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We present a finite difference discretization of the incompressible Navier–Stokes equations 
in cylindrical coordinates. This currently is, to the authors’ knowledge, the only scheme 
available that is demonstrably capable of conserving mass, momentum and kinetic energy 
(in the absence of viscosity) on both uniform and non-uniform grids. Simultaneously, we 
treat the inherent discretization issues that arise due to the presence of the coordinate 
singularity at the polar axis. We demonstrate the validity of the conservation claims by 
performing a number of numerical experiments with the proposed scheme, and we show 
that it is second order accurate in space using the Method of Manufactured Solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Although it is generally known that the use of cylindrical coordinates in finite difference methods brings along a number 
of difficulties, it still appears to be the preferred method of choice for turbulent flow simulations in pipe sections. This is 
likely due to the relative ease with which higher order approximations can be implemented, and the growing availability of 
fast flow solvers that benefit from the orthogonality of the structured cylindrical grid. However, an inherent problem in the 
use of cylindrical coordinates (r, θ, z) is the calculation of variables that lie on or near the polar axis r = 0. Looking at the 
cylindrical Navier–Stokes equations:
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with u = (ur, uθ , uz) the velocity vector, ρ the flow density, g = (gr, gθ , gz) the body force and τi j the viscous stresses, 
it would indeed appear that the numerous 1/r terms cause the solution to blow up near the polar axis, but, as shown 
in Morinishi et al. [12], the coordinate singularity is only apparent, and taking rigorous limits shows how the equations 
actually behave at r = 0. From a numerical modeling point of view, however, this asymptotic analysis does not provide 
a clear solution to the singularity problem. Assuming a staggered (Marker-and-Cell) grid [7], the straightforward finite 
difference discretization of the Navier–Stokes equations in conservative form requires (among others) the radial velocity ur

at r = 0. In the past, this value was usually estimated in some way using neighboring values. For example, Eggels [4] used 
an arithmetic mean for the estimate of ur(0, θ j, zk) using two opposite values:

ur(0, θ j, zk) = ur(r1, θ j, zk) − ur(r1, θ j + π, zk)

2
, (5)

where the minus sign is necessary because of the orientation (both outwards) of the velocity vectors. This approach, how-
ever, yields a multivalued radial velocity. An improved approximation by Fukagata and Kasagi [5] and Griffin et al. [6]
leads to a single-valued radial velocity by reconstructing the Cartesian velocity components ux and u y at r = 0 from the 
neighboring set of velocities and by defining ur at r = 0 using the decomposition:

ur(0, θ, z) = ux cos θ + u y sin θ. (6)

A different approach by Verzicco and Orlandi [16] avoids the problem entirely by solving the equations for the quantity 
rur instead of the velocity ur . For a more extensive overview of existing methods, see Morinishi et al. [12].

Recently, discretizations with improved conservation properties have obtained a growing interest as physically reliable 
modeling of the finest structures in turbulence requires accurate numerical behavior of the flow energy. In particular, the 
construction of numerical schemes that conserve kinetic energy for flows with vanishing viscosity has become an active field 
of research. At a discrete level, conservation of kinetic energy is an attractive property as it assures an unconditionally stable 
(spatial) discretization. For Cartesian domains, this has lead to a number of schemes that conserve both mass, momentum 
and kinetic energy on uniform and non-uniform grids, for both low and higher order [11,15]. For cylindrical grids, not much 
progress seems to have been made on these aspects. Fukagata and Kasagi [5] suggest a highly conserving discretization, but 
energy is not conserved exactly. Morinishi et al. [12] introduced a new approach where a radial momentum equation is 
solved at r = 0 after its derivation using l’Hôpital’s rule. The authors claim and prove the scheme to be energy conserving in 
the absence of viscosity for both uniform and non-uniform grids. After a number of tests, however, we noticed disturbances 
near the radial origin in flows with significant velocity through the origin. Desjardins et al. [3] mention this as well while 
performing the simulation of an inviscid Lamb-dipole. Furthermore, using a Taylor expansion of the radial momentum 
equation at the origin, they are able to trace down the problem to an inconsistent discretization, and they ultimately decide 
to use an averaging method similar to equation (6) for improved accuracy, thereby sacrificing exact energy conservation. 
None of the mentioned singularity treatments above, except the one of Morinishi et al. [12], appears to conserve energy 
as they rely on (arithmetic) averaging in obtaining the radial velocity at r = 0. Hence, the problem of finding an energy 
conserving scheme for cylindrical coordinates seems to intrinsically contain the necessity for a satisfactory treatment of the 
singularity at r = 0.

Most of the methods described above use the notion of a computational or logical Cartesian space and the physical
cylindrical space, connected through a Jacobian mapping, to solve the governing equations. The problems involving a radial 
velocity component at the polar axis arise because this mapping is not bijective at the coordinate r = 0. Nonetheless, many 
attempts have been made to derive expressions that include (the inverse of) the Jacobian, an approach the authors believe 
to likely be ill-fated. Instead, we propose a discretization of the Navier–Stokes equations using a mimetic method that is 
applied on the cylindrical grid (i.e. in physical space only). Mimetic discretizations [10] are designed to mimic many of 
the properties of the analytical operators they approximate. They have been shown to be very robust and accurate, but so 
far they have been surprisingly little used in numerical flow modeling. Abba and Bonaventura [1] derive a mimetic finite 
difference discretization of the Navier–Stokes equations in Cartesian coordinates, while Barbosa and Daube [2] consider 
cylindrical coordinates. The latter authors have essentially laid the foundations on which we will proceed. They show how 
the mimetic operators are derived, albeit for uniform cylindrical grids only. However, their averaging procedure seems 
to require velocity and vorticity components at locations where they are not defined. It is therefore unlikely that their 
discretization conserves energy exactly. We will show how to remedy this issue, and then extend the discretization to grids 
with non-uniform radial and axial node distributions for increased efficiency in turbulence simulations. Using the method 
of Manufactured Solutions, we show that the resulting discretization is capable of achieving second order accuracy in space 
and, with a suitable time integration method, is capable of conserving mass, momentum and kinetic energy for both uniform 
and non-uniform cylindrical grids.

To the authors’ knowledge, the proposed method is currently the only approach in the literature that is demonstrated 
to be fully conservative for cylindrical coordinates. Most related research in this field appears to be focused on increasing 
spatial accuracy, while we believe that a solid singularity treatment, together with improved conservation properties, should 
be established first before moving on to increasing global accuracy.
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2. Construction of the mimetic operators

Whereas traditional finite difference methods generally focus on minimizing the truncation error, the mimetic finite 
difference method aims to mimic certain properties of the continuous operators at a discrete level. Nonetheless, results 
often show that the accuracy and robustness are nearly as good if not better than conventional discretization techniques. 
The motivation stems from the observation that many mathematical descriptions of physical processes contain the vector 
derivatives gradient, curl and divergence: consider for example Darcy’s law of porous media flow, Maxwell’s laws of elec-
tromagnetism and the Navier–Stokes equations of fluid flow. The vector derivatives satisfy some well known identities like 
curl grad = 0 and div curl = 0 for scalars and vectors respectively, as well as a number of decomposition and integration by 
parts theorems. The aim of the mimetic approach is to construct a discrete approximation of the analytical vector calculus 
by defining discrete vector spaces, inner products and operators, such that the aforementioned identities also hold at the 
discrete level. In that way, a discrete solution is guaranteed to exhibit many of the underlying properties of the analytical 
solution.

The approach we follow is based on the work of Hyman and Shashkov [9] and [8], where suitable discrete vector spaces, 
inner products and derivatives are derived for orthogonal coordinate systems using the finite difference method. Most of the 
derivations for uniform cylindrical coordinates have already been performed by Barbosa and Daube [2]. We will extend their 
work by providing the associated expressions for cylindrical grids with non-uniform radial and axial node distributions. An 
essential result of the rigorous derivation of the mimetic operators is the absence of any problems in the construction of 
finite difference approximations around the polar axis that are normally encountered when trying to discretize expressions 
at or near r = 0.

We start in section 2.1 by defining the discrete vector spaces, depending on the location of the variables on the MAC grid. 
Then the metric-independent natural vector operations are derived in section 2.2. These provide a limited set of discrete 
mappings between the discrete vector spaces, but without inverse. The inverse mappings require additional metric data in 
the form of inner products, which are defined in section 2.3. Finally, the adjoint operators are constructed in section 2.4 as 
the formal adjoints to the natural operators with respect to the associated inner products.

