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a b s t r a c t

This study incorporates the effect of elastic deformation in a previously proposed model for the nucleation
and growth of precipitates. We adapt the KWN-model by Robson [20] to incorporate the effect of strain
energy arising from elastic deformation on the homogeneous nucleation and growth of Co particles in a
Cu–Co system at constant temperatures. The finite-volume method is used for the KWN-model and the
finite-element method is used to simulate elastic deformations within a cylindrical tension test specimen.
Simulations of the nucleation and growth of Co particles in a Cu–Co system on the cylindrical region show
that the incorporation of elastic strain energies has a noticeable impact on the process. The derived quan-
tities of homogeneous nucleation and growth, such as the particle volume fraction and the particle num-
ber density, show a clear spatial correlation with the calculated strain energy. The results also show that
the currently presented algorithm, which incorporates the influence of elastic deformation, has low com-
putational cost with respect to full simulations, with just a minimal loss of accuracy.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Metalworking of alloys is a complex operation that involves
several aspects, such as dislocation movement, grain recrystalliza-
tion and secondary phase precipitation, that influence the usability
of the object. The influence of these aspects has been studied and
documented by a process of trial and error. An analytical approach
to investigate these aspects could verify the obtained experimental
results and extend the knowledge about the behavior of alloys dur-
ing metalworking.

During the last two decades various models for the nucleation
and growth of precipitates in alloys have been proposed and eval-
uated. These models can be divided into four categories. The first
category concerns models which predict the effect of nucleation
and growth of precipitates on the evolution of a particle size distri-
bution function. A classical example of this model is the KWN-
model by Kampmann and Wagner [14], which has been extended
and evaluated by, amongst others, Robson [20]. The second cate-
gory consists of models that predict the nucleation and growth of
precipitates using a mean variable approach, which model the time
evolution of variables such as the mean particle radius and the
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particle number density. An example of such a model has been
proposed by Deschamps and Brechet [8]. The third category con-
tains models that predict the growth and dissolutions of precipi-
tates present in a system by solving Stefan-like problems for
different precipitate sizes. One of the latest models in this area is
developed by Vermolen et al. [29]. Finally a category containing
models which describe precipitation dynamics using statistical
methodologies can be identified, such as the model by Soisson
et al. [25]. We will focus in this article on the KWN-model, as this
model can predict both nucleation, growth and coarsening of pre-
cipitates with a high accuracy and level of detail, without resorting
to artificial couplings between the separate physical phenomena.

This article will present an adapted KWN-model for homoge-
neous nucleation and growth of particles by Robson’s formalism
[20]:

� Which incorporates more physical effects.
� Which incorporates the effect of elastic deformations.

These goals will be achieved by reducing the number of empir-
ical parameters and introducing strain energy terms. The elastic
deformations will be modelled using standard linear elastic models
in cylindrical coordinates, see for example Jaeger et al. [13] and
Chau and Wei [7]. Furthermore a numerical algorithm will be pre-
sented to simulate the influence of the elastic deformations on the
nucleation and growth of precipitates, which decreases the compu-
tational cost significantly without a high loss of accuracy.
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Fig. 1. Cylindrical element at (g, h, z).
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In the present work we will first present the models for the elas-
tic deformations, and for the nucleation and growth of precipitates,
after which the models will be discretized using a finite-element
method for the model for elastic displacements and finite-volume
methods for the nucleation model. Thereafter the mentioned algo-
rithm for simulating the influence of the elastic displacements on
the nucleation and growth of precipitates will be discussed. The
models and algorithm will be demonstrated by an application to
a Cu–0.95 wt%Co alloy, similar to the application by Robson [20],
as for this alloy it is known to a fair extent that primarily homoge-
neous nucleation of precipitates occurs. Next the results of the
influence of a tensile strain on a specimen will be given and a dis-
cussion on the influence of the temperature and the interface en-
ergy will be presented.

2. The model

The nucleation and growth of precipitates are modelled by the
KWN-model from Robson [20]. We present an extensive discussion
of this model. The main features of the KWN-model are:

� All particles are spherical and classified by their radius in
meters (m). In this paper, we assume that the precipitates are
much harder than the matrix, which causes the shape of the
particles to remain spherical during elastic deformation.
� The time behavior in seconds (s) of the model is described by

the partial differential equation:
@N
@t
¼ � @½Nv�

@r
þ S; ð1Þ
in which N � N(r, t) in m�3 represents the number density of parti-
cles with radius r and at time t, v � v(r, t) in m s�1 represents the
growth rate of particles with radius r and at time t and S � S(r, t)
in m�3 s�1 represents a source function representing the number
of new particles with radius r and at time t per second. v will be de-
fined in Section 2.2.2.
� The value of the source function S is calculated from classical

nucleation theory (CNT) and is given by
Sðr; tÞ ¼
IðtÞ if r 2 ½r�ðtÞ;1:05r�ðtÞ�;
0 otherwise:

�
ð2Þ
1 These stresses are symmetric, so the location of a and b in the definition can be
switched.
Here I � I(t) is the nucleation rate of the particles following from
CNT and r� � r�(t) the critical radius following from CNT. The value
1.05 is adopted from Myhr and Grong [15]. Both I and r� will be de-
fined in Section 2.2.1.
� To Eq. (1) the well known first-order upwind method is applied,

combined with a time integration method.

In this paper, we couple the KWN-model with a model for elas-
tic deformations.

2.1. Elastic deformation

In the present paper we will only model the theoretical influ-
ence of elastic deformation in a cylindrical tension specimen on
the process of nucleation and growth of particles, but the concept
can in principle be extended to regions with different geometries.
The concept of elastic deformation will be simplified under the
assumptions of local isotropy, instantaneous displacement, rota-
tion symmetry around the central axis and that a formulation of
the model for elastic deformations in cylindrical coordinates
(g, h, z) is possible. The symbol g represents the radial coordinate
in cylindrical coordinates, as r has been defined as the precipitate
radius. h and z represent the azimuthal coordinate respectively
the height coordinate in cylindrical coordinates. The latter two
assumptions immediately impose restrictions on the formulation
of the model. Rotation symmetry implies that at the central axis
no radial displacements can occur. This yields the boundary
condition

ugð0; h; zÞ ¼ 0: ð3Þ

Furthermore, the assumptions indicate that all displacements
are constant with respect to the azimuthal direction h, i.e.
@
@h ð�Þ ¼ 0, and that in the azimuthal direction no displacements oc-
cur, i.e. uh = 0, at any point in the material.

