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SUMMARY

We consider solution methods for large systems of linear equations that arise from the finite element
discretization of the incompressible Navier–Stokes equations. These systems are of the so-called saddle
point type, which means that there is a large block of zeros on the main diagonal. To solve these types
of systems efficiently, several block preconditioners have been published. These types of preconditioners
require adaptation of standard finite element packages. The alternative is to apply a standard ILU precon-
ditioner in combination with a suitable renumbering of unknowns. We introduce a reordering technique for
the degrees of freedom that makes the application of ILU relatively fast. We compare the performance of
this technique with some block preconditioners. The performance appears to depend on grid size, Reynolds
number and quality of the mesh. For medium-sized problems, which are of practical interest, we show
that the reordering technique is competitive with the block preconditioners. Its simple implementation
makes it worthwhile to implement it in the standard finite element method software. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past few decades, computational methods for solving the Navier–Stokes equations have
proven to be very useful for obtaining better understanding of the physics of flows. The increase
in computing power has driven the advances in algorithm development. Nowadays, it is possible
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to apply the finite element method (FEM) to large 3D problems. Most of the researches these days
are focused on the efficient solution of these equations on complex domains. Discretization of the
Navier–Stokes equations leads to a large system of non-linear equations. Linearization methods
reduce this to a series of large systems of linear equations. These systems can be solved by direct
methods; however, doing that requires extensive resources in terms of computing time and memory.
For 3D and large 2D problems, iterative methods, in combination with a suitable preconditioner,
are the method of choice.

Most of the recent papers on the iterative solution of the discretized Navier–Stokes equations
are devoted to block preconditioners [1–5]. Classical ILU preconditioners in combination with a
suitable node-renumbering technique [6–9] have been applied with success.

ILU preconditioners require less adaptation of standard finite element packages than block
preconditioners and are therefore easier to implement. In this paper we shall derive an a priori
ordering of unknowns that, in combination with a node-renumbering technique, improves the
convergence behavior of ILU preconditioners. It is shown that this combination is an interesting
alternative to block preconditioners.

In Section 2 the discretization of the incompressible Navier–Stokes by an FEM is considered.
The resulting equations are linearized by the Picard or the Newton method. This leads to a system
of linear equations with a large number of zeros on the main diagonal due to the absence of the
pressure term in the continuity equation. Systems of equations of this form are singular if the
discretization of the continuity equation leads to an underdetermined system. To avoid this problem,
the finite elements must satisfy the so-called Brezzi–Babuška (BB) condition. An alternative is to
apply a stabilization technique [10–12].

The iterative solution of these systems of linear equations requires suitable preconditioners. An
overview of recent block preconditioners is given in Section 3.

Direct solution of the coupled discrete linearized Navier–Stokes equations may fail due to zeros
on the main diagonal unless partial pivoting is applied. The same may happen in the case of ILU
factorization. Wille and coworkers [13–15] use a node-renumbering technique in combination with
a reordering of unknowns that is common for block preconditioners. This method can be applied
to both direct and ILU-preconditioned iterative methods. In Section 4 we present a modification
of this technique. We define a reordering of unknowns that leads to an almost optimal profile or
bandwidth for a direct solver. Applied to an ILU preconditioner, this reordering usually improves
the convergence behavior of Krylov subspace methods. The method can be applied in combination
with any node renumbering strategy. Numerical experiments are presented in Section 5. Results
for the benchmark problem of the backward facing step, both in 2D and in 3D, show that, despite
being relatively simple, our method performs remarkably well. Finally, in Section 6 we present
our conclusions.

2. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

We consider the steady-state Navier–Stokes equations for the flow of a Newtonian incompressible
viscous fluid with constant viscosity:

−�∇2u+u·∇u+∇ p= f in � (1)

∇ ·u=0 in � (2)
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where � is a 2D or 3D domain with a piecewise smooth boundary ��, u is the fluid velocity,
p is the pressure field, �>0 is the kinematic viscosity coefficient (inversely proportional to the
Reynolds number Re), and ∇ is the gradient and ∇· is the divergence operator.

Equation (1) represents conservation of momentum, whereas Equation (2) represents mass
conservation (incompressibility condition). The boundary value problem that we consider is
systems (1) and (2) posed on � together with boundary conditions on ��=��E ∪��N and is
given by

u=w on ��E , �
�u
�n

−np=0 on ��N

The discretization of the Navier–Stokes equations is done through the FEM. The weak formulation
of the Navier–Stokes equations is given by finding u∈H1

E and p∈L2(�) such that

�
∫

�
∇u :∇vd�+

∫
�
(u∇ ·u) ·vd�+

∫
�
p∇ ·vd�=

∫
�
f ·vd� ∀v∈H1

E0
(3)

∫
�
(∇ ·u)q d�=0 ∀q∈L2(�) (4)

where H1
E is the Sobolev space of functions satisfying the essential boundary conditions, H1

E0
is

the Sobolev space satisfying the homogeneous essential boundary conditions, and : denotes the
dyadic product.