2.1. Definition of the discrete vector spaces

We start by defining a number of discrete vector spaces based on the location of the variables in the computational grid. 
We assume a non-uniform radial and axial distribution such that �r = �ri is a function of the radial index i and �z = �zk
is a function of the axial index k. The angular distribution (identified with index j) is assumed to be uniform. A location 
in the computational grid is represented by a coordinate with multi-index I = (i, j, k) ∈ N

3 in combination with the stride 
vectors er , eθ and ez defined as:
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The pressure pI is located at the cell center rI = (ri, θ j, zk) with coordinates:
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where L is the length of the cylinder. For evaluation at the radial cell boundaries, we define ri± 1
2

as ri± 1
2

= ri ± �ri
2 . The 

velocity components urI+er
, uθI+eθ

and uzI+ez
lie orthogonal to the positive cell faces, and the vorticity components ηI+eθ +ez , 

ωI+er+ez and ζI+er+eθ lie along the positive cell edges. Fig. 1 shows the location of the scalars and vector components in 
cylindrical coordinates as they are used in this paper. Note the particular axial vorticity ζ 1

2 , j,k = ζ̃k located at r = 0 and 
independent of angular index j.

For clarity, we use the same notation as in Hyman and Shashkov [9], with calligraphic letters for spaces with vectors and 
plain letters for spaces with scalars. The following spaces are used:

• The space HS of discrete vector functions with components that are defined perpendicular to the cell faces at locations 
rI±er , rI±eθ and rI±ez in the domain. The discrete velocity u = (ur, uθ , uz) on a staggered grid belongs to this space.

• The space HL of discrete vector functions with components that are defined on the cell ribs at locations rI±eθ ±ez , 
rI±er±ez and rI±er±eθ in the domain. The discrete vorticity ω = (η, ω, ζ ) belongs to this space.
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Fig. 1. Location of the variables in the computational domain.

• The space HC of discrete scalar functions that are defined in the cell centers at locations rI . The discrete pressure p
belongs to this space.

• The space H N of discrete scalar functions that are defined in the cell vertices at locations rI±er±eθ ±ez , rI±er±eθ ±ez and 
rI±er±eθ ±ez in the domain. This space is mentioned for completeness, but it is not used in our approach.

2.2. Definition of the natural vector operations

In Hyman and Shashkov [9], expressions are derived for the discrete divergence D, the discrete gradient G and the 
discrete curl C. They are defined based on a discrete approximation of their coordinate-independent definitions, i.e.:

∇ · W := lim
V →0

∮
∂V (W,n) dS

V
, (11)

(∇u,n) := ∂u

∂n
, (12)

(n,∇ × W) := lim
S→0

∮
l (W, l) dl

S
, (13)

for some volume V with boundary ∂V , normal vector n and surface S with boundary l. The divergence operator D is the 
natural1 mapping D : HS → HC . The gradient operator G is the natural mapping G : H N → HL, while the curl operator C
is the natural mapping C : HL→HS . Combined, the natural operators G, C and D form the sequence:

H N
G−→ HL C−→ HS D−→ HC . (14)

The construction of the natural operators D and C is shown below (for our purposes, we do not need G). The resulting 
operators satisfy (among others) the well known vector identities (for proofs of this, see Hyman and Shashkov [9]):

DC : HL → HC, DC ≡ 0, CG : H N → HS, CG ≡ 0. (15)

Notice that the resulting expressions, although derived from mimetic principles, are in fact often equal to the classical finite 
difference discretizations of the gradient, curl and divergence operators in cylindrical coordinates at the computational cell 
centers. This shows that a mimetic approach does not necessarily lead to different discretization results, but it does provide 
additional insight and motivation.

The divergence operator D : HS → HC The natural divergence operator D : HS → HC follows from the coordinate-
independent formulation of Gauss’ divergence theorem:

∇ · W := lim
V →0

1

V

∮
∂V

(W,n) dS, (16)

where n is the unit outward normal to the boundary ∂V and W : Rn → R
n is a differentiable vector field. For a cylindrical 

cell away from the axis r = 0, the discrete approximation Du to equation (16) becomes:

1 The mappings are considered natural because the location of the variables on the staggered grid allows straightforward discrete evaluations of their 
analytical definitions, i.e. Gauss’ theorem (for the divergence) and Stokes’ theorem (for the curl).
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Fig. 2. Surface for the determination of the radial component of the curl operator C : HL → HS .

Fig. 3. Surface for the determination of the angular component of the curl operator C : HL → HS .
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for some discrete vector u = (ur, uθ , uz) ∈ HS . Notice that this result corresponds with the classical finite difference ap-
proximation of the cylindrical divergence:
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For cells at the polar axis with i = 1 where r 1
2

= 0, the discrete operator reduces without issues to:
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where on the right-hand side the i-component in the multi-index I is equal to 1.

The curl operator C :HL → HS The natural curl operator C : HL →HS follows from the coordinate-independent formula-
tion of Stokes’ circulation theorem:

(n,∇ × W) := lim
S→0

1

S

∮
l

(W, l)dl, (21)

where S is the surface enclosed by the closed curve l, n is the unit outward normal to S , l is the unit tangential vector to 
l and W : Rn →R

n is a differentiable vector field. Let ω = (η, ω, ζ ) be a discrete vector in HL with its components located 
as shown in Fig. 1. Then for the radial component (Cω)r , the curve l around the surface S is defined as the boundary of the 
gray plane in Fig. 2 for both types of cells.

The radial component of Cω is then approximated as:
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= 1
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2
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2
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2
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�zk
. (23)

For the angular component (Cω)θ , the curve l around the surface S is defined as the boundary of the gray plane in Fig. 3.
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Fig. 4. Surface for the determination of the axial component of the curl operator C : HL → HS .

The angular component is then approximated as:

(Cω)θI+eθ
= 1

�ri�zk

[
�ri(ηI+eθ +ez − ηI+eθ−ez ) + �zk(−ζI+er+eθ + ζI−er+eθ )

]
(24)

= ηI+eθ +ez − ηI+eθ−ez

�zk
− ζI+er+eθ − ζI−er+eθ

�ri
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Finally, for the axial component (Cω)z , the curve l around the surface S is defined as the boundary of the gray plane 
shown in Fig. 4. The axial component is approximated as:
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Notice that the non-existence of the angular vorticity element ω for axis cells where i = 1 is naturally resolved by the 
multiplication with r 1

2
= 0. Hence, for axis cells, the expression reduces to:

(Cω)zI,i=1 = 2ωI+er+ez

�ri
− 2
(
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)
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, (28)

where on the right-hand side the i-component of the multi-index I is equal to 1.

2.3. Definition of the discrete inner products

To derive the adjoint operators, we need the notion of inner products on the discrete vector spaces. These are defined 
as approximations of the continuous L2-inner product, using either the (second order accurate) Midpoint or Trapezoidal 
integration rule.

An inner product on HC For the space HC , the inner product (·, ·)HC : HC × HC →R is defined as:

(u, v)HC :=
∑

I

uI v Iri�ri�θ�zk, (29)

where u and v are two discrete scalar functions defined in the cell centers.

An inner product on HS For the space HS , the inner product (·, ·)HS :HS ×HS →R is defined as:

(u,v)HS :=
∑

I
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2

[
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2
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2
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+ ri(uI−ez v I−ez + uI+ez v I+ez )
]
. (30)

An inner product on HL The inner product (·, ·)HL : HL×HL → R of two vectors ω = (η, ω, ζ ) and ω̄ = (η̄, ω̄, ̄ζ ) in HL
is given by
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Notice that for i = 1, the degeneracy of the cell has been taken into account: for the angular components ω and ω̄, this 
follows naturally by multiplication with r 1

2
= 0. For the axial components ζ and ζ̄ , the expression is altered to accommodate 

the collapse of the cell face at r = 0. It can be verified that all three discrete inner products satisfy the required symmetry, 
linearity and positive-definiteness properties.

2.4. Definition of the adjoint vector operations

The discrete operators derived in section 2.2 only allow the trivial successive applications CG and DC, which are identi-
cally zero. Second order operators like DG of a scalar and CC of a vector are not possible because the range does not equal 
the domain of the consecutive first order operators. To overcome this, the adjoint operators D, G and C are derived using 
the Support Operator Method [14]. By choosing a prime (natural) operator, the associated derived (adjoint) operator follows 
from the discrete inner product in combination with the identities:

D = −G∗, C = C∗, (32)

where the ∗ denotes the adjoint with respect to the associated inner product. More specifically, starting with the natural 
operator D :HS → HC , the operator G : HC →HS is defined through:

(Du, v)HC = − (u,Gv
)
HS , (33)

for any u ∈HS and v ∈ HC . In a similar way, expressions can be derived for the derived divergence operator D :HL→ H N
and a derived curl operator C :HS →HL through:

(Gu,v)HL = − (u,Dv
)

H N , u ∈ H N,v ∈ HL, (34)

(Cu,v)HS = (u,Cv
)
HL , u ∈ HL,v ∈ HS. (35)

With both natural and adjoint discrete operators, it is now possible to discretize combinations like:

DG : HC → HC, DG : H N → H N, (36)

CC : HS → HS, CC : HL → HL, (37)

GD : HL → HL, GD : HS → HS, (38)

and even the vector Laplacian. It is shown in Hyman and Shashkov [8] that the discrete operators satisfy several additional 
important theorems from vector calculus. Just like the natural operators, the adjoint operators G, C and D form a sequence 
(but in reversed direction):
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Fig. 5. Surface for the determination of the radial component of the curl operator C : HS → HL.

