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for time-domain analysis of charging phenomena
in electron-beam irradiated insulators
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This paper presents a modified self-consistent drift-diffusion-reaction model suit-
able for the analysis of electron-beam irradiated insulators at both short and long
time scales. A novel boundary condition is employed that takes into account the
reverse electron current and a fully dynamic trap-assisted generation-recombination
mechanism is implemented. Sensitivity of the model with respect to material
parameters is investigated and a calibration procedure is developed that reproduces
experimental yield-energy curves for uncharged insulators. Long-time charging and
yield variations are analyzed for stationary defocused and focused beams as well
as moving beams dynamically scanning composite insulators. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.4994879

I. INTRODUCTION

Charging phenomena in insulators have long been studied due to their importance in such areas
as scanning electron microscopy (SEM), memory-based technologies, particle detectors, ceramic
surfaces, industrial cables, and the safety of spacecraft.1–5 Probably, the earliest systematic stud-
ies of electron-irradiation effects in solids and charging phenomena in insulators, as parts of
research on electrets, were carried out by B. Gross who has had a great impact on this research
field. In his seminal works on irradiation phenomena6,7 Gross investigated the electron trapping
and charge buildup in high-resistivity solid insulators bombarded with energetic electrons. Fur-
ther studies by Gross and coworkers produced new experimental techniques and mathematical
models.8–11

These and more recent12–18 studies have not yet been able to provide a complete and coherent
account of all observed phenomena. This could be due to the prevailing emphasis on static (stationary)
models19–21 rather than time-domain analysis. Studying the dynamics of charging in time domain
is especially important in the analysis of response times in particle detectors2 and in designing
novel scanning strategies for SEM.16 The existing dynamic models are either one-dimensional14,15

or do not include some of the essential physical processes, e.g., dynamic recombination, trapping,
etc.17,18

While the prevailing semi-classical Monte-Carlo (MC) method22 makes very few assumptions
about the complicated electron-sample interaction process, realizing its full theoretical potential is
technically very challenging. First of all, MC simulations are slowed down by the need to continuously
update the long-range electrostatic potential. Secondly, it is computationally difficult to keep track of
all the trapped and de-trapped electrons. Finally, achieving acceptable variance not only in particle
numbers, but also in the times of events (e.g. emission times), may require a prohibitive number of
statistical realizations.
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Instead of sampling the probability space, the drift-diffusion-reaction (DDR) approach, mainly
used to model low-energy transport in semiconductors,23,24 directly describes the space-time evolution
of a continuous probability density function. The pertaining partial differential equations are obtained
from the semi-classical Boltzmann equation applying the method of moments and a few assumptions
about the distribution of particles over the momentum space. From the mathematical point of view the
DDR approach assumes that the symmetric part of the secondary electrons (SE) probability density
function is isotropic about the origin of the momentum space and is well-described by a shifted
Maxwellian distribution.

In our previous publication25 we argued that the DDR approach can be applied to electron-beam
irradiated insulators if the initial high-energy transport stage is approximated by an empirical source
function. We showed that this pulsed source function allows modeling both the short-time processes
immediately following the primary electron (PE) impact and the long-time charge evolution due
to sustained bombardment. Importantly, we demonstrated that the sustained irradiation can also
be modeled by a continuous current source, which gives practically the same secondary electron
(SE) emission current as the time-averaged SE emission produced by many single-impact pulsed
sources.

However, the original DDR model25 had serious shortcomings as well. First of all, it was not
calibrated against experimental data. Although we were able to reproduce any SE yield at a chosen PE
energy by tuning a single parameter – the surface recombination velocity (SRV) at the sample-vacuum
interface, it was not clear which yield should be taken as a reference, since yields tend to change
over time and depend on beam currents. Secondly, using the same SRV for all PE energies resulted in
curves not fully compatible with published SE yield data over the whole range of PE energies. And
more seriously, the model produced nonphysical results in the case of prolonged irradiation. Namely,
the surface potential at low PE energies could reach very large positive values, which is not possible,
since positive potential attracts secondary electrons back to the sample leading to the neutralization
of any potentials exceeding ∼ 10 V.

We have identified the main reasons behind the bad long-time behavior of the original DDR
approach.25 These were the employed steady-state generation-recombination model, which is not
really suitable for the analysis of transient effects, and the neglected reverse electron current. The
electrons that are being pulled back to the sample by a positive surface potential are called reverse
electrons (RE’s). Incorporating fully dynamic generation and recombination processes is relatively
easy. Here we employ the so-called trap-assisted generation-recombination model, which also reduces
the number of equations to be solved and charge species to be tracked.

In hybrid MC-DDR methods17,18 reverse currents are estimated with direct MC simulations of
particle trajectories. Here we propose an alternative approach that keeps intact the self-consistent
nature of the DDR model. Namely, we introduce a novel boundary condition at the sample-vacuum
interface that accounts not only for the total number of electrons returning to the sample, but also for
the spatial distribution of this reverse current along the sample interface.

We have also developed and implemented a clear calibration procedure for our DDR model. It
uses the fact that certain types of yield measurements – the so-called standard-yield measurements –
correspond to the situation where single PE impacts happen sufficiently far enough from each other
across the sample surface for their mutual interaction to be neglected. As our code is able to simulate
single impacts, its calibration can be performed in this single-impact mode.

In Section II we outline the mathematical details of the modified DDR model. Its physical
applicability is further discussed in Section III, where we also investigate the sensitivity of the
model, explain our parameter choices, develop a calibration procedure against published experimental
data, and compare our results for defocused beams with an alternative one-dimensional approach.
Section IV presents further quantitative analysis of more realistic scenarios with focused stationary
and moving beams, including a dynamic line-scan of a laterally inhomogeneous target.

