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Abstract Mathematical models and computing methods for problems involving
moving interfaces are considered. These occur in a great variety of applications, and
mathematical models provide a unifying framework, facilitating interdisciplinary
cooperation. We discuss and propose some generic numerical methods for problems
involving moving interfaces. The level set method is used for interface capturing. A
Cartesian and a finite element mesh are used simultaneously. This facilitates effi-
cient local mesh refinement and derefinement for accurate computation of physical
effects occurring at the interfaces, that move and may undergo topological change.
The method has been implemented in three dimensions. We present examples from
materials science (homogenization) and medical technology (wound healing).

Keywords moving interface · level set method · adaptive mesh refinement · cut-cell
method · epidermal wound healing

1 Introduction

In multidisciplinary research, mathematical models are the universal framework
to describe phenomena from fields as diverse as physics, biology or mathemati-
cal finance, for example. Many of these models involve solving a coupled system
of partial differential equations in a domain containing moving interfaces. One
may think of multiphase flows [25, 28, 33], phase transformations in materials sci-
ence [8, 14, 16, 20], and mathematical models for wound healing [6, 7], to mention
just a few examples. These problems entail great computational challenges. Efficient
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numerical methods are required, and judicious simplifications in the mathematical
models are necessary to reduce computing time, while keeping physical realism
intact. Here we present a brief survey of numerical approximation of mathematical
models involving moving interfaces, and discuss a few examples.

Requirements to be satisfied depend on the type of application. In general, we
require three-dimensionality of the domain. In the materials science application to
be presented, little is to be learned from two-dimensional models. In the biomedical
application to be given, focus is put on closure of superficial (epidermal) wounds
modelled in two dimensions. Study of more deep wounds demands coupled mod-
els involving mechanical interactions in three dimensions. Furthermore, the method
must be robust and efficient in the presence of topological changes of the inter-
face geometry and of complicated interface conditions. In the third place, certain
application-dependent physical conditions must be fulfilled, such as strict mass con-
servation or energy minimization. Finally, numerical efficiency is required, in order
to deal with three-dimensional domains and to allow sufficiently fine grids.

In Section 2 we give a brief survey of methods to deal with moving interfaces. We
prefer the level set method, and go into more detail in Section 3. In Section 4 local
grid refinement near the interface is discussed. Examples from materials science
and mathematical biology are given in Section 5, and final remarks are presented in
Section 6.

2 Survey of Methods for Moving Interfaces

There are mainly two classes of methods for computing moving interfaces: front-
tracking and front-capturing methods. These we now briefly discuss.

2.1 Front-Tracking Methods

In front-tracking methods the location of interfaces is determined by keeping track
of the location of points lying on the interface. The interface points may belong
to a computational grid or not. In the first case, the so-called arbitrary Lagrangian-
Eulerian (ALE) approach [15,20] is used to update the computational mesh together
with the moving interface. In the second case, interface conditions are implemented
by discretization involving fixed grid points in the vicinity of the moving interface
points [2, 10, 13, 26, 32].

The drawback of these methods is that grid points must be added or removed
as the interface moves, which is not a simple affair. Furthermore, in case of large
changes in the shape or position of the interface, re-meshing will be necessary,
which is computing-intensive in three dimensions. Merging and splitting-up of
interfaces require complicated algorithms.
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Fig. 1 The marker function φ in the level set (left) and phase field (right) methods. Level set
methods are based on a sharp interface whereas phase field methods use a diffused interface

2.2 Front-Capturing Methods

Front-capturing methods are characterized by the incorporation of a marker function
that parameterizes the computational domain. Widely used examples of front-
capturing methods are the level set [18] and the phase field [3, 4] methods. For
applications in materials science, see [8, 9, 11, 12, 14, 31] and in fluid dynamics,
see [23, 24, 27, 28, 33].

Level set methods use a level set function φ , whose zero level set is the interface.
The interface motion is recovered by incorporating a transport equation for φ . Usu-
ally, φ is the signed distance to the interface in the neighbourhood of the interface.
Phase field methods identify the phases by a phase field function φ that has a certain
value for each phase and changes rapidly in a small neighbourhood of the interface.
The interface motion follows from minimization of a free energy functional, so that
a direct implementation of interface jump conditions is avoided. The interface is not
sharp but smeared out over a narrow zone. The level set and phase field functions
are illustrated in Fig. 1.

