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SUMMARY

Dynamic two-phase interaction of soil can be modelled by a displacement-based, two-phase formulation.
The finite element method together with a semi-implicit Euler–Cromer time-stepping scheme renders a
discrete equation that can be solved by recursion. By experience, it is found that the CFL stability condition
for undrained wave propagation is not sufficient for the considered two-phase formulation to be numerically
stable at low values of permeability. Because the stability analysis of the two-phase formulation is onerous,
an analysis is performed on a simplified two-phase formulation that is derived by assuming an incompress-
ible pore fluid. The deformation of saturated porous media is now captured in a single, second-order partial
differential equation, where the energy dissipation associated with the flow of the fluid relative to the soil
skeleton is represented by a damping term. The paper focuses on the different options to discretize the
damping term and its effect on the stability criterion. Based on the eigenvalue analyses of a single element,
it is observed that in addition to the CFL stability condition, the influence of the permeability must be in-
cluded. This paper introduces a permeability-dependent stability criterion. The findings are illustrated and
validated with an example for the dynamic response of a sand deposit. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of dynamic problems involving saturated porous media often requires taking
into account the interaction between the solid and fluid. One might think of the settlement of saturated
soil subject to loading via a foundation. Terzaghi [1] was the first to describe one-dimensional
consolidation under a constant load where the soil was assumed to consist of a solid skeleton filled
with pore fluid. Biot [2] extended this theory to three-dimensional consolidation under a time-
dependent load. Research has provided enhancements to these models over the years. Currently,
many different equations are known to describe consolidation, each with their own assumptions
regarding (an)isotropy of the material, (in)compressibility of the pore fluid and (non-)linearity of the
stress–strain relation of the solid phase; compare with [3].

This paper considers the displacement-based, two-phase formulation of Zienkiewicz et al. [3].
Adopting a finite element discretization and a semi-implicit Euler–Cromer scheme, the solution
algorithm is conditionally stable. For this class of problem, the Courant–Friedrichs–Lewy (CFL)
stability condition [4] has been used in the past, with the critical time step depending on the shortest
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NUMERICAL STABILITY FOR MODELLING OF DYNAMIC TWO-PHASE INTERACTION 1285
time that it takes for a compression wave to travel through an element. The CFL condition is a
necessary stability condition, but for two-phase interaction problems, it is not sufficient.

Various methods exist to estimate the critical time step for single-step time-stepping schemes,
including the perturbation method, von Neumann’s method and the matrix method; see, for
example, Wood [5] and Hoffman [6]. Because these methods are quite onerous to apply to systems
of differential equations, the displacement-based, two-phase formulation is simplified by assuming
an incompressible pore fluid for the specific boundary-valued problem of zero flux and rigid base
along the bottom boundary. This allows the deformation of saturated porous media to be captured
by a second-order partial differential equation, where the energy dissipation associated with the flow
of the fluid relative to the soil skeleton is represented by a damping term.

The analysis present in this paper was intended to identify a stability criterion that is suitable for use in
the material point method that relies on the Cromer–Euler time-stepping scheme; see, for example, Jassim
et al. [7]. Originally, the CFL condition had been adopted to estimate an approximate critical time step, but
it became clear that it was not sufficient. The analysis presented here is considerably simpler than that
presented in [8]. The simplifications help flush out dependencies. Other relatively recent contributions
to the subject are presented in [9] and [10]. In these, the emphasis is on the time-stepping scheme.

The equations of the displacement-based, two-phase formulation are given in Section 2 for the
specific case of a one-dimensional material response together with the assumption of linear-elastic,
stress–strain behaviour. Section 3 analyses the critical time steps for consolidation and undrained
wave propagation separately. In Section 4, the field equations are simplified with help of the
assumption of incompressible pore fluid. The finite element discretization and Euler–Cromer scheme
are also introduced. Section 5 performs the stability analysis for both a lumped and a reduced
integration damping matrix. The findings are illustrated and validated by an example of a sand
deposit in Section 6, followed by conclusions in Section 7.
2. FIELD EQUATIONS

A saturated porous medium is considered, whose one-dimensional deformation history is described in
terms of displacements u and w of the solid and fluid, respectively. The total vertical stress σ is
decomposed into the effective stress component σ′ that is associated with the soil skeleton and pore
pressure p according to the well-known Terzaghi equation σ = σ′+ p. We deviate here from the usual
soil mechanics convention by assuming that suction pressure is positive. In terms of mixture theory,
the bulk density ρ depends on porosity n and the densities of the fluid ρw and solid grains ρs
according to ρ= (1�n)ρs+ nρw.

