
A STABLE SPH DISCRETIZATION OF THE ELLIPTIC OPERATOR WITH

HETEROGENEOUS COEFFICIENTS

ALEXANDER A. LUKYANOV† AND KEES VUIK†

Abstract. Smoothed particle hydrodynamics (SPH) has been extensively used to model high

and low Reynolds number flows, free surface flows and collapse of dams, study pore-scale flow
and dispersion, elasticity, and thermal problems. In different applications, it is required to have

a stable and accurate discretization of the elliptic operator with homogeneous and heterogeneous

coefficients. In this paper, the stability and approximation analysis of different SPH discretization
schemes (traditional and new) of the diagonal elliptic operator for homogeneous and heterogeneous

media are presented. The optimum and new discretization scheme is also proposed. This scheme

enhances the Laplace approximation (Brookshaw’s scheme [1] and Schwaiger’s scheme [2]) used in
the SPH community for thermal, viscous, and pressure projection problems with an isotropic ellip-

tic operator. The numerical results are illustrated by numerical examples, where the comparison
between different versions of the meshless discretization methods are presented.

1. Introduction

Smoothed particle hydrodynamics (SPH) was developed a few decades ago to model inviscid fluid
and gas flow dynamics in astrophysical problems [3–6]. The SPH is an interpolation-based numerical
technique that can be used to solve systems of partial differential equations (PDEs) using either
Lagrangian or Eulerian descriptions. The nature of SPH method allows to incorporate different
physical and chemical effects into the discretized governing equations with relatively small code-
development effort. In addition, geometrically complex and/or dynamic boundaries, and interfaces
can be handled without undue difficulty. The SPH numerical procedure of calculating state variables
(i.e., density, velocity, and gradient of deformation) are computed as a weighted average of values in
a local region. Despite a few advantages of SPH method, this method is not free from disadvantages.
For example, for fluids, gases, or solids with non-trivial boundaries there is incompleteness of the
kernel support combined with the lack of consistency of the kernel interpolation in conventional
meshless methods which results in fuzzy boundaries. In some cases, this can be fixed by an automatic
incorporation of the boundary condition [3]. The completeness of mesh free particle methods was
discussed in [7]. However, care must be taken to ensure that variables whose values do not approach
zero at boundaries are accurately represented.

It has been observed in the literature that meshless methods (e.g., SPH) are not free from insta-
bilities, especially in the modeling solid mechanics problems. For example, the tensile instabilities
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were identified in [8] by performing the Neumann analysis of the one-dimensional governing equa-
tions (conservation laws). Therefore, different stabilization techniques have been developed. It is
important to note at this point that it is very difficult to perform the general Neumann analysis
in two- and three-dimensions. Furthermore, the high-frequency instability results from the low
order discretization (rank deficient) of the divergence operator. The tensile instability results from
the interaction between the second derivative of the Eulerian kernel (i.e., computed kernel in the
Eulerian coordinates) and the tensile stress. The tensile instability only occurs for the Eulerian
kernels because the Eulerian kernels depend on both the stress and the second derivative of the
kernel. It has been shown [9] that in the case where the kernel is a function of the Lagrangian
coordinates (the Lagrangian kernel), tensile instability does not occur. A comprehensive analysis
on this subject can be found in [9]. Recently, some regularization and stabilization of SPH schemes
were proposed in [10], [11].

Since its introduction, SPH has been successfully used to model a wide range of fluid flows and
the behavior of solids subjected to large deformations. For example, the SPH method was applied
to simulate high energy explosions [12] and impact [13, 14], most notably free surface flows and
collapse of dams [15], elastoplasticity [14, 16–18], to model low Reynolds number flows [19, 20], to
study pore-scale flow and dispersion [21,22], and for thermal problems [2, 17,23].

In different applications including, but not limited to, fluid flow related problems, it is required
to have the stable and accurate discretization of the following operator (diagonal elliptic operator),
which is the research subject of this paper:

L (u) = −∇ (M (r)∇u (r))− g (r) , ∀r ∈ Ω ⊂ Rn,

M (r) ∈ {diag[m(r)] : m(r) ∈ Rn+, m (r) ∈ L2 (Ω)}, diag : Rn → Rn×n,
(1)

where u (r) is the unknown scalar or vector variable field, Mαβ (r) is the diagonal matrix of the
mobility field, e.g., one example includes Mαβ (r) = m (r) δαβ , α, β = 1, . . . , n;, where m (r)
is the mobility scalar field, δαβ is the Kronecker symbol, n = 1, 2, 3 is the spatial dimension.
The sink/source term g (r) is assumed to be zero in this paper. Consider the operator in the
expression (1) with piecewise continuous coefficients M (r) in Ω. It has been noticed that some
of the numerical methods for elliptic equations may violate the maximum principle (i.e. lead to
spurious oscillations). Therefore, proposed methods must satisfy a discrete maximum principle to
avoid any spurious oscillations. This is also applicable to meshless discretizations. Usually, the
oscillations are closely related to the poor approximation of the variable gradient ∇u in the flux
computation. In this paper, different numerical discretizations of the elliptic isotropic operator are
analyzed. The objective of this paper is to develop numerical scheme satisfying the two-point flux
approximation nature in the form

L (u) ≈
∑
J

VrJΨ ([u (rJ)− u (rI)] , rJ − rI)− g (rI) , (2)

where J is the neighboring particle of the particle I, VrJ is the J - particle volume, Ψ is the special
kernel. This structure (2) allows to have a better analysis of the stability and monotonicity. Fur-
thermore, this will allow to apply upwinding strategy during the solution of nonlinear PDEs. The
optimum discretization scheme of the shape (2) is proposed in this paper. This scheme is based
both on the Laplace approximation (Brookshaw’s scheme [1]) and on a gradient approximation
commonly used in the SPH community for thermal, viscous, and pressure projection problems.
The proposed discretization scheme is combined with mixed corrections, which ensure linear com-
pleteness. The mixed correction utilizes Shepard Functions in combination with a correction to
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derivative approximations. In corrected meshless methods, the domain boundaries and field vari-
ables at the boundaries are approximated with the improved accuracy comparing to the conventional
SPH method. The resulting new scheme improves the particle deficiency (kernel support incom-
pleteness) problem. The outline of the paper is as follows. In section 2, the existing discretizations
of the Laplace operator with the building blocks necessary for these methods are discussed. In this
section, the SPH kernel and its gradient properties are also discussed. The description of mesh-
less transmisibilities and their connections to the existing mesh-dependent discretization schemes is
given in section 3 including the construction of a new meshless discretization scheme. The approx-
imation, stability, and monotonicity analysis are performed in section 4. The numerical analysis of
different boundary value problems is presented in section 5. The paper is concluded by section 6.

2. SPH discretization of the Laplace operator

The meshless approximations (SPH approximations) to the operator (1) with heterogeneous and
homogeneous coefficients are presented in this section. Let us consider a rectangle in Rn, n = 1, 2, 3:

Ω = {r = {xi} ∈ Rn | 0 < |xi − ai| < li, li ∈ R+, ∀i = 1, . . . , n} (3)

as the numerical domain. Here, ai are the center coordinates of the rectangular and li are the side
lengths. The following norms are used to quantify the accuracy of different approximations for the
entire numerical domain Ω:

‖f‖p
Ω̄

=

∑
ξk∈Ω̄

Vξk (|f |)p
 1

p

, ‖f‖p
Ω̃

=

∑
ξk∈Ω̃

Vξk (|f |)p
 1

p

(4)

where f is the approximated physical quantity, Vξk is the volume of the particle ξk, Ω̄ denotes entire

domain including boundary particles, Ω̃ denotes only internal part of the domain Ω.
The proposed discretization schemes should be compatible with a discontinuous m (r) (or piece-

wise function) coefficient of the operator (1) since this coefficient cannot be differentiable in the
classical sense. The standard SPH spatial discretization of the Laplace operator (1) arises from the
following relations (g (r) = 0, ∀r):

〈L (u (rI))〉 = lim
h̃I→0

∫
ΩrI ,h̃I

L (u (r))W
(
r − rI , h̃I

)
dVr ≈

≈ lim
h̃I→0

 ∫
ΩrI ,h̃I

M (r)∇u (r) · ∇W
(
r − rI , h̃I

)
dVr

 ,
(5)

where W
(
r − rI , h̃I

)
is the kernel that weakly approximates the Dirac delta function δ (r − rI)

but with finite characteristic width h̃I around the particle I. The effective characteristic width
h̃I will be defined in the upcoming section using real smoothing particle length hI . However, it is
important to note that, in the case of the homogeneous particle distribution, it is common to use
h̃I = f ·hp, f ≥ 1, where hp is the inter-particles distance. Hence, it is important that h̃I and hp are
not mixed up during the analysis. The control volumes in the meshless discretization are the patches,

which are interior to the support of the kernels W
(
r − rI , h̃I

)
, i.e. ΩrI ,h̃I = supp W

(
r − rI , h̃I

)
,

h̃I is the diameter (or smoothing length) of the particle I, and r, rI are points in Euclidean
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space Rn. Additionally, it can be required that the kernels are radially symmetric and compactly
supported (supp W ) as:

ΩrI ,h̃I = supp W = {rJ | W (rJ − rI , h̃IJ) 6= 0}, (6)

where h̃IJ is the effective smoothing length between particles located at rI and rJ , which will be
defined in the upcoming section. From the definition of the ΩrI ,h̃I , it follows that there is an infinite
cover of the numerical domain Ω:

Ω =
⋃
rI∈Ω

ΩrI ,h̃I . (7)

According to the Heine-Borel theorem, there is a finite subcover (since we consider only compact
numerical domain Ω), that is

Ω = span
{

ΩrI ,h̃I/I = 1, ..., N
}
, (8)

where N is the number of particles in the numerical discretization. The SPH spatial discretization
of the integral (5) is defined over the control volumes ΩrI ,h̃I to obtain the final discretization of
the Laplace operator. The final step in the particle method is to approximate the integral relation
on the right-hand side of the (5) using Monte-Carlo expressions or any cubature rules [7,17,24,25]
and which is known as the particle approximation step.

The assumption that the boundary term from the integration by parts is zero in (5) is valid only
in regions where the kernel has a full support, or the function, or the gradient of the function itself
is zero. For particles near free surfaces or boundary, the neglect of these terms leads to significant
errors for boundary value problems. Several techniques have been developed to address these errors
through various correction methods, e.g., by calculating the boundary integrals [25]. In addition,
this can be corrected as it will be shown below by applying normalized corrected meshless methods
in the derivative approximations. In the following section, the commonly used SPH kernels and its
gradients are considered.

2.1. SPH kernel and its gradient. A central point of the SPH formalism is the concept of the
interpolating function (or kernel) through which the continuum properties of the medium are recov-
ered from a discrete sample of N points (7) with prescribed mass mI (for conventional Lagrangian
methods) or volume VI (for fully Eulerian methods). In the Lagrangian formulation, these points
move according to the specified governing laws, whereas these points are fixed in space for the
Eulerian formulation. A good interpolating kernel must satisfy a few basic requirements: it must
weakly tend to the delta function in the continuum limit and has to be a continuous function with
piecewise first derivatives at least. From a more practical point of view it is also advisable to deal
with symmetric finite range kernels, the latter to avoid N2 calculations. Cubic and quintic splines
are the commonly used kernels in SPH formulations [25, 26]. Since the quintic spline does not
provide the numerical advantages, the cubic spline is used in this paper:

W (z, h̃) =
Ξ

h̃D


1− 3

2
z2 +

3

4
z3, 0 6 z 6 1;

1

4
(2− z)3, 1 6 z 6 2;

0, z > 2;

(9)

where z = ‖rJ − rI‖2 /h̃ is the dimensionless variable, h̃ = h̃IJ is the effective smoothing length
between particles I and J , and Ξ is the normalization factor equal to 3/2, 10/(7π), and 1/π in 1D,
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2D, and 3D, respectively. The different choices of computing effective smoothing length between
particles used in this paper will be discussed in the upcoming subsection.

Although, the kernel is normalized in continuous sense, it is important to note thatW
(
rJ − rI , h̃IJ

)
does not satisfy the normalization condition in the discrete space∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ 6= 1

due to the particle distribution and incomplete kernel support near the boundary and, hence, the
discretized-normalized kernel function can be considered:

W
(
rJ − rI , h̃IJ

)
=

=
W
(
rJ − rI , h̃IJ

)
∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ

=
W
(
rJ − rI , h̃IJ

)
ν (rI)

(10)

where ν (rI) is the specific volume of particle rI (i.e., it is approximately the inverse of the particle
volume) which has a larger value in a dense particle region than in a dilute particle region. In
regions of the high particle density, the denominator in (10) is high resulting in lower values of the

kernel W
(
rJ − rI , h̃IJ

)
. Thus the denominator normalizes the kernel function to ensure that the

kernel W
(
rJ − rI , h̃IJ

)
forms a local partitioning of unity∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ = 1 (11)

regardless of the particle distribution within the ΩrI ,h̃I = supp W
(
r − rI , h̃I

)
. The discretized-

normalized kernel function W
(
r − rI , h̃

)
will also be used in the discretization schemes below. At

this point, all possible options of computing ∇W (rJ − rI , h̃IJ) are listed:

∇W (rJ − rI , h̃IJ) = ∇rJW (rJ − rI , h̃IJ) = −∇rIW (rJ − rI , h̃IJ), (12)

∇W (rJ − rI , h̃IJ) = ∇rIW (rJ − rI , h̃IJ) =

=
∇rIW (rJ − rI , h̃IJ)

ν(rI)
− W (rJ − rI , h̃IJ)∇rIν(rI)

ν2(rI)
,

∇rIν(rI) =
∑

rJ ∈ ΩrI ,h̃I

∇rIW (rJ − rI , h̃IJ)Vr

(13)

where ν(rI) is the specific volume of the particle located at the point rI . Additionally two options
can be written as

∇W (rJ − rI , h̃IJ) = ∇̃rJW (rJ − rI , h̃IJ) =
∇rJW (rJ − rI , h̃IJ)

ν(rI)
(14)
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where ν(rI) is assumed to be a constant during the differentiation with respect to rJ and the
alternative case is when

ν(rI , rJ) =
∑

rJ ∈ ΩrI ,h̃I

W (rJ − rI , h̃IJ)VrJ ,

leading to the following relations

∇W (rJ − rI , h̃IJ) = ∇rJW (rJ − rI , h̃IJ) =

=
∇rJW (rJ − rI , h̃IJ)

ν(rI , rJ)
− W (rJ − rI , h̃IJ)∇rJν(rI , rJ)

ν2(rI , rJ)
,

∇rJν(rI , rJ) = ∇rJW (rJ − rI , h̃IJ)VrJ

. (15)

Where ∇rJ denotes nabla operator with respect to rJ and this index is omitted throughout this
paper starting from here.

Similar to the MLS method [27], equations (13) and (15) are two different forms of ”full deriva-
tives”. At the same time, equations (12) and (14) are two different forms of ”diffuse derivatives”.
From these options, it follows that ”full derivatives” are connected with the differentiation of a dis-
crete function and ”diffuse derivatives” are connected with the differentiation of an exact function.
Both types of derivatives have some advantages and disadvantages and the choice depends on the
application. The impact of different options on numerical results will be shown below. The SPH
method shows good approximation properties in regions where the kernel has full support. For
particles near free surfaces or boundaries, the SPH method shows a poor approximation. Several
techniques have been developed to address these errors through various correction methods, e.g.,
by applying normalized - corrected meshless methods in the derivative approximations [7,13,14,25],
which requires normalized - corrected definitions of the kernel gradient as follows:

∇∗αW = Cαβ∇βW, (16)

Cαβ =

 ∑
rJ∈ΩrI ,h̃I

VrJ [rαJ − rαI ]∇βW (rJ − rI)

−1

, (17)

∑
ΩrI ,h

VrJ [rγJ − r
γ
I ]∇∗αW (rJ − rI , h) = δγα, ∀γ, α; (18)

where the summation by repeating indexes is assumed throughout this paper,∇∗αW is the normalized-
corrected gradient of the kernel, and Cαβ is the correction symmetric tensor [28]. It was shown that
the value of the minimum eigenvalue λC (rI) of the matrix C−1 based on the discretized-normalized

kernel function depends on the particle distribution within the domain ΩrI ,h̃I = suppW
(
r − rI , h̃I

)
.

When going away from the ΩrI ,h̃I domain this eigenvalue tends theoretically to zero, while inside
this domain the eigenvalue tends theoretically to one. This important information allows determin-
ing regions of the continuum media where free-surfaces are located [29].

In this paper, the discretizations of the Laplace operator are based on the gradient of the kernel.
Several methods of Laplace discretizations were proposed [30–33] using second derivatives of the
variable u. However, second-order derivatives can often be avoided entirely if the PDE is written
in a weak form. It is important to note that approximations using second-order derivatives of the
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kernel are often noisy and sensitive to the particle distribution, particularly for spline kernels of
lower orders.