A great advantage of front-capturing methods is that the implicit representa-
tion of interfaces makes topological changes of interfaces (merging and splitting-
up) easy to handle. Moreover, these methods are easily generalized to problems
involving more than two phases, simply by introducing additional artificial marker
functions. A disadvantage of phase field methods is that they give rise to strongly
nonlinear systems that impose severe time step restrictions. Furthermore, they
involve a very large number of physical parameters, that are usually obtained by
fitting simulations to experiments, and in general cannot yet be derived from ther-
modynamic databases. Here we restrict ourselves to level set methods. We present
some details and ways to overcome certain weaknesses of level set methods.

3 The Level Set Method

For introductions to the level set method, see [17, 21]. A brief description is given
below. We include an enhancement to increase the generality and the accuracy of
the method, namely the simultaneous use of a Cartesian mesh and a locally refined
finite element mesh that is fitted to the interface.
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3.1 The Level Set Equation

The interface, denoted by Γ, is the zero level set of an artificial differentiable
function φ , called the level set function. Initially, φ is defined as follows:

φ(x,0) =

⎧⎪⎨
⎪⎩

+dist(x,Γ(0)), if x ∈Ω1,
0, if x ∈ Γ(0),
−dist(x,Γ(0)), if x ∈Ω2,

(1)

where dist is the distance to the interface, and Ωi is the domain occupied by phase
i. As Γ moves, it remains the zero level set of φ , so that φ must satisfy

∂φ
∂ t

+ vn||∇φ ||= 0 at x ∈ Γ, (2)

where vn denotes the normal component of the interface velocity v. This equation is
continued to the whole domain by continuous but otherwise arbitrary extension of
v. Given such v, φ is found from the so-called level set equation:

∂φ
∂ t

+ v ·∇φ = 0. (3)

The curvature κ and the normal vector n of the interface follow from

n =
∇φ
||∇φ || , κ = ∇ ·n. (4)

3.2 Velocity Extension

In fluid dynamics, for example, it is natural to let v in Eq. (3) be the flow velocity.
In other applications, such as in materials science, artificial continuation of vn from
the interface to the domain is required. Adalsteinsson and Sethian [1] continue v in
the direction of increasing |φ | such that the solution of (3) is a distance function. In
applications where vn is readily available, such as in solidification [11] or epidermal
wound healing [7], simple constant extrapolation of vn suffices. Advection of vn a
few grid points away from the interface [17], by performing a few pseudo-time steps
with ∂vn

∂τ
+ S(φ)n ·∇vn = 0, (5)

where S denotes the sign function, is also attractive because of low computing cost.
If computing vn at the interface is more complicated, such as in phase transforma-
tions in multi-component alloys [8], it is strongly advisable to continue the Cartesian
components of v independently [5], by performing a few pseudo-time steps of

∂vi

∂τ
+ S(φ)vi

∂φ
∂xi

= 0, i = 1,2,3, (6)



Computing Interfaces in Diverse Applications 331

where vi and xi are Cartesian components. Note that (5) and (6) leave vn unaltered
at the interface, and advect vn away from the interface in the right direction.

3.3 Distance Function and Re-initialization of the Level Set
Function

Initially, φ is specified to be the distance to the interface and satisfies ||∇φ || = 1.
But this property gradually gets lost during time stepping. Flat or steep gradients of
φ may develop, leading to inaccurate approximation of the interface location, and
often as a consequence its velocity. This numerical problem can be remedied by
re-initialization of φ to a distance function after a few time steps with (3).

In cases where φ is used only to determine the interface location, such as mul-
tiphase flow and Stefan problems, it is required to have ||∇φ || ≈ 1 only near the
interface. In such cases it is recommended to re-initialize φ only in grid points near
the interface. This can be done by carrying out a few pseudo-time steps with

∂φ
∂τ

= Ŝ(φ)
(
1−||∇φ ||), (7)

until
∣∣1−||∇φ ||∣∣< ε , where Ŝ is given by (see [19])

Ŝ(φ) =
φ√

φ2 + ||∇φ ||2Δx2
, (8)

where Δx denotes the grid size.
In other cases one may need to know approximately the distance to the interface,

in order to identify regions with different physical effects. Then it is convenient to let
φ be an approximation to the distance to the interface in a large part of the domain.
For example, in modelling wound healing, we need to distinguish the wound region
Ωw, the active layer Ωal and the undamaged region Ωu. If φ is an approximation
of the distance to the interface, then these regions can be conveniently specified as
follows [7]:

Ωw(t) = { x ∈Ω | 0 < φ(x,t) },
Ωal(t) = { x ∈Ω | − δ < φ(x,t) < 0 }, (9)
Ωu(t) = { x ∈Ω | φ(x,t) <−δ }.

where δ denotes the thickness of the active layer. Here it is important to specify
the active layer accurately, since this is where things happen: the production of
certain proteins that trigger cell mitosis and migration. In cases like this, where
re-initialization is required in a sizable part of the domain, it is computationally effi-
cient to solve the Eikonal equation ||∇φ || = 1 by a direct method, such as the Fast
Marching Method [22].
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4 Composite Grid

In solving moving interface problems, partial differential equations have to be
solved in domains that change due to motion of the interface. The velocity with
which the interface moves depends on the solutions of the partial differential equa-
tions involved. For discretization near the arbitrarily shaped interface, we opt for
the finite element method, using adaptive local grid refinement where called for. For
the level set equation, a finite difference method on a Cartesian grid is accurate and
efficient. We have found a combination of finite elements and finite differences that
is efficient and flexible in various applications. To make communication between
the grids cheap, the two grids use the same grid points. The finite element grid thus
obtained is called the basis finite element grid. This grid is locally and dynamically
enriched with points on the interface, and possibly with local refinement patches.

4.1 Local Grid Refinement and Derefinement

Often, the physical processes taking place at the interface need to be computed
accurately, in order to find the motion of the interface with sufficient precision. To
achieve this, we apply local grid refinement, if necessary. Let us refine the elements
within a certain distance δ from the interface. All elements with one or more vertices
ei satisfying |φ(ei)|< δ get level of refinement LOR = 2. Because of mesh consis-
tency, elements not having LOR = 2 and adjacent to one element with LOR = 2
get LOR = 1, but if they are adjacent to two elements with LOR = 2 they get
LOR = 2. Other elements get LOR = 0. The refinement procedure is illustrated
in Fig. 2. For efficiency, it is necessary to apply derefinement as the interface moves
away sufficiently far from a refined cell. The time step is restricted such that LOR
never changes by more than 1. This makes it easy to derefine cells whose LOR
decreases.

The refined grid is nested in the Cartesian grid, as illustrated in Fig. 3, so that
we obtain a locally refined Cartesian grid as well. This has the advantage that the
velocity continuation and the solution of the level set equation can be carried out on
the refined Cartesian grid only. If necessary the level set function can be continued
onto the coarse part of the Cartesian grid by the Fast Marching Method [22].

correction refinement

LOR=2

LOR=1

LOR=0

LOR=2

LOR=2

LOR=2

LOR=2

LOR=1

Fig. 2 Correction of the LOR and subsequent subdivision of the elements, with refinement ratio
equal to 3 (i.e. each edge of an element with LOR = 2 is divided into three equally-sized subedges)
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Fig. 3 Left: Fixed base FE mesh with the interface position φ = 0 (solid curve) and the contours
φ =±dist (dashed curves). The elements within these contours are to be refined. Center: Refined
FE mesh. Right: The nested Cartesian grids
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Fig. 4 The cut-cell method applied to a tetrahedron with three intersection points: division of the
faces (left) and division of the element (right)

4.2 The Cut-Cell Method

To facilitate accurate discretization near and at the interface the finite element grid
is adapted to conform to the interface. Elements of the basis finite element grid or
of the locally refined grid that are intersected by the interface are cut such that the
intersection with the interface becomes an element face. Linear finite elements allow
easy local elementwise adaptation to the interface. An element is intersected by the
interface if and only if the level set function φ changes sign at the element vertices.
The points of intersection of the interface and the element edges are easily deter-
mined by linear interpolation of φ between the element vertices. These intersection
points are added to the vertices of the finite element mesh. The element is cut in two
by the interface, and further cuts are made so that we end up again with tetrahedra.
The procedure is straightforward, and is illustrated in Fig. 4.
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5 Applications

The method described in Sections 3 and 4 is applied here to two applications: the dis-
solution of precipitates in multi-component alloys under homogenization conditions
and the closure of epidermal wounds by cell mitosis and migration. Results show
the relevance of geometry in the transformation kinetics, proving the necessity of
efficient higher dimensional computational tools.