II. MODIFIED DDR MODEL

In this section we recall the main features of the DDR model25 and describe several significant
modifications that have been implemented since its introduction.
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A. Basic equations

The continuum approximation of the equilibrium transport of charged particles in insulators
consists of both partial (PDE) and ordinary (ODE) differential equations augmented with a semi-
empirical source function accounting for the initial ballistic transport stage. The PDE’s are the Poisson
equation for the potential and the transport equations for the free charge density:

−∇ · (ε∇V )=
q
ε0

(
NT

2
+ p − n − nT

)
, (1)

∂n
∂t

+ ∇ · Jn = Sn − (Rn − Gn), (2)

∂p
∂t

+ ∇ · Jp = Sp − (Rp − Gp), (3)

with the constitutive relations for the current densities given by

Jn =−Dn∇n + µnn∇V , (4)

Jp =−Dp∇p − µpp∇V , (5)

where q is the elementary charge, V (x, t) is the electrostatic potential, n(x, t) is the density of free
electrons, nT (x, t) is the density of trapped electrons, p(x, t) is the density of free holes. As explained
below, NT /2 is the equilibrium value of the trapped electrons density. Thus, the local excess of trapped
electrons nT > NT /2 causes additional negative charging, whereas, the local lack of trapped electrons
nT < NT /2 causes additional positive charging. The constant ε0 is the dielectric constant of vacuum,
the function ε(x) is the (static) relative permittivity of the sample, µn and µp are the electron and hole
mobilities, and Dn and Dp are the diffusion coefficients.

B. Generation, recombination, trapping, and de-trapping

In the present modification of the DDR approach the dynamic trap-assisted Shockley-Read-Hall
(SRH) generation/recombination model is implemented. Here we explain it along the lines of the
PhD study by Robert Entner conducted at TU Wien.23 An attractive feature of this model is that there
is no need to keep track of trapped holes as all the relevant physics is already contained in the single
equation for the rate of electron trapping:

∂nT

∂t
= (Rn − Gn) − (Rp − Gp). (6)

This process is coupled to the basic equations (1)–(5) and can be divided into four subprocesses
illustrated in Fig. 1.

(a) Electron capture: An electron from the conduction band gets trapped at the band-gap of the
insulator and the surplus energy of Ec � Et is transmitted to the phonon emission. The average
rate of this process is

Rn =σnυthn(NT − nT ). (7)

(b) Hole capture: A trapped electron moves to the valence band and neutralizes a hole (i.e. the
hole is captured by the occupied trap), producing a phonon with the energy Et � E3 . The
corresponding rate is

Rp =σpυthpnT . (8)

(c) Hole emission: An electron leaves a hole in the valence band and is trapped (i.e. the hole is
emitted from the empty trap to the valence band). The energy Et � E3 is needed for this process,
and the corresponding rate is

Gp =σpυthni(NT − nT ). (9)
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FIG. 1. Trap-assisted generation/recombination model.

(d) Electron emission: A trapped electron moves to the conduction band. The required energy is
Ec � Et , and the rate is

Gn =σnυthninT . (10)

In the above equations: σn(x) and σp(x) are the electron and hole mean trapping cross sections,
NT (x) is the total density of traps, nT (x, t) is the density of trapped electrons, υth(x) is the thermal
velocity, and ni(x) is the intrinsic carrier density. The spatial variable x indicates the possibility of
spatial inhomogeneity, i.e., the presence of different adjacent materials.

The initial conditions on n and p at t = 0 are set as the corresponding intrinsic carrier densities
of the materials under consideration, whereas the initial condition for nT has been derived based
on the assumption of the initial steady state for the density of trapped electrons prior to the start of
irradiation (i.e. ∂nT /∂t = 0) and is set to

nT (x, 0)=
NT (x)

2
. (11)

C. Charge injection

As has been discussed in our earlier work,25 there are two possibilities within the DDR approach
to model charge injection by a low-to moderate-energy electron beam via the source terms Sn and
Sp. The first fine-scale model captures the discrete nature of the electron beam. The rate of particle
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production resolved at the level of pulses produced by individual PE impacts is given by:

Sn,p(x, t)=
∑

i

gn,p(x, Elan)

L(tg) − L(ti)
dL
dt

(t − ti), (12)

where L(t) is the logistic function, i is the number of the particular individual PE, ti is the i-th PE
impact time, and tg is the generation time of the electron-hole pairs, whose choice is discussed in the
next section. With single-impact events, due to a relatively small number of produced electron-hole
pairs, the continuous results of the DDR model should be interpreted as probability densities rather
than particle densities, especially at lower PE energies.

The second model is designed for studying the sustained bombardment of the sample and is
based on the temporal average of the above pulsed source function:

Sn,p(x, t)=
j0
q

gn,p(x, Elan), (13)

where j0 is the average electron beam current.
Both source functions contain the semi-empirical distribution function of the electron-hole pairs

at the end of the initial generation stage:

gn,p(x, Elan)=

(
A

Elan

Ei
+ B

)
1

πR3
exp

(
−

7.5

R2
|x − x0 |

2
)

(14)

where E0 and Elan = E0 + V s are the beam energy and the effective landing energy of PE’s, V s

is the surface potential at the point of PE impact, Ei is the electron-hole pair creation energy, R is
the maximum PE penetration depth (discussed further in detail), x0 is the center of the Gaussian
distribution with the distance of 0.3R from the sample-vacuum interface, and A is the constant
corresponding to the backscattering rate. In the hole distribution function gp the constant B is zero,
however, it is different from zero in the electron distribution function gn accounting for the remaining
PE’s. More details about the calculation of the normalization constants A and B can be found in
Ref. 39 and in our earlier work.25

In the continuous irradiation mode we consider two additional modifications of the source func-
tions. One pertains to a defocused beam such that the computational domain is smaller than the beam
radius. In this case we use the following distribution function derived from (14) by integrating over
horizontal coordinates and enforcing the conservation of the amount of generated electron-hole pairs:

gn,p(x(r, z), Elan)=A′n,p exp
(
−β |z − z0 |

2
)

, (15)

where

A′n,p =
1 − exp(−βδ2)

βδ2
An,p, (16)

An,p =

(
A

Elan

Ei
+ B

)
1

πR3
, β =

7.5

R2
, (17)

and δ is the radius of the irradiated area (computational domain) at the surface. Accordingly, the
beam current can be calculated as

j0 = i0πδ
2, (18)

where i0 is the current density. The formula (18) adjusts the beam current to achieve results
independent of δ.

If, on the other hand, the radius of a partially focused beam is smaller than the radius of the
computational domain we resort to the following distribution:

gn,p(x(r, z), Elan)=
1

βδ2 + exp(−βδ2)
An,p ×




exp
(
−β |z − z0 |

2
)

, r ≤ δ

exp
(
−β(r2 + |z − z0 |

2)
)

, r > δ.
(19)

Here δ denotes the beam radius rather than the radius of the computational domain.
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D. Sample-vacuum interface and reverse current

The boundary conditions on V, n, p at the interfaces of the sample with its holder and at the walls
of the vacuum chamber are standard: Dirichlet at ohmic contacts and Neumann to simulate isolation
and prevent any currents from flowing through the corresponding interface.

