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Abstract A solid understanding of convergence behaviour is essential to the design
and analysis of iterative methods. In this paper we explore the convergence of
inexact iterative methods in general, and inexact Newton methods in particular. A
direct relationship between the convergence of inexact Newton methods and the
forcing terms is presented in both theory and numerical experiments.

1 Introduction

Inexact Newton methods [1] are Newton-Raphson methods in which the Jacobian
system �J .xi / si D F .xi / is not solved to full accuracy. Instead, in each Newton
iteration the Jacobian system is solved such that

kri k
kF .xi /k � �i ; (1)

where ri is the residual vector:

ri D F .xi / C J .xi / si : (2)

The values �i are called the forcing terms. Over the years a great deal of research
has gone into finding good values for �i , such that convergence is reached with the
least amount of computational work. One of the most frequently used methods to
calculate �i is that of Eisenstat and Walker [3].

In this paper, we further study the relationship between the convergence of
inexact Newton methods and the choice of forcing terms. We show, both in theory
and numerical experiments, that if the iterate xi is close enough to the solution, in
iteration i the Newton method converges in some norm with a factor .1 C ˛/ �i , for
arbitrarily small ˛ > 0.

R. Idema (�) • D. Lahaye • C. Vuik
Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands
e-mail: mail@reijeridema.nl; d.j.p.lahaye@tudelft.nl; c.vuik@tudelft.nl

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced
Applications - ENUMATH 2013, Lecture Notes in Computational Science
and Engineering 103, DOI 10.1007/978-3-319-10705-9__35

355

mailto:mail@reijeridema.nl
mailto:d.j.p.lahaye@tudelft.nl
mailto:c.vuik@tudelft.nl


356 R. Idema et al.

2 Convergence of Inexact Iterative Methods

Assume an iterative method that, given current iterate xi , has some way to determine
a unique new iterate OxiC1. If instead an approximation xiC1 of the exact iterate OxiC1

is used to continue the process, we speak of an inexact iterative method. Inexact
Newton methods are examples of inexact iterative methods. Figure 1 illustrates a
single step of an inexact iterative method.

Assume that the solution x�, and the distances "c , "n, and O" to the solution are
unknown, but that the ratio ın

ıc can be controlled. In inexact Newton methods this
ratio is controlled using the forcing terms. The aim is then to have an improvement
of the controllable error impose a similar improvement on the distance to the
solution, i.e., that for some reasonably small ˛ > 0

"n

"c
� .1 C ˛/

ın

ıc
: (3)

Define � D O"
ıc > 0, then we can write

max
"n

"c
D ın C O"

jıc � O"j D ın C �ıc

j1 � � j ıc
D 1

j1 � � j
ın

ıc
C �

j1 � � j : (4)

Therefore, to guarantee that xiC1 is closer to the solution than xi , it is required that

1

j1 � � j
ın

ıc
C �

j1 � � j < 1 , ın

ıc
C � < j1 � � j , ın

ıc
< j1 � � j � �: (5)

If � � 1 this would mean that ın

ıc < �1, which is impossible. Therefore, to guarantee
a reduction of the distance to the solution, we need

ın

ıc
< 1 � 2� , 2� < 1 � ın

ıc
, � <

1

2
� 1

2

ın

ıc
: (6)

Equation (4) implies that as � goes to 0, max "n

"c more and more resembles ın

ıc .
Figure 2 clearly shows that making ın

ıc too small leads to oversolving, as there is
hardly any return of investment any more. Note that if the iterative method converges
to the solution superlinearly, then � goes to 0 with the same rate of convergence.
Thus, for such a method ın

ıc can be made smaller and smaller in later iterations

Fig. 1 Inexact iterative step
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Fig. 2 Plots of equation (4) on a logarithmic scale, for several values of � . The horizontal axis
shows the number of digits improvement in the distance to the exact iterate, and the vertical
axis depicts the resulting minimum digits improvement in the distance to the solution, i.e.,
dı D � log ın

ıc and d" D � log
�
max "n

"c

�

without significant oversolving, This is in particular the case for inexact Newton
methods, as convergence is quadratic once the iterate is close enough to the solution.