HC
G−→ HS C−→ HL D−→ H N. (39)

We will now construct the adjoint operators G and C for cylindrical grids with a non-uniform radial and axial distribution 
(we do not require D). In addition, we will prove that the constructed adjoint operators are indeed the formal adjoints of 
the associated natural operators with respect to their inner products.

The gradient operator G : HC →HS The components of the gradient operator G : HC →HS are defined as:(
Gp
)

rI+er
= 2(pI+2er − p I)

�ri + �ri+1
(40)(

Gp
)
θI+eθ

= pI+2eθ − pI

ri�θ
(41)

(
Gp
)

zI+ez
= 2(pI+2ez − p I)

�zk + �zk+1
, (42)

for some scalar p ∈ HC .

Proposition 2.1. For any p ∈ HC and u ∈HS on an infinite domain, it holds that (Du, p)HC = −(u, Gp)HS .

Proof. See Appendix A. �
On finite domains, the boundary conditions on HC and HS need to be chosen consistently in order for expression (33)

to hold exactly. We assume a finite cylindrical domain of radius R and length L with an associated grid that includes a 
single layer of ghost cells at both the radial and axial walls. The inner product (Du, p)HC contains only internal values of p, 
while the discrete gradient in (u, Gp)HS also includes values of p in the layer of ghost cells. Consider now a computational 
cell that shares a face with the cylinder boundary. The contribution of the adjacent ghost cell to (u, Gp)HS can be removed 
by actively setting the discrete gradient of p at the boundary to zero. But for consistency in the product (Du, p)HC , the 
value of the component of u normal to the boundary then has to be set to zero (compare the contributions in equations 
(108) and (109)). This combination of Neumann and Dirichlet boundary conditions for p and u respectively are the well 
known expressions for the simulation of a solid wall without penetration when p and u represent the pressure and the 
flow velocity respectively.

A second case involves periodic wall conditions. For simplicity, we assume that the axial boundaries at z = ±L/2 are 
periodic, so that the layers of ghost cells at these walls coincide with the first and last slices of the internal cells of the grid. 
With minor adjustments, the same strategy as the proof for an infinite domain can be used to demonstrate that in this case 
the inner products are also equal. Hence, on finite domains, Proposition 2.1 is in particular valid for the common situation 
of cylindrical pipe flows with solid or periodic walls.

The curl operator C : HS → HL The adjoint curl operator C is derived according to equation (21) in a similar way as the 
natural curl operator C. It will be shown that the resulting expressions for the components of C are indeed the adjoints 
of the associated components of C with respect to the discrete inner product (·, ·)HL. Throughout the derivation, let u =
(ur, uθ , uz) be a discrete vector in HS . Then for the radial component of the adjoint curl operator (Cu)r , the surface S is 
defined as the gray plane in Fig. 5. The component of the discrete curl operator C in the radial direction then follows as:

(Cu)rI+eθ +ez
= 2

ri�θ(�zk + �zk+1)

[
�zk + �zk+1

2
(uzI+2eθ +ez

− uzI+ez
) + ri�θ(−uθI+eθ +2ez

+ uθI+eθ
)

]
(43)

= uzI+2eθ +ez
− uzI+ez

ri�θ
− 2(uθI+eθ +2ez

− uθI+eθ
)

�zk + �zk+1
. (44)
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Fig. 6. Surface for the determination of the angular component of the curl operator C : HS → HL.

Fig. 7. Surface for the determination of the axial component of the curl operator C : HS → HL.

For the angular component, the surface is defined as in Fig. 6. The component of the discrete curl operator (Cu)θ in the 
angular direction is defined as:

(Cu)θI+er +ez
= 4

(�ri + �ri+1)(�zk + �zk+1)

[
�zk + �zk+1

2
· (45)

(
uzI+ez

− uzI+2er+ez

)+ �ri + �ri+1

2

(
urI+er+2ez

− urI+er

)]

= 2(urI+er+2ez
− urI+er

)

�zk + �zk+1
− 2(uzI+2er+ez

− uzI+ez
)

�ri + �ri+1
. (46)

For the axial component for cells away from the axis, the surface is defined as in Fig. 7. In this case, the component of 
the discrete curl operator (Cu)z in the axial direction is defined as:

(Cu)zI+er+eθ
= 4

(ri + ri+1)(�ri + �ri+1)�θ

[
�ri + �ri+1

2
· (47)

(
urI+er

− urI+er+2eθ

)
+ �θ

(
ri+1uθI+2er +eθ

− riuθI+eθ

)]

= 2

ri + ri+1

[
2
(

ri+1uθI+2er +eθ
− riuθI+eθ

)
�ri + �ri+1

− urI+er+2eθ
− urI+er

�θ

]
. (48)

For the cells near the axis, the surface S is defined as in Fig. 8. For these cells, the component of the discrete curl 
operator C in the axial direction:

(Cu)zk = 8

Nθ�r2
1�θ

Nθ∑
j=1

�r1

2
�θuθ

1, j+ 1
2 ,k

= 4

�r1

1

Nθ

Nθ∑
j=1

uθ
1, j+ 1

2 ,k
. (49)

Proposition 2.2. For any ω ∈HL and u ∈HS on an infinite domain, it holds that (Cω, u)HS = (ω, Cu)HL .
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Fig. 8. Surface for the determination of the axial component of the curl operator C : HS → HL.

Fig. 9. Cells near r = R and z = L/2 showing the vorticity components that lie on the (hatched) domain boundaries.

Proof. See Appendix A. �
For finite domains, some care has to be taken for the two inner products to be equal. Investigation of the proof in Ap-

pendix A shows that we only have to consider the cells that share a face with the boundary. We assume a finite discretized 
cylindrical domain of radius R and length L. Arguably the simplest case is when the discrete components of ω are zero at 
the boundaries. After inspection of the expressions in Appendix A, this renders the contribution from the cell face at the 
boundary to both products (ω, Cu)HL and (Cu, ω)HS equal to zero. Subsequently, both inner products only contain the 
summation of internal values and they are exactly equal.

If the components of ω are not zero at the wall, then the proof can be used to derive the values for the components 
of u in the surrounding layer of ghost cells. Consider a boundary cell with its positive face at r = R which contains two 
components of ω, namely ω and ζ , and one component of u, namely ur , as in Fig. 9(a).

From equations (116) and (118), the contributions to the angular component ωI+er +ez come from cells I and I + 2 ez

alone (since we only sum over internal cells), and together they provide a condition for the value of uzI+2er +ez
in the ghost 

cell layer by solving:

ri+ 1
2
�θ

2

(
�zk + �zk+1

)
uzI+ez

= −
ri+ 1

2
�ri�θ

4

(
�zk + �zk+1

) 2(uzI+2er+ez
− uzI+ez

)

�ri + �ri+1
, (50)

which yields:

uzI+2er+ez
= −�ri+1

�ri
uzI+ez

, i = Nr . (51)

Similarly, from equations (120) and (122), we obtain that the only contributions to the axial component ζI+er +eθ come from 
cells I and I + 2eθ . Equating yields for the angular velocity uθI+2 er +eθ

in the ghost cell layer:

uθI+2er+eθ
= − ri

ri+1

�ri+1

�ri
uθI+eθ

, i = Nr . (52)

The same can be done for the boundaries at z = ±L/2 of the cylindrical grid. There we have the components η and ω of ω
(see Fig. 9(b)). Collecting terms yields for the velocities in the lower ghost value layer:

urI+er−2ez
= −�zk−1

�zk
urI+er

, uθI+eθ −2ez
= −�zk−1

�zk
uθI+eθ

, k = 1, (53)

and for the velocities in the upper ghost value layer:

urI+er+2ez
= −�zk+1 urI+er

, uθI+eθ +2ez
= −�zk+1 uθI+eθ

, k = Nz. (54)

�zk �zk
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Hence, equality of the inner products can be attained by either choosing the components of the vector ω in HL to be 
zero, or, for non-zero components of ω, the boundary values of the vector u need to be chosen according to expressions 
(51)–(54). In section 4.2, we will show that when ω = ω(u), these conditions have actual physical meaning: they represent 
the free-slip (or stress-free) and no-slip boundary conditions for the flow velocity respectively.

3. Mimetic discretization of the Navier–Stokes equations

In this section, we will apply the mimetic discretization techniques from section 2 to generate a finite difference dis-
cretization of the incompressible Navier–Stokes equations. We will propose spatial discretizations for the convective part 
and the viscous part in the next sections. The discretization of the pressure gradient ∇p follows rather trivially: because the 
pressure is an element of the space HC , the approximation of its gradient is Gp, with G : HC → HS the adjoint gradient 
operator as in equations (40)–(42).