The sample-vacuum interface, however, is not common in DDR-type simulations. Previously25

we have used a Robin-type boundary condition Jn · ν = 3n(n � ni) for n > ni at this interface, which
sets the SE current density at the level proportional to the charge density at the boundary with the
surface recombination velocity 3n ≤ 3th controlling the magnitude of the current (ν is the outward
normal vector at the surface).

The boundary condition Jn · ν = 3n(n � ni) for n > ni assumes that there is a nonzero probability
for emission as long as the density of free electrons is above the equilibrium value. This means that
in our model the density n(x, t) describes the relatively energetic electrons that are able to overcome
the electron affinity gap of about 1 eV. While immediately after the impact all generated secondary
electrons may, indeed, be considered sufficiently energetic, they will gradually loose their energy
during the drift-diffusion process through the sample and some of the electrons that have managed
to reach the sample boundary will no longer have enough energy to escape the sample.

The exact treatment of this gradual energy loss would significantly complicate the model. How-
ever, since low-energy free electrons are being rapidly trapped, we may skip the whole intermediate
energy-loss process and model it as direct trapping of energetic electrons. Therefore, while fitting to
experimental data we may expect to arrive at somewhat higher trapping cross-sections and/or trapping
site densities compared to tabulated values.

As mentioned in the Introduction the boundary condition Jn · ν = 3n(n � ni) for n > ni does not
account for the reverse current. This leads to nonphysical results – very strong positive charging of
samples under prolonged irradiation with low-energy beams.

Experiments show56 that the energy of secondary electrons, although greater than the electron
affinity of the material, rarely exceeds 10 eV. Therefore, even a relatively weak positive potential
at the surface will pull back some of the emitted secondary electrons. To account for this reverse
electron current we propose the following modified version of the Robin-type boundary condition at
the sample-vacuum interface:

Jn · ν =



3n(n − ni) − α(max(V+))
∂V
∂ν

−

, if n > ni;

0, otherwise,
(20)

Jp · ν = 0, on Σ2 × [0, tend], (21)

where

∂V
∂ν

−

|Σ2 =




∂V
∂ν
|Σ2 , if

∂V
∂ν

< 0;

0, otherwise,
(22)

α(max(V+))=




0, if max(V+)< Vmin;

αmax
max(V+)−Vmin

Vmax−Vmin
, if Vmin ≤max(V+)< Vmax;

αmax, otherwise,

(23)

V+ |Σ2 =



V |Σ2 , if V > 0;

0, otherwise,
(24)

max(V+)=Maximum of (V+ |Σ2 − Vg), (25)

and

αmax =

3n

∫
Σ2

(n − ni)dA∫
Σ2

∂V
∂ν

−

dA

, (26)
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where Vg is the applied potential at the upper boundary, which in the present study is set to zero
(Vg =V |Σ1 = 0 V ). The term −α ∂V

∂ν

−
in (20) represents the reverse electrons current density. The

function α controls the total magnitude of this current and the factor − ∂V
∂ν

−
determines its spatial

distribution. We assume that reverse electrons will re-enter the sample only through regions where
the normal component of the electric field is negative. The stronger is the local attractive electric
field, the higher is the density of reverse current at that location.

The function α(t) is chosen here in such a way, see (23)–(26), that the magnitude of the total
reverse current varies linearly from zero, when the maximum surface potential V+(t) is below a
certain value Vmin, to the value of the total outward SE current, when V+(t) reaches Vmax. This means
that the net current through the sample-vacuum interface will be zero if V+(t) ≥ Vmax as all SE’s
leaving the sample will re-enter the sample as reverse electrons. Typically this leads to the surface
potential never rising above Vmax (or Vmax + Vg). This choice of α(t) is not unique and could be
further refined to take the energy spectrum of the SE’s into account. One should also mention that,
from the computational point of view, the mesh along the sample-vacuum interface should be fine
enough in order to capture the gradient of the potential at the surface.

Since in the present case of zero extraction potential the attractive surface potential does not
typically exceed the value of 10 V, the electrons of the reverse current will not have enough energy
to cause any further ionization in the studied materials (ionization energy is in the order of 28 eV for
both alumina and silica). Thus, no tertiary electrons will be generated in the sample. In the situations
where it is not the case, i.e., with positive surface potentials larger than the material ionization energy,
our method would require further modification in the form of an additional source term – the creation
rate of tertiary electron-hole pairs.

E. Numerical solution

The first step toward obtaining a numerical solution of an equation or a system of equations is
to investigate the existence and uniqueness of the solution. With regards to the present model, the
consistency analysis relies on previously published results. A detailed investigation concerning the
existence and uniqueness of stationary drift-diffusion equations can be found in Ref. 24. In a study
conducted by Jerome26 a mathematical analysis of a system solution map for the weak form of the
DDR model, which forms a basis for the numerical solution of the model, has been provided. Also,
in a follow-up study by Busenberg et al.27 the wellposedness of a DDR model similar to the present
one (with different source/sink terms) has been demonstrated.

The multiscale nature of the problem calls for the same strategy as was used in Ref. 25 regarding
the scaling of variables. We apply the finite element method (FEM) for the numerical solution of the
model equations and implement it as a solver within the COMSOL Multiphysics package. To balance
the accuracy and the computational costs a careful strategy is needed. Our investigations show that
the best (i.e., most reliable) results are obtained when we use adaptive (or local) mesh refinement,
Lagrange shape functions, the fully coupled approach with the Newton-Raphson solver, and an
adaptive time-stepping algorithm. The use of the adaptive grid refinement, although costly, alleviates
the need for more sophisticated approaches, such as the traditional exponential fitting applied in
semiconductor studies.28,29 To reduce the computational cost of the adaptive mesh refinement, a
simple strategy has been followed by using a combination of both adaptive and local refinement
methods. Namely, the adaptive refinement was applied only in the initial simulations to identify
the regions where a fine mesh is needed and then the local refinement is used in the follow-up
simulations.

In some cases, we reduce the original 3D problem to a 2D problem in the (r, z)-plane of the
cylindrical coordinate system as the geometry, boundary conditions, and the source are all axially
symmetric. In the simulations of beam scanning over laterally inhomogeneous samples a fully three-
dimensional implementation was used.