2.2. SPH symmetrization of smoothing length. The true particle smoothing length h̃I may
vary both in space and time in general. Therefore, in general case, each particle has its own
smoothing length h̃I . Considering the case where h̃I 6= h̃J for two different interacting particles I
and J and the kernel support based on h̃I and located in I which covers the particle J but the kernel
support located in J does not cover the particle I. In this case, the particle I acting on particle
J (produces, e.g., a flux or a force) without particle J acting on the particle I, which leads to a
violation of fundamental laws (e.g., mass conservation or Newton’s third law) for a closed system
of particles. This problem has been resolved by introducing the symmetrization of the smoothing
length. In this study, the following symmetrization option is used:

h̃IJ =
h̃I + h̃J

2
. (19)

In addition, it is clear that h̃I has to be defined as

h̃I = sup
J:rj∈ΩrI ,h̃I

h̃IJ . (20)

This completes the description of basic properties of SPH method allowing to construct all necessary
building elements of SPH discretization such as list of neighbors, kernel values, and kernel gradients.
The following sections describe the traditional and newly proposed discretization schemes for the
Laplace operator.

2.3. Brookshaw’s scheme (1985). Brookshaw proposed [1] an approximation of the Laplacian
for an inhomogeneous scalar field m (r), i.e., Mαβ (r) = m (r) δαβ , α, β = 1, . . . , n; that only
includes first order derivatives:

−〈∇ (m (rI)∇u (rI))〉 =

∑
ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI)∇W

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

,
(21)

where VrJ is the volume of the particle J , ‖•‖ is the Euclidean norm throughout this paper, u (r)
is the unknown scalar or vector field (e.g., pressure p or velocity v) ∀r ∈ Ω ⊂ Rn, mI = m (rI),
rI ∈ Ω ⊂ Rn and mJ = m (rJ), rJ ∈ Ω ⊂ Rn are the field coefficients.

This scheme can be derived by applying the particle approximation step to the right-hand side
of (5) with the following assumptions

∇u (rJ) ≈ [u (rJ)− u (rI)]
(rJ − rI)
‖rJ − rI‖2

. (22)

Some special words need to be said about the mobility approximation, which comes in the form

2m (rJ) ≈ mJ +mI . (23)

The factor 2 is introduced to compensate the factor of 1/2 in the second leading term of the Taylor
expansion of the relation (22). Furthermore, the relation (23) allows to capture a heterogeneous
mobility field distribution.
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The discretization scheme (21) is at least O (hω) , 0 ≤ ω < 2, h = sup
I:rI∈Ω

h̃I order of accuracy in

average for any scalar mobility field m (r) ∈ C1 (Ω) , m (r) ≥ 0 everywhere within the numerical
domain Ω sufficiently far away from the boundary ∂Ω. Using Taylor series expansions about a point
rI , the following relations can be written:

u (rJ) = u (rI) + u,α (rI) [rαJ − rαI ] +
1

2
u,αγ (rI) [rαJ − rαI ] [rγJ − r

γ
I ] +O

(
h3
)
, (24)

m (rJ) = m (rI) +m,α (rI) [rαJ − rαI ] +O
(
h2
)
. (25)

Substituting relations (24)-(25) into the scheme (21), it leads to the following relations:

∑
ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI) · ∇W

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

=

= 2m (rI)u,α (rI)
∑

ΩrI ,h̃I

VrJ∇αW
(
rJ − rI , h̃IJ

)
+

+m (rI)u,αγ (rI)
∑

ΩrI ,h

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
+

+m,α (rI)u,γ (rI)
∑

ΩrI ,h

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
+O

(
h2
)
.

(26)

Here, the following relation has been used

[rαJ − rαI ]
(rγJ − r

γ
I )∇γW

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

= ∇αW
(
rJ − rI , h̃IJ

)
, ∀α. (27)

The maximum accuracy is achieved when

(a)
∑

ΩrI ,h̃I

VrJ∇αW
(
rJ − rI , h̃IJ

)
= 0, ∀α,

(b)
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
= δαγ , ∀α, γ,

(28)

which is difficult to fulfill simultaneously for different kernel gradients leading to the overall accuracy
O (hω) , 0 ≤ ω < 2. In the subsection 2.1, several options of computing kernel gradients ∇W (rJ −
rI , h̃IJ) (i.e., ∇γW , ∇αW , ∇αW , and ∇̃αW ) are proposed (12), (13), (14), and (15), respectively.
The kernel gradient (13) satisfies conditions (27) and (28)(a) but not the condition (28)(b). At the

same time, all corrected options ∇∗W (rJ − rI , h̃IJ) (i.e., ∇∗γW , ∇∗αW , ∇∗αW , and ∇̃∗αW ) satisfy

the condition (28)(b) but not the conditions (27). One may decide to use ∇∗W (rJ − rI , h̃IJ) in
the discretization scheme (21) which leads to the error with the leading term

2m (rI)u,α (rI)
∑

rJ∈ΩrI ,h̃I

VrJ [rJ − rI ]
(rJ − rI) · ∇∗W (rJ − rI , h̃IJ)

‖rJ − rI‖2
. (29)

This leads to the incorporation of the correction factor into Brookshaw’s approximation. A different
correction factor has been introduced and investigated in [2]. However, the discretization scheme
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(21) with the ∇∗W (rJ − rI , h̃IJ) kernel gradient is less accurate near the boundary due to the
absence of the skew symmetric property of the gradient and remaining singularity in the error term
when rJ = rI which can be removed in the conventional form (26). Alternatively, as was discussed

in [2], the correction multiplier can be introduced in (21) defined as n · [Cαα]
−1

leading to:

〈∇ (m (rI)∇u (rI))〉∗ = n · [Cαα]
−1 · 〈∇ (m (rI)∇u (rI))〉. (30)

Figure 1 shows Laplacian values for the function ∇2(x2+y2) using original Brookshaw’s approxima-
tion (21) with (a) conventional kernel ∇γW , (b) corrected kernel ∇∗γW and corrected Brookshaw’s
approximation (30) with the conventional kernel ∇γW .

Figure 1. Values for ∇2(x2 + y2) along y = 0 using Brookshaw’s approximation
with (a) conventional kernel ∇γW , (b) corrected kernel ∇∗γW and with the cor-

rection multiplier n · [Cαα]
−1

. The numerical domain is a unit square in R2 with
the center at ai = 0, ∀i and side length L = 1. The cubic spline (9) was used with

h̃ = f · hp, hp = 0.1, f = 1.0.

The scheme (21) is widely (almost unconditionally) used in the SPH modeling community. For
example, it was used for a thermal conduction [1,34,35], for modeling a viscous diffusion [19], for a
vortex spin-down [36] and Rayleigh-Taylor instability, for simulating Newtonian and non-Newtonian
flows with a free surface [37] for the comparison of weakly compressible and truly incompressible
algorithms, for macroscopic and mesoscopic flows [38], for a simulation of a solid-fluid mixture
flow [39]. Recently, it has been used to model electrokinetic flows [40], Dam-break problem and
Taylor-Green vortex [10].

There are different numerical SPH schemes used in numerical simulations. High order accuracy
approximations can also be derived by using the SPH discretization on the higher order Taylor
series expansion [2, 24, 25, 41]. However, it is usually required that the discrete numerical schemes
can reproduce linear fields [13,14,28,42] or polynomials up to a given order [43,44].
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2.4. Schwaiger’s scheme (2008). The correction terms to the Brookshaw formulation which
improve the accuracy of the Laplacian operator near boundaries were proposed by Schwaiger in [2]:

− n

Γ−1
kk

〈∇ (m (rI)∇u (rI))〉 =

 ∑
ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI)∇W

(
rJ − rI , h̃IJ

)
‖r′ − r‖2

−
−{[〈∇α (m (rI)u (rI))〉 − u (rI) 〈∇αm (rI)〉+m (rI) 〈∇αu (rI)〉]Nα} ,

(31)

Nα (rI) =

 ∑
ΩrI ,h̃I

VrJ∇αW
(
rI − rJ , h̃IJ

) , (32)

〈∇αu (rI)〉 =
∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]∇∗αW
(
rI − rJ , h̃IJ

)
, (33)

where n = 1, 2, 3 is the spatial dimension and the tensor Γαβ is defined by

Γαβ (rI) =
∑

ΩrI ,h̃I

VrJ

(rγJ − r
γ
I )∇γW

(
rJ − rI , h̃IJ

)
‖r′ − r‖2

(rαJ − rαI )
(
rβJ − r

β
I

)
. (34)

The gradient 〈∇αu (rI)〉 is the corrected gradient which can reproduce linear fields [28, 42]. For
multi-dimensional problems, the correction tensor Γαβ (rI) is a matrix. If the particle rI has entire

stencil support (i.e., the domain support for all kernels W
(
rJ − rI , h̃IJ

)
is entire and symmetric)

then Γαβ (rI) ≈ δαβ .

Remark 1. It is important to note that correction tensors Γαβ and C−1
αβ are the same tensors.