Consider a cylindrical region with an infinitely small element of
this region. This element is of the form as in Fig. 1. Applying a sim-
ple balance of forces in the axial and radial direction and taking the
appropriate limits, we arrive at the following system of equations
on the domain X [13]

� @rgg

@g
� @rgz

@z
� rgg � rhh

g
¼ 0; ð4aÞ

� @rgz

@g
� @rzz

@z
� rgz

g
¼ 0: ð4bÞ

Here the stress rab acts on a plane normal to the b direction in the
direction a.1 Due to the assumption of rotational symmetry no force
balance for the azimuthal direction is needed.

By the assumption of local isotropy, we can model the relation-
ship between the stresses and strains using Hooke’s Law:

rab ¼ dabkm egg þ ehh þ ezz
� �

þ 2lmeab a;b 2 fg; h; zg; ð5Þ

where km is Lamé’s first parameter, lm the shear modulus of the
material, e = (eab)a,b2{g,h,z} the strain tensor and dab the Kronecker
delta. The parameters k,l are calculated from the materials con-
stants mm, the Poisson’s ratio, and the bulk modulus Km. The Pois-
son’s ratio is assumed independent of temperature [21], whereas
the bulk modulus is modelled with temperature dependency as
Km ¼ K0

m � K1
m � T [6] under the assumption that the elastic proper-

ties of copper are representative for the entire specimen under elas-
tic deformation.

The strains are in turn related to the displacements in the radial
and axial direction, being (ug, uz), as [7]:

egg ¼
@ug

@g
; ehh ¼

ug

g
;

ezz ¼
@uz

@z
; egz ¼

1
2

@ug

@z
þ @uz

@g

� �
:

ð6Þ

Besides the partial differential equations defined in Eq. (4),
boundary conditions for both ug and uz should be defined. Let the
boundary C of X consist of four regions Cess, g,Cnat,g, Cess,z and
Cnat,z, where ‘‘ ess’’ refers to essential boundary conditions, ‘‘nat’’



Table 1
Used parameter values.

Parameter Unit Value Comments

a0
m m 3.6027 � 10�10 Hahn [11], Straumanis and Yu [27]

a1
m m/K 1.5788 � 10�15 Hahn [11], Straumanis and Yu [27]

a2
m m/K2 1.1854 � 10�17 Hahn [11], Straumanis and Yu [27]

a3
m m/K3 �1.1977 � 10�20 Hahn [11], Straumanis and Yu [27]

a4
m m/K4 5.3276 � 10�24 Hahn [11], Straumanis and Yu [27]

a0
p m 3.5249 � 10�10 Owen and Madoc Jones [17]

a1
p m/K 3.9540 � 10�15 Owen and Madoc Jones [17]

a2
p m/K2 7.2209 � 10�19 Owen and Madoc Jones [17]

D0 m2/s 4.3 � 10�5 Döhel et al. [10]

K0
m

N/m2 1.4652 � 1011 Chang and Hultgren [6]

K1
m

N/m2 K 4.0243 � 107 Chang and Hultgren [6]

l0
p N/m2 9.3486 � 1010 Betteridge [4]

l1
p N/m2 K 4 � 107 Betteridge [4]

mm 0.35 Rolnick [21]
mp 0.32 Betteridge [4] [4]
pe

0 2.853 Servi and Turnbull [24]
pe

1 K 2.875 Servi and Turnbull [24]
Qd J/mol 214 � 103 Döhl et al. [10]
xp 1 Assumed
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to natural boundary conditions and g,z refer to the direction on
which the boundary conditions act. For these subboundaries we
have:

Cess;g [ Cnat;g ¼ C; Cess;z [ Cnat;z ¼ C;

Cess;g \ Cnat;g ¼ ;; Cess;z \ Cnat;z ¼ ;:
ð7Þ

Then we can define the following boundary conditions:

ug ¼ u�g for ðg; zÞ 2 Cess;g; ð8aÞ

r � n
� �

g
¼ fg for ðg; zÞ 2 Cnat;g; ð8bÞ

uz ¼ u�z for ðg; zÞ 2 Cess;z; ð8cÞ

r � n
� �

z
¼ fz for ðg; zÞ 2 Cnat;z; ð8dÞ

in which u�g; u�z are predefined displacements along the essential
boundaries and fg, fz are predefined forces along the natural
boundaries.

After solving the system given by Eqs. (4) and (8), the elastic
strain energy density Dgel

s present in the system at any point is cal-
culated, using the formula:

Dgel
s ¼

1
2
r � e; ð9Þ

in which : represents the Frobenius inner product, defined for two
n �m matrices A and B as:

A : B ¼
Xn

i¼1

Xm

j¼1

AijBij: ð10Þ
2 log10Ce
m ¼ pe

0 � pe
1=T � 103, the equilibrium concentration in wt% from which xe

m

can be determined.
2.2. Nucleation and growth of precipitates

This section will describe the models for nucleation and growth
of precipitates, which is based on the model by Robson [20]. The
changes with respect to this model will be discussed.