The governing equations of the dynamic problem are derived from the conservation of (linear)
momentum, conservation of mass and the constitutive law. Here, linear elasticity is assumed. For
one dimension, the equations can be written as

Momentum equation of mixture: σ′þ pð Þ;z � 1� nð Þρs€u � nρw€w � γ ¼ 0 (1)

Momentum equation of fluid: p;z � ρw€w � nγw
k

_w� _uð Þ � γw ¼ 0 (2)

Mass balance of mixture:
n

Kw
_p ¼ 1� nð Þ _u;z þ n _w;z (3)

Constitutive law for solid: _σ′ ¼ Ec _u;z (4)

The equations are considered in a Lagrangian description [11], such that the comma in the subscript
denotes differentiation with respect to the material coordinate z and the superposed dot denotes the time
derivative of the considered quantity. As is often the case, the convective acceleration of the fluid
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1286 M. MIEREMET ET AL.
relative to the soil skeleton is ignored. The parameters γw and γ represent the unit weight of the fluid
and the mixture, respectively. Furthermore, we have the Darcy permeability k [m/s], the bulk
modulus of the fluid Kw and the confined modulus of the soil skeleton Ec. The solid particles
themselves are incompressible.
3. CHARACTERISTIC TIMES FOR TWO-PHASE ANALYSIS

When considering the dynamics of the mixture and consolidation separately, there are two timescales
of interest, namely that of excess pore pressure dissipation related to consolidation and that of
compression wave propagation within the solid–fluid mixture. In mathematics, consolidation is seen
as parabolic behaviour, while wave propagation is hyperbolic behaviour. As far as the dynamic
behaviour is concerned, it is possible to further refine the analysis by considering the wave
propagation in the fluid and solid separately rather than for the mixture. This will not be considered
here as we are more interested in the transition from hyperbolic to parabolic dominated behaviour,
which represents partially drained conditions.

Before deriving a time step criterion for the complex interaction of the two phases, it is prudent to
consider the critical time steps for each phenomenon separately. The differential equations describing
one-dimensional consolidation and confined, undrained wave propagation are, respectively,

cvp;zz ¼ _p and v2cu;zz ¼ €u (5)

in which cv= kEc/γw is the coefficient of consolidation and vc ¼
ffiffiffiffiffiffiffiffiffiffi
Eu=ρ

p
is the speed of a compression

wave in an undrained medium, with Eu being the undrained, confined modulus. An estimate of the
undrained modulus can be obtained by Eu≈Ec+Kw/n; see, for example, Verruijt [12].

The associated critical time steps according to the CFL conditions are

Δtccrit ¼
h2

2cv
and Δtucrit ¼

h

vc
(6)

in which h represents the minimum element size. For the extreme cases in which consolidation influences
or inertial effects are negligible, the criterion is fairly straightforward. The first criterion of Eq. (6) shows
that for low values of k, a larger critical time step can be found. However, a sensitivity analysis with
respect to permeability indicates that for low values of k, the stability of the coupled equations depends
on permeability in a way that is opposite to what is expected. The question arises, how does
permeability influence the critical time step for a dynamic behaviour between the extreme cases?
4. STATEMENT OF THE PROBLEM

Regardless of the stability analysis approach, the process of obtaining a time step criterion can be quite
onerous, particularly when dealing with multiple balance equations such as Eqs (1) to (4). To simplify
the problem, the full set of equations is reduced to a single differential equation that captures the salient
features of the two-phase interaction. This equation must capture the reciprocal solid–fluid interaction,
in addition to the simultaneous consolidation and dynamic processes. In the following, the problem of
a one-dimensional column with an impermeable, rigid base and a load applied on top is considered.
The height of the column is denoted by H.

