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a b s t r a c t 

The development of practical quantum computers that can be used to solve real-world problems is in full 

swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical 

super-computers. Like with any emerging compute technology, it needs early adopters in the scientific 

computing community to identify problems of practical interest that are suitable as proof-of-concept ap- 

plications and to revise existing solution strategies and develop new ones that exploit the capabilities of 

the novel compute hardware. 

In this article we describe a conceptual framework for reducing the computational complexity 

of simulation-driven automated design optimization processes, which are nowadays widely used in 

computer-aided product development, by exploiting quantum supremacy. Our approach is based on the 

assumption that quantum computers will become part of hybrid high-performance computing platforms 

and can then be used as application-specific accelerator devices. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The era of accelerated computing started in the mid-20 0 0s,

hen CPU clock speeds approached the 4 GHz barrier and a fur-

her increase beyond this barrier would have required enormous

ffort s f or cooling the processor to prevent spurious malfunc-

ioning and even permanent hardware damage from overheating.

ll major chip vendors followed the paradigm shift from chasing

ltimate single-core performance towards developing parallel

igh-performance computing (HPC) technologies and flooded the

arket with multi-core CPUs and many-core accelerator cards like

rogrammable GPUs and dedicated co-processor devices. 

.1. Accelerated computing 

The key idea of accelerated computing is to offload computa-

ionally expensive tasks from the host, a classical multi-core and

ossibly multi-socket CPU-based computer, to the attached accel-

rator devices, which altogether form the so-called compute node.

odern HPC systems consist of hundreds and thousands of com-

ute nodes, which are interconnected by high-speed networks. 
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In classical accelerated computing, the role of the host com-

uter is threefold: Firstly, tasks that do not benefit from the

ompute capabilities of the accelerator devices such as in- and out-

ut of data from and to the global filesystem and intrinsically se-

uential (parts of) algorithms are executed by the host. Secondly,

he host is responsible for orchestrating the interplay of acceler-

tor devices among each other and with the CPU and for man-

ging the communication between the distributed compute nodes.

inally, since modern CPUs have up to 20–32 cores with integrated

ector-processing units, heterogeneous HPC systems also use the

assive compute power of the host to perform actual computa-

ions. 

Most of today’s many-core accelerators are designed for exe-

uting parallelizable and/or vectorizable instructions of SIMD-type

single instruction multiple data) exceptionally fast. Consider, for

nstance, the multiplication of an m × n matrix with a column vec-

or of length n . Each matrix row gives rise to a separate dot prod-

ct, i.e. an accumulated multiply-add operation that can be carried

ut in a parallel and, ideally, vectorized loop over all rows even

n multiple devices with distributed memory architecture. This so-

alled divide-and-conquer approach is a common building block in

lassical HPC applications and it is supported by most program-

ing models like OpenMP [1] and MPI [2] . 

Recently, application-specific accelerator technologies are 

merging, which offer extra functionality that is not available

n commodity hardware. Consider, for instance, Google’s tensor

rocessing units [3] , which is an application-specific integrated

https://doi.org/10.1016/j.micpro.2019.02.009
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circuit (ASIC) for accelerating machine learning applications. To

fully exploit its compute power, the part of the application that

benefits from using the AI accelerator needs to be identified and

implemented in the vendor-specific programming model, which

often requires code refactoring. 

1.2. Quantum-accelerated computing 

In our opinion, quantum computing has the potential of becom-

ing a disruptive application-specific acceleration technology that

might have a significant impact on future developments in high-

performance scientific computing [4] . However, this variant of ac-

celerated computing is so much different from existing technolo-

gies, that it needs radically new algorithmic concepts rather than

the continuation and extension of traditional approaches to achieve

quantum supremacy, that is, the potential ability of quantum com-

puting devices to solve problems that cannot be solved efficiently

by classical computers [5] . 

Consider, for instance, the aforementioned matrix-vector multi-

plication that can easily be accelerated in classical computing by

adopting the divide-and-conquer approach. The very limited num-

ber of qubits in today’s (50-qubit processor [6] ) and mid-future

(72- and 128-qubit processors [7,8] ) quantum devices makes this

strategy of parallelizing along the problem size unattractive. 

