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SUMMARY
Commercial reservoir simulators must be very robust and fast. Moreover, current hardware requires the
simulators to scale over multiple number of computing nodes and for a fixed (‘strong scalability’) as well
as an increasing problem size per computing node (‘weak scalability’). In most current commercial
reservoir simulators, due to the different geological structures and properties of hydrocarbon reservoirs
and the use of enhanced oil recovery (EOR) techniques, the governing equations are strongly nonlinear
and hard to solve. The Jacobian system is solved by FGMRES preconditioned by the two-level constrained
pressure residual (CPR) preconditioner. The driving force of the CPR preconditioner is the solution of the
pressure equation. The industry standard for solving the pressure equation is the algebraic multigrid
(AMG) solver. AMG is well known for its ‘weak scalability’. However, in these applications, AMG has
unfavorable ‘strong’ scalability properties. This degradation in scalability is due to the increased level of
inter-processor communication in the algorithm.

In this paper, a monotone non-Galerkin AMG (MNG-AMG) method is presented. The aim of the method
is to reduce the overall communication in MNG-AMG by enforcing a predefined nonzero pattern and
monotonicity property (i.e., M-matrices) on each multigrid level. This paper describes the application of
the MNG-AMG method in the context of reservoir simulations. We will compare the parallel scalability of
the default solver with the MNG-AMG solver and discuss the optimal values for the MNG-AMG solver
for a variety of test cases based on full field reservoir simulations.
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 Introduction

Reservoir simulation is of paramount importance to predict reliable estimates of recoverable oil and
gas reserves as well as minimizing risk of production strategies. Recent advances in computer memory
as well as the introduction of affordable multi-core machines have pushed the physical and numerical
reservoir model sizes to unparalleled complexity. Typically models have tens to hundred millions of grid
cells entailing extremly complex geometries. The size and complexity of these problems require vast
computational resources and parallel computation.

In this paper we consider a highly-scalable commercial reservoir simulator that models compositional
multi-phase porous media fluid flow based on Darcy’s law. The Krylov-subspace method is the driving
force of the simulator and used to solve the large linear systems of equations originating from the lin-
earization of the coupled mass-balance equations. The linear systems consist of an elliptic (or parabolic)
pressure and hyperbolic transport part. As pressure is driving fluid flow, we use the two-stage Con-
strained Pressure Residual method introduced by Wallis (1985) to decouple the pressure field from the
remaining unknowns. This allows for employing different solvers for the pressure and transport equa-
tions.

Multigrid methods are the methods of choice to solve elleptic equations in an efficient manner due to
the coarse grid correction. In this paper we consider the Algebraic Multigrid (AMG) method as it is
able to deal with complex structures, anisotropies and discontinuous or varying coefficients and does
not require geometric information. Moreover, AMG is well known to have excellent weak-scalability
properties. This means that for an increasing number of nodes with a fixed problem size per node
runtime does not change. As such AMG is the perfect black box. However, the disadvantage of AMG
is that it has poor strong-scalability properties. This means that for an increasing number of nodes
with a fixed global problem size the runtime does not reduce accordingly. The underlying reason is an
increasing unfavorable ratio between the amount of work spend on the coarser grids versus the amount
of parallel communication involved. As typical reservoir simulation workflows involve running multiple
realizations of the same model, good strong scalability of the simulator is crucial.

Currently two solution strategies exist to improve the strong scalability of AMG. The firsts strategy
is aggresive coarsening, which was introduced in Krechel and Stüben (1998) and applied to AMG in
Stüben (2000); Sterck et al. (2006), and reduces the ratio between the number of non-zero entries on
the coarse and fine level. The second solution strategy is the non-Galerkin method presented in Ashby
and Falgout (1996); Wienands and Yvneh (2009) and applied to AMG in Stüben (2000); Darwish et al.
(2006); Falgout (2006); Vassilevski and Yang (2014). The non-Galerking method removes less important
entries of the AMG coarse grid matrices while preserving the row sums and thus its robustness.