5.1 Precipitate Dissolution Under Homogenization Conditions

Homogenization refers to a thermal treatment applied to as-cast alloys in order to
eliminate small precipitates that impair the mechanical properties and limit further
treatments. Annealing the as-cast microstructure above the so-called A1-temperature
leads to the dissolution of the precipitates into the surrounding matrix. Due to the
appreciable energetical requirements of this process, good approximations of the
homogenization times depending on precipitate volume fraction, composition and
morphology are of great value.

We use a vector Stefan model [30] to simulate precipitate dissolution in multi-
component alloys. The hypotheses of this model are: (1) Fickian diffusion of the
chemical species into the matrix:

∂ci

∂ t
= DiΔci in Ωdm, (10)

where Ωdm denotes the diffusive matrix surrounding the precipitate, (2) precipitate
stoichiometry preservation:

ci = cpart
i in Ωp, (11)

f (csol
1 , . . . ,csol

p ) = 0 in Γ, (12)

where Ωp denotes the precipitate, csol
i the interfacial concentration and f describes

the solubility product at the interface Γ, and (3) mass conservation of the chemical
species in the alloy:

∂ci

∂n
= 0 inΩdm\Γ, (13)

(
cpart

i − csol
i
)
vn = Di

∂ci

∂n
in Γ. (14)

Each time step, the interfacial csol
i and matrix ci concentrations are computed using

a fixed-point iteration after the position of the interface is determined. Subsequently,
the interface velocity is calculated and the interface position updated.
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5.1.1 Effect of Morphology in Dissolution Kinetics

A family of Mg2Si particles dissolving in a aluminium alloy at 560◦C are stud-
ied here. The shape of these particles vary from a circle to a very elongated ellipse,
being all of the same area. Hence, the differences in the dissolution time observed in
Fig. 5 (left) are entirely due to the morphology: elongated particles allow larger out-
flux of atoms into the matrix resulting into shorter dissolution times. Furthermore,
analysis of the precipitate morphology during the whole transformation shows that
dissolution of isolated precipitates is shape preserving, see Fig. 5 (right).

5.1.2 Spheroidization of Lamellar Structures

The metallurgical application studied in this section is inspired by an AISI 52100
steel. The diffusion of chromium is disregarded here, thus the pearlite structure is
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the length of the initial interface (left) and particle eccentricity during dissolution (right)
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Fig. 6 Dissolution of a cementite particle upon different initial morphologies: unperturbed plate
(left), plate with a linear crack (center), plate with a sinusoidal crack (right)

treated as a binary alloy, considering only the diffusion of carbon. Because of sym-
metry, we consider one cementite plate surrounded by the ferrite matrix. The initial
volume fraction of the cementite phase is 8.33%, and the transformation is chosen
to occur at 800◦C, which leads to the complete dissolution of the cementite.

The evolution of the plate is plotted in the left column of Fig. 6. Due to the
azimuthal dimensions of the computational domain, dissolution progresses further
in the other directions until it is completed. Moreover, the lamellar shape of the
cementite is preserved during all the stages of dissolution. However, if a slight per-
turbation is applied onto the surface of the cementite plate, the dissolution kinetics
are completely changed. The center column of Fig. 6 shows the evolution of the
plate when a planar perturbation or ‘crack’ is added, and the right column of Fig.
6 shows the evolution when a sinusoidal perturbation is applied. In both cases, the
plate splits up into an array of subparticles that dissolve in time. However, the time at
which the plate breaks up and the shape of these subparticles is completely different.
The spheroidization of cementite is obtained for the planar perturbation, whereas
more irregular and extended particles are obtained when the sinusoidal perturbation
is used.

The dissolution time is also strongly affected by the type of perturbation applied
to the surface. The normalized volume of the cementite plate during dissolution is
presented in Fig. 7. The dimensions of the plate are adjusted according to the crack
to preserve the initial volume. Results show that any perturbation of the configu-
ration used here gives a faster dissolution, even having an array of 20 separated
particles next to each other, where the soft-impingement effects are strong. Further-
more, the dissolution speed is increased by almost a factor three when the thickness
of the plate is not modified.
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Fig. 7 Influence of the initial morphology in the dissolution kinetics

5.2 Epidermal Wound Closure

Wound healing proceeds by a combination of several interdependent and self-
controlled mechanochemical processes: angiogenesis, re-epithelialization, extracel-
lular matrix synthesis and wound contraction. Cells are activated by certain proteins
(growth factors) and provide the adequate response. Mathematical modelling com-
bined with computer simulations can help understanding the healing process and
reveal conditions for optimal treatment.