Another concept, which is widely used for solving boundary

value problems (BVP) that are modeled by partial differential equa-

tions (PDE), are so-called domain decomposition methods (DDM)

[9] . The key idea is to split a single large problem into multiple

smaller ones that can be solved in parallel on multiple distributed

compute devices. Data is regularly exchanged between the differ-

ent sub-domains to ensure that the global solution that is made

up from local parts solves the original problem. The straightfor-

ward application of DDMs on quantum devices is ruled out by the

no-cloning theorem [10] , which states that it is impossible to cre-

ate an identical copy of an arbitrary unknown quantum state. Of

course, measurements could be performed in order to exchange

classical state data between sub-domains but that will most likely

stop quantum supremacy. 

It should be noted that direct communication between quan-

tum devices is possible without destroying the superposition of

quantum states via quantum teleportation [11] and quantum chan-

nels [12] , but this requires a conceptual redesign of the DDM,

which typically performs simple averaging of the non-unique data

available at the sub-domain interfaces. The above is not meant

to discourage practitioners from looking into quantum-accelerated

computing but aims to identify some of the many challenges that

one might encounter. 

In what follows, we sketch a conceptual framework for accel-

erating the solution of simulation-based automated design opti-

mization (ADO) problems with the aid of quantum devices. Our

theoretical scenario is based on existing quantum algorithms for

solving linear systems of equations and for finding the minimum

of a quadratic form. The rest of this paper is organized as fol-

lows: Section 2 establishes an abstract mathematical framework

for solving ADO problems and gives two illustrative examples.

Section 3 reviews existing quantum algorithms that can be used

to realize the suggested ADO framework in practice. Finally, a brief

discussion of remaining open questions, recommendations for fur-

ther research and main conclusions are given in Section 4 . 

2. Automatic design optimization 

Computer-aided product development is a key technology of In-

dustry 4.0. Consider the design of a full airplane or parts of it like

its engines, which have reached a complexity level that renders the

manual adjustment of the hundreds and thousands of individual
esign parameters impractical. A remedy is to use automated de-

ign optimization (ADO) procedures, in which the parameters are

aried systematically based on computer simulations that provide

 prediction of the flow field and other physical processes that

eed to be taken into account. 

Simply speaking, the task is to find, say, a wing design with

inimal weight, maximal durability and resilience, and beneficial

erodynamic shape that ensures safe maneuvering of the airplane

n all design and a wide range of off-design conditions, which

oreover reduces CO 2 , NO x and noise emissions and satisfies in-

ernational regulations concerning, say, the maximal wingspan. 

It should be clear that most problems of practical interest do

ot possess a unique optimal solution. In this case, an ’optimal’ de-

ign is only the best possible compromise between the many and

ften conflicting requirements. 

In what follows, we derive an abstract ADO framework using

he example of optimal wing design for illustration purposes. A

odel problem that meets all prerequisites of the quantum algo-

ithms from Section 3 is introduced afterwards. 

.1. PDE-Constrained optimization 

ADO problems can be formulated as continuous minimization

roblems that are constrained by one or more PDEs and addi-

ional equality and inequality constraints. To begin with, let α =
(α1 , . . . , αM 

) � denote the vector of design variables, which need

o be chosen from the ’admissible’ design space D which forms a

ubset of the R 

M and is thus very difficult to explore in full de-

ail when M � 1. This challenge is widely known as the ’curse of

imensionality’. 

In practice, the admissibility conditions are of the form 

min 
i ≤ αi ≤ αmax 

i , i = 1 , . . . , M (1)

ombined with more complicated equality and inequality con-

traints, e.g., 

 j < c � j α ≤ U j , j = 1 , . . . , N, (2)

here the dot product c � 
j 
α stands for a linear combination of the

esign variables and L j and U j are lower and upper bounds, respec-

ively. 

As an example, let α1 be the wingspan, which must satisfy

nternational standards, e.g., 52m ≤α1 < 65m to satisfy the Inter-

ational Civil Aviation Organization (ICAO) Code E requirements.

oreover, the expected fuel capacity of the wing tanks sets up a

ower bound for the minimal wing volume, which yields a con-

traint of the second type. 

Each α generates a particular design, termed the control U ( α),

hich describes the shape of the wing in the first place but can

nclude other properties as well. Its quality is assessed with re-

pect to key performance indicators. A crucial quantity in aerody-

amics is the lift-to-drag coefficient c l / c d that should be sufficiently

igh in order to obtain designs with good aerodynamic properties.

rag and lift coefficients are computed from the flow velocity v

nd pressure p , which can be calculated, e.g., by the Navier-Stokes

quations or another so-called flow model. Such flow models typ-

cally consist of a set of (coupled) PDEs, which are complemented

y consistent boundary and initial conditions. 