When using an inexact Newton method ın

ıc D kxiC1�OxiC1k
kxi �OxiC1k is not known, but the

relative residual error kri k
kF.xi /k D kJ .xi /.xiC1�OxiC1/k

kJ .xi /.xi �OxiC1/k , which is controlled by the forcing

terms �i , can be used as a measure for it. In the next section, this idea is formalized
in a theorem that is a variation on Eq. (3).

3 Convergence of Inexact Newton Methods

Consider the nonlinear system of equations F .x/ D 0, where:

• There is a solution x� such that F .x�/ D 0,
• The Jacobian matrix J of F exists in a neighbourhood of x�,
• J .x�/ is continuous and nonsingular.

In this section, theory is presented that relates the convergence of the inexact
Newton method for a problem of the above form directly to the chosen forcing
terms. The following theorem is a variation on both Eq. (3), and on the inexact
Newton convergence theorem presented in [1, Thm. 2.3].

Theorem 1 Let �i 2 .0; 1/ and choose ˛ > 0 such that .1 C ˛/ �i < 1. Then there
exists an " > 0 such that, if kx0 � x�k < ", the sequence of inexact Newton iterates
xi converges to x�, with

kJ
�
x�� �

xiC1 � x��k < .1 C ˛/ �i kJ
�
x�� �

xi � x��k: (7)
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Proof Define

� D maxŒkJ
�
x��k; kJ

�
x���1k� � 1: (8)

Recall that J .x�/ is nonsingular. Thus � is well-defined and we can write

1

�
kyk � kJ

�
x��

yk � �kyk: (9)

Note that � � 1 because the induced matrix norm is submultiplicative.
Let

� 2
�

0;
˛�i

5�

�
(10)

and choose " > 0 sufficiently small such that if ky � x�k � �2" then

kJ .y/ � J
�
x��k � �; (11)

kJ .y/�1 � J
�
x���1k � �; (12)

kF .y/ � F
�
x�� � J

�
x�� �

y � x��k � �ky � x�k: (13)

That such an " exists follows from [6, Thm. 2.3.3 & 3.1.5].
First we show that if kxi � x�k < �2", then Eq. (7) holds. Write

J
�
x�� �

xiC1 � x�� D
h
I C J

�
x�� �

J .xi /
�1 �J

�
x���1

�i
� Œri C

�
J .xi /�J

�
x��� �

xi �x�� � �
F .xi /�F

�
x���J

�
x�� �

xi �x����
: (14)

Taking norms gives

kJ
�
x�� �

xiC1 � x��k �
h
1 C kJ

�
x��kkJ .xi /

�1�J
�
x���1k

i
� Œkri k C

kJ .xi /�J
�
x��kkxi �x�k C kF .xi /�F

�
x���J

�
x�� �

xi �x��k�
;

� Œ1 C ��� � 	kri k C �kxi � x�k C �kxi � x�k�
;

� Œ1 C ��� � 	
�i kF .xi /k C 2�kxi � x�k�

: (15)

Here the definitions of �i and � were used, together with Eqs. (11)–(13).
Further write, using that by definition F .x�/ D 0,

F .xi / D 	
J

�
x�� �

xi � x��� C 	
F .xi / � F

�
x�� � J

�
x�� �

xi � x���
: (16)
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Again taking norms gives

kF .xi /k � kJ
�
x�� �

xi � x��k C kF .xi / � F
�
x�� � J

�
x�� �

xi � x��k
� kJ

�
x�� �

xi � x��k C �kxi � x�k: (17)

Substituting Eq. (17) into Eq. (15) then leads to

kJ
�
x�� �

xiC1 � x��k
� .1 C ��/

	
�i

�kJ
�
x�� �

xi � x��k C �kxi � x�k� C 2�kxi � x�k�

� .1 C ��/ Œ�i .1 C ��/ C 2��� kJ
�
x�� �

xi � x��k: (18)

Here Eq. (9) was used to write kxi � x�k � �kJ .x�/ .xi � x�/k.