2.2.1. Nucleation
Robson [20] assumes that the time-dependent homogeneous

nucleation rate I, as used in Eq. (2), is given by

I ¼ NvZb� exp �DG�

kT

	 

exp � s

t

h i
; ð11Þ

where k, T and t represent the Boltzmann constant, the temperature,
respectively the time. Furthermore, Nv is the number of potential
homogeneous nucleation sites per unit volume, Z the Zeldovich fac-
tor, b� the frequency of atomic attachment to a growing particle and
s the incubation time for homogeneous nucleation. The term DG� is
the free energy barrier for homogeneous nucleation which must be
overcome before precipitation occurs. Using the assumption of all
precipitates being spherical, the three variables Z, b�, s can be ex-
pressed by [20]:

Z ¼ Vp
a
ffiffifficp

2p
ffiffiffiffiffiffi
kT
p 1

r�

� �2

; ð12aÞ

b� ¼ 4pDxm

ðapÞ4
ðr�Þ2; ð12bÞ

s ¼ 2
pZ2b�

: ð12cÞ

In these formulas Vp
a is the atomic volume of the precipitate, r�

the critical radius of precipitation, c the particle/matrix interface
energy, D the bulk diffusion coefficient of the solute [10], calcu-
lated with the Arrhenius relation, xm the atomic fraction of solute
in the matrix and ap the lattice constant of the precipitate. The val-
ues for the parameters in this system are given in Table 1.
In the classical nucleation theory, the free energy change due to
a homogeneous nucleation event, DG, is assumed [18] to be of the
form

DG ¼ �4
3
pr3ðDgv � Dgm

s Þ þ 4pr2c; ð13Þ

for spherical particles, of which the derivative with respect to r is
equated to zero and solved for r to find the critical radius r� and
the corresponding free energy barrier for homogeneous nucleation
DG�. In this formula Dgv is the chemical volume free energy density
and Dgm

s the misfit strain energy density, both with positive sign.
We adapt this formula by assuming that the free energy due to
homogeneous nucleation of a precipitate with radius r is reduced
due to the release of elastic strain energy in the matrix. Assuming
the elastic strain energy density Dgel

s to be known using the model
described in the previous section (see Eq. (9)), the free energy DG
can be described by:

DG ¼ �4
3
pr3ðDgv � Dgm

s þ Dgel
s Þ þ 4pr2c: ð14Þ

Differentiation with respect to r and equating to zero gives the
modified critical radius

r� ¼ 2c
Dgv � Dgm

s þ Dgel
s
; ð15Þ

with the corresponding homogeneous nucleation energy barrier

DG� ¼ 4
3
pcðr�Þ2: ð16Þ

Following Aaronson et al. [1] and assuming a dilute solution
approximation, the volume free energy density can be expressed
by

Dgv ¼
RT
Vp

m

xp ln
xm

xe
m

� �
þ ð1� xpÞ ln

1� xm

1� xe
m

� �� �
; ð17Þ

where Vp
m is the molar volume of the precipitate, xp the molar frac-

tion of the solute in the precipitate, xe
m the equilibrium molar frac-

tion of the solute in the matrix for spherical precipitates [24]2 and R
the gas constant. Note that the original derivation of Eq. (17) by
Aaronson et al. [1] is based on a binary system. Investigation of
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the change in xe
m due to an increase of the Gibbs energy of the matrix

by amounts similar as in Table 3 and the effect on the simulations
have shown that xe

m exhibits a relative change of 2 � 10�3 and the
simulation results are therefore not significantly affected. Obtaining
the Gibbs energy is done by the use of the TCEF6 database of Ther-
mo-Calc Software AB [28]. We can conclude that the influence of
Dgel

s on the value of xe
m is negligible for the application in this

research.
The misfit strain energy density Dgm

s is given by

Dgm
s ¼ 3e2

mdp 1� 1þ dm

dp

3ð1� mmÞ
1þ mm

� 1
� �� ��1

" #
; ð18Þ

for a coherent spherical particle, following Barnett et al. [3]. Here
mm,mp are the Poisson’s ratios of the matrix and the precipitate,
and where dm, dp are constants related to the Poisson’s ratios mm,
mp and the shear modulus of the matrix lm and particle lp:

dm ¼ lm
1þ mm

1� 2mm
; dp ¼ lp

1þ mp

1� 2mp
: ð19Þ

The misfit strain em represents the linear strain due to the misfit
between the lattices of the matrix and precipitate if a linear inter-
phase is assumed and can be expressed as [19]

em ¼
ap � am

am
; ð20Þ

in which am and ap are the lattice parameter of the matrix respec-
tively the precipitate. The shear modulus lp is modelled with a lin-
ear temperature dependence as lp ¼ l0

p � l1
p � T following data

from Betteridge [4]. The lattice parameter ap is modelled using data
from Owen and Madoc Jones [17] as ap ¼ a0

p þ a1
pT þ a2

pðTÞ
2 and the

lattice parameter am is modelled by combining data from Strauman-
is and Yu [27] and Hahn [11] as am ¼ a0

m þ a1
mT þ a2

mðTÞ
2þ

a3
mðTÞ

3 þ a4
mðTÞ

4. For the physical properties of the matrix respec-
tively the precipitate it is assumed that the properties of copper
respectively cobalt are representative.

On the value of Nv, the number of potential homogeneous
nucleation sites per unit volume, see Eq. (11), various theories ex-
ist. One of the earliest theories by Russell [22] proposed to use the
total number of atoms per unit volume in the matrix. Robson [20]
suggests that using the number of solute atoms per unit volume in
the matrix, i.e. the value from Russell [22] multiplied by the molar
fraction of solute, gives a better agreement between predicted and
measured results. Robson [20] also suggests using the molar frac-
tion of solute as an empirical parameter to match predicted and
measured results. Instead of using the molar fraction as an empir-
ical parameter, we suggest the following formula for the number of
potential homogeneous sites Nv

Nv ¼
NR

vxm

N�a
; ð21Þ

where NR
v is the total number of atoms per unit volume in the ma-

trix and N�a the number of atoms in a critical particle. We suggest
this adaptation, as we believe from a theoretical point of view that
the number of potential homogeneous nucleation sites is equal to
the maximum number of nuclei that can form in a system, as any
number higher is unphysical. This means that if NR

v is the total num-
ber of atoms per cubic meter, NR

vxm atoms of the solute are present.
Only one out of every N�a atoms can form the basis of a nucleus, as
each nucleus contains N�a atoms. This leads to Eq. (21). The value of
N�a is approximated by calculating the number of unit cells of the
particle phase that fit within a particle with critical radius r� and
subsequently by multiplying this quantity by the number of Co
atoms within a unit cell of the particle phase. During simulations
it has been seen that the number of potential homogeneous nucle-
ation sites Nv initially has a value in the range of 1025–1026 m�3
which decreases to zero due to depletion of Co atoms in the matrix
at the end of the simulation and the critical radius to become zero.

