]. The semi-discrete, weak form corresponding to equation (1) is given by,

M (1)
dρ

dt
= S(1)ρ + F (1).

Following similar arguments, the weak form resulted from equation (2) is given by,

M (2) ds

dt
= S(2)s + F (2).

The velocity−→v is determined as a post processing step. For the time discretization of the given matrix equations,
we use a semi-implicit scheme.

Once the system given by equations (1)-(3) is solved forh andρ, theρ-h diagram is used to findP , T , and
XG.



4. Numerical Results

In our numerical experiments, we used various boundary and initial conditions to simulate several thermody-
namic systems. This included, for example, an isolated system for mass and heat(km = 0, kh = 0), open
system for mass(km 6= 0), open system for heat(kh 6= 0), and open system for mass and heat etc. Simulation
results for one of the experiments are given in Figure 1. Thissystem is open to mass, that is, mass can flow
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Figure 1: Plots of simulation results from a one-dimensional system open to mass, (a) density att=0, 0.5, 5 sec,
(b) total enthalpy, (c) temperature, (d) pressure, (e) gas mass fraction, and (f) total mass flown out of the system.

into the system or out of the system. In this experiment we useconstant initial conditions, as shown in Figure
1(a)-(e). Since the density inside the system is higher thanthe ambient density, mass flows out. A decrease in
density results in a decrease in total enthalpy(ρh) as well as in temperature(T ) and pressure(P ), as shown
in Figure 1(b)-(d). An increase in the gas mass fraction(XG) is the result of a decrease in the density(ρ).
In Figure 1(f) a graph for the total mass transfer across the system boundaries is given. The time instant at
which system’s internal density becomes equal to the ambient density, mass transfer across boundaries stops.
For the simulation of the two-dimensional fluid system, partially shown in Figure 2, we use the same initial and
boundary conditions as we use for the one-dimensional configuration. In this figure, we have given graphs for
ρ andh at various time instances (with a coarser grid). We do not observe a significant relative error when the
numerical results obtained by using one-dimensional modelare compared with the two-dimensional model.

As far as we know, an analytical solution of this system is notavailable. Numerical results, in general,
are interpreted qualitatively on the basis of physical laws. In [1] a zero-dimensional system is compared with
experimental data with a good matching. We also compared thezero-dimensional system with the one- and
two-dimensional configurations (not shown in this abstract).

5. Conclusions and further work

It is concluded that the density-enthalpy method can successfully be applied, at least qualitatively, for multi-
phase fluid systems where we have certain spatial profiles forsystem variables. At this moment, the time
discretization step∆t is too small, even with a coarse grid. An option is to use an adaptive∆t and an adaptive
mesh. This is planned for future studies.
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Figure 2: Plots of results from two-dimensional simulations for (up) the density at various instances, (down)
total enthalpy.
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