3.1. Discretization of the convective term

The convective term of the vector momentum equations (u · ∇)u is a second order tensor, and it does not allow direct 
application of the mimetic operators derived in section 2. Instead, it can be rewritten as:

(u · ∇)u = (∇ × u) × u + 1

2
∇(u · u), (55)

occasionally referred to as the rotational formulation, where the right-hand side only consists of first order operators. The 
term 1

2 ∇(u · u) is added to the pressure gradient, which leaves the term N(u) := (∇ × u) × u = ω × u, where ω is the flow 
vorticity, as the remaining convection part. With the vorticity in cylindrical coordinates given by:

∇ × u =
⎛⎝ η

ω
ζ

⎞⎠=
⎛⎝ 1

r
∂uz
∂θ

− ∂uθ

∂z
∂ur
∂z − ∂uz

∂r
1
r

∂(ruθ )
∂r − 1

r
∂ur
∂θ

⎞⎠ , (56)

the convective part N becomes:

N(u) =
⎛⎝ωuz − ζuθ

ζur − ηuz

ηuθ − ωur

⎞⎠ . (57)

The discretization of N requires the approximation of the vorticity components and subsequently an averaging procedure of 
the velocity components, as velocity and vorticity are members of different discrete spaces (HS and HL, respectively). As 
the velocity vector in the staggered grid is an element of HS , we notice that ω = ∇ × u is discretely approximated by Cu, 
where C is the adjoint curl operator C :HS →HL. Then, with the vorticity components known, the discrete approximation 
of equation (57) requires spatial averaging to obtain an estimate at the location of the velocity components. The choice of 
averaging is restricted by the following considerations:

• The averaging should be sufficiently accurate.
• The averaging should be consistent for the cells near the polar axis.
• The averaging should allow conservation of momentum when subjected to discrete integration.
• The averaging should allow conservation of energy in combination with a discrete inner product.

With this in mind, we propose the following discretization for the radial convective part:

NrI+er
= 1

2(�ri + �ri+1)

[
ωI+er−ez

(
�riuzI−ez

+ �ri+1uzI+2er −ez

)+ ωI+er+ez

(
�riuzI+ez

+ �ri+1uz I+2er +ez

)]

− 1

4

ri + ri+1

2

[
ζI+er−eθ

(uθI−eθ

ri
+ uθI+2er−eθ

ri+1

)
+ ζI+er+eθ

(uθI+eθ

ri
+ uθI+2er +eθ

ri+1

)]
. (58)

For the angular convective part:

NθI+eθ
= 1

2r2
i �ri

(
ri− 1

2

ri−1 + ri

2

�ri−1 + �ri

2
ζI−er+eθ

urI−er
+ urI−er+2eθ

2

+ ri+ 1
2

ri + ri+1

2

�ri + �ri+1

2
ζI+er+eθ

urI+er
+ urI+er+2eθ

2

)

− 1

2

(
ηI+eθ−ez

uzI−ez
+ uzI+2eθ −ez

2
+ ηI+eθ+ez

uzI+ez
+ uzI+2eθ +ez

2

)
. (59)
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Finally, for the axial convective part:

NzI+ez
= 1

2

(
ηI−eθ +ez

�zkuθI−eθ
+ �zk+1uθI−eθ +2 ez

�zk + �zk+1
+ ηI+eθ +ez

�zkuθI+eθ
+ �zk+1uθI+eθ +2 ez

�zk + �zk+1

)
− 1

2ri

(
ri− 1

2
ωI−er+ez

�zkur I−er
+ �zk+1urI−er+2ez

�zk + �zk+1
+ ri+ 1

2
ωI+er+ez

�zkurI+er
+ �zk+1urI+er+2ez

�zk + �zk+1

)
. (60)

In section 4 we will show that this choice of discretization leads to conservation of momentum as well as conservation of 
kinetic energy in the absence of viscosity. In section 5 we will investigate its accuracy.

For comparison with the discretization suggested by Barbosa and Daube [2], the expressions (58)–(60) for uniform grids 
reduce to:

NrI+er
= 1

2

(
ωI+er−ez

uzI−ez
+ uzI+2er −ez

2
+ ωI+er+ez

uz I+ez
+ uzI+2er +ez

2

)

−
ri+ 1

2

4

[
ζI+er−eθ

(uθI−eθ

ri
+ uθI+2er−eθ

ri+1

)
+ ζI+er+eθ

(uθI+eθ

ri
+ uθI+2er +eθ

ri+1

)]
, (61)

NθI+eθ
= 1

2r2
i

(
r2

i− 1
2
ζI−er+er

urI−er
+ urI−er+2eθ

2
+ r2

i+ 1
2
ζI+er+eθ

urI+er
+ urI+er+2eθ

2

)
− 1

2

(
ηI+eθ−ez

uzI−ez
+ uzI+2eθ −ez

2
+ ηI+eθ+ez

uzI+ez
+ uzI+2eθ +ez

2

)
, (62)

NzI+ez
= 1

2

(
ηI−eθ+ez

uθI−eθ
+ uθI−eθ +2ez

2
+ ηI+eθ+ez

uθI+eθ
+ uθI+eθ +2ez

2

)
− 1

2ri

(
ri− 1

2
ωI−er+ez

urI−er
+ urI−er+2ez

2
+ ri+ 1

2
ωI+er+ez

ur I+er
+ urI+er+2ez

2

)
. (63)

Although there are global similarities, our radial averaging is quite different. The discretization of Barbosa and Daube [2]
seems to require the radial velocity ur at r = 0 for Nθ

1, j+ 1
2 ,k

and the angular vorticity component ω at r = 0 for Nz
1, j,k+ 1

2
, both 

of which are not defined there. In our discretization, these evaluations at r = 0 are resolved using weighted averaging that 
results in multiplication with the radial coordinate r. Hence, at r = 0, any finite value can be assigned to these components 
as the resulting product always yields zero.

To demonstrate the improvement of the proposed scheme over the scheme of Barbosa and Daube [2], and in particular 
to emphasize the effect of the different approaches near the origin, two co-rotating vortices of unit circulation are simulated 
on a disc of radius R = 8 m. Their initial radial and angular locations are ( 1

2 , π/10) and ( 1
2 , 11π/10) respectively. The grid is 

uniform in all directions for the comparison with 512 and 288 cells in radial and angular direction respectively. The vortices 
are monitored and Fig. 10 shows their evolution in time for both discretizations in the vicinity of the origin. The results 
in the left column clearly show the development of a small disturbance around the coordinate origin, while in the right 
column the contour lines remain smooth. This would suggest that the proposed method leads to more stable and accurate 
results near the origin.

3.2. Discretization of the viscous term

For constant viscosity flows, the viscous part of the Navier–Stokes equations consists of the vector Laplacian ν�u =
ν∇2u, where ν is the kinematic viscosity ν = μ/ρ . Since the vector Laplacian is a second order operator (divergence of a 
matrix), the term is rewritten using the identity:

�u = ∇(∇ · u) − ∇ × ∇ × u, (64)

which is a mere combination of first order operators. We make the assumption that the first term on the right-hand side 
of equation (64) can either be neglected in the discretization due to the fact that ∇ · u = 0 is discretely enforced locally in 
every computational cell, or we add it to the pressure term. This results in the approximation for the viscous part V as:

V(u) = −ν(∇ × ∇ × u) = −ν(∇ × ω), (65)

where ω is the flow vorticity as defined in equation (56). The discrete approximation of V is CCu, where the discrete curl 
operators C : HS → HL and C : HL → HS are used. No averaging is required, and the derivation of both operators in 
section 2 guarantees that no issues arise for the cells near the polar axis.
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Fig. 10. Evolution (from top to bottom) of the vorticity contours of two co-rotating vortices. The left column displays the results from the discretization 
of the non-linear terms as in Barbosa and Daube [2], while the right column displays the results from the proposed discretizations (58)–(60). Simulation 
performed by O. Daube.

3.3. Temporal discretization

The semi-discrete momentum equations and the continuity equation:

du = −N(u) − 1
Gp − νCCu, Du = 0, u ∈ HS, p ∈ HC, (66)
dt ρ
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are discretized in time using the Implicit Midpoint method:

u(n+1) − u(n)

�t
= −N

(
u(n+ 1

2 )
)

− 1

ρ
Gp(n+ 1

2 ) − νCCu(n+ 1
2 ), Du(n+ 1

2 ) = 0, (67)

where u(n+ 1
2 ) = 1

2

(
u(n) + u(n+1)

)
. Both the momentum and continuity equations are solved in a coupled way to obtain 

the solution vector 
(
u(n), p(n)

)
using an iterative Krylov method. In particular, we iterate to obtain the solution of the 

non-linear equations. The Implicit Midpoint method used is second order accurate in time and unconditionally stable (even 
for vanishing viscosity), which is desirable as the CFL condition becomes very stringent near r = 0 if explicit methods were 
to be used. Additionally, if the non-linear coupled equations (67) are solved to machine precision, the method is capable of 
conserving kinetic energy. We will elaborate on the latter in section 4.3.

4. Conservation properties of the discretization

In this section, we will analyze the conservation properties of the proposed discretization.

4.1. Conservation of mass

The conservation of mass is represented by the discrete continuity equation Du = 0. Since the discrete system is solved 
in a coupled way, mass conservation is determined by the accuracy of the solution of (67). As iterative methods are often 
used for this purpose, in practice this implies that the conservation of mass depends on the applied stop criterion of the 
iterative linear solver.