In this paper we investigate the effectiveness of the non-Galerkin method applied to multiphase flow in
porous media. Moreover we present a modified non-Galerkin method which improves the robustness of
the original method and is specifically tailored for the domain of reservoir simulation.

The outline of the paper is as follows. We provide a brief description of the governing equations in
reservoir simulation and describe the problem with strong scalability. Next we provide a solution strategy
based on the non-Galerkin method. We introduce the general ideas behind the method and present the
modified non-Galerkin method. This follows by the results section where we discuss the numerical
results in terms of the operator and grid complexities, number of non-linear and linear iterations, and
linear solver and total execution time. We finish with conclusion, future work and references.

Reservoir simulation

Multiphase flow of hydrocarbons in porous media is governed by a system of time-dependent nonlinear
partial differential equations. In this paper we consider flow of fluids comprising multiple components,
which may partition into multiple phases. For a system with nc components and np phases the general-
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 ized compositional flow equation can be written
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where φ the rock porosity, Ci,α is the mass fraction of component i in phase α , ρα is the phase fluid
density, Sα is the phase saturation, K the absolute permeability, krα the phase relative permeability, μα
the phase viscosity, pα the phase pressure, g the gravity constant, d the cell depth, qi the source term.

Additional equations define the thermodynamic equilibrium between components in different phases:

fiα = fiβ , β �= α, i = 1, . . . ,nc, (2)

where fiα is the fugacity, which is a measure of the tendency of component i to escape from phase α .

The phase pressures pα are related to each other through capillary pressures

Pcαβ = pα − pβ , β �= α, (3)

which are known functions of saturation. For a derivation of these equations see, for example, Aziz and
Settari (1979), Peaceman (1977).

The flow equations are discretized using the upstream finite-volume method. The coupled reservoir-well
linear system can be expressed as

Āx =
[

Arr Arw
Awr Aww

][
xr
xw

]
=

[
br
bw

]
= b. (4)

The subscript r refers to reservoir and w stands for well. We assume Ā∈R
n×n, br,xr ∈R

nr, bw,xw ∈R
nw.

The sub-matrices Arr and Aww are square nr×nr and nw×nw matrices respectively. Each sub-matrix of
the Jacobian represents a derivative, e.g. Awr is the derivative matrix of the well equations with respect
to the reservoir variables. The matrix Ā is typically very sparse. For example, some of examples of
sparsity pattern of the matrix Arr are illustrated in Figure 1. We assume that matrix A has the following
properties:

• The computational grid consists of nc cells or ‘points’, and each cell contains nu unknowns. Hence,
n = nc ×nu.

• Ā �= ĀT , i.e. Ā is non-symmetric.

• λ �= 0 ∀ λ ∈ σ(Ā), i.e. all eigenvalues are non-zero.

Traditionally, wells equations (variables) are eliminated using Schur complement step. This allows us
to apply CPR preconditioner to the reservoir cells without focusing on wells placements which leads
to decouple the pressure variables and the remaining unknowns. Below, the solution methods of the
pressure system denoted by A are discussed.

Problem description

As it was pointed out above, the reservoir models have tens to hundred millions of grid cells entailing
extremly complex geometries. The size and complexity of these problems require vast computational
resources and parallel computation. Hence, the state-of-the-art solvers, for example, the AMG precondi-
toner is used for parallel computing of large problems. Below, some of the issues related to the parallel
performance of AMG are discussed, which forms the problem description addressed in this paper.
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(a) 2250-case.

(b) 1639-case.

(c) 389559-case.

(d) 348809-case.

Figure 1 Sparsity patterns of A the different selected cases.