Finally, using that � 2
�
0;

˛�i

5�

�
, and that both �i < 1 and ˛�i < 1—the latter

being a result from the requirement that .1 C ˛/ �i < 1—gives

.1 C ��/ Œ�i .1 C ��/ C 2��� �
�
1 C ˛�i

5

� 

�i

�
1 C ˛�i

5

�
C 2˛�i

5

�

D


1 C 2˛�i

5
C ˛2�2

i

25
C 2˛

5
C 2˛2�i

25

�
�i

<



1 C 2˛

5
C ˛

25
C 2˛

5
C 2˛

25

�
�i

< .1 C ˛/ �i : (19)

Equation (7) follows by substituting Eq. (19) into Eq. (18).
Given that Eq. (7) holds if kxi � x�k < �2", we now proceed to prove Theorem 1

by induction.
For the base case

kx0 � x�k < " � �2": (20)

Thus Eq. (7) holds for i D 0.
The induction hypothesis that Eq. (7) holds for i D 0; : : : ; k � 1 then gives

kxk � x�k � �kJ
�
x�� �

xk � x��k
< � .1 C ˛/k �k�1 � � � �0kJ

�
x�� �

x0 � x��k
< �kJ

�
x�� �

x0 � x��k
� �2kx0 � x�k
< �2": (21)

Thus Eq. (7) also holds for i D k, completing the proof. ut
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In words, Theorem 1 states that for arbitrarily small ˛ > 0, and any choice of
forcing terms �i 2 .0; 1/, Eq. (7) holds if the current iterate is close enough to the
solution. This does not mean that for a certain iterate xi , one can choose ˛ and �i

arbitrarily small and expect Eq. (7) to hold, as " depends on the choice of ˛ and �i .
If we define oversolving as using forcing terms �i that are too small for the

iterate, in the context of Theorem 1, then the theorem can be characterised by saying
that a convergence factor .1 C ˛/ �i is attained if �i is chosen such that there is no
oversolving. Using Eq. (10), �i >

5��

˛
can then be seen as a theoretical bound on

the forcing terms that guards against oversolving.
A note on preconditioning is in order. Right preconditioning does not change

the residual, and thus it does not change the interpretation of the forcing term �i in
Theorem 1. However, left preconditioning changes the residual such that �i is closer
to the ratio ın

ıc . As a result, a theoretical relation closer to Eq. (3) is expected. Indeed,
following the proof of Theorem 1 for a left-preconditioned problem, we get

kM �1J
�
x�� �

xiC1 � x��k < .1 C ˛/ �i kM �1J
�
x�� �

xi � x��k; (22)

where norms of the form kM �1J .x�/ .y � x�/k are close to ky � x�k for a good
preconditioner M .

A relation between the nonlinear residual norm kF .xi /k and the error norm
kJ .x�/ .xi � x�/k can also be derived within the neighbourhood of the solution
where Theorem 1 holds. This shows that the nonlinear residual norm is indeed a
good measure of convergence of the Newton method.

Theorem 2 Let �i 2 .0; 1/ and choose ˛ > 0 such that .1 C ˛/ �i < 1. Then there
exists an " > 0 such that, if kx0 � x�k < ", then

�
1 � ˛�i

5

�
kJ

�
x�� �

xi � x��k < kF .xi /k <
�
1 C ˛�i

5

�
kJ

�
x�� �

xi � x��k:

(23)

Proof Using that F .x�/ D 0 by definition, again write

F .xi / D 	
J

�
x�� �

xi � x��� C 	
F .xi / � F

�
x�� � J

�
x�� �

xi � x���
: (24)