2.2.2. Growth
In the previous section the nucleation rate I has been discussed,

which is incorporated in the source function S of Eq. (1). The other
factor influencing the time evolution of the particle distribution is
the growth rate v. Following Robson [20], we set

v ¼ D
r

Cm � Cr
m

Cp � Cr
m

; ð22Þ

in which Cr
m is the concentration of solute in the matrix at the par-

ticle/matrix interface, Cm the mean concentration of solute in the
matrix and Cp the concentration of solute in the precipitate, all in
weight percentages. The value of the concentration Cr

m is modelled
by an application of the Gibbs–Thomson equation

Cr
m ¼ Ce

m exp
2cVp

m

RT
1
r

� �
: ð23Þ

At this moment we assume that the value of the particle/matrix
interface energy c is the same for both the growth of particles as
the nucleation of particles, which is in line with Robson [20].

If we set v(r, t) equal to zero and solve for the radius r, we get
the no-growth radius r̂

r̂ ¼ 2cVp
m

RT
ln

Cm

Ce
m

� �	 
�1

: ð24Þ

We claim that if the system is not in equilibrium then this no-
growth radius r̂ is only equal to the critical radius r� under the fol-
lowing assumptions:

1. The elements within the system are considered to be of equal
molar mass, or equivalent that xm=xe

m ¼ Cm=Ce
m holds, in Eq.

(17).
2. The precipitates consist of a single solute element, that is xp � 1.
3. The free energy DG is solely influenced by the chemical volume

free energy and the surface energy.

We claim that in all other cases r̂ – r� will hold. This claim is
sustained by the analysis in A.
3. Numerical methods

3.1. Elastic deformation

To solve the system in Eq. (4), we apply the basic finite-element
method on these equations, adapted to the cylindrical region. After
eliminating the dependency on h due to rotation symmetry, the
(g, z)-domain is discretized using linear triangles and line ele-
ments. This method consists of multiplying Eqs. (4a) and (4b) by
vg respectively vz, which are set equal to zero on C1 respectively
on C2 and integrating by parts to minimize the order of spatial
derivatives over the domain X.

The resulting system can be cast in the form using Newton–
Cotes integration and the divergence theorem

Sgg Sgz

Szg Szz

	 

ug

uz

	 

¼

qg

qz

	 

; ð25Þ

from which the values of ug, uz can be solved. Using the same finite-
element approach on the definitions of the strains, Eq. (6), the
system
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K

K

K

K

26664
37775

egg

ehh

ezz

egz

26664
37775 ¼

2Ug

Uh

2Uz

Uz Ug

26664
37775 ug

uz

	 

; ð26Þ

can be derived. After solving this system, the stresses can be calcu-
lated using Eq. (5) and subsequently the elastic strain energy density
Dgel

s using Eq. (9). The symbols S[��], q[�], K and U[�] are matrices which
result from the application of the finite-element method.

3.2. Nucleation and growth

As mentioned in Section 2, the differential equation in Eq. (1) is
discretized using the first-order upwind method in the particle ra-
dius domain. If a number of nn points is chosen in the particle ra-
dius domain, let N be a column vector containing the nn

unknowns, then Eq. (1) is transformed into

@N
@t
¼ AN þ S ð27Þ

The nn � nn matrix A, which is a nonlinear function of N, and col-
umn vector S of length nn, which is a nonlinear function of r, t and
N, are defined as:

Ai;i�1ðNÞ ¼
1

Dri
vþi�1=2ðNÞ for i ¼ 2; . . . ; nn; ð28aÞ

AiiðNÞ ¼ �
1

Dri
v�i�1=2ðNÞ

� 1
Dri

vþiþ1=2ðNÞ for i ¼ 1; . . . ; nn; ð28bÞ

Ai;iþ1ðNÞ ¼
1

Dri
v�iþ1=2ðNÞ for i ¼ 1; . . . ; nn � 1; ð28cÞ

Siðr; t;NÞ ¼ Sðri; t;NÞ for i ¼ 1; . . . ;nn: ð28dÞ

In these equations the plus and minus signs refer to the positive
respectively the negative part of a number. The positive part and
negative part of a number a are defined as

aþ ¼ maxða;0Þ; a� ¼ �minða;0Þ: ð29Þ
In this study we use a third order time integration method from

Norsett and Thomsen [16], similar to Robson [20], although Robson
[20] does not specify which method is used. The method we will
apply is an Embedded Singly Diagonally Implicit Runge–Kutta
(ESDIRK) method. This method is best described by using a Butcher
tableau (see [12]), which can be found in Table 2. One time step
from tn to tn+1 is performed by solving the three systems

ki ¼ A Nn þ
Xi�1

j¼1

aijDtkj

" #
� Nn þ

Xi

j¼1

aijDtkj

 !

þ S tn þ
X3

j¼2

dijcjDt;Nn þ
Xi�1

j¼1

aijDtk1

" #
for i ¼ 1;2;3; ð30Þ
Table 2
Butcher tableau of the used ESDIRK-method.
in which A[�] and S[�, �] are the functions as defined in Eq. (31b). The
three solutions ki, i = 1, 2, 3 are then substituted into

Nnþ1 ¼ Nn þ
X3

i¼1

biDtki; ð31aÞ

eN nþ1 ¼ Nn þ
X3

i¼1

eiDtki; ð31bÞ

giving a third and a fourth order accurate solution.
From the vectors Nnþ1; eN nþ1 an approximation of the local trun-

cation error can be computed:

snþ1 ¼ Nnþ1 � eN nþ1
��� ���

1
: ð32Þ

This approximation is used to determine whether Nn+1 is ac-
cepted or rejected by comparison with a tolerance parameter
TOLm defined as:

TOL ¼ percentage � N
nþ1

�� ��
1: ð33Þ

In the first case the time step is increased and we advance to the
next iteration, in the latter case the size of the time step is de-
creased and we recompute the last iteration. This method is sum-
marized in Algorithm 1. The parameters a, b, TOL, maxiter and
startvalue are set by the user.