III. CALIBRATION AND COMPARISON

In this section we provide a detailed account of the calibration procedure for alumina and silica,
which employs experimental data from the studies by Dawson30 and Young et al,31 simultaneously
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explaining the underlying approximations of the DDR approach. We also compare our time-domain
simulations with the results of an alternative one-dimensional approach.

A. Reproducing the standard yield of insulators

There are two main kinds of yield measurements from insulators: dedicated measurements with
homogeneous pure samples30,31 and SEM scans of insulator-containing targets.32 In the former case
often a great care is taken to avoid the charging effects. Typically, a defocused beam, a weak beam
current, and a pulse of short duration are used. We define the SE yield free of charging effects as the
standard yield and calibrate our code to reproduce such data as close as possible.

Parameters of standard-yield experiments30,31 (current, pulse duration, irradiation area) imply
that the probability for the primary electrons to land anywhere close to each other on the surface
is very small. In fact, with defocused beams and low, short-duration currents the expected distance
between PE’s is large enough to permit neglecting mutual interaction between any two impact zones.
This is the main reason why standard-yield measurement are free of charging effects. The single-
impact source function (12) with i = 1 allows to compute directly the expected number of emitted
SE’s per single (isolated) PE impact and is, therefore, applicable for modeling the standard yield. The
cross-section of the axially-symmetric configuration used for calibrating the code is shown in Fig. 2.
With sufficiently large computational domain the boundary conditions at the sides of the sample have
no influence on the SE yield from a single PE impact and were set to Neumann (zero current).

There are two classes of parameters that may be tuned within their physically admissible ranges:
those that determine the shape of the source function approximating the initial pair generation and
the short-time high-energy transport stage, and the material (bulk) parameters that determine the
transport and trapping/de-trapping at much longer time scales. While these time scales may seem
well-separated, in the DDR model material parameters, especially the SRV 3n, have some influence
on the initial transport stage as well.

The electron-hole pair generation time tg, defined as the time when all electron-hole pairs have
already been generated, determines the time width of the pulsed source functions Sn,p(x, t) and of
the resulting SE emission current pulse. According to theoretical and experimental investigations by
D. I. Vaisburd et al,59 between 10�17 and 10�14 s after impact the generated secondary electron-hole
pairs have already lost their ability to ionize the medium and their energy spectrum begins to evolve

FIG. 2. The schematic representation of the model.
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FIG. 3. Emission current pulse, calculated using the calibrated DDR model, from sapphire sample after the impact of a single
500 eV PE. Corresponding standard yields are: 6.07 (tg = 10�14 s), 6.17 (tg = 10�15 s), and 6.14 (tg = 10�16 s).

away from the spectrum of the primary beam as the result of collisions. However, up to 10�14 s most
of the generated electron-hole pairs still have energies above 20 eV. Since “true” SE’s dominating
the emission spectrum have energies below 20 eV, most of them must be emitted after 10�14 s. It has
also been found that 10�11 s after impact all generated electron-hole pairs are already thermalized
with their energy spectra tightly localized around the edges of conduction and valence bands and
trapping becomes more pronounced. Hence, the SE emission current pulse following a single PE
impact should start after 10�17 s and be almost finished by 10�11 s. Moreover, if one aims at modeling
“true” SE’s, then the relative contribution to the total emission between 10�17 and 10�14 s should be
small, compared to the contribution between 10�14 and 10�11 s. The DDR method produces exactly
this type of pulses for tg set between 10�16 and 10�14 s, see Fig. 3.

Notably, some parameters such as the SRV as well as the penetration depth influence only the
magnitude, not the duration of the emission current pulse, see Fig. 4. In that figure Rmin and Rmax are
the minimum and maximum values for the penetration depth estimated with published formulas and

FIG. 4. Influence of SRV and penetration depth on the emission current pulse following the impact of a single 500 eV PE on
a sapphire sample.
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FIG. 5. Influence of the total trap density and electron capture cross-section on the emission current pulse following the
impact of a single 500 eV PE on a sapphire sample.

Rtuned is the tuned penetration depth by DDR model (explained below). As can be seen from Fig. 5,
trap density and capture cross section influence not only the magnitude but also the duration of the
emission pulse with the expected tendency for shorter pulses with the increase in the trapping rate.

We emphasize that the curves of Fig’s. 3–5 should be interpreted in the probabilistic sense.
Namely, the integral of these curves between any two time instants tA ≤ tB is the number of particles
expected to be emitted from the sample surface during the corresponding time interval. Thus, the
expected yield at a given PE energy can be computed by numerically integrating the emission current
between t = 0 and some sufficiently large t > 10�11.

Among the material parameters the carrier mobilities µn,p have been determined with the highest
precision and are simply assumed here to have the same values as in Refs. 25, 54, 57, and 58. Strictly
speaking, these are the so-called low-energy mobilities and a more rigorous approach would be to use
femtosecond and picosecond mobilities to model the transport of particles during the corresponding
time intervals after the impact.59 However, mainly due to the absence of data about these high-energy
mobilities, here we use the same low-energy mobility values at all times. Nevertheless, the extremely
short duration [10�17, 10�12] s of the high-energy regime allows us to expect the approximations made
in the DDR approach concerning the mobility values during this stage to be appropriate at least in the
numerical sense. Notice that the changes in the yield do not exceed 0.1 when we vary the generation
time tg between 10�16 and 10�14 s in Fig. 3. Thus, to have any significant impact on the yield the
mobility would have to vary dramatically during this interval of time.

Parameters σn,p and NT related to trapping weakly influence the magnitude of the emission
current pulse and have, generally, large uncertainties. For example, in a study set out to investigate
electron trapping in alumina33 a relatively large variation of 10�21 to 10�15 cm2 was reported for
the electron capture cross section σn in polycrystalline alumina. The same study also revealed that
polycrystalline metal oxide materials like sapphire (α-alumina) generally have trap site densities NT

in the order of 1018 cm�3. Insulating solids are often grouped into three types: crystals, polycrystalline
and amorphous.34 The trap site density has been estimated to be around 1016 cm�3 for an alumina
crystal, from 1017 to 1020 cm�3 for polycrystals, and around 1021 cm�3 for an amorphous sample.