4.2. Conservation of momentum

Conservation of radial, angular and axial momentum requires the discrete evaluation of:

d

dt

∫
V

ur dV ,
d

dt

∫
V

ruθ dV ,
d

dt

∫
V

uz dV , (68)

respectively, with V denoting the entire finite cylindrical domain. Proving discrete conservation of momentum has turned 
out to be complex due to two main reasons. In the first place, looking at the momentum equations (2)–(4), it is clear 
that the radial and angular momentum equations cannot be trivially written in a conservative formulation, with the time 
derivative governed solely by flux terms, due to the presence of additional terms that stem from the differentiation of 
the cylindrical covariant basis vectors which are not constant in space. There exist techniques to rewrite the momentum 
equations in conservative form (see Vinokur [17]), but they appear to be difficult to integrate into our mimetic approach. 
A conservative formulation of the governing equations is desirable because it often allows a discrete approximation of a 
similar form, which in turn leads to discrete conservation almost naturally with only the boundary values contributing. 
Without conservative formulation, it can be very difficult in practice to obtain conservation numerically, let alone to prove 
this. The axial momentum equation (4) governing the axial component of the linear momentum fortunately is in conser-
vative form. Furthermore, multiplication of the angular momentum equation (3) with the radial coordinate r yields the 
conservative formulation for the quantity ruθ :

∂(ruθ )

∂t
+ 1

r

∂(r2uruθ )

∂r
+ 1

r

∂(ru2
θ )

∂θ
+ ∂(ruθ uz)

∂z
= − 1

ρr

∂(rp)

∂θ
+ 1

ρr

∂(r2τrθ )

∂r
+ 1

ρr

∂(rτθθ )

∂θ
+ 1

ρ

(r∂τθ z)

∂z
, (69)

which governs the evolution of the axial component of the angular momentum vector, a conserved quantity in the absence 
of any external torque applied to the z-axis. For the radial momentum equation, unfortunately, no such procedure seems 
to exist that converts expression (2) into a conservative formulation. Nonetheless, we will demonstrate that our proposed 
discretization is capable of conserving radial, angular and axial momentum by numerical validation.

A second difficulty in our approach lies in the rotational formulation of the convective terms. This choice of formulation 
makes conservation of momentum much less obvious due to the fact that part of the convection is absorbed into an updated 
pressure variable p̃, which becomes p̃ = p + 1

2 ρu · u. Analytically it holds that:

ω × u = ∇ · (uu) − u∇ · u − ∇
(

1

2
u · u
)

, (70)

where the first term on the right hand side is the conservative formulation and second term involves the flow divergence 
(and hence vanishes). The third term needs to be balanced by the new pressure p̃, but since this is done implicitly ( p̃ is 
only defined in cell centers), it is impossible to do a term-by-term comparison and therefore to rigorously demonstrate 
momentum conservation. Equation (70) does however show the dependence of the equality on the flow divergence, and 
this dependence is observed numerically as well.
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For the discrete approximation of the quantities in expression (68), the Trapezoidal rule is used for the spatial integration. 
This yields the discrete quantities Mr , Mθ and Mz at time t(n) defined as:

M(n)
r =

∫
V

u(n)
r dV ≈

∑
I

�ri�θ�zk

2

(
ri− 1

2
u(n)

rI−er
+ ri+ 1

2
u(n)

rI+er

)
, (71)

M(n)
θ =

∫
V

ru(n)
θ dV ≈

∑
I

r2
i �ri�θ�zk

2

(
u(n)

θI−eθ
+ u(n)

θI+eθ

)
, (72)

M(n)
z =

∫
V

u(n)
z dV ≈

∑
I

ri�ri�θ�zk

2

(
u(n)

zI−ez
+ u(n)

zI+ez

)
. (73)

We monitor the values of Mr , Mθ and Mz at every time step, and discrete conservation implies that M(n)
α = M(0)

α for any of 
the α ∈ {r, θ, z}.

Some attention is required at the boundaries. For our purposes, we will only consider no-slip and free-slip (or stress-free) 
boundaries. The no-penetration condition u · n = 0, where n is the unit normal to the wall, guarantees that the convective 
parts of the momentum equations do not contribute to any change in momentum. The contribution of the viscous part, 
which requires boundary conditions for the surrounding layer of ghost cells, is determined by the value of the vorticity at 
the walls, since:∫

V

(∇ × ω) dV =
∮
∂V

(n × ω) dS, (74)

where n is the unit normal to the wall. For free-slip walls, we can enforce the right-hand side of equation (74) to vanish 
by choosing the discrete velocity boundary conditions in such a way that the resulting vorticity components at the wall are 
zero. This implies that at the wall r = R both the angular and axial components ω and ζ of the discrete vorticity Cu become 
zero. From equations (46) and (48), the boundary conditions for the angular and axial velocities then follow as:

uθI+2er+eθ
= ri

ri+1
uθI+eθ

and uzI+2er +ez
= uzI+ez

, i = Nr . (75)

Notice that during this derivation, the radial velocity ur is considered to be zero due to the no-penetration condition. At 
the walls z = ±L/2, the boundary values for the radial and angular velocities follow from equations (44) and (46):

urI+er−2ez
= ur I+er

and uθ I+eθ −2ez
= uθI+eθ

, k = 1, (76)

urI+er+2ez
= ur I+er

and uθ I+eθ +2ez
= uθI+eθ

, k = Nz. (77)

In this case, the axial velocity uz is considered to be zero. Combined, equations (75)–(77) form the free-slip boundary 
conditions for the velocity, and they follow rather naturally from the construction of the discrete vorticity. Furthermore, 
with all vorticity components zero at the walls, Proposition 2.2 holds on a finite domain due to the reasoning in section 2.4.

No-slip boundary conditions for finite difference methods are commonly derived by interpolation of the associated ve-
locity to the wall, equating it to zero and subsequently obtaining a value for the velocity component in the ghost cell. We 
will however proceed along a different path, and derive expressions for the ghost values by instead demanding that Propo-
sition 2.2 remains valid on a finite domain, thereby assuring that the global mimetic structure of the discretization is not 
impaired. The procedure has in fact already been presented at the end of section 2.4 in the case of non-zero vorticity at the 
walls. We will repeat the resulting expressions here for completeness: at the wall at r = R , it holds that:

uzI+2er+ez
= −�ri+1

�ri
uzI+ez

, uθI+2er+eθ
= − ri

ri+1

�ri+1

�ri
uθI+eθ

, i = Nr, (78)

while at the walls at z = ±L/2:

urI+er−2ez
= −�zk−1

�zk
urI+er

, uθI+eθ −2ez
= −�zk−1

�zk
uθI+eθ

, k = 1, (79)

urI+er+2ez
= −�zk+1

�zk
urI+er

, uθI+eθ +2ez
= −�zk+1

�zk
uθI+eθ

, k = Nz. (80)

Notice that all but the condition for uθI+2 er +eθ
at r = R coincide with the linear interpolation on a non-uniform grid of the 

velocity component at the wall. The condition for uθI+2er +eθ
resembles the linear interpolation of the angular momentum 

ruθ instead, and a closer look reveals that it is close to the linear interpolation of uθ since:

uθI+2er+eθ
= − ri �ri+1 uθI+eθ

= −�ri+1
(

1 − �ri + �ri+1
)

uθI+eθ
, (81)
ri+1 �ri �ri 2ri+1
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for i = Nr . Hence, for sufficiently fine grids it is expected that the conventional linear interpolation of uθ to the wall is 
found, but the presence of this extra term must be kept in mind for coarser grids. Finally, equations (78)–(80) constitute 
the no-slip boundary conditions for the velocity that assure that Proposition 2.2 is valid on a finite domain.

4.3. Conservation of kinetic energy

Summation after taking the inner product of the momentum equations with their respective velocities gives the temporal 
evolution of the kinetic energy K :

dK

dt
+ (N(u),u)L2(D) + 1

ρ
(Gp,u)L2(D) − ν (V(u),u)L2(D) = 0, (82)

where K = (u,u)L2(D) /2 is the L2-inner product of the velocity vector u over a suitable domain D , N is the skew-symmetric 
convective operator and V is the symmetric viscous operator. Because N is skew-symmetric, and with the gradient G as the 
formal (negative) adjoint of the divergence D, the second and third terms of equation (82) vanish and the expression reduces 
to

dK

dt
= ν (V(u),u)L2(D) = −ν (∇ × ω,u)L2(D) . (83)

Thus, in the absence of viscosity and with appropriate boundary conditions, the kinetic energy is constant and therefore 
conserved. We will verify that the proposed discretization satisfies the same conditions, which leads to discrete conservation 
of kinetic energy as well. The first assumption, G being the negative adjoint of D, is true by default, as this is precisely how 
the discrete operator G was constructed (see section 2). Secondly, it must be shown that the discretization of the convective 
part does not contribute to the change in kinetic energy.