Algorithm 1. Adaptive time step algorithm.
set iter =1
set Dt= startvalue

while iter <maxiter
1. compute Nn+1

2. computeeNnþ1

3. compute sn+1

if sn+1 > b � TOL
reject Nn+1

set Dt = Dt/2
else if sn+1 > TOL

accept Nn+1

set Dt = D t � 0.9 � (TOL/sn+1)1/2

set iter = iter +1
else if sn+1 > TOL/a

accept Nn+1

set iter= iter +1
else

accept Nn+1

set Dt = D t � 0.9 � (TOL/sn+1/a)1/2

set iter = iter +1
end(if)

end(while)

In this paper we will only focus on the local influence of the
elastic deformation on the nucleation and growth of precipitates,
therefore no interpolation is performed over the computational do-
main. If this is preferred, other models should be incorporated
which describe the spatial correlations due to diffusion of cobalt
through the matrix. Instead we will use Algorithm 1 with various
values as input for Dgel

s which are resulting from an application
of the model for elastic deformation.

To combine the two models, we propose a straightforward algo-
rithm, to compute the effect of elastic deformation on the process of
nucleation and growth of particles. This algorithm determines the
value of the elastic strain energy density throughout the entire do-
main and determines a predefined set of points. Then for each point
the results of the process of nucleation and growth of precipitates



Fig. 2. Sample particle size frequency distributions both for our model and for the
model proposed by Robson [20] for Cu–0.95 wt%Co at 600 �C.

Fig. 3. Comparison simulations for Cu–0.95 wt%Co at 600 �C.
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are computed. This computation is an altered form of Algorithm 1,
which computes the results at the discrete times resulting from an
application of Algorithm 1 with no elastic deformation.
The above used numerical methods are mass conserving up to
an accuracy of tenths of percents of the initial mass of the system
independent of the parameters used in Algorithm 1.
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4. Results

This section will present the results of various simulations.
First we will compare the results from the present model with
those obtained with the model by Robson [20] in the absence
of elastic deformations. Next a tension test is simulated, from
which the results will be used in simulations to investigate the
effects of elastic deformations, changes in temperature and the
interfacial energy.
4.1. Reference simulation

To investigate the influence of elastic deformation on the nucle-
ation and growth of particles, first a reference situation should be
provided in which no elastic deformation is assumed. As reference
results we use those of Robson [20], but computed with our model.
As the model by Robson [20] does not incorporate the misfit strain
energy density, the value for the interfacial energy, 0.219 J/m2,
in the model by Robson [20] is higher then the value for the
Fig. 4. Orientation of the used finite-element mesh and corresponding elements.
interfacial energy, 0.1841 J/m2, used in our model. The value by
of 0.219 J/m2 is derived in Stowell [26] under the assumption that
Fig. 5. Results of tensile test simulation of 550 MPa.



Table 3
Used values for combined simulations.

Percentile Energy density (J/m3)

0th 2.5031 � 10�4

30th 4.5796 � 102

50th 7.3062 � 104

70th 5.0720 � 105

100th 1.0734 � 106

3 The Xth percentile of a data set is defined as the value below which X percent of
the data falls.
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no misfit occurs. This has as a result that the derived value of 0.219 J/
m2 is higher due to compensation for the neglection of misfit, where
the value 0.1841 J/m2 includes no compensation for misfit strain en-
ergy, as misfit is taken directly into account in the present model.

The composition of the Cu–Co system simulated is 1.02 at%Co,
or equivalent 0.95 wt%Co, with the remainder Cu and the simula-
tion was performed using a temperature of 600 �C. The percentage
used in the level of tolerance, Eq. (33), during the use of Algorithm
1 is taken as 10�5, the domain of the radii simulated runs from
10�10 to 4.98 � 10�8 m, divided in size classes of 2 � 10�10 m.
The parameters a and b of Algorithm 1 are taken as 2 and 1.5.

To depict the behavior of N as a function of time we have taken
snapshots of this distribution at times around 10i, i = 2, 3, 4 s, as
seen in Fig. 2. The plotted frequencies f(x) fullfil the criteriaZ 1

�1
f ðxÞdx ¼ 1; ð34Þ

where x is defined as r=�r. From these figures it appears that the
qualitative and quantitative behavior of the present model and
the model by Robson [20] are the close to similar at these moments.
The time development of some average properties for both simula-
tions are shown in Fig. 3. These pictures again show the same qual-
itative and quantitative behavior, from which we can conclude that
the neglection of the misfit strain energy density Dgm

s and the use of
the number of potential nucleation sites Nv in the model by Robson
[20] causes a higher value of the misfit strain energy to obtain cor-
rect results. As a consequence, the incorporation of the misfit strain
energy and by not using the number of potential nucleation sites as
a fitting parameter in the present model predict a reasonable value
for the interfacial energy. Furthermore is the present model less
prone to fitting problems, as the number of fitting parameters is re-
stricted to a single one, namely the interfacial energy.

Fig. 3 also shows that the process of nucleation, growth and
coarsening of precipitates for this system can be divided into three
distinct periods of time. The first period runs up to about 102 s and
mainly contains nucleation of new precipitates. After this nucle-
ation period, the nucleation rate drops to zero and a period of
growth is achieved, which results in an increase of the mean parti-
cle radius and a constant particle number density. Next a period of
coarsening is achieved, which starts at about 103 s, causing at first
a constant mean particle radius, but eventually the number of
small particles decreases, whereas larger particles grow. This
causes the particle number density to drop and the mean particle
radius to increase.

