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Abstract. The balancing Neumann-Neumann (BNN) and the additive coarse grid
correction (BPS) preconditioner are fast and successful preconditioners within domain
decomposition methods for solving partial differential equations. For certain elliptic prob-
lems these preconditioners lead to condition numbers which are independent of the mesh
sizes and are independent of jumps in the coefficients (BNN). Here we give an algebraic
formulation of these preconditioners. This formulation allows a comparison with another
solution or preconditioning technique - the deflation technique.

By giving a detailed introduction into the deflation technique we establish analogies
between the balancing, the additive coarse grid correction and the deflation technique.

We prove that the effective condition number of the deflated preconditioned system is
always, i.e. for all deflation vectors and all restrictions and prolongations, below the
condition number of the system preconditioned by the balancing preconditioner and the
coarse grid correction preconditoner. This implies that the conjugate gradient method
applied to the deflated preconditioned system is expected to converge always faster than
the conjugate gradient method applied to the system preconditioned by the coarse grid
correction or balancing. Moreover, we prove that the A-norm of the errors of the iterates
built by the deflation preconditioner is always below the A-norm of the errors of the iterates
built by the balancing preconditioner.

Numerical results for porous media flows emphasize the theoretical results.
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1 Introduction

In 1952 Hestenes and Stiefel [9] introduced the Conjugate Gradient method (cg method)
to solve large linear systems of equations

Ax = b

whose coefficient matrices A are sparse and symmetric positive definite. The convergence
rate of the Conjugate Gradient method is bounded as a function of the condition number
of the system matrix to which it is applied. Let us denote the i-th eigenvalue in non-
decreasing order by λi(A) or simply by λi when it is clear to which matrix we are referring.
After k iterations of the conjugate gradient method, the error is bounded by (cf. [8], Thm.
10.2.6)

‖x − xk‖A ≤ 2 ‖x − x0‖A

(√
κ − 1√
κ + 1

)k

, (1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of x is
given by ‖x‖A = (xT Ax)1/2.

If the condition number of A is large it is advisable to solve, instead, a preconditioned
system M−1Ax = M−1b, where the symmetric positive definite preconditioner M is chosen
such that M−1A has a more clustered spectrum or a smaller condition number than that
of A. Furthermore, systems Mz = r must be cheap to solve relative to the improvement
it provides in convergence rate.

Today the design and analysis of preconditioners for the cg method are in the main
focus whenever a linear system with symmetric positive definite coefficient matrix need to
be solved. Even fast solvers, like multigrid or domain decomposition methods, are used
as preconditioners. However, there are just a few theoretical comparisons of different
preconditioners.

Here we consider three different preconditioning techniques the additive coarse grid
correction, the balancing and the deflation preconditioner.

We show that the condition number of the system matrix preconditioned by the defla-
tion method is always below the condition number of the system matrix preconditioned
by the additive coarse grid correction. Moreover, we show that the condition number of
the system matrix preconditioned by the deflation method is always below the condition
number of the system matrix preconditioned by the balancing preconditioner.

We also establish a direct comparison between the condition numbers of the coarse grid
correction preconditioner and the balancing preconditioner. We are able to show that the
effective condition number of the system preconditioned by the balancing preconditioner
is less or equal to the condition number of the system preconditioned by the additive
coarse grid correction method. Moreover, we show that the A-norm of the errors of the
iterates built by the deflation preconditioner is always below the A-norm of the errors of
the iterates built by the balancing preconditioner.
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2 Deflation

The deflation technique has been exploited by several authors. Among them are Nico-
laides [19], Morgan [15], Kolotilina [11], and Saad, Yeung, Ehrel, and Guyomarc’h [23].
There are also many different ways to describe the deflation technique. We prefer the
following one.

We define the projection PD by

PD = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×r, (2)

where the column space of Z is the deflation subspace, i.e. the space to be projected out
of the residual, and I is the identity matrix of appropriate size.

