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Abstract The parallel performance of a numerical solution
method for the scalar 2D Helmholtz equation written for
inhomogeneous media is studied. The numerical solution
is obtained by an iterative method applied to the precon-
ditioned linear system which has been derived from a fi-
nite difference discretization. The preconditioner is approx-
imately inverted using multigrid iterations. Parallel execu-
tion is implemented using the MPI library. Only a few it-
erations are required to solve numerically the so-called full
Marmousi problem [12] for the high frequency range.

1 Introduction

The Helmholtz equation, which is also called a reduced wave
equation, in scalar or vector form is often used to approxi-
mately model wave propagation in inhomogeneous media.
The demand for reliable numerical solutions to such type of
problems is repeatedly encountered in geophysical and op-
tical applications [13], [14]. In geophysical applications, for
example, wave propagation simulations are used for the de-
velopment of acoustic imaging techniques for gaining knowl-
edge about geophysical structures deep within the Earth’s
subsurface.

The discretization of the corresponding Helmholtz prob-
lem is usually based on finite difference (FD) or finite el-
ement discretization (FEM) schemes which are relatively
simple and, at the same time, effective and increasingly pop-
ular. However, in order to maintain acceptable numerical ac-
curacy in the FD or FEM solutions, fine enough grid spac-
ings per wave length need to be employed [3], [4]. This im-
plies that for most realistic cases the penalty in terms of com-

A.V. Kononov · S.W. de Leeuw
Computational Physics Group,
PCMT, DelftChem
Delft University of Technology
E-mail: a.v.kononov@tudelft.nl

C.D. Riyanti · C.W. Oosterlee · C. Vuik
Numerical Analysis Group
Delft Institute of Applied Mathematics
Delft University of Technology

putational costs and memory requirements is tending to be
extremely high.

These severe limitations, as it will be shown further, may
effectively be resolved by using the power of multiprocessor
computer architectures, such as, for example, Linux com-
puter clusters [15]. Unlike direct solution methods, itera-
tive methods allow effective parallelization and require less
memory utilization [7], and thus enable one to compute the
solution of Helmholtz problems of practical size in reason-
able time. In [8], for example, a parallel solver for the scalar
Helmholtz equation is considered that is based on a parallel
domain decomposition method. This solver is perfectly ap-
plicable to layered-like media, in which the layers are topo-
logically similar to the layers of uniform thickness, and also
the parameters vary smoothly within layers (this is usually
the case in underwater acoustics). In [9], a parallel fictitious
domain method has been used for the solution of 3D scatter-
ing problems such as a scattering of time-harmonic acoustic
waves by an obstacle, showing good scalability properties.

The parallel approach, which is proposed in the present
paper is rooted from the sequential code that is based on the
method described in [1], [2]. So, the parallel algorithm is in
general identical to the sequential one. This method appears
to be advantageous because it is relatively simple and effec-
tive for the problems in which the media parameters can be
strongly heterogeneous and the acoustic frequencies and the
corresponding wavenumbers are relatively high (geophysi-
cal applications). Effectiveness of the algorithm is confirmed
by the fact that only a few iterations are required to solve nu-
merically the so-called full Marmousi problem [12] for the
high frequency range. Moreover, the solver’s relative sim-
plicity is important for an optimal parallelization procedure.

2 Model

Consider wave propagation in two space dimensions, which,
in the frequency domain, for a constant density media, is de-
scribed by the Helmholtz equation. The complex wave field
amplitude due to external and internal sources obeys the fol-
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lowing equation (here we follow [2])

A u≡
(
−∂xx−∂yy− (1− iα)k2(x,y)

)
u = b(x,y), (1)

(x,y) : Ω ∈ R2,

here u = u(x,y) represents some physical quantity charac-
terizing the field (i.e. pressure), k(x,y) = 2π f /c(x,y) is the
wavenumber, c(x,y) the local speed of sound in a inhomo-
geneous medium, f is the frequency, α : (0 ≤ α � 1) de-
scribes attenuation in the medium, and b(x,y) is the source
term. Boundary conditions at the boundary Γ = ∂Ω has to
be chosen in such a way that an infinite space can be ap-
proximated by a bounded computational domain. In general,
there are two possibilities of so-called absorbing boundary
conditions [5] or as an alternative - the perfectly matched
layer [6]. In the present case the second order Sommerfeld
radiation boundary condition is used:

AΓ u = 0 :
∂ u
∂ν

− i k
(

1+
1

2k2
∂ 2

∂τ2

)
u = 0 on Γ , (2)

where ν is the outward unit normal vector at the boundary,
and τ is a vector pointing in the tangential direction. Numer-
ical accuracy in the solution is controlled by the number of
points per wavelength n f , which is typically chosen to be
10− 12 points. Additionally, the number of wavelengths in
a domain of size L equals L f /cmin. Wavenumber k can be
large, this means that the operator in Eq. (1) has both pos-
itive and negative eigenvalues, and, therefore matrix A, the
FD approximation of Eq. (1), is indefinite.