Without going into the mathematical details, let 

 (U( α) ;Y ) = 0 (3)

enote the flow model in abstract residual form. That is, given a

ontrol U ( α), our aim is to find a solution Y = (v , p) that satisfies

he flow model (3) . It goes without saying that the solution de-

ends on the control, i.e. Y = Y (U( α)) . 
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Next, let us define the cost functional that should be minimized

 (U( α) ;Y ) = 

(
c l 
c d 

)−1 

. (4)

hen the task of creating an optimal wing design U ( α∗) amounts to

nding an admissible configuration α∗ ∈ D such that the solution

 ( U ( α∗)) to the flow model (3) also minimizes the cost functional

4) , i.e. 

in 

α∈D 
J (U( α) ;Y ) , (5) 

.t. R (U( α) ;Y ) = 0 . (6) 

n truly multi -disciplinary and multi -objective design optimization

MDO) problems the aim is to minimize several cost functionals si-

ultaneously, whereby the solution Y needs to satisfy several PDE

roblems, e.g., the Navier-Stokes equations for predicting the be-

avior of the flow around the wing and another structural mechan-

cs model for estimating the stresses acting inside it. 

A common strategy for solving the ADO problem (5) –(6) is to

valuate the PDE problem for many different parameter sets { α} g 
n parallel, select a few best ones with respect to the cost func-

ional J , combine them using nature-inspired mutation, crossover,

nd selection procedures and reevaluate (6) with the next gen-

ration of design parameters { α} g+1 . This procedure is repeated

any times until a sufficiently good design has been found. The

ain bottleneck of this evolutionary or genetic algorithm approach

13] are the huge computational costs due to the frequent evalua-

ion of the PDE problem, which can take days or even weeks for a

ingle realistic simulation run. 

Next to such meta-heuristic search strategies, which might not

ead to an immediate design improvement in each single optimiza-

ion cycle, there also exist gradient-based optimization algorithms

14] , which compute the gradient of the cost functional with re-

pect to the design parameters and select the next configuration of

esign parameters in such a way that J improves the most. How-

ver, these methods run the risk of being trapped in a local (but

ot global) minimum, from which a gradient-based method can-

ot escape by design. 

A more recent approach is to combine gradient-free and

radient-based strategies into so-called hybrid optimization al-

orithm [15,16] , which combine the computational efficiency of

radient-based methods with the strength of gradient-free ap-

roaches to explore the full search space. 

.2. Academic model problem 

For the further discussion, let us consider a much simpler

odel problem that fits into the abstract ADO framework but al-

ows us to easily verify the prerequisites of the quantum algo-

ithms to be addressed in Section 3 . 

Consider Poisson’s equation in two spatial dimension with ho-

ogeneous Dirichlet boundary conditions prescribed along the en-

ire boundary � = ∂�: 

u + f = 0 in �, (7) 

 = 0 on �. (8) 

he domain � = �(α) is given by the unit square, whereby the

hape of the lower boundary part can be varied within the range

f the quadratic polynomial 

 (x ) = α(x − x 2 ) , αmin ≤ α ≤ αmax , 0 ≤ x ≤ 1 . (9)
he aim is to minimize the L 2 -error between the solution u to

he above BVP (7) –(8) and a given reference profile u ∗ prescribed

ithin �( α), i.e. 

 (�(α) ; u ) = 

√ ∫ 
�(α) 

(u − u 

∗) � (u − u 

∗) d x . (10)

ithout going into the mathematical details, we remark that the

VP (7) –(8) is typically approximated by a numerical discretization

cheme, like the finite difference method (FDM) [17] , the finite vol-

me method (FVM) [18] or the finite element method (FEM) [19] ,

hich leads to the linear system of equations 

 h u h = f h , (11)

here the stiffness matrix A h ≈�( · ) represents the discretized dif-

erential operator, and u h ≈ u and f h ≈ f are approximations of the

nknown solution and the load vector, respectively. Let us approx-

mate the target profile u ∗
h 

≈ u ∗ and define the auxiliary vectors

 h = u h − u ∗
h 
, and b h = f h − A h u 

∗
h 
. By subtracting A h u 

∗
h 

from both

ides of (11) , we arrive at the equivalent formulation 

 h y h = b h , (12)

hose solution y h can be directly inserted into the cost functional

 (�h (α) ; y h ) = 

√ ∫ 
�h (α) 