Scalability of AMG

Although, the greater part of the AMG algorithm, comprised of matrix and vector operations, can be 
parallelized in a straightforward way, it certainly requires communication and data exchange among 
processors. In addition, the parallelisation of the smoothing and coarsening processes is challenging 
Yang (2006). Therefore, the linear solver time is partially consumed by these processes. Figure 2 
illustrates the total execution time of the simulations and the running time of the linear solver on an 
increasing number of processor cores, for a problem of approximately 4 × 106 variables. The total 
and linear solver time are efficiently reduced when the number of cores gradually rises from 16 to 128. 
However, the timings corresponding to 256 processors are approximately equal to those on 128 processor 
cores. This indicates the loss of strong scalability. Experiments have shown that a substantial amount 
of time within the linear solver is required for the communication within AMG. Obviously, for a more 
efficient functioning of the simulator in parallel, the data communication within the multigrid method 
should be reduced. Hence, AMG solver remains weakly scalable, independent of the number of cores.

Solution Strategies

The costs of AMG are strongly related to the algebraic complexity. The number of nonzero elements 
affects the number of operations per cycle. A denser operator requires more operations and, hence, a
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Figure 2 Strong scalability of AMG solver for a case with 4 × 106 variables.

denser communication pattern. At the same time, large number of variables may entail the exchange 
of larger sets of data, which also requires communication between processors. Thus, the appropriate 
minimization of the operator and grid complexities is crucial for the reduction of communication.

Lower complexities inevitably lead to the loss of accuracy within the AMG hierarchy and accordingly 
slower convergence of the multigrid method. Since most of reservoir simulators uses only one AMG 
V-cycle per linear iteration, the sacrifice of the convergence speed should lead to a poorer approximation 
of the cell pressure. Although this certainly has a negative influence on the second stage of the CPR 
preconitioner, ILU(0) may sufficiently improve the solution and, therefore, prevent the number of linear 
iterations from rising significantly. For this reason, the overall effect of the reduction of complexities 
should be positive with regard to the linear solver and total execution time.

Below, we will discuss two solution strategies used to resolve the communication issue. Although both 
approaches decrease the number of nonzero entries within the hierarchy of AMG, the theory behind them 
is entirely different. The first solution strategy is aggressive coarsening. The aggressive coarsening is 
a substitute for the standard coarsening, because it modifies the coarsening scheme. By contrast, the 
second solution strategy, the non-Galerkin method, decreases the density of the existing coarse level 
operators and should be seen as an extension of the AMG algorithm.

Aggressive Coarsening

Aggressive coarsening was introduced in 1996 in Krechel and Stüben (1998). In Stüben (2000), it is 
suggested to apply aggressive coarsening to the finer levels in order to reduce the complexities. On the 
one hand, the application of aggressive coarsening drastically reduces the setup and solution costs, the 
complexity of the operators and the memory requirement. On the other hand, it decreases the efficiency 
of the smoothing procedure and encumbers the interpolation, because the prolongation operator deals 
with longer distances between coarse grid variables. According to Stüben (2000), the benefits of the 
aggressive coarsening strategy certainly outweigh its disadvantages, at least when applied to Ruge-
Stüben AMG. In Yang (2010) it is pointed out that aggressive coarsening can successfully be used 
with any coarsening algorithm. Similarly to the application of aggressive coarsening on classical Ruge-
Stüben AMG, in order to construct sparser coarse grid operators than those generated by PMIS. The 
most efficient manner to implement aggressive coarsening is by applying the PMIS algorithm twice.
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 Non-Galerkin method

Non-Galerkin method has been successfully applied in settings where geometric information is used to
aid the multigrid algorithms in constructing the sparsity patterns and choosing matrix coefficients Ashby
and Falgout (1996); Wienands and Yvneh (2009). We focus on the non-Galerkin method described
in Falgout and Schroeder (2014). This purely algebraic approach is based on the traditional AMG
techniques.