Probably one of the most comprehensive and systematic studies on charge transport and trapping
in silica has been done by DiMaria and co-workers,35–38 where a strong link has been identified
between the capture cross sections and the nature of traps and the capture cross sections have been
estimated to range from 10�18 to 10�13 cm2. Confusingly, the values and ranges for these parameters
are not limited to the above mentioned estimates.60–62

Another parameter that strongly influences the magnitude of the emission current pulse is the
maximum PE penetration depth R. It determines the spatial shape of the source functions Sn,p(x, t)
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FIG. 6. Sapphire: penetration depth (left) and SE yield (right) as functions of PE energy.

and, therefore, the expected number of particles in the neighborhood of the sample-vacuum interface
– the main contributors to the emission current. Many semi-empirical expressions have been proposed
for R with the following general form R(ρ, E0)=CEΓ

0 , where the values for C and Γ vary from study
to study.39,40 The constant C depends on the material and the exponent Γ has been mostly assumed
to have a certain material-independent value, although, in some studies Γ has also been considered
material-dependent.41

The exponential expression for R emanates from Bethe’s theory for the stopping power of charged
particles in matter. Bethe’s formula involves the density, atomic number, and atomic weight of the
material. However, with the exception of studies by Kanaya and Okayama42 and by Feldman,41 the
density of the material is considered to be the only parameter influencing the electron penetration
depth. As of now the estimation of R is far from being certain as can be seen from large discrepancies
in the penetration depth estimates employed by different authors, see Fig. 6 (left) and Fig. 7 (left).
Apparently, similar disagreement concerning the penetration depth exists for metals as well.53

Having identified 3n, σn,p, NT , and R as the most uncertain of the model parameters influencing
the magnitude of the emission current pulse we have performed a series of numerical experiments
to determine the sensitivity of the DDR model output (SE yield) with respect to changes in these
parameters. During these simulations some of the factors would be held fixed while other were varied
with the goal to achieve the best possible fit between the computed SE yields and the experimental
data. Three key points emerged from this analysis:

• The shape of the yield-energy curve is influenced by the capture cross section and the density
of traps. Namely, the larger are the trap density and the capture cross section, the lower is the
high-energy tail of the curve.
• The SRV affects the height not the shape of the yield-energy curve.

FIG. 7. Silica: penetration depth (left) and SE yield (right) as functions of PE energy.
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• Following any one of the published penetration depth formulas together with adjusting the values
of material parameters within their permitted ranges does not produce yield-energy curves fully
compatible with the experimental data over the whole range of PE energies.

In view of these facts and the aforementioned uncertainty about the energy dependence of the
penetration depth, fine-tuning R for each PE energy against the available experimental data was
deemed by us as not only admissible, but also necessary. While tuning R other parameters have been
fixed at the best found fitting values within their reported ranges. In particular, the electron and hole
capture cross-sections were set at the frequently used value of 10�15 cm2. The trap site density turned
out to be slightly higher than the reported upper bound 1019 cm�3, namely, 3 × 1019 cm�3, leading to
the initial (equilibrium) density of trapped electrons of 1.5 × 1019 cm�3, close to what was used by
us previously.25

For PE energies higher than 2 keV the tuned penetration depths for sapphire and silica presented
in Fig. 6 (left) and Fig. 7 (left), perfectly match those of Lane and Zaffarano43 and are well-described
by the formula of Young:44

R(ρ, E0)= 115
E1.66

0

ρ
[nm], E0 ≥ 2 keV. (27)

However, according to Young44 the exponent of E0 is 1.35, while the present results agree with the
earlier reported43 value of 1.66. There is some argument about this exponent in the literature. For
instance, the study about Kapton and Teflon45 supports the idea of 1.66. Yet, the investigation of
Salehi and Flinn46 with V2O5 � P2O5 materials shows that, although at low energies the exponent
is close to 1.35, neither 1.35 nor 1.66 provide good matches with higher-energy experimental data.
The value of 1.66 was assumed for sapphire in several other investigations as well.47,48

As can be seen from the insets of Fig. 6 (left) and Fig. 7 (left) at energies below 2 keV the tuned
penetration depths deviated from the formula (27) and did not follow any other published formulas,
while remaining within their range. Least squares fitting of a separate exponential formula of the
type (27) to the tuned penetration depths for alumina and silica did not provide a satisfactory fit. This
suggests that below 2 keV the energy exponent Γ is indeed material dependent. Hence, for calibration
purposes penetration depths below 2 keV must be determined by fitting to the corresponding standard
yield data, whereas above this energy the depth may be safely deduced from the formula (27).

With the tuned penetration depths the DDR method provides practically exact yield-energy curves
for the whole range of PE energies. As was mentioned previously, the height of the yield-energy curve
is mainly controlled by the SRV at the vacuum-sample interface. In Fig. 6 (right) we compare the
output of the calibrated DDR model with the standard-yield data30 (reported also in the database of
Joy49), as well as Monte-Carlo simulations50 and the empirical formula of Agarwal51 for alumina
samples. As far as the DDR model is concerned the only difference between the unpolished and
polished alumina samples is the SRV at the sample-vacuum interface (1.35 × 105 cm/s and 2 × 105

cm/s, respectively), which sounds reasonable, since surface polishing should not affect the maximum
penetration depth.

Comparison of the results by the calibrated DDR model with the experimental data,31 Monte-
Carlo simulations,52 and the formula of Agarwal51 for a silica sample is shown in Fig. 7 (right). The
tuned SRV at the silica-vacuum interface (0.8×105 cm/s) is lower than the SRV at the alumina-vacuum
interface, indicating that 3e depends on both the material and the surface properties.

DDR simulations indicate that the first and the second unit yields for sapphire occur around 50 eV
and 10 keV, respectively. For silica, the unit yields are observed below 50 eV and again at 4.35 keV.
The values of the calibrated material parameters used in the present study are listed in Table I.

B. Continuous irradiation with defocused beams

Sustained bombardment, even with defocused beams, increases the probability for an incoming
PE to fall in a close proximity to a previous impact zone. This will introduce the interaction between
the previously trapped charges and the newly generated electron-hole pairs, so that the yield will vary
with time.

At the moment a standard experimental procedure for measuring yield variation during sustained
bombardment does not exist. Therefore, here we compare predictions of the DDR model with the
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TABLE I. Parameters of dielectric materials.