Closure of epidermal wounds is entirely due to cell mitosis and migration. The
increased cellular activity in the proximity of the wound edge triggers the production
of epidermal growth factors (EGF) that activate cell motility. The concentration c of
EGF is governed by the reaction-diffusion equation

∂c
∂ t
−DΔc +λc = PχΩal(t), (15)

where χ denotes the characteristic function, restricting the production of EGF to the
active layer Ωal. The computational domain Ω is taken sufficiently large to justify
the choice of homogeneous Neumann boundary conditions. Furthermore, prior to
damage, there is no EGF present, i.e. c(x,0) = 0. The closure rate is proportional to
the local curvature of the wound edge:

vn =
(
α+βκ

)
H(c−θ ), (16)

where H denotes the Heaviside function and θ the threshold value below which
cells are non-motile.
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5.2.1 Influence of Morphology on Healing

The evolution of the wound edge and the local refinement is shown in Fig. 8
for a starfish-shaped wound. Due to the choice of the parameters (α = 1 cm/s,
β = 5×10−2 cm2/s and θ = 10−3), the initial wound divides into five smaller sub-
wounds that heal independently. We have observed that modifying β or θ leads to
significantly different healing patterns, involving local retreat to the wound at the
concave areas in the extreme cases [7].

5.2.2 Accuracy and Computational Cost

The accuracy and efficiency of the adaptive grid strategy is evaluated here. The EGF
concentration of a circular wound after 45 min of incubation period (i.e. before
the threshold value θ is reached) is compared to the analytic solution [29]. The L2

Fig. 8 Snapshots of the wound edge location and the local grid refinement. Time evolution follows
from left to right and from top to bottom, and correspond to the initial wound and the wound after
30%, 60% and 90% of its initial area is healed respectively
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Table 1 Accuracy and computational cost of the local grid refinement, where N denotes the
number of nodes per Cartesian direction

N Ref. L2 Nr. of CPU-time in
ratio error elements re-initialization

– 1.61 ·10−1 3,200 1.31 s
41 2 7.55 ·10−2 +778 +0.34 s

3 6.09 ·10−2 +2,032 +0.92 s

– 8.07 ·10−2 12,800 6.55 s
81 2 3.75 ·10−2 +1,562 +0.83 s

3 2.87 ·10−2 +4,080 +2.28 s

– 4.11 ·10−2 51,200 46.44 s
161 2 2.15 ·10−2 +3,094 +2.20 s

3 1.52 ·10−2 +8,096 +6.18 s

norm of the relative error is presented in Table 1 for different levels of refinement.
Due to the discontinuous production function χ , the finite element approximation
looses one order of accuracy. However, the accuracy of the globally refined grid is
recovered and even improved upon by the local refinement of the coarse grid at the
interface. Furthermore, the number of elements (and hence the computational cost
of the finite element calculations) grows only linearly if the basis grid is locally
refined. On the other hand, the most expensive calculation over the Cartesian grids
is the reinitialization, for which computational time is also given in Table 1. Note
that there are two contributions to this term: the reinitialization time in the refined
band and the reinitialization time in the coarse grid. In both cases, a second order
accurate Fast Marching Method [22] has been used. The changes of the compu-
tational times are entirely due to the different number of nodes within the refined
band. Results show that using a uniformly fine background grid is computationally
expensive. However, using a coarser basis grid with a refinement ratio of 3 improves
the accuracy and decreases the cost of reinitialization by nearly a factor 5.

6 Conclusions

Numerical solution methods for problems involving moving interfaces in two dif-
ferent applications have been discussed. The level set method is chosen instead
of alternative methods, because of its superior performance when the interface
develops topological changes. The typical issues concerning this representation are
discussed, and numerical methods are proposed for a wide range of applications. It
is shown that a composite grid algorithm such as presented here facilitates the imple-
mentation of solution methods for the hyperbolic equations introduced by the level
set formulation, and allows straightforward local grid refinement and derefinement
and boundary fitting techniques, leading to an improvement of the accuracy. Results
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for dissolution of precipitates in multi-component alloys and closure of epidermal
wounds show the flexibility of the algorithm and highlights the strong influence of
morphology on the transformation kinetics.
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