Indeed, using the following identity:

[rαJ − rαI ]
(rγJ − rγI )∇γW

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

=

=
1

h

dW

dz

[rαJ − rαI ]

‖rJ − rI‖
= ∇αW

(
rJ − rI , h̃IJ

)
, ∀α;

dW

dz
≤ 0,

(35)

where
dW

dz
is computed using either conventional W or normalized W kernels, z = ‖rJ − rI‖ /h̃,

∀rJ , rI ∈ Ω ⊂ Rn, the following relation can be established:

Γαβ (rI) =
∑

ΩrI ,h̃I

VrJ

(rγJ − r
γ
I )∇γW

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

(rαJ − rαI )
(
rβJ − r

β
I

)
=

=
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇βW
(
rJ − rI , h̃IJ

)
= C−1

αβ (rI) .

(36)
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In addition, it is important to note that

Γαα =
∑

ΩrI ,h̃I

VrJ (rγJ − r
γ
I ) · ∇∗γW

(
rJ − rI , h̃IJ

)
= n (37)

in the case of using the corrected gradient and, hence,
Γ−1
kk

n
= 1. However, ∇∗γW does not satisfy

relation (35).
For multi-dimensional problems, the correction tensor Γαβ (rI) is a matrix. If the particle rI

has entire stencil support (i.e., the domain support for all kernels W
(
rJ − rI , h̃IJ

)
is entire and

symmetric) then Γαβ (rI) ≈ δαβ . Unfortunately, Γαβ (rI) deviates from δαβ for the provided
algorithm and, hence, it is important to minimize this deviation from δαβ in the new methods.

To calculate coefficients in the scheme (31)–(34) is a trivial task. However, in general, it should
be performed at each Newton-Raphson iteration in the non-linear case (i.e., m = m (u (rI))). It
also requires additional efforts to invert the correction matrix Aαβ (inversion of n × n matrices

per each particle, where n = 1, 2, 3 is the spatial dimension) and storage cost of ∇αW (rJ − rI , h),
∇∗αW (rJ − rI , h), and corresponding Γ−1

αα = A−1
αα per each particle.

Furthermore, additional terms proposed by Schwaiger [2] reduce to

[〈m (rI)u (rI)〉 − u (rI) 〈m (rI)〉+m (rI) 〈u (rI)〉]N =

= 2m (rI)∇u (rI) ·N +O
(
h̃2
I

) (38)

which is the leading term outlined in (26). However, if one uses ∇∗W (rJ − rI , h̃IJ) in the first
term of the discretization scheme (31) then the definition for Nα has to be modified in accordance
of (29) to maintain the higher order discretization accuracy, for example, as:

Ñα =
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]
(rJ − rI)∇∗W

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

, ∀α (39)

which reduces to the conventional Nα in the case of ∇W (rJ − rI , h̃IJ) due to (35). Figure 2 shows
the Laplacian for the function ∇2(x2 + y2) using Schwaiger’s approximation (31)–(34) with (a)
conventional kernel ∇γW and (b) corrected kernel ∇∗γW .

Finally, the discretization scheme (31)–(34) is at least O (hω) , 1 ≤ ω ≤ 2 order of accuracy in
average for any scalar mobility field m (r) ∈ C1 (Ω) , m (r) ≥ 0 everywhere within the numerical
domain Ω ∈ Rn sufficiently far away from the boundary ∂Ω.

3. Meshless Transmissibilities

The well-known two-point flux approximation (TPFA) is a mesh dependent numerical scheme
used in solving elliptic equation (1): L (u) = 0 with the diagonal matrix of coefficients M. The net
flow rate from a cell I into neighboring cells in this scheme is obtained by summing fluxes over the
neighboring cells J :

q =
∑
J

T̃JI [u (rJ)− u (rI)] , T̃JI ≥ 0, (40)

where T̃JI is the transmissibility between cells J and I, q is the total flux through the boundary

of the control volume located at the point rI . The transmissibility T̃JI defined at an interior face
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Figure 2. Values for ∇2(x2 + y2) along y = 0 using Schwaiger’s approximation
with (a) conventional kernel ∇γW and (b) corrected kernel ∇∗γW . The numerical

domain is a unit square in in R2 with the center at ai = 0, ∀i. The cubic spline
(9) was used with h̃ = f · hp, hp = 0.1, f = 1.0.

f between cells J and I is calculated as

T̃JI =
1[

‖rf,J‖2

SfMrf,J
+
‖rf,I‖2

SfMrf,I

] , (41)

where rf,J and rf,I are the vectors from centers of cells J and I to the face f respectively, Sf is the
area vector of the face f . In the case of M-orthogonal mesh, when MSf and [rJ − rI ] are collinear,
the expression (40) reduces to the form of the central finite difference scheme and approximates the
flux with O

(
h2
)

order of accuracy for any mobility tensor field M. The expression (41) ensures that
the flux into the adjoining region is continuous [34]. The TPFA scheme (40) is the unconditionally
monotone scheme.

It is clear that the expression (31) cannot be written in the form (40) due to terms 〈∇α (m (rI)u (rI))〉Nα

and u (rI) 〈∇αm (rI)〉Nα. Hence, it is only possible in this case to introduce a definition of a partial
meshless transmissibility between particles rJ and rI as follows:

TP (rJ , rI) = TPJI =
Γ−1
ββ

n
× VrJ (rJ − rI) · (mJ +mI) · ∇W

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

−mI∇W
(
rJ − rI , h̃IJ

)
Nα

 .

(42)

It is important to note that transmissibilities TPJI and T̃PJI have different physical units. Further-
more, it raises the question wherever the scheme (31)–(34) is monotone.
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Using Taylor series expansions about a point rI , i.e. relations (24), (25), the expression (38) can
be written keeing higher order error terms as:

[〈∇α (m (rI)u (rI))〉 − u (rI) 〈∇αm (rI)〉+m (rI) 〈∇αu (rI)〉] =

2m (rI)

u,α (rI) +
1

2
u,ωγ (rI)

∑
ΩrI ,h̃I

VrJ [rωJ − rωI ] [rγJ − r
γ
I ]∇∗αW

(
rJ − rI , h̃IJ

)+

+O
(
h̃3
I

)
.

(43)

Hence, there is an additional term that has not been taken into account in (31)–(34). The
following section describes an alternative numerical scheme for the heterogeneous Laplace operator.
Some initial attemps were also made in [45].

3.1. New scheme. The correction terms to the Brookshaw [1] and Schwaiger [2] formulations
which improve the accuracy of the Laplacian operator near boundaries can be done as follows:

− n

Γ̄−1
ββ

〈∇ (M (rI)∇u (rI))〉 =

 ∑
ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (MJ + MI) · ∇W

(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

−
−

N ·

 ∑
ΩrI ,h̃I

VrJ · (MJ + MI) · [u (rJ)− u (rI)]∇∗W
(
rJ − rI , h̃IJ

) ,

(44)

where n = 1, 2, 3 is the spatial dimension and tensor Γ̄αβ is defined by

Γ̄αβ (rI) =

 Γ∗αβ (rI) , Γ∗αβ (rI) 6= 0,

Γαβ (rI) , Γ∗αβ (rI) = 0
(45)

where

Γ∗αβ (rI) =
∑

ΩrI ,h̃I

VrJ

[
rβJ − r

β
I

]
∇αW

(
rJ − rI , h̃IJ

)
−

−Nγ
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]
[
rβJ − r

β
I

]
∇∗γW

(
rJ − rI , h̃IJ

)
.

(46)

Following (44), we only need to compute the trace of the matrix Γ∗αβ (rI). Furthermore, it is
important to note the following remark.

Remark 2. The following relations can be written:

Γ∗ββ (rI) =
∑

ΩrI ,h̃I

VrJ ‖rJ − rI‖
1

h̃IJ

dW

dz
−

−Nγ
∑

ΩrI ,h̃I

VrJ ‖rJ − rI‖
2∇∗γW

(
rJ − rI , h̃IJ

)
,
dW

dz
≤ 0.

(47)
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∣∣∇∗αWNα (rI)
∣∣ ≤ max

z∈Υ

(
dW

dz

)2

· h̃ · ‖Cαβ‖ · VΩ ·

∥∥∥∥∥∥∥
∑

rξ∈ΩrI ,h̃I

Vξ · rξ

VΩrI ,h̃I

− rI

∥∥∥∥∥∥∥ , (48)

where z = ‖rJ − rI‖ /h̃IJ , Υ = supp
dW

dz
, ‖Cαβ‖ is the matrix norm of Cαβ, VΩrI ,h̃I

is the

volume of ΩrI ,h̃I . It follows that if

∥∥∥∥∥
∑
Vξrξ

VΩrI ,h̃I

− rI

∥∥∥∥∥ ≤ h̃I then there is a parameter h̃I such that

Γ∗ββ (rI) ≤ 0.