As problem size increases, the number of levels in the AMG hierarchy grows and denser coarse grid
operators are generated, see Falgout and Schroeder (2014). This leads to denser communication patterns
than existed on the fine level, because the processors that were not coupled on the fine level become
coupled. It is shown that in parallel the time spent on some coarse levels can actually be larger than
the time required for the fine level due to high density of the coarse grid operators(see, Gahvari et al.
(2011)). The increase in density is caused by the standard Galerkin operator R ·A ·P with R = PT .
The non-Galerkin algorithm replaces R ·A ·P with a sparser coarse grid matrix, which aims to improve
parallel scalability and maintain the convergence rate of AMG. The algorithm consists of two phases. In
the first phase the sparsity pattern of the non-Galerkin coarse grid operator is selected. While preserving
the row sum, the second phase removes the entries in R ·A ·P that lie outside the non-Galerkin sparsity
pattern. Below, non-galerkin algorithm is discussed in details.

Non-Galerkin Algorithm

The non-Galerkin method consists of two complementary parts: Compute sparsity algorithm and Lump-
ing algorithm. The non-zero pattern NNG for ANG is found by the Compute sparsity algorithm (see,
Falgout and Schroeder (2014)). The second part of the non-Galerkin method, the Lumping process,
performs the elimination of entries in AG based on the sparsity pattern NNG.

Compute sparsity

To compute the sparsity pattern, two processes are combined. One of the processes initializes the min-
imal sparsity pattern, while the other process targets the heuristic for mid-range and high frequency
eigenmodes. The minimal sparsity pattern is created using the prolongation operator P and the fine grid
discretization matrix A. It is defines as

N̄NG = {(i, j) such that
(
PT

I ·A ·P+PT ·A ·PI
)

i j �= 0}, (5)

where PI is the injection operator between the coarse and fine grids. The minimal sparsity pattern in
Equation (5) preserves the important entries of AG, independent of their magnitude, see Falgout and
Schroeder (2014). If it was based on the on the classical strength-of-connection operator the entries with
small magnitude would be removed. The sparsity pattern N̄NG is improved by the non-Galerkin method
in order to target the heuristic. Let the set of neighbours of i in NNG be given by

NNGi = { j such that (i, j) ∈ NNG}.
After the pattern NNG is initialized as the pattern of AG, the algorithm removes the entries from NNG
operating row by row. It start with entries with the smallest magnitude and proceeds until further elimi-
nation would violate

2 ∑
j �=NNGi

|aG
i j| ≤ γ ∑

j
|aG

i j|. (6)

The factor of 2 compensates for the maximum change made to AG when dropping an entry and lumping
its value to the allowed neighbours (see, Falgout and Schroeder (2014)).
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 Algorithm 1 Compute sparsity.

1: Data: AG,P,PI
2: NNG ← /0
3: for (i, j) such that aG

i j �= 0 do
4: NNG ← NNG ∪{(i, j)}
5: end for
6: for i to nrows(AG) do
7: Initialize set K: Km is index of mth smallest magnitude off-diagonal nonzero in row i
8: for m = 1 to |K| do
9: NNGi ← NNGi\Km

10: if 2∑ j �=NNGi
|aG

i j| ≤ γ ∑ j |aG
i j| then

11: continue
12: else
13: NNG ← NNG ∪Km
14: break
15: end if
16: end for
17: end for
18: for (i, j) such that

(
PT

I ·A ·P+PT ·A ·PI
)

i j �= 0 do
19: NNG ← NNG ∪{(i, j)}
20: end for
21: return NNG

Lumping

Let the non-Galerkin operator be comprised of entries aNG
i j . The lumping algorithm begins by initializing

ANG as a copy of AG. After that, each entry aNG
i j that is not in NNG is removed from ANG. A fraction of

the value of aNG
i j is added to each of j’s strongly connected neighbours in row i. This is done to preserve

the row sum of the Galerkin matrix as required by the heuristic. The lumping procedure uses as input the
strength-of-connection matrix, S, the Galerkin coarse grid operator, AG and the non-Galerkin sparsity
pattern NNG. The neighbours of j in S are defined as

NS j = {k such that s jk �= 0},
where s jk is an element of S. Subsequently, we find set U , which represents the strong connections of j
shared by the nonzero pattern of row i. The neighbours of the eliminated aNG

i j , to which its value should

be lumped, are stored in U . If no strong neighbours are found, i.e. U = /0, aNG
i j is lumped to the diagonal.