When assuming incompressible pore fluid, the mass balance for a porous medium given by Eq. (3)
is replaced by

1� nð Þ _u;z þ n _w;z ¼ 0 (7)

This is a strong constraint when considering that it is often desirable to include some fluid
compressibility to tie the pressure field to the volumetric strain that helps mitigate non-physical
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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pressure variations. When it is assumed that the influence of variations in density and porosity in space
and time are negligible, Eq. (7) can be replaced by the constraint

1� nð Þ _uþ n _w ¼ C tð Þ (8)

As a consequence of the impermeable, rigid base, the right-hand side of Eq. (8) is equal to 0.
Elimination of the variables w, p and σ from Eqs (1), (2), (4) and (8) renders

eρ€u þ γw
k
_u� Ecu;z

� �
;z
¼ 0 (9)

with eρ ¼ ρþ 1
n � 2
� �

ρw . It should be noted that gravity is left out. Equation (9) has the form of the
standard equation for damped wave propagation, in which consolidation, a hydraulic lag
phenomenon, acts as a damping term. The equation expresses the effective dynamic equilibrium of
the soil skeleton, properly taking into account the interaction of the soil skeleton and the pore water.

The weak form of Eq. (9) is given by

∫H Δu ρ̃€u þ Δu
γw
k
_uþ Δu;zEcu;z

� �
dz ¼ Δuσ′jz¼H (10)

where δu is the weighting function that is consistent with the Galerkin method [13]. After introducing
the finite element approximation with linear interpolation, Eq. (10) becomes in discretized form

M€a þ C _aþKa ¼ F (11)

such that M, C and K are the mass, damping and stiffness matrices, respectively, and F is the load
vector. Vector a contains the solid displacement degrees of freedom. For one element, Eq. (11)
becomes

eρh
2

1 0

0 1

� �
€a1

€a2

	 

þ C

_a1

_a2

	 

þ Ec

h

1 �1

�1 1

� �
a1

a2

	 

¼ f 1

f 2

	 

(12)

where a lumped mass matrix [13] is introduced to avoid the time-consuming calculation of the inverse
mass matrix. Equation (12) is assembled to a larger system of equations when considering more than
one element.

In this paper, we consider two forms of the damping matrix. Besides a lumped damping matrix, a
reduced integration damping matrix proposed by Mieremet [14] is also considered:
- lumped form C ¼ γwh 1 0
� �

(13a)

2k 0 1

- reduced integration form C ¼ γwh 1 1
� �

(13b)

4k 1 1

The lumped damping matrix is obtained using Newton–Côtes integration, while Eq. (13b) is
obtained with one Gauss integration point [15].

A modified Euler–Cromer scheme [16] is applied to Eq. (12). It first determines the velocity using
the forward difference approximation and then updates the displacement with the backward difference
approximation. Because the regular Euler–Cromer scheme does not include the damping term, the
implicitness of this term is varied with help of the standard θ method to investigate its influence.
The implicitness parameter θ varies between 0 and 1; the extreme values represent explicit and
implicit time integration, respectively.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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5. STABILITY ANALYSIS

The matrix method is considered for the stability analyses in this paper. For a detailed description, the
reader is referred to Hirsch [17]. According to the matrix method, the stability of a time-stepping
scheme depends on the largest eigenvalue associated with the recursion equation, which in turn
depends on the time algorithm that is adopted. Irons [18] shows that the largest eigenvalue of a
finite element is larger than that of the system. Therefore, only one element is considered, that is,
Eq. (12). Because the load can been neglected as only the bounding on the free vibration prediction
is of significance to the stability analysis, we work with the following equation:

eρh
2

1 0

0 1

� �
€a1

€a2

	 

þ C

_a1

_a2

	 

þ Ec

h

1 �1

�1 1

� �
a1

a2

	 

¼ 0

0

	 

(14)

As mentioned before, we consider two cases, one with a lumped damping matrix and the other with
a reduced integration damping matrix. It should be noted that with the latter, only explicit time
integration (θ =0) is considered to avoid inverse matrix calculations.