y � 
h 

y h d x , (13)

here �h ( α) ≈�( α) is the approximation of the domain by

he mesh. The integral term is typically evaluated by numerical

uadrature leading to 

j h = 

√ 

y � 
h 

M h y h = 

√ 

〈 y h | M h | y h 〉 , (14) 

here M h is the consistent mass matrix for the FEM and the iden-

ity matrix for FDM and FVM. Both A h and M h are symmetric N × N

atrices, where N is the number of entries in vector y h . For most

patial discretization schemes and, in particular, the FDM, FVM,

nd FEM, the matrices are s -sparse, that is, each row contains at

ost s 
 N non-zero entries. A h is moreover symmetric positive-

efinite and efficiently row computable, that is, each entry A ij can

e accessed in O(s ) time from the index pair ( i, j ) if the matrix en-

ries are stored in compressed sparse row (CSR) format [20] . With-

ut the capability of storing A h explicitly each matrix entry can be

omputed on-the-fly in O(d) time if Lagrange finite element basis

unctions are adopted on d -simplexes [21] . 

The condition number κ(A h ) = ‖ A h ‖‖ A 

−1 
h 

‖ is proportional to

(h −2 
min 

) , where h min is the minimal element length [22] . However,

he effective condition number of A h is typically much smaller [23] ,

hich is particularly helpful to accelerate the solution of the linear

ystem of Eqs. (12) and to solve the overall optimization problem

5) –(6) using efficient quantum algorithms. 

. Quantum algorithms 

.1. Quantum-accelerated linear solvers 

A very popular classical algorithms for solving linear systems

f the form (12) with symmetric positive-definite s -sparse system

atrix A h is the conjugate gradient (CG) method [24] . Its time

omplexity is O(Nsκ log (1 /ε)) [25] , where ε is the desired accu-

acy of the solution in some norm, i.e. ‖ A h y h − b h ‖ < ε. 

The first quantum algorithm for solving linear systems of

quations was developed by Harrow et al. in [26] with time

omplexity O( log (N) s 2 κ2 /ε) . Improved variants have been pro-

osed by Ambainis in [27] ( O( log (N) s 2 κ/ε) ) and Childs et al. in

28] ( O(sκpolylog (sκ/ε)) ). The exponential speed up of the Quan-

um Linear System Algorithm (QLSA) comes at the price that it

oes not return vector y , but the scalar quantity 〈 y | M | y 〉 , where
h h h h 
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M h is some sparse matrix operator. This nifty detail makes the

QLSA quite impractical as a general-purpose acceleration technique

for solving linear systems of equations but particularly attractive

for use in the ADO framework outlined in Section 2.1 . 

Without going into the technical details, we remark that the

matrices A h and M h resulting from a finite element discretization

of the academic model problem (7) –(8) satisfy all prerequisites of

the QLSA, which can therefore be used as quantum accelerator for

solving (12) and returning (14) as output. 

Remarks. Many problems of practical interest do not yield sym-

metric system matrices if the spatial discretization is applied di-

rectly. An alternative to solving the augmented problem that is

symmetrized algebraically, i.e. (
0 A h 

A 

† 

h 
0 

)(
x h 
y h 

)
= 

(
b h 
0 

)
(15)

is to adopt special discretization schemes like the Least-

Squares/Galerkin finite element method [29] that symmetrize the

problem at the continuous level. 

Recently, Wossnig et al. [30] extended the QLSA to dense ma-

trices with time complexity O( 
√ 

N polylog (N) κ2 /ε) . An alternative

solution approach for solving BVPs numerically is the boundary el-

ement method (BEM) [31] , which yields dense system matrices by

design and is widely used for the simulation of acoustics prob-

lems. The most efficient classical solution approach for solving the

BEM is the fast multipole method, which has runtime O(N) in the

best case, that is, for non-oscillatory kernels, and O(N log (N)) oth-

erwise and is therefore less efficient than its quantum-accelerated

counterpart. 

Conclusion. The above discussion suggests that the QLSA has

great potential to deliver exponential speed up over classical ap-

proaches for solving certain types of BVPs if the quantity of inter-

est is not the solution vector but a linear cost functional of the

form (14) . This is the case for many ADO problems as outlined in

Section 2.1 but also in the context of goal-oriented error estima-

tion. 