Finally, the algorithm symmetrizes ANG. Since this operation affects the row sums, it is followed by a
row preserving procedure. The scheme is shown in Algorithm 2.
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 Algorithm 2 Lumping.

1: Data: AG,S,NNG
2: ANG ← AG
3: for i to nrows(ANG) do
4: for j such that aNG

i j �= 0 do
5: if j /∈ NNGi then
6: U ← NS j ∩NNGi
7: if U = /0 then
8: aNG

ii ← aNG
ii +aNG

i j
9: else

10: U ←U\{i}
11: σ = ∑k∈U |s jk|
12: for k ∈U do
13: aNG

ik ← aNG
ik +(|s jk|/σ)aNG

i j
14: end for
15: end if
16: aNG

ik ← 0
17: end if
18: end for
19: end for
20: ANG ← 0.5

(
AT

NG +ANG
)

21: for i = 1 to nrows(ANG) do
22: aNG

ii ← aNG
ii +∑ j aG

i j −∑ j aNG
i j

23: end for
24: return ANG

Non-Galerkin for Reservoir Simulations Problems

In reservoir simulators, the resulting matrix is generally not symmetric and, hence, not symmetric
positive-definite (SPD) matrix. There is no previous related work that considers the application of the
non-Galerkin algorithm to not SPD matrices. Despite this fact, the non-Galerkin method was imple-
mented to solve reservoir simulation problems. Since the simulator makes no assumptions about the
symmetry of the coarse grid operators, the symmetrization step (line 20 to line 22) within the Lumping
algorithm was not included in the code. Furthermore, based on some experiments, the value of γ in
Algorithm 1 was set to 0.03.

Modified Non-Galerkin

The analysis of the coarse grid operators during the simulations reveals that the non-Galerkin matrices
typically satisfy most of the M-matrix properties. More precisely, the non-Galerkin operators generally
contain a number of positive off-diagonal entries, but frequently satisfy the remaining properties of the
M-matrix definition.
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 Algorithm 3 Lumping.

1: Data: AG,S,NNG
2: ANG ← AG
3: for i to nrows(ANG) do
4: for j such that aNG

i j �= 0 do
5: if j /∈ NNGi then
6: U ← NS j ∩NNGi
7: if U = /0 then
8: aNG

ii ← aNG
ii +aNG

i j
9: else

10: U ←U\{i}
11: σ = ∑k∈U |s jk|
12: for k ∈U do
13: aNG

ik ← aNG
ik +(|s jk|/σ)aNG

i j
14: end for
15: end if
16: aNG

ik ← 0
17: end if
18: end for
19: for l such that l �= i and aNG

il �= 0 do
20: if aNG

il > 0 then
21: aNG

ii ← aNG
ii +aNG

il
22: aNG

il ← 0
23: end if
24: end for
25: end for
26: return ANG

The importance of the M-matrix properties for the non-Galerkin algorithm is supported by several obser-
vations. Firstly, being an M-matrix guarantees the convergence of the basic iterative methods. Secondly,
AMG was originally designed for the M-matrices Briggs et al. (2000). Therefore, the use of coarse
grid operators with the M-matrix properties should be beneficial for the algorithm. Finally, M-matrices
belong to the more general class of monotone matrices, i.e. matrices with nonnegative inverses. Usually,
the use of monotone matrices considerably improves the performance of the Multiscale Finite Volume
method, which is closely related to two-grid AMG.

In the light of provided arguments, we remove the positive off-diagonal entries in order to enforce
as many M-matrix properties as possible. To preserve the row sums, as required by the non-Galerkin
method, the values of eliminated entries are lumped to the diagonal. We note that this process can change
the effect of the non-Galerkin method on the high and mid-range frequency modes, because it increases
the sparsity of the operators. The elimination of the positive off-diagonal entries is implemented within
reservoir simulator as a part of the Lumping algorithm. The modified lumping procedure used within
INTERSECT is presented in Algorithm 3.