Proposition 4.1. The proposed discretization (58)–(60) for the convective part N of the Navier–Stokes equations assures that 
(N(u), u)HS = 0.

Proof. After performing the inner product (30) over the entire computational domain, we collect all terms that contain 
the radial component of the vorticity ηI+eθ +ez for any random choice of I. This comprises the contributions to the inner 
product from cells I, I + 2eθ , I + 2ez and I + 2eθ + 2ez . From these four cells, there are angular contributions from NθI+eθ

and NθI+eθ +2 ez
and axial contributions from NzI+ez

and NzI+2eθ +ez
, which sum up to:

− C

(
�zk

from NθI+eθ︷ ︸︸ ︷
uzI+ez

+ uzI+2eθ +ez

2
uθI+eθ

+ �zk+1

from NθI+eθ +2 ez︷ ︸︸ ︷
uzI+ez

+ uz I+2eθ +ez

2
uθI+eθ +2 ez

)

+ C
(
�zk + �zk+1

)( 1

2

�zkuθI+eθ
+ �zk+1uθI+eθ +2 ez

�zk + �zk+1︸ ︷︷ ︸
from NzI+ez

uzI+ez
+ 1

2

�zkuθI+eθ
+ �zk+1uθI+eθ +2ez

�zk + �zk+1︸ ︷︷ ︸
from NzI+2eθ +ez

uzI+2eθ +ez

)
, (84)

where C = 1
2 ri�ri�θ . It can be seen that these terms add up to zero.

Then we collect all terms that contain the angular component of the vorticity ωI+er +ez for any random I. This comprises 
the contributions to the inner product from cells I, I + 2er , I + 2ez and I + 2er + 2ez . From these four cells, there are radial 
contributions from NrI+er

and NrI+er +2ez
and axial contributions from NzI+ez

and NzI+2er +ez
, which sum up to:

C (�ri + �ri+1)

(
�zk

from NrI+er︷ ︸︸ ︷
1

2

�riuzI+ez
+ �ri+1uzI+2er+ez

�ri + �ri+1
urI+er

+ �zk+1

from NrI+er+2ez︷ ︸︸ ︷
1

2

�riuzI+ez
+ �ri+1uzI+2er+ez

�ri + �ri+1
ur I+er+2ez

)
(85)

− C
(
�zk + �zk+1

)(
�ri

1

2

�zkurI+er
+ �zk+1urI+er+2ez

�zk + �zk+1︸ ︷︷ ︸
from NzI+ez

uzI+ez
+ �ri+1

1

2

�zkur I+er
+ �zk+1urI+er+2ez

�zk + �zk+1︸ ︷︷ ︸
from NzI+2er +ez

uzI+2er+ez

)
,

with C = 1 r 1 �θ . After some algebraic manipulation, it follows that these terms also add up to zero.
2 i+ 2
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Finally, we collect all terms that contain the axial component of the vorticity ζI+er +eθ for any random I, which comprises 
the contributions to the inner product from cells I, I + 2er , I + 2eθ and I + 2er + 2eθ . From these four cells, there are radial 
contributions from NrI+er

and NrI+er +2eθ
and angular contributions from NθI+eθ

and NθI+2er +eθ
, which sum up to

− C

4

ri + ri+1

2

[ from Nr I+er︷ ︸︸ ︷(uθI+eθ

ri
+ uθI+2er +eθ

ri+1

)
urI+er

+

from Nr I+er+2eθ︷ ︸︸ ︷(uθI+eθ

ri
+ uθI+2er+eθ

ri+1

)
ur I+er+2eθ

]

+ C

4

ri + ri+1

2

[
urI+er

+ urI+er+2eθ

ri︸ ︷︷ ︸
from NθI+eθ

uθI+eθ
+ urI+er

+ urI+er+2eθ

ri+1︸ ︷︷ ︸
from NθI+2er+eθ

uθI+2er +eθ

]
, (86)

with C = 1
2 ri+ 1

2
(�ri +�ri+1)�θ�zk . It can be seen that these terms sum up to zero as well. Since this holds for all elements 

of the vorticity vector, the inner product yields exactly zero. �
The Implicit Midpoint time integration method applied to the semi-discrete Navier–Stokes without viscosity or external 

forces gives:

u(n+1) − u(n)

�t
= −N

(
u(n+ 1

2 )
)

− Gp(n+ 1
2 ), Du(n+ 1

2 ) = 0, (87)

with u(n+ 1
2 ) = 1

2 (u(n) + u(n+ 1
2 )). Notice that the inner product of the left-hand side of equation (87) with u(n+ 1

2 ) yields:(
u(n+1) − u(n)

�t
,u(n+ 1

2 )

)
HS

= 1

2�t

[(
u(n+1),u(n+1)

)
HS

−
(

u(n),u(n)
)
HS

]
, (88)

while taking the inner product with the right-hand side gives:

−
(

N(u(n+ 1
2 )),u(n+ 1

2 )
)
HS

−
(

Gp(n+ 1
2 ),u(n+ 1

2 )
)
HS

=
(

p(n+ 1
2 ),Du(n+ 1

2 )
)

H N
(89)

by Proposition 4.1 and the definition of the gradient operator G. Combining equations (88) and (89) then shows that:(
u(n+1),u(n+1)

)
HS

−
(

u(n),u(n)
)
HS

= 2�t
(

p(n+ 1
2 ),Du(n+ 1

2 )
)

H N
. (90)

If we define the kinetic energy at time tn as K (n) := 1
2

(
u(n),u(n)

)
HS , then

K (n+1) − K (n)

�t
=
(

p(n+ 1
2 ),Du(n+ 1

2 )
)

H N
, (91)

and conservation of kinetic energy depends solely on the value of Du in the domain. Hence, for vanishing flow divergence 
Du = 0, it follows that the discrete kinetic energy is conserved.

For viscous flows, it is well known that the temporal decay of kinetic energy due to viscous dissipation on a suitable 
domain is given by

dK

dt
= −2νE, (92)

where E = 1
2

∫
V |∇ × u|2 dV is the flow enstrophy. Notice that this expression follows from applying the self-adjointness of 

the curl operator to the right-hand side of equation (83). At the discrete level, the fully discretized momentum equations 
without external forces read:

u(n+1) − u(n)

�t
= −N

(
u(n+ 1

2 )
)

− Gp(n+ 1
2 ) − νCCu(n+ 1

2 ). (93)

Taking the inner product with u(n+ 1
2 ) once more now yields:

K (n+1) − K (n)

�t
= −ν

(
CCu(n+ 1

2 ),u(n+ 1
2 )
)
HS

, (94)

where we have used the fact that the convective term does not contribute to the evolution of the kinetic energy, and the 
pressure term vanishes because Du = 0 as noted above. By Proposition 2.2, the term on the right-hand side is equal to
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Fig. 11. The uniform and non-uniform node distributions.

ν
(

CCu(n+ 1
2 ),u(n+ 1

2 )
)
HS

= ν
(

Cu(n+ 1
2 ),Cu(n+ 1

2 )
)
HL

, (95)

which is the discrete representation of twice the enstrophy. Hence, with the flow divergence Du equal to zero, the resulting 
expression:

K (n+1) − K (n)

�t
= −2ν

(
Cu(n+ 1

2 ),Cu(n+ 1
2 )
)
HL

, (96)

is the discrete analogue of expression (92).

5. Numerical validation

In this section, we will numerically demonstrate the conservation properties of the proposed discretization on both uni-
form and non-uniform grids (section 5.1). Furthermore, we will demonstrate the formal accuracy of the proposed method 
(section 5.2). For this, we use the Method of Manufactured Solutions, which we believe is among the most rigorous proce-
dures to determine the general numerical accuracy.

5.1. Conservation properties

We are interested in the temporal evolution of mass, momentum and kinetic energy (in absence of viscosity). In sec-
tions 4.1 and 4.2 it was observed that conservation of mass and momentum are both determined by the accuracy of the 
solution of the continuity equation Du = 0. In our simulations, we therefore set the stopping criterion for the iterative linear 
solver (based on the relative residual) to 10−15 to enforce conservation of mass and momentum up to machine precision. To 
investigate the energy conservation capacity of the discretization, we consider a flow in a cylinder of radius 1 m and length 
1 m. The velocities are initialized as random numbers from the interval [− 1

2 , 12 ], and subsequently the flow field is made 
divergence-free by a projection step, where the initial pressure is also calculated. On the solid walls at r = R and z = ± L

2 , 
a free-slip or stress-free boundary condition is imposed as described by equations (75)–(77). The free-slip condition assures 
that the vorticity at the wall is zero and therefore it does not contribute to any change in momentum. The fluid viscosity is 
set to zero, and we perform the simulation up to time T = 10 seconds, while observing the discrete mass, momentum and 
kinetic energy at every time step. A small time step �t of 10−5 seconds is chosen purely to guarantee convergence of our 
current non-linear solver, as the conservation properties are independent of the magnitude of the time step. To verify the 
proposed discretization on grids with non-uniform node distributions, the simulations are performed on two grids: a uni-
form grid, where ri+ 1

2
= (i + 1

2 )R/Nr and zk+ 1
2

= − L
2 + (k − 1

2 )L/Nz , and a grid with a non-uniform distributions defined by

ri+ 1
2

= R

(
eαiR/Nr − 1

eαR − 1

)
, i = 0, . . . , Nr, (97)

zk+ 1
2

= L

2

tanh(βi/Nz)

tanh(βL/2)
, k = 0, . . . , Nz, (98)

with α = 2 and β = 3 as depicted in Fig. 11. Although perhaps not very applicable in practice, we have chosen this distribu-
tion in particular to demonstrate the validity of our conservation claims in the case of a severe variety in cell size throughout 
the computational domain. The number of grid cells are 10 × 20 × 10 in radial, angular and axial direction respectively.