Taking norms, and using Eqs. (13) and (9), gives

kF .xi /k � kJ
�
x�� �

xi � x��k C kF .xi / � F
�
x�� � J

�
x�� �

xi � x��k
� kJ

�
x�� �

xi � x��k C �kxi � x�k
� kJ

�
x�� �

xi � x��k C ��kJ
�
x��

xi � x�k
D .1 C ��/ kJ

�
x�� �

xi � x��k: (25)
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Similarly, it holds that

kF .xi /k � kJ
�
x�� �

xi � x��k � kF .xi / � F
�
x�� � J

�
x�� �

xi � x��k
� kJ

�
x�� �

xi � x��k � �kxi � x�k
� kJ

�
x�� �

xi � x��k � ��kJ
�
x��

xi � x�k
D .1 � ��/ kJ

�
x�� �

xi � x��k: (26)

The theorem now follows from (10). ut

4 Numerical Experiments

Both classical Newton-Raphson convergence theory [2, 6], and the inexact Newton
convergence theory by Dembo et al. [1], require the current iterate to be close
enough to the solution. What exactly is “close enough” depends on the problem, and
is in practice generally too difficult to calculate. Decades of practice have shown that
the theoretical convergence is reached within a few Newton steps for most problems.
Thus the theory is not just of theoretical, but also of practical importance.

In this section, experiments are presented to illustrate the practical merit of
Theorem 1. For simplicity, we test an idealised version of relation (7):

kxiC1 � x�k < �i kxi � x�k: (27)

The experiments in this section are performed on a power flow problem [4, 5]
that results in a nonlinear system of approximately 256k equations, with a Jacobian
matrix that has around 2M nonzeros. The linear Jacobian systems are solved using
GMRES [7], preconditioned with a high quality ILU factorisation of the Jacobian.

In Figs. 3–5, the results are shown for different amounts of GMRES iterations
per Newton step. In all cases two Newton steps with just a single GMRES iteration
were performed at the start but omitted from the figure.

Figure 3 has a distribution of GMRES iterations that leads to a fast solution of
the problem. Practical convergence nicely follows theory. This suggests that x2 is
close enough to the solution to use the chosen forcing terms without oversolving.

Figure 4 shows the convergence for a more exotic distribution of GMRES
iterations, illustrating that practice can also follow theory for such a scenario.
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Fig. 3 GMRES iteration distribution 1; 1; 4; 6; 10; 14
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Fig. 4 GMRES iteration distribution 1; 1; 3; 4; 6; 3; 11; 3

Figure 5 illustrates the impact of oversolving. Practical convergence is nowhere
near the idealised theory because extra GMRES iterations are performed that do not
further improve the Newton error. In terms of Theorem 1 this means that the iterates
xi are not close enough to the solution to be able to take the forcing terms �i as
small as they were in this example.
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Fig. 5 GMRES iteration distribution 1; 1; 9; 19; 30

Conclusions
A proper choice of tolerances in inexact iterative methods is very important to
minimize computational work. In the case of inexact Newton methods these
tolerances are called the forcing terms.

In this paper we explored the relation between the choice of tolerances and
the convergence of inexact iterative methods, and in particular the relation
between the forcing terms and the convergence of inexact Newton methods.
We proved that, under certain conditions, in each iteration an inexact Newton
method converges with a factor near equal to the forcing term of that iteration,
and numerical experiments were used to illustrate the results.

References

1. R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods. SIAM J. Numer. Anal. 19(2),
400–408 (1982)

2. J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (SIAM, Philadelphia, 1996)

3. S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method. SIAM J.
Sci. Comput. 17(1), 16–32 (1996)

4. R. Idema, D.J.P. Lahaye, C. Vuik, L. van der Sluis, Scalable Newton-Krylov solver for very
large power flow problems. IEEE Trans. Power Syst. 27(1), 390–396 (2012)

5. R. Idema, G. Papaefthymiou, D.J.P. Lahaye, C. Vuik, L. van der Sluis, Towards faster solution
of large power flow problems. IEEE Trans. Power Syst. 28(4), 4918–4925 (2013)

6. J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables
(SIAM, Philadelphia, 2000)

7. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)


	On the Convergence of Inexact Newton Methods
	1 Introduction
	2 Convergence of Inexact Iterative Methods
	3 Convergence of Inexact Newton Methods
	4 Numerical Experiments
	Conclusions
	References