4.2. Tensile test

To investigate the performance of our proposed model under
elastic deformation, we simulate a uniaxial tensile test on a speci-
men of the ASTM Standard E8M (2001e2) [2], page 6, as in Fig. 4a
with a finite-element mesh as in Fig. 4b. This finite-element mesh
is generated using the finite-element package SEPRAN [23]. The
specimen is assumed to be clamped on both ends over the full
range. The clamps are pulled upward respectively downward with
the same displacements, these displacements are assumed to be
constant over the clamped regions. The surface of the specimen
can be divided into three regions:

Ca ¼ Top of the specimen; ð35aÞ
Cb ¼ Clamped region; ð35bÞ
Cc ¼ Indented region: ð35cÞ

Let the boundary Cd be defined as:

Cd ¼ ðg; zÞjz ¼ 0f g; ð35dÞ

and the boundary Ce be defined as:
Ce ¼ fðg; zÞjg ¼ 0g; ð35eÞ

which arise from the symmetrical pulling upward and downward
and the boundary condition from the assumption of rotation sym-
metry. These five boundaries are depicted in Fig. 4c. The essential
and natural boundaries from Eq. (8) are given by

Cess;g ¼ Cb [ Ce; ð36aÞ
Cnat;g ¼ Ca [ Cc [ Cd; ð36bÞ
Cess;z ¼ Cb [ Cd; ð36cÞ
Cnat;z ¼ Ca [ Cc [ Ce: ð36dÞ

Furthermore the value of fg is zero at Cnat,g, fz is zero at Cnat,z.
The value of u�g from Eq. (8) is taken zero along Cess,g. The value
of u�z is taken as zero along Cess,z, except for points belonging to
Cb, where the value

u�z ¼ 2� 10�4 m;

is used, which results in Von Mises stresses below 550 MPa in the
material following the Von Mises yield criterion (see [9], Chapter
3). A typical set of displacements and resulting strain energy den-
sity can be seen in Fig. 5. We stress that the resulting displacements,
strains and stresses are likely beyond the elastic region of the cop-
per-system, but they remain relevant if one considers a general
mechanical energy density due to external stresses. If we assume
that all elastic energy from Fig. 5c is converted to energy stored
in dislocations, a simple calculation shows that at most a disloca-
tion density of 1015 per cubic meter is achieved. As this is a maxi-
mum, we can safely assume that the values obtained under
continuous elasticity, are presentative for mechanical energy due
to external forces.
4.3. Combined model

4.3.1. Influence of strain energy at a single temperature
To investigate the influence of the elastic strain energy density

originating from the tensile test simulation on the model for nucle-
ation and growth of precipitates at the constant temperature of
600 �C, the adapted form of Algorithm 1 is applied with the values
taken as the 0th, 30th, 50th, 70th and 100th percentile3 of the re-
sults from Fig. 5(c), including the minimum and maximum of the
elastic strain energy density. The grid points corresponding to these
percentiles are marked in Fig. 4b and the corresponding energy lev-
els can be found in Table 3. The results depicting the time evolution
of various variables as functions of various energy levels can be seen
in Figs. 6. These results are shown as the relative differences be-
tween the results from applying the specified amount of elastic en-
ergy and the results in the absence of elastic energy from Fig. 3. If
f ðDgel

s ; T; cÞ is a result of simulations at elastic strain energy density
Dgel

m, temperature T and interfacial energy c, the relative differences
in percentages for these results are defined as



Fig. 6. Results of combined simulation. Results are percentual differences with
results from absence of elastic deformation. The value of the elastic strain energy
density for each percentile can be found in Table 3.

Fig. 7. Result of simulations for Cu–0.95 wt%Co at 575, 600 and 625 �C.
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f Dgel
s ; T; c

� �
� f ð0; T; cÞ

f ð0; T; cÞ � 100%: ð37Þ
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From the results in Fig. 6, we can see that the mean particle ra-
dius, the particle number density and the particle volume fraction
show a clear correlation with the strain energy density as in Fig. 5c
and the used values in Table 3. We can also see that incorporating
strain energy from elastic deformation increases the mean particle
radius slightly and the particle number density significantly during
the nucleation period, causing a larger particle volume fraction.
This causes lower growth rates due to Eq. (22) and as a result a
decreasing mean particle radius during the growth period. Eventu-
ally the mean particle radius will increase due to coarsening of the
precipitates, but will remain close to the mean particle radius in
the absence of elastic displacements. The influence of the incorpo-
ration of the elastic strain energy can also clearly be seen in the re-
sults from the particle number density. As this density is higher
with respect to the reference results, see Fig. 3b, during the nucle-
ation and growth period, at the onset of the coarsening period rel-
atively more small precipitates will be present. This causes a
quicker decrease in the number density in the coarsening period it-
self, with an eventual value close to the results from the reference
simulation.
4.3.2. Influence of strain energy and temperature
To investigate the influence of elastic strain energy at different

temperatures, we will first run Algorithm 1 at constant tempera-
tures of 575, 600 and 625 �C, in the absence of elastic deformation,
using the values of all parameters as stated in Table 1 and previ-
ously. The results from these simulations can be seen in Fig. 7.

From Fig. 7 various effects of changing the temperature can be
seen. The first effects are that at higher temperatures larger, but
fewer precipitates are formed and the solubility of cobalt increases,
as can be expected from the used exponential relationship be-
tween temperature and the equilibrium concentration of cobalt
in Eq. (23). A closer inspection of the results shows also that the
length of the nucleation period and the length of the growth period
increase with increasing temperature.

Next three points are taken from the finite-element grid as in
Fig. 4d, for which at each temperature of the three temperatures
the resulting elastic strains are calculated. These values can be
found in Table 4. The three chosen points correspond to the mini-
mum, the maximum and the 70th percentile of the elastic strain
energy density from simulations at 600 �C. For these three points
simulations are run at the three temperatures of 575, 600 and
625 �C. The results from these simulations are shown in Fig. 8 for
each temperature as the relative differences between the results
from applying the specified amount of elastic energy and the re-
sults in the absence of elastic energy from Fig. 7 at that tempera-
ture in percentages. The relative differences are defined as in Eq.
(37).