For the inviscid computations, we also calculate the resulting flow field using the spatial discretization of Morinishi 
et al. [12] for comparison. Because it is known that their axis treatment may introduce instabilities, we use the averaging 
procedure of Fukagata and Kasagi [5] for the radial velocity at r = 0, which does not conserve kinetic energy exactly. 
We find that the proposed method conserves mass, momentum and kinetic energy up to machine precision, as expected. 
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Fig. 12. Momentum evolution on both uniform and non-uniform grid.

Fig. 13. Normalized kinetic energy evolution on both uniform and non-uniform grid. The mimetic results are shown separately in the lower figures for a 
better impression of the actual magnitude.

Conservation of mass and momentum is obtained for the discretization technique of Morinishi et al. [12] (this is also 
proven in their paper). However, the kinetic energy is not conserved in time, which is likely due to the handling of the 
radial velocity at the polar axis. First, Fig. 12 shows the evolution of the discrete radial, angular and axial momenta Mα

of equations (71)–(73) using the proposed discretization. On both uniform and non-uniform grids, all three momenta are 
conserved to machine precision. The radial and axial momenta are of the order of machine precision initially, while the 
angular momentum maintains a larger non-zero value. Fig. 13 then shows the kinetic energy during the simulation for both 
methods on the two grid types: the combined method of Morinishi et al. [12] and Fukagata and Kasagi [5] is referred to as 
the ‘alternative’ method.

For viscous flows, the kinetic energy decays at a rate determined by the flow enstrophy E as defined in section 4.3. To 
test this, we simulate a swirling flow with an angular velocity uθ (r) = R(r − r2). No-slip boundary conditions are applied 
for the velocity, and the dynamic viscosity has a value of μ = 0.01 kg/m/s. Both the kinetic energy and the flow enstrophy 
are monitored in time. Fig. 14 shows the monotone decay of the kinetic energy in time for both uniform and non-uniform 
grids based on the proposed discretization. We have used three levels of refinement to demonstrate that the uniform and 
non-uniform results converge to the same rate of energy decay. As a consistency check, we have compared the energy decay 
in time at semi-integer time levels by explicitly calculating both sides of equation (96), i.e. the time derivative of the kinetic 
energy:

dK
(tn+ 1

2 ) ≈ K (n+1) − K (n)

, (99)

dt �t
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Fig. 14. Kinetic energy decay for a viscous flow for different levels of grid refinement, and the error between the results on uniform (solid line) and 
non-uniform (hatched line) grids.

and the scaled flow enstrophy, calculated as:

−2νE(tn+ 1
2 ) ≈ −2ν

(
Cu(n+ 1

2 ),Cu(n+ 1
2 )
)
HL

. (100)

For the proposed approach, we find that the difference of the two terms is in the order of machine precision for both the 
uniform and the non-uniform grid.

5.2. Spatial accuracy

In order to demonstrate the formal accuracy of the proposed discretization, we utilize the Method of Manufactured 
Solutions (MMS) [13]. With a properly chosen solution, the MMS is capable of testing virtually all terms of the discretization, 
and, if necessary, even individually. This is generally more challenging than comparison with known exact solutions, which, 
if they exist in closed form at all, often follow from applying highly simplifying assumptions and therefore they may not 
involve all the terms in the Navier–Stokes equations.

One of the recommended properties of manufactured solutions is that they are sufficiently smooth, so that they do not 
prevent the theoretical order of accuracy being obtained. Therefore, we choose the following time-dependent solutions for 
the velocity components and the pressure:

ur(r, θ, z, t) = (r − R)

(
z − L

2

)(
z + L

2

)
cos(rz) sin(θ) sin(t), (101)

uθ (r, θ, z, t) = (r − R)

(
z − L

2

)(
z + L

2

)
sin(r + θ + z) sin(t), (102)

uz(r, θ, z, t) = (r − R)

(
z − L

2

)(
z + L

2

)
cos(rθ z) sin(t), (103)

p(r, θ, z, t) = cos

(
2πr

R

)
cos

(
2π
(
z + L

2

)
L

)
sin(t), (104)

where R = 1 m is the cylinder radius and L = 1 m its length. The manufactured velocity solutions satisfy no-slip bound-
ary conditions at the walls, while there is a non-zero radial flow through the origin. The pressure satisfies homogeneous 
Neumann conditions at all walls. Using a symbolic computer algebra program, the solutions (101)–(104) are inserted in 
the Navier–Stokes equations (67), and the output is added to the right-hand side of the momentum equations. No-slip 
boundary conditions are applied, and initially all velocities and the pressure are set to zero. We then perform simulations 
until a certain time T on four grids with (5 × 10 × 5), (10 × 20 × 10), (20 × 40 × 20) and (40 × 80 × 40) cells. Both 
a uniform and a non-uniform grid as in equations (97) and (98) are used. Since the computations are unsteady, a very 
small time step of �t = 10−7 is chosen to assure that the temporal error is negligible compared to the spatial error. The 
fixed time step is reduced for each grid refinement in order to keep the Courant number approximately constant. We then 
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Fig. 15. Grid convergence of the proposed discretization using the MMS. For plotting purposes, the pressure error is scaled down by a factor of 105.

determine the global error by approximating the discrete L2-norm at time T for all three velocity components by calculat-
ing:

‖u − uex‖2 =
√√√√∑

i, j,k

(
u(T )

i, j,k − uex(ri, θ j, zk, T )
)2

ri�ri�θ�zk, (105)

and

‖p − pex‖2 =
√√√√∑

i, j,k

(
p(T )

i, j,k − pex(ri, θ j, zk, T )
)2

ri�ri�θ�zk, (106)

where u(T )

i, j,k and p(T )

i, j,k are the calculated solutions for any of the velocity components and the pressure at location (ri, θ j, zk)

at time T , uex and pex the associated exact solutions value and ri�ri�θ�zk the volume of the cell (i, j, k). The results for 
both uniform and non-uniform grids are shown in Fig. 15, where the error against the typical cell size is plotted. For both 
uniform and non-uniform grids, the global error of all flow variables shows second order behavior as the grid size goes to 
zero.

6. Concluding remarks

The aim of this paper was to construct a spatial finite difference discretization of the cylindrical Navier–Stokes equations 
that conserves mass, momentum and kinetic energy, while simultaneously treating the classical problem near and at the 
origin r = 0. We have used the mimetic finite difference method to derive the vector identities like the gradient, the curl 
and the divergence. We have shown that the proposed averaging procedure is able to conserve mass and momentum and, 
in the absence of viscosity, also kinetic energy on both uniform and non-uniform grids. The mimetic approach combined 
with the averaging also yields a natural treatment of the singularity at r = 0. Accuracy tests show second order convergence 
in space on both grids with uniform and non-uniform node distribution.

For large LES or DNS calculations, it is likely that the overall second order accuracy of the proposed method is too 
restrictive. Therefore, future work should investigate the possibility of higher order approximations while maintaining the 
conservation properties.

The proposed spatial discretization alone is not sufficient for kinetic energy conservation. The time advancement of the 
semi-discrete equations is equally important, as any damping present may destroy the inherent conservation properties. 
In this paper, we have used an implicit method known to conserve quadratic invariants to demonstrate the capabilities 
of the proposed spatial discretization. Besides being implicit, our approach hinges on the solution of the non-linear equa-
tions, which makes the computational procedure even more costly. In practice, both this and an implicit system may be 
unfeasible for large grids, and other (explicit) methods could be considered that (nearly) conserve energy: Verstappen and 
Veldman [15] for example propose a class of time integration methods for this purpose. Here the trade-off is clearly between 
computational cost and the level of the conservation of the method.
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Appendix A. Proofs of mimetic inner products

In this appendix, the proofs from section 2.4 are provided.

Proposition. For any p ∈ HC and u ∈HS on an infinite domain, it holds that (Du, p)HC = −(u, Gp)HS .