In geophysical applications, information on the local speed
of sound in an inhomogeneous medium is usually stored in a
large complex-valued array C[i, j]. The so-called Marmousi
synthetic data set is an remarkable example of such array,
which was first released as a test for velocity estimation [12].
It is a complex acoustic 2-D data set based on the geology of
the Cuanza basin in Angola, see Figure 3. Its structural style
is dominated by growth faults which arise from salt creep
and give rise to the complicated velocity structure in the up-
per part of the model. Later it was discovered that many
numerical algorithms used for wave propagation modeling
have failed to produce satisfactory results for the medium
with such velocity profile. Therefore the Marmousi data set
has become a popular very effective test for new numerical
algorithms.

3 Numerical solution method

We consider the well-known 5-point discretization stencil
with truncation error O(h2). In stencil notation it reads as:

Ah u
1
h2

 −1
−1 4−h2(1− iα)k2(xi,y j) −1

−1

 (3)

By applying this discretization to Eq. (1), (2) one obtains the
following linear system

Aφ = b, A ∈ C N×N , φ ,b ∈ C N (4)

where N is the number of unknowns in the computational
domain Ωh. The sparse matrix A in Eq. (4) is complex val-
ued due to both boundary conditions and the damping term
in Eq. (1). Moreover A is in general symmetric, non-Hermitian,
indefinite and, due to accuracy requirements, large for high
wave-numbers and large computational domains. The nu-
merical solution of system (4) is obtained by an iterative
method applied to the preconditioned linear system, namely
preconditioned Bi-CGSTAB [10] is used, which converges
somewhat faster than other Krylov subspace methods (e.g.
GMRES, QMR). The preconditioned system reads as

AM−1
ψ = b, with φ = M−1

ψ, (5)

where the preconditioner M proposed in [2] is, in fact, the
damped version of the operator given by Eq. (1)

M ≡−∂xx−∂yy− (β1− iβ2) k2(x,y), (6)

where β1,2 ∈ R are adjustable parameters. The method of
choice is with the parameters is (β1,β2) = (1,0.5), as was
determined in [2]. Boundary conditions for the precondi-
tioner are identical to the original conditions (2). The pre-
conditioner is approximately inverted by using multigrid one
iteration [18].

The choice for multigrid as an inner solver is based on
the study of a class of preconditioners for Helmholtz type
problems, which was carried out in work [1].
Multigrid Components. Here we use standard multigrid
coarsening that is doubling the mesh size h in every direc-
tion [18]. For smoothing the point-wise Jacobi relaxation
with under-relaxation is used, which is well-parallelizable.
The Galerkin coarse grid operator is used for the discrete
coarse grid operators M2h, M4h, . . . , which is defined as fol-
lows:

M2h = R2h
h MhPh

2h, M4h = R4h
2hM2hP2h

4h , . . . , (7)

where Mh corresponds to discretization of Eq. (6) on the h,
grid, R2h

h and Ph
2h denote the restriction and prolongation op-

erators, respectively. For heterogeneous problems, the Galerkin
coarse grid discretization is a natural choice. Moreover, for
the boundary conditions containing first and second deriva-
tives, the Galerkin coarse grid discretization defines the ap-
propriate coarse grid boundary conditions automatically.

The prolongation operator is based on operator-dependent
interpolation, which is similar to de Zeeuw’s transfer op-
erators [11]. As the restriction operator the full weighting
operator is employed. The choice for the combination of a
full weighting restriction and the operator-dependent inter-
polation is based on the fact that it brings a robust conver-
gence for a variety of Helmholtz problems with constant and
non-constant coefficients, especially for the case of strongly
varying coefficients, as in the Marmousi problem discussed
further.
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Fig. 1 Matrix A structure and data mapping onto 3 CPUs.

4 Parallel program structure

As already indicated, using a parallel computing environ-
ment a program that is able to take advantage of such com-
puting power is needed to solve realistic wave propagation
problems in 2D and especially in 3D.

Let us consider the functional structure of the parallel
program. Main functional blocks of the numerical solution
procedure, namely the iterative solution block and the multi-
grid preconditioner, are inherently data parallel. Due to this,
parallelization of the sequential program can essentially be
based on the data parallel concept [17], [18]. Following this
concept, the program data originated by the problem (the
matrix, the solution vector and subsidiary storage vectors)
has to be distributed between processors of a cluster. For the
data exchange between processors, we use the well-known
standard MPI library [16].