We assume that r ≪ n and that Z has rank r. Under this assumption E ≡ ZT AZ
may be easily computed and factored and is symmetric positive definite. Since x =
(I − P T

D)x + P T
Dx and because

(I − P T
D)x = Z(ZTAZ)−1ZT Ax = ZE−1ZT b (3)

can be immediately computed, we need only to compute P T
Dx. In light of the identity

AP T
D = PDA, we can solve the deflated system

PDAx̃ = PDb (4)

for x̃ using the Conjugate Gradient method, premultiply this by P T
D and add it to (3).

Obviously (4) is singular. But a positive semidefinite system can be solved by the cg
method as long as the right-hand side is consistent (i.e. as long as b = Ax for some x)
[10]. This is certainly true for (4), where the same projection is applied to both sides of
the nonsingular system. The rate of convergence of the cg method can be described with
the effective condition number

κeff(C) =
λn

λr+1

.

which replaces the condition number in (1).
The deflated system can also be solved by using a symmetric positive definite precon-

ditioner M−1,
M−1PDAx̃ = M−1PDb. (5)

3 Comparison of deflation and additive coarse grid correction

In this section we compare the deflation preconditioner with a well-known coarse grid
correction preconditioner of the form

PC = I + ZE−1ZT (6)

and in the preconditioned case

PCM−1 = M−1 + ZE−1ZT . (7)
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In the multigrid or domain decomposition language the matrices Z and ZT are known as
restriction and prolongation or interpolation operator. Moreover, the matrix E = ZT AZ
is the Galerkin operator.

The above coarse grid correction preconditioner belongs to the class of additive Schwarz
preconditioner. It is called the two level additive Schwarz preconditioner. If used in
domain decomposition methods, typically, M−1 is the sum of the local (exact or inexact)
solves in each domain. To speed up convergence a coarse grid correction ZE−1ZT is
added.

These methods are introduced by Bramble, Paschiak and Schatz [1] and Dryja and
Widlund [2, 3, 4]. They show that under mild conditions the convergence rate of the
PCG method is independent of the grid sizes.

For more details about this preconditioner we refer to the books of Toselli and Widlund
[25], Quarteroni and Valli [22], and Smith, Bjørstad and Gropp [24]. A more abstract
analysis of this preconditioner is given by Padiy, Axelsson and Polman [20], recently.
To make the condition number of PCM−1A smaller Padiy, Axelsson and Polman used a
parameter σ > 0 and considered

PCM−1(σ) = M−1 + σZE−1ZT . (8)

Note that in our abstract formulation Z is just an arbitrary rectangular but full rank
matrix, Z ∈ R

n×r.
We compare this preconditioner to the corresponding deflated preconditioner

M−1PD. (9)

Then, we obtain the following theorem.

Theorem 3.1 Let A ∈ R
n×n and M ∈ R

n×n be symmetric positive definite. Let Z ∈ R
n×r

with rank Z = r. Then

λn(M−1PDA) ≤ λn(PCM−1(σ)A), (10)

λr+1(M
−1PDA) ≥ λ1(PCM−1(σ)A). (11)

Proof: See the proof of Theorem 2.11 in [17]. �

In this theorem we prove that the effective condition number of the deflated precon-
ditioned system M−1PDA is always below the condition number of the system precon-
ditioned by the coarse grid correction PCM−1(σ)A. This implies that we expect for all
matrices Z ∈ R

n×r and all positive definite preconditioners M−1 that the conjugate gra-
dient method applied to the deflated preconditioned system will converge always faster
than the conjugate gradient method applied to the system preconditioned by the coarse
grid correction. Finally, we note that the memory requirements and the amount of work
per iteration of both preconditioners are comparable. This implies, that in practice it is
better to use deflation instead of the additive coarse grid correction.
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4 Comparison of deflation and balancing

In this section we compare the preconditioned deflation operator to the balancing
preconditioner proposed by Mandel [12, 13] and analyzed by Widlund et al. [5, 21, 25].
As the FETI algorithm [6, 7] the balancing Neumann-Neumann preconditioner is one
of the domain decomposition methods that have been most carefully implemented and
severely tested on the very largest existing parallel computer systems.