Parameter SiO2 Al2O3 Unit

ε 3.9 10
µn 20 4 cm2V�1s�1

µp 0.01 0.002 cm2V�1s�1

σn 10�15 10�15 cm2

σp 10�15 10�15 cm2

3th 107 107 cms�1

ρ 2.2 3.98 gcm�3

Ei 28 28 eV

N t 3 × 1019 3 × 1019 sapphire
1020 amorphous

cm�3

3n 0.8 × 105
1.35 × 105 unpolished
2.0 × 105 polished
1.4 × 105 amorphous

cms�1

earlier one-dimensional simulations by the Flight-Drift (FD) model – a self-consistent approach by
Touzin et al.15 FD model is a current-density based formalism incorporating a detailed recombi-
nation and trapping mechanism. For comparison purposes we have considered the same material
(amorphous alumina), current density, and the penetration depth formula (energy exponent in (27) is
set as Γ = 1.55). We switch now to the continuous (time-integrated) source function (13), (15)–(18)
suitable for long-time modeling.

Since the sample is amorphous alumina rather than sapphire, we choose a higher trap density of
1020 cm�3 pertaining to the so-called shallow traps.15 We set the emission velocity to 1.4 × 105 cm/s,
close to what we have obtained above for unpolished sapphire. We note that in time-domain inves-
tigations the quantity of interest is not the charge yield, but the instantaneous ratio of the net SE
emission current to the incident beam current – SE emission rate.

Taking into account that our approach is fundamentally three-not one-dimensional, the results
presented in Figs. 8 and 9 show general agreement with the Figures 10 and 11 by Touzin et al.,15

especially for the surface potentials at low PE’s and the corresponding SE emission rates. However, at
higher PE energies the accumulated negative potential is smaller (lower bounds: �0.9 kV in 3D-DDR

FIG. 8. Time evolution of the yield from an amorphous alumina sample versus PE energy for a defocused beam with current
density of 10�5 A/cm2. The distance between the Ohmic contact Σ1 and the beam entry point Σ2 of the sample surface
is 1 mm.
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FIG. 9. Time evolution of the electric potential at the surface of an amorphous alumina sample versus PE energy for a
defocused beam with current density of 10�5 A/cm2. The distance between the Ohmic contact Σ1 and the beam entry point
Σ2 of the sample surface is 1 mm.

against �2.5 kV in 1D-FD) and the yield collapses to unity faster (upper bounds: ∼ 1 ms in 3D-DDR
against ∼ 10 ms in 1D-FD).

It appears that the distance to the closest Dirichlet boundary, where the electric potential is
maintained at some fixed value, e.g., zero, strongly affects the value of the surface potential at the
sample-vacuum interface. Apparently, the most important parameter controlling the magnitude of
the potential is not the total charge density, as one would naively assume, but the proximity to an
ohmic contact. Most likely this is due to the image-charge effect, which partially screens the charge
accumulated in the sample.

Things are complicated by the fact that providing at least one Dirichlet boundary condition is
essential for the numerical stability (possibly, existence and uniqueness of the solution as well) of
the DDR equations. In fact, in the case of an isolated sample, the numerical solution of our nonlinear
problem is only possible through the so-called fully coupled approach, since the Dirichlet condition is
associated with the Poisson equation, which, therefore, must remain coupled to the rest of equations

FIG. 10. Time evolution of the yield and the surface potential from an amorphous alumina sample at 10 keV PE energy versus
the proximity to the ground contact for a for a defocused beam with current density of 10�5 A/cm2.
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FIG. 11. Time evolution of the yield (top) and the surface potential at the beam entry point (bottom) for a sapphire sample
continuously irradiated by a focused stationary beam at 5 keV PE energy – effect of beam current. Top: dashed line – positive
part of the SE emission rate through the sample-vacuum interface, solid line – net SE emission rate, including the negative
reverse-electron current.

during the iterations. As the boundary conditions at the interfaces of the sample are not of Dirichlet
type, the only available remote surface to impose this type of condition is Σ1.

Numerically, the screening effect of the Dirichlet condition can be minimized by placing the
ohmic contact Σ1 as far as computationally possible from the sample surface Σ2. Thus, we have
placed Σ1 at various distances from Σ2 and, as can be seen in Fig. 10, the surface potential does reach
significant negative values when the Dirichlet boundary is far enough. However, the time of collapse
of yield to unity becomes even shorter in these numerical experiments and remains at odds with the
previous one-dimensional FD simulations.

IV. FOCUSED AND MOVING BEAMS

In this section we simulate sustained irradiation of sapphire, silica, and mixed targets by focused
stationary and moving electron beams with beam currents typical in SEM. In the first series of
numerical experiments we use the axially symmetric target of Fig. 2 illuminated in the middle by a
focused stationary beam. The distance between Σ1 and Σ2 is set to 0.1 mm. The samples studied in
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FIG. 12. Time evolution of the yield (top) and the surface potential at the beam entry point (bottom) for a sapphire sample
continuously irradiated by a focused stationary beam of 100 pA – effect of PE energy.

Fig’s. 11–13 are isolated in the sense that the only boundary penetrable for particles in the sample-
vacuum interface Σ2. We consider the worst case scenario – perfect focusing – where all PE’s hit the
same spot on the sample surface. It is easy to deduce that defocusing will affect low-energy PE’s with
their small impact zones much stronger than higher energy PE’s with their extended impact zones.
To anticipate the results for more realistic partially focused beams the reader is advised to compare
plots of this Section IV with those presented in Section III B.

Figure 11 pertains to an unpolished sapphire sample irradiated at 5 keV, where the standard yield
is around 1.7 as can be deduced from Fig. 6 (right). The net SE emission rate – yield for short – starts
at the standard yield value, but after a certain interval of time drops to unity for all beam currents.
The stronger the current, the shorter is the standard yield interval preceding the drop. In fact, it is
easy to calculate that the drop in the yield happens after a certain amount of charge has been injected
into the sample by the beam, which confirms conclusions of many previous investigations. The point
of fastest decline in the yield roughly corresponds to 3 × 10�18 C of injected primary charge, i.e.,
approximately 19 primary electrons.