5.1. Consideration of a lumped damping matrix

Setting a= ãe� λt in Eq. (14), where ã is an eigenvector and λ an eigenvalue, renders a quadratic
eigenvalue problem. The problem is characterized by four eigenvalues corresponding to two
eigenvectors, from which the stability criteria are derived as follows:

(a) Eigenvector ea1 ¼ �1 1h iT corresponds to the deformation mode of the soil skeleton that
yields the equation

€c1 þ 2νω _c1 þ ω2c1 ¼ 0 (15)

in which c1 represents the participation factor for ã1, 2νω ¼ γw=eρk, ω2 ¼ 4Ec=eρh2 with h being the
length of the element and ν representing a ‘damping ratio’.

The modified Euler–Cromer scheme is applied to solve Eq. (15). First, the velocity _c1 is determined
using the forward difference approximation taking into account the standard θ method for the damping
term. Thereafter, the displacement c1 is updated with the backward difference approximation. This
sequence of steps results in a recursion equation:

1þ 2θνωΔt½ �cnþ1
1 � 2� 2 1� 2θð ÞνωΔt � ωΔtð Þ2

h i
cn1 þ 1� 2 1� θð ÞνωΔt½ �cn�1

1 ¼ 0 (16)

The pattern cnþ1
1 ¼ r1cn1 yields the following characteristic equation:

1þ 2θνωΔt½ �r21 � 2� 2 1� 2θð ÞνωΔt � ωΔtð Þ2
h i

r1 þ 1� 2 1� θð ÞνωΔt½ � ¼ 0 (17)

Numerical stability requires the roots |r1|≤ 1 for the solution to be bounded, that is,

1� 1� 2θð ÞνωΔt � ωΔtð Þ2±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� 2θð ÞνωΔt � ωΔtð Þ2
� �2

� 1þ 2θνωΔtð Þ 1� 2 1� θð ÞνωΔtð Þ
r

1þ 2θνωΔtð Þ

��������
�������� ≤ 1 (18)

(b) The second eigenvector ea2 ¼ 1 1h iT corresponds to the flow of fluid, delivering
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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€c2 þ 2νω _c2 ¼ 0 (19)

where c2 represents the participation factor for the second mode. For the case of no consolidation, the
second eigenvector represents a rigid-body mode, which is neglected for stability analysis. With
consolidation, this mode corresponds to the movement of water relative to the soil skeleton.

The recursion equation for the Euler–Cromer scheme for Eq. (19) may be written as

1þ 2θνωΔt½ �cnþ1
2 � 2� 2 1� 2θð ÞνωΔt½ �cn2 þ 1� 2 1� θð ÞνωΔt½ �cn�1

2 ¼ 0 (20)

Following the pattern cnþ1
2 ¼ r2cn2, we have

1þ 2θνωΔt½ �r22 � 2� 2 1� 2θð ÞνωΔt½ �r2 þ 1� 2 1� θð ÞνωΔt½ � ¼ 0 (21)

and numerical stability is obtained when |r2|≤ 1; that is,

1� 1� 2θð ÞνωΔt ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� 2θð ÞνωΔtð Þ2 � 1þ 2θνωΔtð Þ 1� 2 1� θð ÞνωΔtð Þ

q
1þ 2θνωΔtð Þ

������
������ ≤ 1 (22)

The implicitness factor θ is not yet assigned in Eqs (18) and (22). We give the simplified versions of
the stability criteria for the most commonly used values in Table I.

From Table I, we may conclude that for θ =0, the critical time step is permeability-dependent
according to

Δtcrit ¼
�2νωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2νωð Þ2 þ 4ω2

q
ω2

(23)

This relation between the critical time step and permeability, through 2νω ¼ γw=eρk and ω2 ¼
4Ec=eρh2 , is consistent with the sensitivity analysis on the full two-phase formulation and will
therefore be considered in the example of the sand deposit that follows in Section 6.

For the case of θ=1/2, no dependency on permeability is found. Strictly speaking, this stability
criterion is valid for the simplified two-phase formulation but does not properly capture the
numerical stability for the more complex full two-phase formulation that accommodates some fluid
compressibility.

With an implicit damping term, that is, θ =1, the stability criterion again depends on the
permeability. Because a low permeability provides a larger critical time step, which is opposite to
the findings from the sensitivity analysis of the full two-phase formulation, this stability criterion
will not be taken into account in the example of the sand deposit.