The reason for having the correction factor in the form (45)–(46) is that Γ∗αβ (rI) = 0 in some

cases, where particles have the incomplete Kernel support (e.g., at the corners and boundaries
of the numerical domain). For multi-dimensional problems, the correction tensor Γ̄αβ (rI) is also
a matrix. If the particle rI has entire stencil support (i.e., the domain support for all kernels

W
(
rJ − rI , h̃IJ

)
is completed and symmetric) then Γ̄αβ (rI) ≈ δαβ . The proposed correction

matrix deviates less from the unit matrix compare to (34). As a result, the discretization scheme
(44)–(46) is at least O (hω) , 1 ≤ ω ≤ 2 order of accuracy in average for any scalar mobility field
m (r) ≥ 0,m (r) ∈ C1 (Ω), Mαβ (r) = m (r) δαβ everywhere within the numerical domain Ω ∈ Rn
sufficiently far away from the boundary ∂Ω. The scheme has the two-point flux approximation
nature and can be written in the form of (2), which can be proved using the arguments above.
The scheme (44)–(46) is in line with an alternative formulation for continuum mechanics called the
peridynamic model [46,47], which was proposed several years ago.

All presented schemes in this paper do not require exact expressions for the gradient (i.e., spatial
derivatives) of the mobility field ∇γm (r) to keep a higher order of accuracy for any mobility field.
Hence, this scheme can be used with the discontinuous (or piecewise continuous) mobility field
m (r) ∈ L2 (Ω). It is important to note that Brookshaw [1] and Schwaiger [2] schemes can also be
written for the diagonal mobility matrix Mαβ (r) by substituting Mαβ into (21) and (31) instead
of m (r) and performing summation by repeating indices.

4. Approximation, Stability, and Monotonicity

The approximation, stability and monotonicity are important properties of numerical schemes
which provide and quantify the confidence in the numerical modeling and results from corresponding
simulations. Therefore, in order to be confident that the proposed numerical schemes provide the
adequate accuracy of the elliptic operator (1), several numerical analyses to identify the order of
approximation, stability and monotonicity have been performed. It is important to recall that all
numerical schemes are characterized by two length scales: h̃ = f ·hp is the radius of Ωr,h̃ = suppW ,
and hp is the inter-particle distance. Hence, while investigating the approximation of the meshless
discretization scheme, it is important to distinguish two cases: (a) the neighborhood number of
particles is fixed f = const with varying the inter-particle distance, (b) the inter-particle distance is
fixed hp = const with varying the neighborhood number of particles. The first case will be analyzed
by looking at the error defined by

‖E‖L2

Ω =

 1∑
J

VrJ

∑
J

VrJ (L [u (rJ)]− 〈L〉 [u (rJ)])
2

1/2

, (49)
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where L [·] is the analytical Laplacian at the particle rJ and 〈L〉 [·] is the approximation of the

Laplacian at the particle rJ , ‖E‖L2

Ω is the averaged error over the entire domain. In the following
paragraph, the numerical analysis is performed for various functions, particle distributions, and
media properties.

Following the work [2], the ability of the discretization to reproduce the Laplacian was tested for
several functions in Rn, n = 1, 2, 3:

(a) us (x) =

n∑
i=1

xsi , (b) usm (x) =

n∏
i=1

xmii , |m| = s (50)

where m = (m1, . . . ,mn) , ∀i : mi ≥ 0 is the n-dimensional multi-index with the property |m| =
n∑
i=1

mi. The reason for selecting these testing polynomials is as follows. Since the functional space

Lp (Ω) is separable, the above polynomials form the everywhere dense subset of the Lp (Ω). Hence,
any function u ∈ Lp can be approximated in Lp using linear combination of the above polynomials
leading to the following relations:

u(r) ≈
∞∑
k=1

∑
|m|≤k

am

(
n∏
i=1

xmii

)
,M (r) ≈

∞∑
k=1

∑
|m|≤k

bm

(
n∏
i=1

xmii

)
. (51)

The approximation error produced by the discretization schemes and considered in this paper for
the polynomials us (x) and usm (x) gives the information about the error growth for the arbitrary
function u(r). In each test, the homogenous and heterogeneous particle distribution varying the

smoothing length h̃ and inter-particle distance hp are used to study the approximation properties
of the proposed discretization scheme.

4.1. Isotropic Homogeneous Media. Note that in the limit of the homogeneous isotropic media
(i.e., Mαβ (r) = m (r) δαβ , m (r) = 1) and without the source term, the aforementioned operator
L (u) in (1) reduces to the conventional Laplacian operator (i.e., L (u) ≡ ∇2u). The domain for
the patch test is a unit square similar to [2] for n = 2:

Ω =

{
r = {xi} ∈ Rn | |xi − 2.5| 6 1

2
∀i
}

with N = 21 particles in each direction characterized by two length spacings: h̃ = f ·hp, hp = 0.05,
f = 1.2.

In all of the following tests, the results are displayed along the cross-section y = 2.5 in Rn, n = 2
(similar to [2] for n = 2). In each test, the following discretizations are compared: corrected
Brookshaw’s scheme (CB-SPH) (30), Schwaiger’s scheme (S-SPH) (31)–(34), and new proposed
scheme (M-SPH) (44)–(46). Note that the Schwaiger’s scheme was tested against several schemes
published in [30], [23] and show better accuracy; hence, schemes in [30], [23] are not considered
in this paper. The comparison of different schemes starts with test functions of the form us (x)
described by (50)(a) in Rn, n = 2. Plots of the Laplacian approximations and the relative errors
defined by (49) for the case m = 3 are shown in Figure 3.

The new scheme (M-SPH) has the greatest accuracy at the boundary and is accurate to machine
precision ε in the interior. The error plot is shown in Figure 4 along with test functions with
exponents from m = 4, ..., 7. For these functions, the proposed scheme (44)–(46) is uniformly more
accurate for the various experiments. The same behavior is observed in 3D where the M-SPH
scheme with the ∇αW is the most accurate scheme. Furthermore, the new scheme should be
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Figure 3. Cross-section of the test patch at y = 2.5. Three SPH approximations
of ∇2

(
x3 + y3

)
with different kernel gradients are shown. Corrected Brookshaw’s

scheme (CB-SPH) is given by (30) with the correction multiplier, while Schwaiger’s
scheme (S-SPH) is given by (31)–(34). New approximation (M-SPH) considered
here is the SPH form (44)–(46). In this case, the Schwaiger’s scheme and new
scheme have comparable accuracy at the boundaries and are accurate in the interior
to the machine precision. Four different options of computing the kernel gradient

(i.e., ∇γW , ∇αW , and corrected kernel gradients (i.e., ∇∗αW , ∇∗αW , ∇∗αW , and

∇̃∗αW ) are shown.

tested for the functions requiring cross-derivatives as was reported in [2]. To examine the effect of
the cross-derivative terms, the same suite of tests was run with the function usm (x) described by
(50)(b) in Rn, n = 2, 3. Relative errors for (xy)m on a same array as in Figure 3 along y = 2.5 were
computed and again the proposed scheme (44)–(46) was uniformly more accurate for the various
experiments. The behavior of each discretization is similar to that shown in Figure 3. The proposed
new scheme (M-SPH) performed nearly as well as the Schwaiger’s scheme at the boundary. The
CB-SPH and S-SPH forms also perform with greater accuracy than all other forms in the interior
except in the case with the highest exponent.

An additional concern is that although it deviates from the exact solution near boundaries, it
acquires no off-diagonal terms due to the alignment of the array of particles and the boundaries with
the coordinate axes. To test the accuracy of the new approximations when there are off-diagonal
terms, an array with particles rotated 45o was used with the test function (xy)m (similar to [2]).
The new proposed scheme formulation performs consistently well for lower exponents.

4.2. Isotropic Heterogeneous Media. In isotropic heterogeneous media, i.e., Mαβ (r) = m (r) δαβ ,
the Laplace operator takes the general form written in (1). The numerical domain is the same as

in the previous section with the same number of particles and particle length scales: h̃ = f · hp,
hp = 0.05, f = 1.2. Plots of the Laplacian approximations and the relative errors defined by (49)
for the case of heterogeneous mobility with m = 1 (see (51)) are shown in Figure 5. The new
scheme (M-SPH) has the best accuracy at the boundary and is accurate to machine precision ε in
the interior. The error plot is shown in Figure 6 along with test functions with exponents from
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m=4 m=5

m=6 m=7

Figure 4. The relative errors along y = 2.5 for each of the discretizations used in
Figure 3 are shown here for the suite of functions∇2 (xm + ym) where m = 4, . . . , 7.
Four different options of computing the kernel gradients (i.e., ∇γW , ∇αW , and

corrected kernel gradients (i.e., ∇∗γW , ∇∗αW , ∇∗αW , and ∇̃∗αW ) are shown.

m = 2, ..., 5. For these functions, the proposed scheme (44)-(46) is uniformly more accurate for the
different increasing exponents. The same behavior is observed in 3D where M-SPH scheme with
the ∇αW is the most accurate scheme.