Numerical Results

In this section we present results for the non-Galerkin method and the modified non-Galerking method
introduced in this paper. We have implemented both methods in a commercial reservoir simulator and
we will compare against Galerkin AMG, which is the default solver.

We describe the test cases in terms of the number of grid cells, fluid models and time discretization. We
evaluate the methods by comparing the characteristics provided below.
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(a) Second coarse level.

(b) Fifth coarse level.

Figure 3 Sparsity patterns. In Figure (a), the blue dots form sparsity pattern of the non-Galerkin oper-
ator, whereas the combination of the blue and red dots represents the sparsity of the Galerkin operator. 
In Figure (b), the red dots correspond to the Galerkin sparsity pattern, while the combination of the blue 
and red dots without squares shows the sparsity pattern of the non-Galerkin operator.

• Algebraic complexity

• Geometric complexity

• Time steps: the total number of time steps required to complete the simulation.

• Non-linear iterations: the number of non-linear iterations in the simulation.

• Linear iterations: the number of iterations used to solve the linear systems generated by the non-
linear solver.

• Linear solver time: the amount of time needed to solve the linear systems.

• CPU time: the overall computational time required to complete the simulation.

Test Cases

In Table 1 we present eleven test cases ranging from small toy models to larger real life test cases. We
consider black oil, iso-thermal and thermal compositional models with varying degree of heterogeneity
in the reservoir grid properties. We have named the cases based on the number of cells. Naturally, the
number of cells is equal to the number of rows in the pressure matrix A∗

pp from Equation (??). The
dimensions correspond to the total number of cells in the x-, y- and z-direction. Table 1 contains several
examples where the number of active cells is lower than the number of cells suggested by the dimensions.
In those cases, the domain includes a number of inactive cells and local grid refinements.

Non-Galerkin

Is this section we present results for the non-Galerkin method. For a fair comparison between the
different methods we have disabled any heuristics to reduce the setup costs of AMG as well as varying
the linear solver tolerances related to Newton forcing terms.
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(a) Third coarse level. (b) Fourth coarse level

Figure 4 Sparsity patterns. The blue dots form sparsity pattern of the modified non-Galerkin operator, 
whereas the combination of the blue and red dots represents the sparsity of the standard non-Galerkin 
operator.

I. Algebraic and Geometric Complexity

The effect of the non-Galerkin algorithm on the operator and grid complexity is demonstrated in Figure 
6a and 6b, respectively. Delta illustrates the difference in the complexities. In Figure 6a the decrease 
in the algebraic complexity is demonstrated. The total bar height represents the operator complexity 
when the Galerkin method is applied. The blue part of a bar shows the complexity obtained with the 
non-Galerkin approach. In Figure 6b we demonstrate the increase in the geometric complexity due 
to the non-Galerkin method. The total bar heights denotes the grid complexity with the non-Galerkin 
algorithm. The red part shows the complexity obtained with the Galerkin method.

In general, while maintaining the geometric complexity, the non-Galerkin algorithm significantly re-
duces the algebraic complexity. The in-depths analysis of the non-Galerkin coarse grids reveals that the 
increase in the geometric complexity originates from the coarsest levels, where the non-Galerkin algo-
rithm preserves more variables than the Galerkin approach. Moreover, the number of non-zero elements 
on the coarsest levels generated by non-Galerkin is usually higher than that of Galerkin. This implies 
that the decrease in the algebraic complexity, usually originating from the first three/four coarse levels, 
is slightly diminished by the coarser levels.

II. Small cases

For the small cases, the number of time steps and non-linear iterations are not changed when the non-
Galerkin method is applied instead of the standard Galerkin technique. The total number of linear 
iterations required for these cases is illustrated in Figure 7a.