The DDR model does not substantiate the usual intuitive explanation15,54 concerning the reasons
behind this seemingly inevitable convergence of yield to unity with time. Commonly it is argued that
the charging of the sample leads to the change in the landing energy of PE’s, so that the yield no
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FIG. 13. Time evolution of the yield (top) and the surface potential at the beam entry point (middle and bottom) for a silica
sample continuously irradiated by a focused stationary beam of 100 pA – effect of PE energy.

longer corresponds to the standard yield of that energy, but rather to another point on the standard
yield curve of Fig. 6 (right). If, for example, the standard yield is greater than one, then the sample
accumulates positive charge. The landing energy increases and one should look to the right along the
standard-yield curve to know what the new yield should be. If, on the other hand, the standard yield
is less than one, then the accumulated negative charge reduces the landing energy of the PE’s, thus,
moving to the left along the standard-yield curve. Thus, it is argued, a yield larger than one would
eventually lead to a positive potential high enough to shift the landing energy of primary electrons
to the second unity-crossing point on the standard yield curve. This argument, while intuitively
appealing, does not take into account the spatial distribution, the dynamics, and the screening of
charges.

The unity-crossing argument for small PE energies and larger than one standard yields has been
previously criticized in Ref. 63, where the significant role of the reverse current in the yield drop
was pointed out. We also believe that the PE landing energy change alone cannot explain the yield
collapse, since in all our simulations the accumulated potential was never strong enough for the
landing energy to reach a unity-crossing point.

For example, Figure 11 (bottom) clearly shows that the value of the positive surface potential
is insignificant with respect to the PE energy and cannot possibly change the landing energy by so
much that it becomes 10 keV – the second point along the standard-yield curve where it crosses the
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unity line. What the DDR model shows, though, is that the drop in the yield coincides with the rapid
increase in the reverse current, caused by the relatively weak positive surface potential attracting
low-energy SE’s back to the sample. Figure 11 (top) compares the contribution of the positive part
3n(n � ni) of the emission current density (dashed lines) to the net SE emission rate (solid lines).
The onset of the reverse current can be deduced from the emergent discrepancy between the solid
and dashed curves, which coincides with the positive surface potential reaching the value Vmin = 1 V
in the bottom plot of Fig. 11. Moreover, reverse current remains significant even after the net yield
reaches unity. Thus, the unity yield is the product of a neat dynamic balance between the PE injection,
positive outward SE emission, and the reverse current. The result is a steady-state process and the
conservation of total charge (on average): one PE in, one SE out, and a conserved ‘circular’ current
at the sample-vacuum interface.

Figure 12 (sapphire) and Figure 13 (silica) correspond to the beam current of 100 pA and show
the time evolution of the yield and potential for various PE energies. Comparison with the defocused
beam irradiation of Fig’s. 8 and 9 reveals a larger discrepancy in convergence times of the yield
to unity for different energies in the focused beam case. The yield drops much sooner at lower PE
energies than it increases at higher PE energies.

Similarly, from the surface potential plots of Fig’s. 12 and 13 we conclude that the rise of sub-unit
yields (above 10 keV for sapphire and above 4 keV for silica) to unity cannot be explained by the
change in the landing energy, as the associated potential is never negative enough for that. Minimizing
the screening by removing the Dirichlet boundary Σ1 farther away from the sample-vacuum interface
Σ2 we could bring the surface potential in silica down to � 15 kV, which, however, was still not
enough to decrease the landing energy of PE’s from 30 keV down to the required 4.35 keV, where
the standard yield of silica is equal to one.

The unity yield appears to be a stable equilibrium state for isolated samples. The precise math-
ematical nature of this state requires further theoretical analysis, beyond the scope of this paper. At
the moment we can conclude that there are two processes – reverse current and trapping – that play
significant role in the approach to equilibrium. Starting from the initial state corresponding to the
standard yield above unity (low PE energies), the sample gradually acquires positive charge, which
turns on the reverse current and reduces the yield towards unity. The sample ends up positively
charged in equilibrium with the surface potential bounded above by Vmax.

Starting from the standard yield below unity (higher PE energies), the sample accumulates
electrons, which are being transported by electrostatic drift and collision-induced statistical diffusion
towards the sample boundary. While energetic electrons coming from higher depths will initially be
completely lost to trapping (which accounts for both the energy loss and actual trapping in our model),
as traps get filled and the trapping rate reduces more energetic electrons will survive the transport to
the sample surface. This leads to the gradual increase in the emission through the sample-vacuum
interface, thereby increasing the yield.

In addition, trapping plays the role of a damping factor in the swing of the yield towards the
unity. If the trapping is relatively strong, then we have the so-called overdamped oscillation, where
the unity yield is approached from below and remains at the unit value as soon this value is reached
(30 keV in sapphire). The sample ends up negatively charged in equilibrium with the values of the
surface potential reaching a few negative kV, depending on the proximity of the Dirichlet contact.

If the trapping is relatively weak, then we have a simple damped oscillation, where the yield
overshoots the unity. The resulting positive charging switches on the reverse current and the yield
returns to unity. The sample ends up weakly positively charged at equilibrium in this case.

We note that the relative strength of trapping (trapping rate) depends on the local balance between
the free-electron density and the number of available trapping sites.

The yield does not always have to drop/increase to unity, though. If it was the case, all insulators
would look exactly the same under SEM. One possible scenario, where the yield may not converge
to unity, is a (partially) grounded sample. The condition on charge conservation that requires a unit
yield in an isolated sample may be relaxed if the sample is grounded. It is, of course, an open question
whether a contact between an insulator and, say, a metallic grounded holder can ever be made efficient
enough to allow for an easy passage of charges. Assuming for simplicity a perfect ohmic contact,
the charge conservation no longer requires the exact unit yield for the sample-vacuum interface as
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FIG. 14. Time evolution of the yield and the surface potential from isolated and grounded sapphire samples for 5 keV PE
energy and 100 pA beam current. The distance between Σ1 and Σ2 is 0.1 mm.

additional electrons may enter the sample via the ground channel. These additional particles do not
have enough energy to be able to directly contribute to the emission current. However, they efficiently
reduce the charging by neutralizing previously trapped particles, thereby indirectly influencing the
yield.

FIG. 15. Build up of the surface charge (C + p � n � nT )q (C/cm3) in isolated (top row) and grounded (bottom row) sapphire
samples irradiated by a focused stationary 100 pA beam of 5 keV PE’s. The distance between Σ1 and Σ2 is 0.1 mm.



015307-20 Raftari, Budko, and Vuik AIP Advances 8, 015307 (2018)

This situation is illustrated in Fig. 14, where we have imposed an ohmic boundary condition on
the side of sapphire sample. Although the yield in such a grounded sample does not stay at the level
of the standard yield at that energy, after a few oscillations it stabilizes at a slightly lower value, well
above unity. This effect is also observed in samples with a relatively poor ground contact described
by a Robin-type boundary condition with a low SRV.