4.3. von Neumann stability analysis. For linear PDEs, there is the Lax-equivalence theorem
which connects the consistency and stability with the convergence. The idea of the von Neumann
stability analysis is to study the growth of waves λeik·r (similar to Fourier methods). After applying
one of the discretization methods above to the Laplace operator (1), the following relation can be
written:

{u}n+1 − {u}n

τ
− Lh̃ [{u}n] = {b} , (52)
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Figure 5. Cross-section of the test patch at y = 2.5. Three SPH approximations
of ∇((x+ y) (∇ (x+ y))) with different kernel gradients are shown. The different
schemes and kernel gradients are described in the caption of Figure (3).

where τ is the iteration parameter (e.g., time step), n is the iteration index (e.g., time index),
{u}n = (un1 , . . . ,u

n
N ) is a vector of all N particle values uni , i = 1, . . . , N , {b} = (b1, . . . , bN ) is

the right-hand side vector. The expression (52) may represent, for example, discretization of the
parabolic PDE or an iterative solver of the linear system of equations arising from discretization
of elliptic boundary value problem. Substituting into the left-hand side of the relation (52) the
following form of perturbation

unj = λneikj ·rj = λn ·
n∏
l=1

eik
l
j ·x

l
j (53)

leads to the expression for the von Neumann growth factor subject to (52) and linear Laplace
operator:

λj (τ) = 1 + τ · e−ikj ·rj · Lh̃
[{
eik·r

}]
, r ∈ Rn, n = 1, 2, 3; (54)

where
{
eik·r

}
=
(
eik1·r1 , . . . , eikN ·rN

)
and λj (τ) is the von Neumann growth factor. For the

discretization to be stable, it is required that |λj (τ)| ≤ 1, ∀j. The von Neumann growth factor
is shown for three main discretization schemes: Corrected Brookshaw’s scheme (CB-SPH) (30),
Schwaiger’s scheme (S-SPH) (31)–(34) and new approximation (M-SPH) (44)–(46) for uniform and
pseudo random particle distribution with τ = 0.25 and Mαβ (r) = δαβ (see, Figures 7). In case
of uniform particle distribution, the von Neumann growth factor clusters around the real axis for
all schemes and satisfies the requirement |λj (τ)| ≤ 1, ∀j. In case of pseudo random particle
distribution, the von Neumann growth factor has both real and imaginary parts forming complex
shape but satisfying the requirement |λj (τ)| ≤ 1, ∀j almost everywhere (i.e., it could be some
problems at the boundary particles).

4.4. Monotonicity and Convergence. In real life applications, the numerical domains are large
and, therefore, many degree of freedom (i.e., unknowns) is required. The resulting matrix is usually
sparse, but because of fill-in a direct method requires significant amount of memory and time in
general case. Hence, iterative solvers are used to overcome these issues. The iterative solvers
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m=2 m=3

m=4
m=5

Figure 6. The relative errors along y = 2.5 for each of the discretizations used
in Figure 3 are shown here only for the suite of functions ∇ [(xm + ym)∇ (x+ y)]
where m = 2, . . . , 5. Four different options of computing kernel gradients (i.e.,

∇γW , ∇αW ), and corrected kernel gradients (i.e., ∇∗γW , ∇∗αW , ∇∗αW , and ∇̃∗αW )
are shown.

converge only if the matrix satisfies certain properties related to the property of the diagonal
dominance. However, these properties are only sufficient conditions for the method to converge.

The proof of the convergence of linear meshless schemes applied to a linear elliptic boundary
value problem can be done in the following steps (see, Bouchon (2007) [48], Bouchon and Peichl
(2007) [49], Matsunaga and Yamamoto (2000) [50], Thomée (2001) [51]: if it is shown that the
truncation error ε tends to 0 as the maximum smoothing length max

I∈N
hI goes to 0, then the linear

system Aδu = ε that couples the variable error δu with ε proves the convergence of the schemes,
given that the matrix of the discretized meshless operator is monotone. A square matrix A =
(aij)1≤i≤n,1≤j≤n ∈ Rn×n is called monotone if aij ≤ 0 ∀i 6= j, aii > 0 ∀i and it is inverse positive
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Uniform Uniform Uniform

Random Random Random

Figure 7. von Neumann growth factor for different discretization schemes. Cor-
rected Brookshaw’s scheme (CB-SPH) is given by (30) with the correction multi-
plier, while Schwaiger’s scheme (S-SPH) is given by (31)–(34). New approximation
(M-SPH) considered here are the SPH form (44)–(46). Four different options of
computing kernel gradients (i.e., ∇γW , ∇αW , and corrected kernel gradients (i.e.,

∇∗γW , ∇∗αW , ∇∗αW , and ∇̃∗αW ) are shown.

A−1 ≥ 0. Furthermore, the monotone schemes do satisfy a discrete maximum principle producing
solutions without spurious oscillations.

It is clear that the new scheme (44)–(46) can be written in the form (40), where meshless

transmissibility between particles rJ and rI can be defined as T (rJ , rI) =
Γ̄ββ
n

(mI +mJ) T̄IJ

with:

T̄IJ =

 (rJ − rI) · ∇W
(
rJ − rI , h̃IJ

)
‖rJ − rI‖2

−∇∗αW
(
rJ − rI , h̃IJ

)
Nα

 , (55)

where Nα (rI) is defined by (32). This allows us to formulate the following remark.

Remark 3. Taking into account Remark 2 and the following relation:

(rJ − rI) · ∇W (rJ − rI , h)

‖rJ − rI‖2
=

1

z · h2

dW

dz
(z) ≤ 0, (56)
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and the relation (48) which all together lead to the fact that there is a parameter h̃I such that

T (rJ , rI) ≥ 0. This means that the proposed scheme subject to this parameter h̃I is monotone for
the medium with the scalar heterogeneous coefficients.

5. Solution of Boundary Value Problems

Following the work by [2], the numerical tests for inhomogeneous Dirichlet, Neumann and mixed
boundary conditions are considered for homogeneous and heterogeneous media with the character-
istics M (r). To illustrate the performance of the proposed scheme, a modelling of a single phase
steady-state fluid flow in fully anisotropic porous media with different type of boundary conditions
is also presented in this section. The square 2D and 3D domains (3) are considered.

The relative error used to quantify the accuracy of the proposed schemes in the subsections (2.3),
(2.4), and (3.1) during numerical simulation in this section is given by:

‖ER‖L2

Ω =

 1∑
Ω

VrJ

∑
Ω

VrK

(
u (rK)− 〈u (rK)〉

u (rK)

)2
1/2

(57)

where u (r) is the analytical or reference solution field and 〈u (rK)〉 is the approximated solution
field. Several numerical results using considered in this paper schemes for uniform and pseudo
random particle distributions are shown in the following sections that confirm the theoretical results
from the previous sections.

Figure 8. Comparison of solutions of the Dirichlet problem for the Laplace equa-
tion. The method used are MPFA-O, Mimetic, TPFA, and Meshless methods (New
Method: (44)–(46)).

5.1. Inhomogeneous Boundary Condition. Firstly, the homogeneous properties of the porous
media M (r) = I are assumed for simplicity of the derivation. The analytical solution of (1) subject
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to the assumption that g (r) ≡ 0 for r ∈ Ω ⊂ R2 and constant boundary conditions is the following:

u (x, y) =
∑
n=odd

[
4ψ1

nπ sinh
(
nπH
L

)] sin
(nπ
L
x
)

sinh
(nπ
L

(H − y)
)

+

+
∑
n=odd

[
4ψ2

nπ sinh
(
nπL
H

)] sin
(nπ
H
y
)

sinh
(nπ
H
x
)

+

+
∑
n=odd

[
4ψ3

nπ sinh
(
nπL
H

)] sin
(nπ
H
y
)

sinh
(nπ
H
x
)

+

+
∑
n=odd

[
4ψ4

nπ sinh
(
nπL
H

)] sin
(nπ
H
y
)

sinh
(nπ
H

(L− x)
)
,

(58)

where ψ1 is the boundary at y = 0, ψ2 at x = L, ψ3 at y = H, and ψ4 at x = 0.
Tables 1, 2 shows the convergence rate of different schemes for uniform particle distribution. The

solutions with MPFA and Mimetic schemes were obtained using MATLAB Reservoir Simulation
Toolbox (MRST) [52]. It is clear from the convergence results that schemes (31)–(34) and (44)–
(46) are identical and they overperform the scheme (30). The convergence rate as was predicted
theoretically is at least O (hω) , 1 ≤ ω ≤ 2. Tables 3, 4 shows the convergence rate for different

Table 1. The error of convergence for different schemes (uniform particle distri-
bution) and f = 0.5005.