The results in Fig. 8 show that for each simulated temperature
again the relative differences of the mean particle radius, particle
number density and the particle volume fraction are closely related
to the magnitude of the used elastic strain energy density. With re-
spect to the dependency of the results on the temperature, we see
that at each temperature the same qualitative behavior is ob-
served, but with a shift in the temporal domain. This shift can be
Table 4
Used elastic strain energy density values (J/m3) for temperature influence
simulations.

Point Temperature (�C)

575 600 625

Min 2.5257 � 10�4 2.5031 � 10�4 2.4805 � 10�4

70th 5.0702 � 105 5.0720 � 105 4.9794 � 105

Max 1.0831 � 106 1.0734 � 106 1.0637 � 106

Fig. 8. Result of simulations for Cu–0.95 wt%Co at 575, 600 and 625 �C for the
elastic strain energy densities from Table 4.



Fig. 9. Results of simulations for Cu–0.95 wt%Co at 600 �C with values of 0.17,
0.1841 and 0.20 J/m2 for the interface energy.

Fig. 10. Results of simulations for Cu–0.95 wt%Co at 600 �C for three of the elastic
strain energy densities from Table 3 with values of 0.17, 0.1841 and 0.20 J/m2 for
the interface energy.
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explained by comparing the results in Fig. 7 with those in Fig. 8.
From the particle number density we see for on increasing temper-
ature a later start of the growth period and a longer growth period
(Fig. 7a), which can also be seen in Fig. 8 as a shift in the character-
istics of the relative differences for each variable shown. Fig. 8
shows that with increasing temperature the relative differences
due to the elastic strain energy densities increases. We can con-
clude that the main differences between the results at various tem-
peratures are mostly caused by changes in the behavior of the
system due to the temperature itself, although a slight increased
effect of incorporating the elastic strain energy can be seen at high-
er temperatures.
4.3.3. Influence of strain energy and interface energy
To investigate the influence of elastic strain energy at different

values of the interface energy c, we will first run Algorithm 1 at a
constant temperature of 600 �C with the fitted value of 0.1841 J/m2

and the values of 0.17 and 0.20 J/m2, in the absence of elastic defor-
mation, using the values of all other parameters as stated in Table 1
and previously. The results from these simulations can be seen in
Fig. 9.

Although the results for different values of the interface energy
(Fig. 9) are similar in nature to the values obtained for multiple
temperatures (Fig. 7), at some points differences occur. One of
these differences is the fact that increasing the interface energy
does not influence the solubility. Due to this the growth period will
remain the same, although the growth rates should be influenced
by an increased interface energy. On inspection of the growth rates
and it’s dependency on the interface energy, only a large positive
influence of the growth rate is seen for small precipitates. As the
system predicts on average larger precipitates due to an increase
in interface energy, these higher growth rates are negligible.

Next three points are taken from the finite-element grid as in
Fig. 4d, for which the resulting elastic strains can be found in Ta-
ble 3. The three chosen points correspond to the minimum, the
maximum and the 70th percentile of the elastic strain energy den-
sity from the simulations at 600 �C. For these three points simula-
tions are performed with the values of 0.1841 J/m2 and the values
of 0.17 and 0.20 J/m2 for the interface energy. The results from
these simulations are shown in Fig. 10 for each value of the inter-
face energy as the relative differences between the results from
applying the specified amount of elastic energy and the results in
the absence of elastic energy from Fig. 9 at that value of the inter-
face energy. The relative differences are defined as in Eq. (37).

Similar to the results in Fig. 8 for the various temperatures, the
results in Fig. 10 show a clear correlation with the value of the
interface energy. The shift of the qualitative behavior in the tempo-
ral domain is again present, and coincides with the effects of
changing the value of the interface energy in the absence of elastic
deformation. We can conclude that the main differences between
the results at various values of the interface energy are mostly
caused by changes in the behavior of the system due to the inter-
face energy itself, although a slight increased effect of incorporat-
ing the elastic strain energy can be seen at higher values of the
interface energy.
5. Conclusions

In this paper we have combined a model for the nucleation and
growth of particles in a binary alloy with elastic deformations from
a uniaxial tensile test. This model has been implemented using
both finite-volume and finite-element methods. The simulation
concerns a binary copper-cobalt alloy at fixed temperatures during
a hypothetical uniaxial tensile test. The results from the simula-
tions show that incorporation of strain energy due to elastic defor-
mation promotes the nucleation of precipitates with an initially
larger mean radius, but an eventual smaller mean particle radius
due to faster depletion of the matrix. The results for simulations
at different temperatures and different values of the interface en-
ergy, show that the influence of elastic deformations on the pro-
cess of nucleation and growth of precipitates is mainly restricted
to a quantitative effect, where the effect increases with increasing
values of the elastic strain energy density. These results also show
that both a higher (lower) temperature and interface energy cause
larger (smaller) and more (less) precipitates during the initial
stages of the process. The effect of a higher (lower) temperature
will remain during the entire process as the solubility changes,
where the effect of a higher (lower) interface energy decays as
the solubility does not changes.
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Appendix A. Proof of claim

In Section 2.2.2 we claimed that if the system is not in equilib-
rium then the no-growth radius r̂ (Eq. (24)) is only equal to the
critical radius r� (Eq. (15)) under the following assumptions:

1. The elements within the system are considered to be of equal
molar mass, or equivalent that xm=xe

m ¼ Cm=Ce
m holds, in Eq.

(17).
2. The precipitates consist of a single solute element, that is xp � 1.
3. The free energy DG is solely influenced by the chemical volume

free energy and the surface energy.

We claimed that in all other cases r̂ – r� will hold.
To prove our claims assume 1–3 as stated above. Assumptions 1

and 2 cause Eq. (17) to become

Dgv ¼
RT
Vp

m

ln
Cm

Ce
m

� �
: ðA:1Þ

Using Eq. (15) and assumption 3, we obtained

r� ¼ 2cVp
m

RT
ln

Cm

Ce
m

� �	 
�1

; ðA:2Þ

which is identical to Eq. (24), proving that under assumptions 1–3
r� ¼ r̂.

To prove the uniqueness of r� ¼ r̂ under the three assumptions,
note that r� ¼ r̂ should fail if at least one of the assumptions is vio-
lated. For each of the seven possible combinations of failed
assumptions below is a proof stated that r� – r̂.