Proof. Let p ∈ HC and u = (ur, uθ , uz) ∈HS . We start with the inner product (Du, p)HC . For cell I, this is given by

(Du, p)HCI = V I

(
ri+ 1

2
urI+er

− ri− 1
2

urI−er

ri�ri
+ uθI+eθ

− uθI−eθ

ri�θ
+ uzI+ez

− uzI−ez

�zk

)
pI (107)

=
(
�θ�zk(ri+ 1

2
ur I+er

− ri− 1
2

urI−er
) + �ri�zk(uθI+eθ

− uθ I−eθ
) + ri�ri�θ(uz I+ez

− uzI−ez
)
)

pI (108)

where V I = ri�ri�θ�zk is the volume of cell I. Then, for the inner product (u, Gp)HS , we collect all contributions to an 
arbitrary pI . For an arbitrary cell I:

(u,Gp)HSI = �ri�θ�zk

2

[
ri− 1

2
urI−er

2(pI − pI−2er )

�ri−1 + �ri
+ ri+ 1

2
urI+er

2(pI+2er − pI)

�ri + �ri+1

+ ri

(
uθI−eθ

pI − pI−2eθ

ri�θ
+ uθI+eθ

pI+2eθ − pI

ri�θ

)
+ ri

(
uzI−ez

2(pI − pI−2ez )

�zk−1 + �zk
+ uzI+ez

2(pI+2ez − pI)

�zk + �zk+1

)]
. (109)

Collecting all radial contributions to pI gives:

−1

2

[ from cell I−2er︷ ︸︸ ︷
−�ri−1�θ�zk

(
2ri− 1

2
urI−er

�ri−1 + �ri

) from cell I+2er︷ ︸︸ ︷
+�ri+1�θ�zk

(
2ri+ 1

2
urI+er

�ri + �ri+1

)

+�ri�θ�zk

(
2ri+ 1

2
urI+er

�ri + �ri+1
−

2ri− 1
2

urI−er

�ri−1 + �ri

)
︸ ︷︷ ︸

from cell I

]
, (110)

which after simplification reduces to −�θ�zk

(
ri+ 1

2
urI+er

− ri− 1
2

urI−er

)
. In a similar fashion, collecting all angular contribu-

tions to pI gives:

−�ri�zk

2

[ from cell I−2eθ︷ ︸︸ ︷−uθI−eθ
−uθ I−eθ

+ uθI+eθ︸ ︷︷ ︸
from cell I

from cell I+2eθ︷ ︸︸ ︷+uθI+eθ

]
, (111)

which reduces to −�ri�zk(uθI+eθ
− uθI−eθ

). Finally, for the axial contributions, we get:

− ri�ri�θ

2

[ from cell I−2ez︷ ︸︸ ︷
− 2�zk−1

�zk−1 + �zk
uz I−ez

from cell I︷ ︸︸ ︷
− 2�zk

�zk−1 + �zk
uzI−ez

+ 2�zk

�zk + �zk+1
uzI+ez

from cell I+2ez︷ ︸︸ ︷
+ 2�zk+1

�zk + �zk+1
uzI+ez

]
, (112)

which reduces to −ri�ri�θ(uzI+ez
− uzI−ez

). Comparing the coefficient for pI from equation (108) and the cumulative coef-
ficient from equations (110), (111) and (112) shows that after summation over the entire computational grid it holds that 
(Du, p)HC = −(u, Gp)HS . �

Proposition. For any ω ∈HL and u ∈HS on an infinite domain, it holds that (Cω, u)HS = (ω, Cu)HL .
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Proof. Let ω = (η, ω, ζ ) ∈ HL and u = (ur, uθ , uz) ∈ HS . We collect the components of ω in both inner products. For 
ηI+eθ +ez , there are contributions from cells I, I + 2eθ , I + 2ez and I + 2eθ + 2ez . The sum of the contributions to the term 
ηI+eθ +ez from the inner product (Cω, u)HS is:

ri�ri�θ�zk

2

[ from cell I︷ ︸︸ ︷
uθI+eθ

�zk
− uzI+ez

ri�θ
+

from cell I+2eθ︷ ︸︸ ︷
uθI+eθ

�zk
+ uzI+2eθ +ez

ri�θ

]

+ ri�ri�θ�zk+1

2

[
−uθI+eθ +2ez

�zk+1
− uzI+ez

ri�θ︸ ︷︷ ︸
from cell I+2ez

−uθI+eθ +2ez

�zk+1
+ uzI+2eθ +ez

ri�θ︸ ︷︷ ︸
from cell I+2eθ+2ez

]
, (113)

which reduces to

ri�ri�θ
�zk + �zk+1

2

(uzI+2eθ +ez − uzI+ez

ri�θ
− 2(uθI+eθ +2ez

− uθI+eθ
)

�zk + �zk+1

)
. (114)

The contributions from the inner product (ω, Cu)HL consist of:

[
2 ·

from cells I, I+2 eθ︷ ︸︸ ︷
ri�ri�θ�zk

2
+ 2 ·

from cells I+2ez,I+2eθ+2ez︷ ︸︸ ︷
ri�ri�θ�zk+1

2

]
(Cu)rI+eθ +ez

2
= ri�ri�θ

�zk + �zk+1

2
(Cu)rI+eθ +ez

, (115)

which after substitution of equation (44) becomes exactly equation (114). Hence, for an arbitrary ηI+eθ +ez , both inner 
products yield the same contributions. Then we collect all contributions to ωI+er +ez . These come from cells I, I + 2er , I + 2ez
and I + 2er + 2ez . From the inner product (Cω, u)HS , we get:

ri+ 1
2
�θ

2

[ from cell I︷ ︸︸ ︷
−�riurI+er

+ �zkuzI+ez

from cell I+2er︷ ︸︸ ︷
−�ri+1urI+er

− �zkuzI+2er+ez
(116)

+ �riurI+er+2 ez
+ �zk+1uzI+ez︸ ︷︷ ︸

from cell I+2ez

+�ri+1ur I+er+2ez
− �zk+1uzI+2er +ez︸ ︷︷ ︸

from cell I+2er+2ez

]
,

which reduces to:

ri+ 1
2

�ri + �ri+1

2
�θ

�zk + �zk+1

2

(
2(urI+er+2ez

− urI+er
)

�zk + �zk+1
− 2
(
uzI+2er +ez

− uzI+ez

)
�ri + �ri+1

)
. (117)

From the inner product (ω, Cu)HL , we collect:

[ from cell I︷ ︸︸ ︷
ri+ 1

2
�ri�θ�zk

4
+

from cell I+2ez︷ ︸︸ ︷
ri+ 1

2
�ri�θ�zk+1

4
+

from cell I+2er︷ ︸︸ ︷
ri+ 1

2
�ri+1�θ�zk

4
+

from cell I+2er+2 ez︷ ︸︸ ︷
ri+ 1

2
�ri+1�θ�zk+1

4

]
(Cu)θI+er +ez

(118)

= ri+ 1
2

�ri + �ri+1

2
�θ

�zk + �zk+1

2
(Cu)θI+er +ez

. (119)

After substitution of (Cu)θI+er +ez
from equation (46), we get exactly the result of equation (117). Finally, collecting all con-

tributions to ζI+er+eθ from cells I, I + 2er , I + 2eθ and I + 2er + 2eθ , we get from the inner product (Cω, u)HS :

�zk

2

[ from cell I︷ ︸︸ ︷
�riur I+er

− ri�θuθI+eθ
+

from cell I+2er︷ ︸︸ ︷
�ri+1urI+er

+ ri+1�θuθI+2er+eθ
(120)

−�riurI+er+2 eθ
− ri�θuθI+eθ︸ ︷︷ ︸

from cell I+2 eθ

−�ri+1urI+eθ +2eθ
+ ri+1�θuθ I+2er+eθ︸ ︷︷ ︸

from cell I+2er+2eθ

]
,

which reduces to

�ri + �ri+1

2
�θ�zk

⎛⎝2
(

ri+1uθI+2er+eθ
− riuθI+eθ

)
�ri + �ri+1

− urI+er+2eθ
− urI+er

�θ

⎞⎠ . (121)
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From the inner product (ω, Cu)HL , we collect:

[ from cells I and I+2eθ︷ ︸︸ ︷
ri + ri+1

2

�ri�θ�zk

2
+

from cells I+2er and I+2er+2eθ︷ ︸︸ ︷
ri + ri+1

2

�ri+1�θ�zk

2

]
(Cu)zI+er +eθ

= ri + ri+1

2

�ri + �ri+1

2
�θ�zk(Cu)zI+er +eθ

. (122)

After substitution of equation (48), the resulting expression is exactly equation (121). For the specific case of ζ̃k0 , the inner 
product (Cω, u)HS get contributions from all cells around the axis:

r1�ri�θ�zk0

2

∑
I,i=1,k=k0

uθI+eθ
+ uθI−eθ

�ri
= r1�θ�zk0

∑
I,i=1,k=k0

uθ I+eθ
, (123)

while the inner product (ω, Cu)HL yields:

Nθ

r1�r1�θ�zk0

4
(Cu)z0,k0

, (124)

and after substitution of equation (49), this gives:

Nθ

r1�r1�θ�zk0

4

4

�r1Nθ

∑
I,i=1,k=k0

uθI+eθ
= r1�θ�zk0

∑
I,i=1,k=k0

uθI+eθ
, (125)

which is precisely equation (123). �
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