DoF MPFA Mimetic Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 1.318 · 10−1 1.240 · 10−1 1.314 · 100 6.608 · 10−2 6.608 · 10−2

100 3.296 · 10−2 3.078 · 10−2 3.925 · 10−1 1.865 · 10−2 1.865 · 10−2

400 8.233 · 10−3 7.685 · 10−3 1.105 · 10−1 4.714 · 10−3 4.714 · 10−3

1600 2.058 · 10−3 1.920 · 10−3 3.025 · 10−2 1.179 · 10−3 1.179 · 10−3

6400 5.318 · 10−4 4.968 · 10−4 8.152 · 10−3 3.213 · 10−4 3.213 · 10−4

25600 3.007 · 10−4 2.955 · 10−4 2.193 · 10−3 2.807 · 10−4 2.807 · 10−4

Table 2. The error of convergence for different schemes (uniformed particle dis-
tribution) and f = 1.001.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 2.312 · 10−1 1.091 · 10−1 1.091 · 10−1

100 1.120 · 10−1 2.698 · 10−2 2.698 · 10−2

400 3.998 · 10−2 6.737 · 10−3 6.737 · 10−3

1600 1.262 · 10−2 1.684 · 10−3 1.684 · 10−3

6400 3.737 · 10−3 4.418 · 10−4 4.418 · 10−4

25600 1.097 · 10−3 2.919 · 10−4 2.919 · 10−4
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schemes and pseudo random distribution. The reason for starting from f = 0.5005 is that we want
to force the same number of non-zero entries in the matrix as for MPFA or Memetic methods. This
procedure may lead to a badly conditioned matrix since ∇W (rJ − rI , h)� 1. This distribution of
particles was generated by perturbing the regularly distributed particles using a uniform random
variable varying between +10% and −10% of the maximum smoothing length hmax = 1.001. Since
random realizations are used to compute errors, the statistical data about 30 realizations are used to
compute mean values and standard deviations. This data is presented in Tables 3, 4. The positive
trends of the scheme remain the same as for the case of uniform particle distributions. The scheme
(30) has higher error compare to schemes (31)–(34) and (44)–(46). However, the dispersion of the
approximation error is higher in the scheme (44)–(46). Figure 8 shows the numerical solution

Table 3. The error of convergence for different schemes (random particle distri-
bution) and f = 0.6006.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 1.102 · 10+0 ± 1.966 · 10−2 1.940 · 10−1 ± 3.954 · 10−2 3.707 · 10−1 ± 1.319 · 10−1

100 3.361 · 10−1 ± 4.923 · 10−3 5.511 · 10−2 ± 1.205 · 10−2 9.074 · 10−2 ± 2.668 · 10−2

400 9.576 · 10−2 ± 8.705 · 10−4 1.376 · 10−2 ± 2.440 · 10−3 2.299 · 10−2 ± 6.972 · 10−3

1600 2.640 · 10−2 ± 2.551 · 10−4 4.157 · 10−3 ± 7.485 · 10−4 5.912 · 10−3 ± 1.289 · 10−3

6400 7.185 · 10−3 ± 5.982 · 10−5 1.044 · 10−3 ± 1.465 · 10−4 1.406 · 10−3 ± 3.090 · 10−4

25600 1.944 · 10−3 ± 1.451 · 10−5 3.858 · 10−4 ± 5.887 · 10−5 4.960 · 10−4 ± 8.425 · 10−5

Table 4. The error of convergence for different schemes (random particle distri-
bution) and f = 1.2012.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 3.578 · 10−1 ± 2.879 · 10−2 2.162 · 10−1 ± 2.800 · 10−2 1.842 · 10−1 ± 8.871 · 10−3

100 1.261 · 10−1 ± 4.859 · 10−3 5.696 · 10−2 ± 5.518 · 10−3 4.596 · 10−2 ± 1.999 · 10−3

400 4.224 · 10−2 ± 1.092 · 10−3 1.493 · 10−2 ± 1.546 · 10−3 1.157 · 10−2 ± 5.691 · 10−4

1600 1.299 · 10−2 ± 2.031 · 10−4 3.934 · 10−3 ± 3.969 · 10−4 2.889 · 10−3 ± 1.451 · 10−4

6400 3.862 · 10−3 ± 3.452 · 10−5 1.037 · 10−3 ± 8.443 · 10−5 7.507 · 10−4 ± 4.060 · 10−5

25600 1.133 · 10−3 ± 2.125 · 10−5 4.087 · 10−4 ± 5.405 · 10−5 3.475 · 10−4 ± 3.814 · 10−5

of the boundary value problem obtained using different discretization methods. The solution was
obtained using 40 particles/cells in each direction.

5.2. Inhomogeneous Mixed Boundary Condition Test. The general steady-state solution for
a Dirichlet condition along the base of the plate and Neumann conditions elsewhere is given in [2]
by

u (x, y) = ψ1 + ψ3y +

∞∑
n=1

2ψ2 cosh (λnx) + 2ψ4 cosh (λn (L− x))

Hλ2
n sinh (λnL)

sinh (λny) , (59)

where ψ1 is the boundary value of u at y = 0, ψ2 is the flux at x = L, ψ3 is the flux at y = H,

and ψ4 is the flux at x = 0, and λn =
(2n− 1)π

2H
. The following parameters (dimensionless)
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were chosen:ψ1 = 150, ψ3 = 150, ψ4 = 200, ψ2 = 90. Again, for uniform and regular particles
distribution, MPFA method reduces to the TPFA. Similar to the previous section, the regular
and pseudo random particle distribution are considered to access the convergence properties of the
proposed schemes.

Remark 4. Let ΓN = ∅ and ΓD = ∅, g (r) ≥ 0, r ∈ Ω, gN (r) ≥ 0, r ∈ ΓN , gD (r) ≥ 0, r ∈ ΓD
and the solution of

L (u) = 0, or ∇ (M (r)∇u (r)) = g (r) , ∀r ∈ Ω ⊂ Rn, (60)

exists then it can be discretized in all internal particles by the following schemes Brookshaw (30),
Schwaiger (31)–(34), and New Scheme (44)–(46) and compounded with the following condition for
all r ∈ ΓN :

〈uαnα〉 = nαM
αβ (r)

∑
Ωr,h̃

VrJ [u (rJ)− u (rI)]∇∗βW (rJ − rI , h) (61)

where nα are the component of the external normal to the boundary r ∈ ΓN .

The following smoothing multiplication factors f = 0.5005, f = 1.001, and f = 2.002 are
considered. Tables 5, 6 show the convergence rate for different schemes using the uniform and
pseudo random particle distribution. The convergence rate as was predicted theoretically is at
least O (hω) , 1 ≤ ω < 2. Interestingly, the scheme (30) shows a very bad convergence rate for
f = 0.5005. This explains by the fact that we have one particle from each side in the kernel support
almost next to the boundary of the kernel support leading to ∇W (rJ − rI , h)� 1 and, hence, to
a badly conditioned matrix. This does not observed for other schemes due to the normalization
coefficient. As a result, the scheme (30) should be used with more than one particle in the compact
support in each direction leading to a larger bandwidth in the matrix.

Table 5. The error of convergence for different schemes (uniform particle distri-
bution) and f = 0.5005.

DoF MPFA Mimetic Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 1.489 · 10−1 2.651 · 10−2 1.489 · 106 8.244 · 10−1 8.244 · 10−1

100 2.015 · 10−2 4.424 · 10−3 9.471 · 105 2.178 · 10−1 2.178 · 10−1

400 2.727 · 10−3 6.889 · 10−4 5.378 · 105 5.550 · 10−2 5.550 · 10−2

1600 3.666 · 10−4 1.024 · 10−4 2.859 · 105 1.398 · 10−2 1.398 · 10−2

6400 4.951 · 10−5 1.522 · 10−5 1.473 · 105 3.504 · 10−3 3.504 · 10−3

25600 7.309 · 10−6 2.920 · 10−6 7.474 · 104 8.770 · 10−4 8.770 · 10−4

Tables 7, 8 show the convergence rate for different schemes with pseudo random particle distribu-
tion. The pseudo random distribution of particles was again generated by perturbing the regularly
distributed particles using the uniform random variable varying between +10% and −10% of the
maximum smoothing length hmax = 1.001. Similar to the above case, the statistical data about 30
realizations are used to compute mean values and standard deviations. These data are presented in
Tables 7, 8. The general trends of the scheme prosperities remain the same as for uniform particle
distributions. The scheme (30) has higher error compared to schemes (31)–(34) and (44)–(46).
However, the dispersion of the approximation error is higher in the scheme (44)–(46). Results of
the numerical solution are compared with the series solution in Figure 11.
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Table 6. The error of convergence for different schemes (uniform particle distri-
bution) and f = 1.001.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 1.163 · 100 1.078 · 10−1 1.078 · 10−1