Although, the surface potential does take longer to build up in a sample with contact, Fig. 14
(bottom), the behavior of the surface potential at the injection point is not very revealing. It is,
perhaps, more instructive to look at the distribution of the total charge at the surfaces of isolated
and grounded samples under identical irradiation conditions. While the surface potential is weaker
in the grounded case, Fig. 14 (bottom), the images of Fig. 15 explicitly show that the amount of
accumulated positive charge at the surface of a grounded sample is higher. Also the spatial distributions
of the surface charge are different. A large disk of positive charge surrounded by a ring of negative
charge is seen in the grounded sample, whereas, in the isolated sample most of the positive surface
charge is concentrated around the injection point followed by a weaker positive ring some distance
away.

Another situation well-known to SEM practitioners where the yield does not drop/increase to
unity is the rapid scanning of the sample by a moving focused beam. To simulate the scanning process
the source function (14) has to be modified to account for the motion of the beam. This is achieved by
setting x0(t) = x0 + vt, where v is the velocity of beam displacement in the horizontal plane. Consider
a 1 × 1 µm2 sample surface imaged with a 1000 × 1000 pixels resolution at the rate of 30 frames per
second. Then, the beam moves across the sample with the horizontal speed |v| ≈ 33 µm/s.

We consider an inhomogeneous sample consisting of adjacent blocks of sapphire and silica, see
Fig. 16. Samples consisting of one insulator on top of another have been previously studied with a
one-dimensional approach,55 while vertical stacks of insulators, similar to the one considered here,
have been recently investigated experimentally.32

We simulate a single scan line through the middle of the sample perpendicular to the interface
between the adjacent insulators. Across the vertical interface between the two different insulators
the source function (14) exhibits a discontinuity due to the change in material density and the
corresponding maximum PE penetration depth.

FIG. 16. An inhomogeneous sample consisting of vertically stacked sapphire and silica blocks.
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FIG. 17. Yield as a function of beam position while scanning an inhomogeneous sapphire-silica sample (5 keV, 10 pA). Solid
lines – SE emission rate; dotted – positive part of the emission current; dashed – standard yield.

Since cylindrical symmetry is lost, the following DDR computations had been performed in the
full three-dimensional mode. Figure 17 shows the yield as a function of the beam position along its
trajectory for an isolated sample. These curves correspond to the intensity of pixels in a single-line

FIG. 18. Surface potential at three beam locations (white circles) during sample scanning (5 keV, 10 pA). Top and bottom
rows correspond to opposite scanning directions (indicated by arrows).
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SEM image. The standard yields of both insulators at the considered PE energy are also shown as
dotted lines.

First of all we notice the difference between the left-to-right (from sapphire to silica) and the
right-to-left (from silica to sapphire) scanning modes. This difference is easy to understand by looking
at Fig. 18 where the images show the surface potential at the same beam locations during these two
scans. Since the charging of sapphire is stronger than that of silica, the resulting residual charge
strongly depends on the scan history.

Otherwise, the scans of Fig. 17 have several common features. One can notice higher yields
in the neighborhood of the sample edges due to increased emission via the vertical interfaces. This
is a well-known effect – the sample edges look brighter in SEM images compared to the rest of
the sample surface. One can also see the drop of the yield to unity during left-to-right scanning
due to continuous charging of the sapphire part. This charging also causes the yield in silica part
to drop below its standard value. The relatively smaller charging during the right-to-left scanning
does not allow the yield in silica to reach its standard below-unity value after the initial edge-related
surge, and keeps the yield below the standard value when the beam crosses into the sapphire part.
Additional simulations show that reducing the beam current (down to a few pA) while maintaining
a high beam displacement velocity gives scans that truthfully reflect the standard yields of each
part of the sample. Unfortunately, in practice this would, probably, result in a bad signal to noise
ratio.

Our method as well as other simulation software would greatly benefit from publicly available
high-quality time-domain data in addition to the already available standard yields. While we realize
that direct time-domain sampling of detector currents may be difficult, it should be possible to
collect and publish single line scans of ∼ 1 µm insulator targets for a range of dwell times (scan
speeds).

V. CONCLUSIONS

The self-consistent DDR method proposed in Ref. 25 has been substantially modified in the
present paper to include the dynamic trap-assisted generation-recombination model and a novel
self-consistent boundary condition accounting for reverse current. The method has been calibrated
against experimental data to deliver exact standard yields for alumina and silica samples over a
large range of PE energies. For alumina and silica all calibrated parameters remain within or
close to their reported uncertainty bounds, thereby further confirming the acceptability of model
approximations. Time-domain simulations with defocused beams have been compared to the previ-
ously published results from a one-dimensional Flight-Drift model demonstrating similar long-time
behavior. Our investigations so far show that the initial high-energy transport stage can, indeed, be
approximated by a semi-empirical source function and low-energy material parameters, whereas,
subsequent transport stages fall within the original domain of validity of the low-energy DDR
method.

Simulations with stationary focused beams confirm that in electrically isolated samples the yield
collapses to unity after a certain number of primary electrons, which depends on the PE energy, has
been injected roughly at the same location on the sample surface. However, our simulations do not
support the widespread intuitive explanation of this phenomenon in terms of the changing landing
energy of PE’s. The effect appears to have dynamic origins and is related to reverse currents and
transient changes in the distribution of charges close to the sample surface.

The surface potential is strongly affected by the proximity of metallic grounded surfaces due to
the associated charge screening. This may lead to misinterpretation of charging effects, if one relies
solely on the surface potential measurements, but also may present an opportunity to alleviate SEM
image distortions. Our simulations show that a good ground contact could also prevent the collapse
of the yield to unity.

We have presented, probably, the first 3D simulations of a laterally inhomogeneous sample
irradiated by a moving beam that take into account both the dynamic charge trapping/de-trapping
and the reverse current. While to a certain extent the yield obtained during this realistic simulations
could be interpreted on the basis of time-domain results with stationary beams, some effects are
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unique to dynamic scanning. For example, the scan profile appears to depend on the direction of
scanning.

A recent review by Walker et al16 mentions the lack of reliable simulations related to low-energy
SEM studies. We hope to partly fill this gap with the present modified and calibrated version of the
DDR method.
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