Applied to some specific symmetric positive definite problems the balancing Neumann-
Neumann preconditioner leads to moderately growing condition numbers if the size of the
systems increases [24]. Moreover, if an appropriate scaling is used, the condition numbers
are independent of jumps in the coefficients in the matrices [24].

In our notation the balancing preconditioner is given by

PB = (I − ZE−1ZT A)M−1(I − AZE−1ZT ) + ZE−1ZT , (12)

where Z ∈ R
n×r, E = ZT AZ and M is a symmetric positive definite matrix. Note that

PB is symmetric and positive definite. For more details we refer to [12] and the books
[22, 24, 25].

As a first comparison of both preconditioners we observe that the balancing precondi-
tioner needs per iteration 3 matrix vector products and the coarse grid operator is used 2
times. This makes the balancing preconditioner per iteration more expensive than the de-
flation approach. However, if an optimal implementation of the balancing preconditioner
is used (see e.g. [25]), the amount of work per iteration is the same.

Theorem 4.1 Suppose that the spectrum of M−1PDA is given by:

spectrum(M−1PDA) = {0, . . . , 0, µr+1, . . . , µn},

then
spectrum(PBA) = {1, . . . , 1, µr+1, . . . , µn}.

Proof: See the proof of Theorem 2.8 in [18]. �

Thus both preconditioners lead to almost the same spectra with the same clustering.
The zero eigenvalues of the deflation preconditioned system are replaced by eigenvalues
which are one if the balancing preconditioner is used. It follows from Theorem 4.1 that

κ(PBA) ≥ κeff (M
−1PDA)

so the convergence bound based on the effective condition number implies that precon-
ditioned deflated CG never converges slower than CG preconditioned by the balancing
preconditioner. This combined with memory requirements and work per iteration counts
suggested that it is better to use the deflation preconditioner instead of the balancing
preconditioner.
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5 Comparison of additive coarse grid correction and balancing

We start this section with a well-known result which relates the error of the i-th iterate
of the preconditioned cg method with the effective condition number with respect to x
and xo.

Theorem 5.1 Let A and M be symmetric positive definite. Let (λ̃i, ỹi) be the eigenpairs

of M
1

2 AM
1

2 . For x0 ∈ R let

M− 1

2 x − M− 1

2 x0 =
n

∑

j=1

γ̃j ỹj.

Define

α̃ := min{λ̃j|γ̃j 6= 0},
β̃ := max{λ̃j|γ̃j 6= 0},

κ(MA,x − x0) :=
β̃

α̃
.

If the PCG method is applied to solve Ax = b with starting vector x0 and preconditioner
M the i-th iterate satisfies

||x − xi||A ≤ 2

{

√

κ(MA,x − x0) − 1
√

κ(MA,x − x0) + 1

}i

||x − x0||A.

Proof: See Corollary 3.3 in [16].
We then have

Theorem 5.2 Let A be symmetric positive definite. Let the preconditioners PB and PCM

be defined as in (12) and (8), where σ = 1 . With x0,B = ZE−1ZT b we obtain

κ(PBA, x − x0,B) ≤ κ(PCMA).

Proof: See Theorem 3.4 in [16].
From Theorem 5.2 we conclude that the balancing preconditioner with starting vector

x0,B = ZE−1ZT b is asymptotically a better preconditioner than the coarse grid correction
preconditioner. Hence, we expect a faster convergence of the PCG method if the balancing
preconditioner is used.

In order to make a more detailed comparison of the deflation operator and the balancing
preconditioner for general projection vectors we compare the error vectors.

With respect to the approximation using preconditioned CG combined with deflation,
we note that x = (I − P T

D)x + P T
Dx = ZE−1ZT b + P T

Dx. So after k iterations of pre-
conditioned CG applied to AP T

Dx = PDAx = PDb we get the approximation x̃k,D. The
approximation xk,D of the solution vector x is then given by xk,D = ZE−1ZT b + P T

D x̃k,D.
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Theorem 5.3 The iterates xk,D and xk,B of the CG-method with start vector zero and
preconditioned by the deflation preconditioner and the balancing preconditioner, respec-
tively, satisfy

‖x − xk,D‖A ≤ ‖x − xk,B‖A.