100 1.208 · 100 1.488 · 10−2 1.488 · 10−2

400 8.291 · 10−1 2.244 · 10−3 2.244 · 10−3

1600 4.831 · 10−1 4.215 · 10−4 4.215 · 10−4

6400 2.606 · 10−1 9.858 · 10−5 9.858 · 10−5

25600 1.353 · 10−1 2.502 · 10−5 2.502 · 10−5

Table 7. The error of convergence for different schemes (random particle distri-
bution) and f = 0.6006.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 5.608 · 101 ± 1.019 · 100 8.815 · 10−1 ± 4.248 · 10−1 1.242 · 100 ± 5.058 · 10−1

100 3.769 · 101 ± 5.708 · 10−1 3.454 · 10−1 ± 1.977 · 10−1 4.361 · 10−1 ± 2.425 · 10−1

400 2.154 · 101 ± 1.757 · 10−1 8.454 · 10−2 ± 5.111 · 10−2 1.525 · 10−1 ± 1.195 · 10−1

1600 1.159 · 101 ± 7.457 · 10−2 2.245 · 10−2 ± 1.055 · 10−2 4.563 · 10−2 ± 2.328 · 10−2

6400 6.027 · 100 ± 2.312 · 10−2 1.104 · 10−2 ± 7.523 · 10−3 1.848 · 10−2 ± 9.276 · 10−3

25600 3.054 · 100 ± 1.174 · 10−2 4.123 · 10−3 ± 2.059 · 10−3 5.879 · 10−3 ± 4.253 · 10−3

Table 8. The error of convergence for different schemes (random particle distri-
bution) and f = 1.2012.

DoF Brookshaw (30) Schwaiger (31)–(34) New Scheme (44)–(46)

25 5.177 · 10−1 ± 7.312 · 10−2 3.143 · 10−1 ± 7.543 · 10−2 4.302 · 10−1 ± 1.461 · 10−1

100 5.160 · 10−1 ± 4.035 · 10−2 5.959 · 10−2 ± 4.713 · 10−3 1.106 · 10−1 ± 1.739 · 10−2

400 4.349 · 10−1 ± 1.715 · 10−2 1.515 · 10−2 ± 1.973 · 10−3 3.015 · 10−2 ± 1.045 · 10−2

1600 2.745 · 10−1 ± 9.059 · 10−3 3.926 · 10−3 ± 6.865 · 10−4 1.133 · 10−2 ± 5.486 · 10−3

6400 1.508 · 10−1 ± 2.822 · 10−3 1.595 · 10−3 ± 8.144 · 10−4 3.187 · 10−3 ± 1.438 · 10−3

25600 7.958 · 10−2 ± 1.146 · 10−3 5.354 · 10−4 ± 2.036 · 10−4 9.201 · 10−4 ± 5.201 · 10−4

5.3. SPE10. In addition, we investigate the accuracy of the numerical schemes using a well-known
SPE10 benchmark [53] with the Laplace equation:

L (u) = −∇ (M (r)∇u (r)) = 0, ∀r ∈ Ω ⊂ Rn,

Mαβ (r) = Kαβ (r) , Kαβ (r) = 0 ∀α 6= β; α, β = 1, . . . , n;
(62)

where u (r) is the unknown pressure field, Kαβ (r) is the diagonal permeability field. The original
model contains 85 layers, where layers from 1 to 35 have smooth permeability with lognormal
distribution and layers 36 to 85 have channelized formations that are considered to be significantly
more challenging for numerical simulations. The subset of this model is defined by the global
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Figure 9. Comparison of solutions of the inhomogeneous mixed boundary prob-
lems for the Laplace equations. The method used are MPFA-O, Mimetic, TPFA,
and Meshless methods (New Method: (44)–(46)).

Case (a)
Case (b)

Figure 10. The lognormal permeability field in the SPE10 benchmark test. Case
(a) 60 × 60cells of 85 layer. Case (b) subsection of the SPE10 model defined by
60× 60× 60 cells.

Cartesian indices I, J , K. The 85 layer was used as a permeability field for 2D simulation with
Cartesian indices I = 1 : 60 and J = 1 : 60. In 3D, the subsection Cartesian indices I = 1 : 60,
J = 1 : 60, and K = 1 : 60. The permeability fields K11 for both cases are shown in Figure 10. The
boundary conditions correspond to the unit pressure drop over the entire domain in J-direction
(i.e., ymin = 0 and ymax = 1). The numerical results using new scheme for the SPE10 cases are
presented in Figure 11. The relative error distribution is also shown for 2D and 3D cases, where the
error is computed using (57) and numerical solution based on TPFA. Figures 12 and 13 compare the
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Numerical Solution (2D Case) Relative Error % (2D Case)

Numerical Solution (3D Case) Relative Error % (3D Case)

Figure 11. Numerical solution obtained with the new scheme for the SPE10 cases.
The relative error distribution is also shown for 2D and 3D cases, where error is
computed using (57) and numerical solution based on TPFA.

convergence rates of the various discretizations subject to different preconditioners. Furthermore,
if we notice the convergence comparison for this test in Figures 12 and 13, the proposed new method
offers similar convergence as compared to the Schwaiger’s scheme (31)–(34)). The reason for such
convergence is the similarity between condition numbers of the linear system of equations resulting
from these methods.

Another interesting observation in this numerical test is the small values of the relative error
between the TPFA solution and proposed new method for both 2D and 3D cases. This observation
exhibits the efficiency of the proposed meshless discretization scheme, which explains the higher
accuracy of linear reproduction.

6. Conclusion

In this paper, the new stable SPH discretization of the elliptic operator for heterogeneous media
is proposed. The scheme has the two-point flux approximation nature and can be written in the
form of (2). Using this structure, it was possible to make some theoretical monotonicity analysis
(see, Remarks 2 and 3), which is difficult to perform for other schemes (e.g., Schwaiger’s method).
Furthermore, it follows from the Taylor’s series analysis that proposed scheme is the optimum one
in this class (2) for a diagonal matrix of the operator coefficients. In addition, the proposed scheme
allows to apply upwinding strategy during the solution of nonlinear PDEs.
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Figure 12. Comparison of the convergence rate of the GMRES iterative method
with and without preconditioner for different numerical discretization methods
(TPFA, New Scheme (44)–(46), Schwaiger (31)–(34)). The linear system of equa-
tions is built using 2D case.

Figure 13. Comparison of the convergence rate of the GMRES iterative method
with and without preconditioner for different numerical discretization methods
(TPFA, New Scheme (44)–(46), Schwaiger (31)–(34)). The linear system of equa-
tions is built using 3D case.

The new scheme is based on a gradient approximation commonly used in thermal, viscous, and
pressure projection problems and can be extended to include higher-order terms in the appropriate
Taylor series. The proposed new scheme is combined with mixed corrections which ensure linear
completeness. The mixed correction utilizes Shepard Functions in combination with a correction
to derivative approximations. Incompleteness of the kernel support combined with the lack of
consistency of the kernel interpolation in conventional meshless method results in fuzzy boundaries.
In the presented meshless method, the domain boundary conditions and internal field variables are
approximated with the default accuracy of the method. The resulting new scheme not only ensures
first order accuracy O(hα), 1 ≤ α ≤ 2, where h denotes the maximum particle spacing, but also
minimize the impact of the particle deficiency (kernel support incompleteness) problem.
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Furthermore, different Kernel gradients and their impact on the property of the scheme and
accuracy are discussed. The model was tested by solving an inhomogeneous Dirichlet and mixed
boundary value problems for the Laplacian equation with good accuracy confirming our theoretical
results. The accuracy of Schwaiger’s scheme and new scheme is the same for homogeneous particle
distribution and different for the distorted particles. The new scheme takes into account all terms
related to Hessian of the unknown function (see, relation (43)).

The stability analysis shows that von Neumann growth factor has both real and imaginary parts
forming complex shape for general particle distribution but satisfying the stability requirement
almost everywhere. The paper also discusses the monotonicity and convergence properties of the
new proposed scheme and demonstrates that there is a parameter h such that the proposed new
scheme is unconditionally monotone with the scalar heterogeneous media.

As was previously mentioned in the introduction, several methods have been proposed to address
the difficulties involved in calculating second-order derivatives with SPH. In contrast to the present
formulation, many of these methods achieve a high accuracy through fully calculating the Hessian or
requiring that the discrete equations exactly reproduce quadratic functions. The primary attraction
of the present method is that it provides a weak formulation for Darcy’s law which can be of
use in further development of meshless methods. The SPH model was previously used to model
three-dimensional miscible flow and transport in porous media with complex geometry, and we are
planning to use this model in future work for large (field) scale simulation of transport in porous
media with general permeability distributions.
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