The interested reader is referred to the QLSA primer by Der-

vovic et al. [25] for a description of the different variants of the

algorithm and to the research article by Cao et al. [32] for a possi-

ble quantum circuit design for the QLSA. 

Let us finally mention two interesting publications on using

quantum algorithms for accelerating the solution of the Poisson

problem discretized by the FEM. While Clader et al. [33] report ex-

ponential speed up, Montanaro and Pallister [34] observe that the

exponential quantum advantage can sometimes disappear. They

see the quantum advantage only for problems, where the solution

has larger higher order derivatives or if the spatial dimension is

high. 

Last but not least we remark that may applications of practi-

cal interest involve nonlinear PDEs like the Navier-Stokes equations

and/or cost functionals like the lift-to-drag coefficient (4) that can-

not be cast into the form (14) directly. In both cases, the problem

at hand needs to be approximated by a suitable linearization tech-

nique, which requires further investigation. 

3.2. Quantum-accelerated optimization 

Let the current set of design parameters αk in (5) –(6) be in the

neighborhood of a (possibly locally) optimal solution α∗ so that

the cost functional J ( α) can be approximated by the multi-variate

Taylor series expansion 

J ( αk ) − J ( α∗) = 

1 

2 

M ∑ 

i, j=1 

H i j (α
k 
i − α∗

i )(α
k 
j − α∗

j ) 

+ O(‖ αk − α∗‖ 

3 ) (16)
ere, H i j = ∂ 2 J /∂ αi ∂ α j 

∣∣
α= α∗ denotes the matrix of second deriva-

ives of the cost functional taken with respect to the design vari-

bles and evaluated at the equilibrium point α∗. The matrix of first

erivatives vanishes since ∇J | α= α∗ ≡ 0 . By neglecting all higher-

rder terms, the original minimization problem (5) can be solved

y finding the minimum to the positive-definite quadratic form 

( α) := 

1 

2 

M ∑ 

i, j=1 

H i j (α
k 
i − α∗

i )(α
k 
j − α∗

j ) (17)

Classical algorithms need at least O(M 

2 ) queries [35] to achieve

his goal, where M is the number of design variables. However,

uantum computing makes it possible to determine the minimum

f a quadratic form in only O(M) quantum queries [36] . The key

ngredient to this significant reduction in query complexity is an

fficient quantum algorithm for estimating gradients [37,38] . 

As stated above, a common shortcoming of gradient-based

ethods for solving continuous global optimization problems is

he risk to get trapped in a local minimum solution from which

here is no escape. A recent development in classical ADO tech-

ologies is to combine gradient-based methods with gradient-free

nes into hybrid approaches [15,16] . Interestingly enough, the idea

f hybrid methods has its counterpart in quantum-based optimiza-

ion [39] . The central idea is to determine locally optimal solutions

y using (classical) methods and escape from non-global solutions

aking use of Grover’s search algorithm. 

Conclusion. There is evidence that also the outer optimization

oop of the overall ADO problem can be accelerated by using quan-

um optimization algorithms. 

. Conclusions and outlook 

Based on an inventory of existing quantum algorithms for solv-

ng linear systems of equations and continuous optimization prob-

ems, we have sketched a conceptual framework for accelerating

he solution of automated design optimization problems with the

id of quantum computers. Admittedly, the suggested approach

eaves many open questions and unresolved technical issues that

eed to be addressed in future research activities. An important as-

ect is the efficient encoding of real-valued data that is less waste-

ul on (qu)bits than the IEEE-754 floating-point standard, which re-

uires 32 and 64 (qu)bits to encode a single floating-point number

n single and double precision, respectively. 

The recently introduced Universal NUMber format [40] adopts a

rojection of the real numbers onto the unit circle and represents

elected discrete angles with specific bit patterns. UNUM claims

o achieve the same accuracy as IEEE-754 with less bits. It seems

lausible that this concept can be carried over to the Bloch sphere,

hereby using quantum rotations to encode real-numbers in a sin-

le qubit. It is, of course, not possible to measure the so-encoded

uantities but they might still be helpful for storing intermediate

alues, especially, if the overall problem is formulated in terms of

Is α1 better than α2 ?’. 

Another unresolved issue are the non-trivial preparatory steps

f the QLSA and quantum-accelerated optimization, which compli-

ate their direct interplay. 

In summary, we consider this paper a first step to make

he scientific computing community aware of the possibilities of

uantum-accelerated computing and to stimulate interdisciplinary

esearch in practical quantum computing. 
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