It is natural to decompose the matrix A and vector φ

components as shown in Figure 1. Such a decomposition
can be classified as rowwise block-striped decomposition.
It has to be noted that the communication pattern (i.e. the
amount and structure of the data) is completely determined
by the type of decomposition. For our numerical test we use
a rectangular computational domain, which is usually used
in geophysics. In order to minimize the amount of data to be
exchanged between computer nodes the computational do-
main has to be partitioned in the direction that is perpendic-
ular to the longest dimension. The rowwise matrix decom-
position corresponds to rectangular parallel strips which are
partitioning the domain, see Figure 2.

It has to be noted that such decomposition is not quite
optimal when the number of processors P is rather large P &√

N ≈ 102. Therefore, it is quite pragmatic to assume that
the dimension of the target problem is rather large and the
number of processors available is considerably less than the
problem size.

We now consider the main operations which are required
by the program in some detail.

– Matrix setup.
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Fig. 2 It is convenient to introduce local coordinate system
{N,S,E,W}, in which a particular processor receives data packets
from North or (and) South.

– Preconditioner setup.
– Matrix vector multiplications.
– Vector updates.
– Dot products.
– Preconditioning operations.
– Solution output.

All these operations are performed in fully in parallel, except
some preconditioning multigrid operations which are per-
formed sequentially (for optimal performance) starting from
a certain coarse level, which, in turn, is computed during the
setup phase.

During Matrix setup the program has to read a large bi-
nary file that contains the data related to the local wave ve-
locities. This operation has been rewritten in parallel mode
by setting for each MPI-process a special data offset, so that
each processor reads in parallel its own data chunk from
the binary file which is usually stored at the so-called mas-
ter node. Also at this stage, at each processor the descriptor
structure is created, which describes the identification num-
ber of neighboring processor, the boundaries, i.e. if a partic-
ular boundary belongs to computational domain boundary
or it is the data partition between processors. The Precon-
ditioner setup consists of creating at each processor node
the local coarse grid operator matrices together with the de-
pended prolongation and restriction weights arrays. Also at
this stage the number of the multigrid level (last in paral-
lel - LIP) is computed until which multigrid computations
are performed in parallel. The next coarser levels are com-
puted in sequential mode without communication between
MPI-processes. In turn, the LIP level is found if the number
of grid points stored at the particular processor node is less
than some predefined number (we use 100 points), which
depends on hardware parameters and can be found from test
runs.

The Matrix vector multiplication is one of the key opera-
tions used by the iterative solution procedure. It is supposed
to be implemented with the use of the most effective paral-
lel approach. Although at the finest level the 5-point stencil



4 A.V. Kononov et al.

is effectively used, at the coarse levels some zero stencil el-
ements become non-zeros during the coarse grid operators
setup. Therefore, it is convenient to store the matrix by 9-
point finite difference stencils as a linear array, then matrix-
vector multiplication has the following form

yi j =
1

∑
l=−1

1

∑
m=−1

Ai j[lm]xi+l j+m, (8)

here the summation indices l,m describe the summation over
stencil components stored in the row related to a i, j grid
point. From this equation it is seen that in order to accom-
plish matrix-vector multiplication the neighboring proces-
sors have to exchange the adjacent solution vector compo-
nents. Such communication, for example, has been imple-
mented by the MPI library functions [16]:

MPI_Send_Init(...)
MPI_Recv_Init(...)
MPI_Startall(...)
MPI_Waitall(...)

The Vector updates do not require any communication
between neighboring processors, which means in particular
that this operation scales perfectly.

The Dot products and similar operations effectively need
one global communication communication between all MPI-
processes, which can implemented using:

MPI_Allgather(...)

The Preconditioning operations consist of the prolon-
gation and restriction operations, and Jacobi pre- and post-
smoothing operations. As already mentioned, after some pre-
defined multigrid coarse level the program execution switches
from a parallel to a sequential mode in order to optimize
performance. Such a program flow is governed by a special
variable, which stores the current multigrid level and con-
trols the behavior of all functional units of the parallel pro-
gram.

The Solution output is performed in a parallel regime.
Each MPI-process outputs a locally stored part of the solu-
tion vector into its own file. Then, these output files can be
merged into the global solution output file if necessary.

5 Parallel performance results

An effective way to assess the performance of a parallel pro-
gram is to measure its execution time T as function of the
number of processors Np. Additionally the so-called par-
allel efficiency can be evaluated that indicates how well a
parallel program scales. It is defined as follows

E (Np) =
1

Np

T (1)
T (Np)

. (9)

Accordingly, if a program scales well then its efficiency is
≈ 1. Otherwise, low efficiency indicates that communication
overhead prevails over computation. For the tests we have

(a) (b)

Fig. 3 Models considered: (a) the wedge problem, (b) the Marmuosi
problem.

Fig. 4 An example of acoustic filed pattern for the case of the Mar-
mousi problem.