II. Large cases

In Table 2 we observe that the number of time steps differs between the Galerkin and non-Galerkin 
algorithms. The number of non-linear iterations of the simulations with the Galerkin and non-Galerkin 
algorithms can be found in Table 3. We observe that the non-Galerkin method increases the number of
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Figure 5 The sparsity patterns of the Galerkin and non-Galerkin operators. The negative and positive 
off-diagonal entries are shown in red and black, respectively. The first row is formed by the Galerkin 
operators starting from the second coarse level. The second row shows the non Galerkin operators on 
the same levels.

(a) Algebraic.

(b) Geometric.

Figure 6 The influence of the non-Galerkin algorithm on the algebraic and geometric complexity with 
respect to the Galerkin method.

non-linear iterations for all the large cases except the 348809-case. The maximal increase is 28.8%.

The number of linear iterations is demonstrated in Figure 7b. Clearly the number of linear iterations 
increases for the non-Galerkin method. In Figure 8 we present the cumulative number of linear iterations 
for the 389559-case which is representative for the other large test cases. We can observe that linear 
solver is slightly less robust over the whole simulation and not just for a single patch. This indicates that 
the convergence rate of the non-Galerkin method is worse than default AMG as other components of 
the linear solver have not changed. However, the increase in linear iterations is acceptable given the fact 
that the non-Galerkin method has a more favorable sparsity pattern that will affect strong scalability.

In Figure 9 we observe that the total simulation time is increased when the non-Galerkin method is 
applied. As mentioned above, the increase in time arises mainly from the setup phase, that consists of 
the construction of the injection matrix, the sparsity pattern calculation and the lumping procedure.
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(a) Small cases.      (b) Large cases.

Figure 7 Number of linear iterations with the Galerkin and non-Galerkin coarse grids.

Figure 8 Cumulative number of linear iterations of the 389559-case with Galerkin and non-Galerkin 
methods.

Modified Non-Galerkin

In this section we present the results of the Modified non-Galerkin method and compare to the default 
AMG solver and non-Galerkin method. All benchmarks are without any heuristics to reduce setup costs 
and linear iterations.

I. Algebraic and Geometric Complexity

The replacement of the undesired off-diagonal values decreases the algebraic complexity of the Modi-
fied non-Galerkin method compared to the standard non-Galerkin metod by approximately 1.5%. This 
implies that the complexity is substantially improved in comparison with the Galerkin method. For the 
small 576-, 63- and 1000-case, the complexities are unchanged, because the coarse grid operators of 
these cases contain no positive off-diagonal entries. But for the 1722780-case, the decrease is excep-
tionally large, almost 25%. The effect of the modifications on the geometric complexity of standard 
non-Galerkin seems arbitrary. The geometric complexity can be slightly higher, lower or remain com-
pletely unchanged. The differences in the geometric complexity are not higher than 0.5%.

II. Small cases
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Figure 9 Total simulation time and linear solver time with Galerkin and non-Galerkin methods. The 
total bar length is equal to the total simulation time, whereas the bottom part denotes the linear solver 
time.

The Modified non-Galerkin method does not change the number of time steps and non-linear iterations 
compared to the Galerkin method. However, in some cases there is a significant effect on the number 
of linear iterations as presented in Figure 10a. There are no changes for the 1000-case and the increase 
for the 1639- and 2528-case is negligible. For the remaining three cases the difference is noticeable: the 
increase for the 576-case is 40%. From the previous results follows that for the 2250-, 576- and 63-case 
the modified version also significantly increases the number of linear iterations compared to the standard 
non-Galerkin approach.

(a) Small cases.      (b) Large cases.

Figure 10 Number of linear iterations with the Galerkin and modified non-Galerkin coarse grids.

III. Large cases

In Table 2 and Table 3 we present the number of time steps and non-linear iterations of the modified
non-Galerkin and Galerkin method respectively. The Modified non-Galerkin method requries more
non-linear iterations than the Galerkin method and the number of linear iterations increases for all cases
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 except the 164944-case. However, the duration of a linear iteration is reduced when the Galerkin op-
erators are replaced by the non-Galerkin operators with negative off-diagonal entries. Therefore, when
the difference in the number of linear iterations is not too large, the linear solver time of the modified
non-Galerkin is lower than the Galerkin linear solver time. This is shown in Figure 11a.