5.2. Consideration of a reduced integration damping matrix

Given the stability analysis presented previously, we only state the obtained stability criteria for the
explicit reduced integration damping matrix, that is, θ =0.
Table I. Stability criteria for different values of the implicitness factor.

Implicitness factor θ
Stability criterion for

eigenvector ea1 ¼ �1 1h iT
Stability criterion for

eigenvector ea2 ¼ 1 1h iT

0 0 ≤ (ωΔt)2 ≤ 4(1� νωΔt) 0 ≤ 2νωΔt ≤ 2
1
2 0 ≤ (ωΔt)2 ≤ 4 0≤ 2νωΔt

1 0≤ (ωΔt)2 ≤ 4(1 + νωΔt) 0≤ 2νωΔt

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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1290 M. MIEREMET ET AL.
(a) The eigenvector ea1 ¼ �1 1h iT provides the stability criterion

0 ≤ ωΔtð Þ2 ≤ 4 (24)

(b) The eigenvector ea2 ¼ 1 1h iT renders

0 ≤ 2νωΔt ≤ 2 (25)

It should be noted that Eq. (24) is mesh-dependent through ω2 ¼ 4E=eρh2 , while Eq. (25) is
permeability-dependent through 2νω ¼ γw=eρk . The critical time step is determined as the minimum
of the limitations obtained from eigenvectors ã1 and ã2:

Δtcrit ¼ min
2
ω
;

2
2νω

� 
(26)
6. EXAMPLE: DYNAMIC RESPONSE OF A SAND DEPOSIT

The previous analyses focused on the dynamic characteristics of a single element in isolation. In this
section, we consider a 10m thick saturated sand deposit supported by rigid, impermeable bedrock
onto which a new layer of sand is placed. The sand deposit, which is shallow compared with its
horizontal dimensions, can be modelled as a one-dimensional problem subject to an instantaneous
surface load of 100 kPa. The corresponding mesh is shown in Figure 1 together with the material
properties that are kept fixed.

Simulations were performed with the finite element equivalent of Eq. (9) with the reduced
integration damping matrix to which the Euler–Cromer scheme was applied. Both 20 and 200
elements were considered to show the effect of the element size on the critical time step. The
permeability was varied to see its effect on the critical time step, adopting values of 3.0 · 103 and
0.3 · 103m/s. It should be noted that a low value for the confined modulus was selected to
demonstrate the appropriateness of the stability criteria.

Table II summarizes the critical time steps calculated according to Eq. (26). We see that for a coarse
mesh with 20 elements, the permeability-dependent criterion determines the critical time step. A
refinement to 200 elements renders a switch to the mesh-dependent criterion at a higher
permeability, while the permeability-dependent criterion stays the dominating criterion for a lower
permeability.
Figure 1. One-dimensional finite element mesh for the saturated sand deposit with fixed material properties.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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Table II. Critical time steps for the saturated sand deposit considering an explicit reduced integration
damping matrix, with Δt1 referring to the mesh-dependent criterion and Δt2 to the permeability-dependent

criterion.

Element
size h (m)

Permeability
k (m/s)

Time step
Δt1 ¼ h

ffiffiffiffiffiffiffiffieρ=Ep
(s)

Time step
Δt2 ¼ 2eρk=γw (s)

Critical time step
Δtcrit =min(Δt1,Δt2) (s)

0.50 3.0 · 103 7.250 · 103 1.261 · 103 1.261 · 103

0.50 0.3 · 103 7.250 · 103 0.126 · 103 0.126 · 103

0.05 3.0 · 103 0.725 · 103 1.261 · 103 0.725 · 103

0.05 0.3 · 103 0.725 · 103 0.126 · 103 0.126 · 103
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Figures 2 and 3 compare the stable and unstable numerical solutions for the finite element model
with 20 elements and different values of permeability to the analytical solution of the considered
benchmark. It was obtained from Eq. (9) as presented in [14]. The analytical solution shows an error
around t=0 as a result of cutting off an infinite sum.

It should be noted that the first figure for each case (a) corresponds to the full simulation period with
the second (b) showing the details at the beginning. Because the instabilities that develop are of an
oscillatory nature, only the amplitudes are shown to avoid overcrowding. Because the time step
sizes of the stable and unstable numerical solutions are within a 1% range of the critical time step,
the permeability-dependent criterion is hereby validated.
Figure 2. Validation of the critical time step Δtcrit= 1.261 � 103 s for the saturated sand deposit considering an
element size h= 0.50m and permeability k= 3.0 · 103m/s: (a) over 60 s and (b) details over 1.2 s.