Table 1 Wedge: f=60 Hz, Grid=481x801, Number of iterations = 32,
Damping 5%

Np 1 2 4 8
Time 47.98 24.60 13.11 6.91
Mem. 286.5 164.2-165.6 92.8-108.9 54.7-69.9

Speedup 1 1.95 3.66 6.95
MF: Time 58.68 30.0 15.72 8.14
MF: Mem. 232.2 137.1-138.4 79.2-95.4 48-63.1
Speedup 1 1.95 3.73 7.2

chosen two model problems: the wedge problem and the
Marmousi problem. The test examples differ substantially
in the complexity of the sound velocity profile, see Figure 3,
which, in turn, affects the number of iterations.

The wave field in a domain is excited by a harmonical
delta-like source that is applied at the top of the compu-
tational domain. An example of field pattern for the case
of the Marmousi problem is shown in Figure 4. We also
compare a Full Matrix (FM) program which stores the co-
efficient matrix A with a so-called Matrix-free MF variant,
which only stores the main diagonal (i.e. a variant with op-
timized memory usage). For the tests we use a Linux cluster
which consists of a number single processor PC’s, namely
AMD Athlon(TM) XP 2600+ interconnected with an Ether-
net switch.

Results averaged over few runs are shown in Table 1. The
table presents CPU-time, memory utilization, and relative
speedup for the wedge problem and the source frequency
f = 60 Hz, grid size 481x801, and convergence achieved af-
ter 32 iterations. Here execution time denoted by ’Time’ is
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Table 2 The Marmousi: f=30 Hz, Grid=2001x534, Number of itera-
tions = 38, Damping 5%

Np 1 2 4 8
Time 158.01 79.76 40.90 21.59
Mem. 793.7 426.3-428.4 225.3-246.3 126.2-147.2

Speedup 1 1.98 3.86 7.32
MF: Time 139.64 69.92 35.48 18.28
MF: Mem. 643.4 351.2-353.2 191.9-212.9 109.5-130.5
Speedup 1 1.99 3.93 7.63

Table 3 The Marmousi: f=60 Hz, Grid=2501x751, Number of itera-
tions = 75, Damping 5%

Np 2 4 8 10
Time 223.0 110.06 59.3 49.01
Mem. 530.-532. 270.-274.2 138.0-141.1 112.2-115.05

Speedup 1 2.03 3.76 4.55
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Fig. 5 Parallel efficiency of the MF program.

measured in seconds, and memory usage per processor node
denoted by ’Mem.’ is measured in MBytes. Data shown in
Table 1 indicates that for a relatively small problem the FM
program is faster than the MF program because of recom-
puting of the matrix elements at the boundary of the domain
at each iteration step. However, the MF program scales bet-
ter than the FM program because of the better ratio between
computation and communication. Moreover, it is clear that
the MF program uses less memory and it will gain more for
really large problems. In Table 2 the data related to the Mar-
mousi model are shown. Now the MF program outperforms
the FM variant since the amount of inner (not related to
the boundary points) computations prevails and extra time is
necessary to invoke matrix elements from a relatively large
array. Table 3 shows run data obtained using a larger grid for
the MF program only because of its superior performance.
In this test due to memory limitations, it was only possible to
start the test on a two node computer configuration. Results
show a very satisfactory scalabity of the program with re-
spect to the wall clock time and memory usage. In Figure 5
the graphs of the parallel efficiencies for the full Marmousi
case f=30 Hz are shown. Here, similarly to the parallel ef-
ficiency which is evaluated according to Eq. (9), we have
evaluated the parallel memory usage efficiency. Moreover,
it can be additionally noted that the nonzero small damping
may substantially reduce the number of iterations. From the

graphs the following conclusions can be drawn. The paral-
lel scalability of the program is quite good. This is mostly
due to the well parallelizable multigrid preconditioner that
consumes most of the computational time. Moreover, better
results can be achieved by using a faster network. At first
glance one may notice that the memory usage does not scale
well, however, one should bear in mind that a substantial
amount of memory is allocated by the MPI library buffers.
We have not run the program on larger numbers of proces-
sors, since our actual target is 3D. Having the 3D version
ready, it is possible then to make further parallel optimiza-
tion in order to achieve maximum parallel performance.

6 Conclusions

In this paper we have studied the numerical performance of
parallel solution of a heterogeneous 2D Helmholtz equation.
The most important conclusions of the numerical tests are
the following:

• Memory and performance limitations for large problems
can effectively be resolved by using a parallel computing
approach.

• The multigrid preconditioner shows a satisfactory paral-
lel efficiency.

• In the case of 3D problems even better parallel scalabil-
ity may be expected.

• Using a parallel computing environment, the full Mar-
mousi can be solved in only a few iterations, in reason-
able time.
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