Proof: See the proof of Theorem 3.4 in [16]. �

6 Numerical experiments

In all our numerical experiments, the multiplication y = E−1b is done by solving y
directly from Ey = b, where E is decomposed in its Cholesky factor. In this section,
coarse grid correction is abbreviated as CGC. The choice of the boundary conditions is
such that all problems have as exact solution the vector with components equal to 1. In
order to make the convergence behavior representative for general problems we chose a
random vector as starting solution, in stead of the zero starting vector.

We simulate a porous media oil flow in a 3-dimensional layered geometry, where the
layers vary in thickness and orientation (see Figure 1 and 2 for a 4 layer problem). The
fluid pressure and permeability are denoted by p and σp, respectively. The pressure p
satisfies the equation:

−div(σp∇p) = 0 on Ω, (13)

with boundary conditions

p = 1 on ∂ΩD (Dirichlet) and
∂p

∂n
= 0 on ∂ΩN (Neumann),

where ∂Ω = ∂ΩD ∪ ∂ΩN . In this problem ∂ΩD is the top boundary of the domain.
Figure 1 shows a part of the earth’s crust. The depth of this part varies between 3 and 6
kilometers, whereas horizontally its dimensions are 40 × 60 kilometers. The upper layer
is a mixture of sandstone and shale and has a permeability of 10−4. Below this layer,
shale and sandstone layers are present with permeabilities of 10−7 and 10 respectively.
An incomplete Cholesky factorization with no fill in is used as preconditioner [14]. We
consider a problem with 9 layers: 5 sandstone layers are separated by 4 shale layers. Due
to the Dirichlet boundary condition at the top the preconditioned matrix has 4 small
eigenvalues. We use 4 physical projection vectors [26] and stop if ‖rk‖2 ≤ 10−5. Trilinear
hexahedral elements are used and the total number of gridpoints is equal to 148185.

The number of iterations and the CPU time of ICCG are given in Table 1. From this
table it appears that the coarse grid correction preconditioner takes more iterations than
the deflation preconditioner, which makes the required CPU time longer. It appears that
the norm of the residuals of the deflation and balancing preconditioners are the same.
Due to extra work per iteration, the balancing preconditioner costs more CPU time. The
computations are performed on an AMD Athlon, 1.4 GHz processor with 256 Mb of RAM.
The code is compiled with FORTRAN g77 on LINUX.

7



Reinhard Nabben, Cornelis Vuik

700

710

720

730

740

750

1260
1270

1280
1290

1300
1310

1320
-6

-5

-4

-3

-2

-1

0

Figure 1: The geometry of an oil flow problem
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Figure 2: Permeabilities for each layer

method deflation CGC balancing
iterations 36 47 36

CPU time in seconds 6.3 8.2 9.8

Table 1: The results for the ICCG method combined with various preconditioners applied to the oil flow

problem

7 Conclusion

We compared different preconditioners for the cg method, namely the balancing, the
additive coarse grid correction and the deflation technique. The balancing preconditioner
and the additive coarse grid correction preconditioner are used in domain decomposition
methods (BNN- and BPS-method). We showed that the effective condition number of
the deflated preconditioned system is always, i.e. for all deflation vectors and all restric-
tions and prolongations, below the condition number of the system preconditioned by the
balancing preconditioner and the coarse grid correction preconditoner. This implies that
the conjugate gradient method applied to the deflated preconditioned system is expected
to converge always faster than the conjugate gradient method applied to the system pre-
conditioned by the coarse grid correction or balancing. Moreover, we proved that the
A-norm of the errors of the iterates built by the deflation preconditioner is always below
the A-norm of the errors of the iterates built by the balancing preconditioner.
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