(a) Galerkin.      (b) Standard non-Galerkin.

Figure 11 Total simulation time and linear solver time of the modified non-Galerkin method compared 
to the Galerkin and standard non-Galerkin method. The total bar length is equal to the total simulation 
time, whereas the bottom part denotes the linear solver time.

The modified non-Galerkin algorithm improves the results of the standard non-Galerkin method in 
terms of linear solver and total time as illustrated in Figure 11b. The total simulation time is significantly 
re-duced for the thermal 1722780- and 164944-case. In addition, a small decrease is observed for the 
348811-case. On the other hand, the CPU time of the 389559- and 348809-case increases when the 
modified non-Galerkin algorithm is used instead of the Galerkin method. The increase originates from 
the linear solver and linearization time. Since the number of non-linear iterations increases considerably 
for the 389559-case, the contribution of the linearization time exceeds the difference caused by the lin-
ear solver. However, we should point out that linearization is embarressingly parallel, and thus shifting 
work from the linear solver to the non-linear solver will benefit the strong scalability.

Conclusions

In this paper we reviewed the non-Galerkin method for reservoir simulation and introduced the modified 
non-Galerkin method which improves the M-matrix properties of the non-Galerkin coarse grid 
operators. We have showed that the non-Galerkin method can be a viable alternative to the Galerkin 
method whilst reducing the sparsity pattern of the AMG coarse grid to allow for an improved strong 
scalability of the linear solver. Moreover, we have showed that the Modified non-Galerkin method is 
more efficient and robust than the non-Galerkin method and even outperforms the Galerkin method in 
terms of CPU time due to the reduced sparsity pattern. Future work will focus on the introduction of 
heuristics to reduce the setup costs of the Modified non-Galerkin method. Furthermore, the obtained 
results reveal that on the coarsest levels the Galerkin algorithm can be more efficient than the non-
Galerkin approach. Thus, the restriction of the number of levels, to which the non-Galerkin method is 
applied, may be used to optimize the structure of the AMG hierarchy.
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Appendix

Active cells Dimensions Fluid model Implicitness
Number of

Number of active
phases components

2,250 15×15×10 Black Oil Isothermal Fully Implicit 4 4

576 24×1×24 Black Oil Isothermal Fully Implicit 4 4

63 1×7×9 Black Oil Isothermal Fully Implicit 3 3

1,639 20×15×8
Compositional

AIM IMPES 3 9
Isothermal

2,528 9×9×4
Compositional

AIM IMPES 3 10
Isothermal

1,000 10×10×10 Black Oil Isothermal Fully Implicit 3 3

389,559 154×91×35
Compositional

AIM IMPES 3 13
Isothermal

348,809 238×192×114 Black Oil Isothermal Fully Implicit 3 3

348,811 238×192×114
Compositional

AIM IMPES 3 8
Isothermal

1,722,780 18×1126×85
Compositional Thermal

Fully Implicit 3 3
with steam permitted

164,944 not a ‘box’
Compositional Thermal

Fully Implicit 3 3
with steam permitted

Table 1 General properties of the test cases.

Algorithm
Case

389559 348809 348811 1722780 164944

Galerkin 1165 2337 3036 447 28418

Non-Galerkin 1312 2276 3090 456 28487

Modified non-Galerkin 1582 2319 3208 463 28403

Table 2 Number of time steps with the Galerkin and non-Galerkin coarse grids.

Algorithm
Case

389559 348809 348811 1722780 164944

Galerkin 7296 5783 12701 1689 30820

Non-Galerkin 9394 5626 13609 1778 31118

Modified non-Galerkin 12678 5834 14695 1750 30779

Table 3 Number of non-linear iterations with the Galerkin and non-Galerkin coarse grids.
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