Case I – Only assumption 1 is violated: Due to assumption 2,
we have
Dgv ¼
RT
Vp

m

ln
xm

xe
m

� �
: ðA:3Þ
This can be rewritten as
Dgv ¼
RT
Vp

m

ln
Cm

Ce
m

� �
þ RT

Vp
m

ln f ðp; qÞð Þ; ðA:4Þ
in which the p ¼ Cm=Ce
m and q = M2/M1, with M2 and M1 the molar

mass of the solvent respectively the solute element, and f(p, q) de-
fined by

http://www.m2i.nl
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f ðp; qÞ ¼ ðq� 1ÞCe
m þ 100

pðq� 1ÞCe
m þ 100

: ðA:5Þ
For this function f, it can be shown that the sign of (p � 1)(q � 1) is
of importance to the value of f. If (p � 1)(q � 1) is negative, f(p,1)
will be larger then 1, and if (p � 1)(q � 1) is positive, f(p,1) will be
smaller then 1. This indicates that we must have
� If (p � 1)(q � 1) > 0, then Dgv <

RT
Vp

m
lnðCm

Ce
m
Þ;

� If (p � 1)(q � 1) < 0, then Dgv >
RT
Vp

m
lnðCm

Ce
m
Þ;

and as a consequence by Eq. (15)
� If (p � 1)(q � 1) > 0, then r� > r̂;
� If (p � 1)(q � 1) < 0, then r� < r̂.

which proves that if assumption 1 is violated, we cannot have
r� ¼ r̂.

Case II – Only assumption 2 is violated: If we apply assump-
tion 1 we obtain
Dgv ¼
RT
Vp

m

xp ln
Cm

Ce
m

� �
þ RT

Vp
m

ð1� xpÞ ln
100� Cm

100� Ce
m

� �
: ðA:6Þ
For the latter part of this equation, it can be shown that if Ce
m > Cm,

Dgv is positive and if Ce
m < Cm, Dgv is negative. Using the fact that

0 < xp < 1, we have, if Ce
m < Cm, that
ð1� xpÞ ln
Cm

Ce
m

� �
> ð1� xpÞ ln

100� Cm

100� Ce
m

� �
: ðA:7Þ
This expression can be rewritten, using Eq. (17) as
RT
Vp

m

ln
Cm

Ce
m

� �
> Dgv : ðA:8Þ
As a result, we have by Eq. (15) and (24):
r̂ < r�: ðA:9Þ
Similarly if Ce
m > Cm, we have
ð1� xpÞ ln
Cm

Ce
m

� �
< ð1� xpÞ ln

100� Cm

100� Ce
m

� �
: ðA:10Þ
Which can be rewritten, using Eq. (17) as
RT
Vp

m

ln
Cm

Ce
m

� �
< Dgv : ðA:11Þ
Hence, from Eq. (15) and (24), it follows that
r̂ > r�: ðA:12Þ
The above arguments proves that if assumption 2 is violated, we
cannot have r� ¼ r̂.

Case III – Only assumption 3 is violated: If assumption 3 is
false, and we apply assumptions 1 and 2 to Eq. (17) and (15),
then we obtain:
r� ¼ 2c
RT
Vp

m
ln Cm

Ce
m

� �
þ Dg0

; ðA:13Þ
in which Dg0 contains all other modelled energy density terms. If
Dg0 has a negative sign, then by Eq. (15) and (24) we have that
r� > r̂, whereas if Dg0 has a positive sign, then we have r� < r̂ by
the same equations. This proves that if assumption 3 is violated,
we cannot have r� ¼ r̂.

Case IV – Only assumptions 1 and 2 are violated: Similar to
Case II, we have by failure of assumption 2
ln
Cm

Ce
m

� �
– xp ln

Cm

Ce
m

� �
þ ð1� xpÞ ln

100� Cm

100� Ce
m

� �
: ðA:14Þ
By failure of assumption 1, similar as in Case I, we also have
ln
Cm

Ce
m

� �
– ln

xm

xe
m

� �
; ðA:15Þ

ln
100� Cm

100� Ce
m

� �
– ln

1� xm

1� xe
m

� �
: ðA:16Þ
Combination of the three inequalities above give that r� – r̂, if
assumptions 1 and 2 are violated.

Case V – Only assumptions 1 and 3 are violated: Due to viola-
tion of assumption 3, we have
Dgv – Dgv þ Dg0; ðA:17Þ
where Dg0 is as defined in Case III. This inequality in combination
with those from Case I, we have that r� – r̂ if assumptions 1 and
3 are violated.

Case VI – Only assumptions 2 and 3 are violated: Due to vio-
lation of assumption 3, we have
Dgv – Dgv þ Dg0; ðA:18Þ
where Dg0 is as defined in Case III. This inequality in combination
with those from Case II, we have that r� – r̂ if assumptions 2 and
3 are violated.

Case VII – Assumptions 1–3 are violated: Due to violation of
assumption 3, we have
Dgv – Dgv þ Dg0; ðA:19Þ
where Dg0 is as defined in Case III. This inequality in combination
with those from Case IV, we have that r� – r̂ if all three assumptions
are violated.

If we denote by E the equivalence of r� and r̂, and by A1, A2, A3
assumptions 1–3, it can be proven that Cases I, IV, V and VII to-
gether proof that :A1! :E, that Cases II, IV, V and VII together
proof that :A2! :E and that Cases III, V, VI and VII together proof
that :A3! :E. Furthermore, using Theorem 2.2.3 of Burris [5], we
can show that

:A1! :Eð Þ ^ :A2! :Eð Þ ^ :A3! :Eð Þ; ðA:20Þ

is equivalent with

E! A1 ^ A2 ^ A3ð Þ: ðA:21Þ

Above we have proven the truth of A.20, which proves that A.21
is true, or equivalent that r� ¼ r̂ implies that assumptions 1–3 hold.
Together with the prove that r� ¼ r̂ holds if assumptions 1–3 hold,
our claim is proven.
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