Figure 3. Validation of the critical time step Δtcrit= 0.126 � 103 s for the saturated sand deposit considering an
element size h= 0.50m and permeability k=0.3 · 103m/s: (a) over 450 s and (b) details over 0.15 s.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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Figures 4 and 5 give similar numerical results for the case with 200 elements. Because the critical
time step in the problem with a permeability of 3.0 · 103m/s is determined by the mesh-dependent
criterion, Figure 4 validates this criterion. Figure 5, which shows the results for both lower
permeability and smaller element size, is added for completeness.

The same validation was performed with an explicit lumped damping matrix, with the critical time
steps belonging to different element sizes and permeability being presented in Table III. Once again,
the critical time steps are validated. The figures for the lumped damping case are however left out
because the numerical results are comparable to those shown in Figures 2–5.

We next demonstrate how the permeability influences the numerical stability of the Euler–Cromer
scheme for the full two-phase formulation. Figure 6 shows the variation in the critical time step
Figure 5. Validation of the critical time step Δtcrit=0.126 � 103 s for the saturated sand deposit considering an
element size h= 0.05m and permeability k= 0.3 · 103m/s; (a) over 450 s and (b) details over 0.15 s.

Figure 4. Validation of the critical time step Δtcrit=0.725 � 103 s for the saturated sand deposit considering an
element size h= 0.05m and permeability k= 3.0 · 103m/s: (a) over 60 s and (b) details over 0.15 s.

Table III. Critical time steps for the saturated sand deposit considering an explicit
lumped damping matrix.

Element size h (m) Permeability k (m/s)

Critical time step

Δtcrit ¼ �γw= ρ̃ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γw= ρ̃ kð Þ2þ16E= ρ̃h2

p
4E= ρ̃h2

(s)

0.50 3.0 · 103 1.226 · 103

0.50 0.3 · 103 0.126 · 103

0.05 3.0 · 103 0.546 · 103

0.05 0.3 · 103 0.123 · 103

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1284–1294
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Figure 6. Comparison between different time step criteria for the simplified and full two-phase formulations.
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given the full two-phase formulation assuming various values of permeability and adopting 200
elements. Also shown are the CFL stability condition and the criterion corresponding to the
simplified two-phase formulation with the lumped and the reduced integration damping matrix. We
clearly observe that the permeability-dependent criterion controls numerical stability for low values
of permeability, while the CFL stability condition for undrained wave propagation controls
numerical stability for high values of permeability. In mathematical notation, it is written as

Δtcrit ¼ min
hffiffiffiffiffiffiffiffiffiffi
Eu=ρ

p ;
2eρk
γw

 !
(27)

It should be noted that with the simplified two-phase formulation, higher time steps are possible than
with the full two-phase formulation, particularly at higher permeability.
7. CONCLUDING REMARKS

In this paper, the displacement-based, two-phase formulation of Zienkiewicz [3] was simplified with
the assumption of an incompressible pore fluid and one-dimensional confined deformation. Stability
analyses were performed on this simplified two-phase formulation with lumped and reduced
integration damping matrices. The results for dynamic simulations of a saturated sand deposit
showed that the numerical stability of the full two-phase formulation could be best captured by
taking the minimum of the permeability-dependent criterion and the CFL stability condition. The
analysis presented here is useful for two-dimensional and three-dimensional problems when properly
taking into account the characteristic length of the elements.

A challenge, which depends on computational resources and what the analyst is interested in, is to
use a model that captures the information of interest. We showed that for the displacement-based, two-
phase formulation, the critical time step size decreases with permeability, possibly leading to an
unacceptably small time step size when considering low permeability. In problems characterized by
high-frequency behaviour, it may be best to neglect consolidation and consider undrained dynamic
behaviour to reduce the computational cost. Similarly, from both a numerical and physical point of
view, the inertial term can be dropped if low frequency response is of interest. In all other cases, the
displacement-based, two-phase formulation can be used with the obtained stability criterion.
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