For a discrete weak formulation, we define finite dimensional subspaces Xh
0 ⊂H1

E0
, Mh ⊂ L2(�),

and Xh
E ⊂H1

E . The discrete version of (3) and (4) is finding uh ∈Xh
E and ph ∈Mh such that

�
∫

�
∇uh :∇vh d�+

∫
�
(uh ·∇uh) ·vh d�−

∫
�
ph(∇ ·vh)d�=

∫
�
f ·vh d� ∀vh∈Xh

0 (5)

∫
�
(∇ ·uh)qh d�=0 ∀qh ∈Mh (6)

Formally, the system of non-linear equations can be expressed as

Au+N (u)+BT p= f (7)

Bu=0 (8)

where Au is the discretization of the viscous term, N (u) is the discretization of the non-linear
convective term, Bu denotes the discretization of the negative divergence of u, and BT p is the
discretization of the gradient of p. The right-hand side vector, f, contains all the contributions
of the source term, the boundary integral, as well as the contribution of the prescribed boundary
conditions.

Systems of the form (7) and (8) are called saddle point problems. Owing to the absence
of the pressure term in Equation (8), the system of equations may be underdetermined for an
arbitrary combination of pressure and velocity unknowns. In order to guarantee a unique solution
of Equations (7) and (8), the finite element discretization should satisfy the BB condition given as

inf
qh∈Mh

sup
vh∈Xh

0

(∇ ·vh,qh)
‖vh‖Xh

0
‖qh‖Mh

��>0 (9)
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If a finite element does not satisfy the BB condition, solution of (7) and (8) is possible only
by applying stabilization techniques [5]. In our experiments we have limited ourselves to finite
elements that satisfy the BB condition.

In 2D we used the Q2–Q1, Taylor–Hood [16], element (continuous pressure) and the Q2–P1,
Crouzeix–Raviart [17], element with discontinuous pressure. For details see [18]. In 3D we used a
triquadratic velocity field with trilinear pressure Taylor–Hood element, denoted as Q2–Q1. Also
a triquadratic velocity with discontinuous linear pressure Crouzeix–Raviart element is applied
(denoted as Q2–P1).

In order to solve the non-linear equations (7) and (8), they are linearized and combined with
some iteration process. Picard and Newton methods are coupled with exact or inexact linear solvers.
After linearization, the system can be expressed as[

F BT

B 0

][
u

p

]
=

[
f

0

]
(10)

where F contains the contributions from the linearized convection diffusion term. The system
matrix of (10) is indefinite and non-symmetric.

For small-sized problems, direct solvers are very efficient to solve the system given in (10), but
they are not feasible for large problems because they require large central processing unit (CPU)
time and a huge memory. Preconditioned Krylov solvers are good alternatives for direct solvers
in large problems. Preconditioned GMRES [19] and Bi-CGSTAB [20] are popular methods to
solve the system. Some results are given with the GMRESR method [21], which shows better
convergence, but can be more expensive than GMRES and Bi-CGSTAB.

3. BLOCK PRECONDITIONERS FOR THE NAVIER–STOKES EQUATIONS

Firstly, the objective is to design a preconditioner for the Navier–Stokes equations, which enhances
the convergence of an iterative method independently of the Reynolds number and number of
grid points. Secondly, the application of a preconditioner should be cheap. Block triangular
preconditioners are a well-known class of preconditioners that exploit the block structure of the
Navier–Stokes problem. The block triangular preconditioner is expressed as

P=
[
F BT

0 S

]
(11)

where S=−BF−1BT is the Schur complement matrix. The steps involved in a block triangular
preconditioner to solve the system Pz=r are

solve z2 from Sz2=r2 and z1 from Fz1=r1−BTz2 (12)

The preconditioner involves the solution of two subproblems associated with the velocity and the
pressure part. An eigenvalue analysis of the block triangular preconditioner in (11) suggests that
GMRES converges in two iterations [22] if exact arithmetic is used. But in general, F−1 and
S−1 are very expensive to compute and to store. Usually, F−1 is formally approximated by a
matrix F̂−1. Actually, such an approximation consists of a small number of iterations with an
iterative method. The approximation of the Schur complement is problem dependent. In general,
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the Schur complement matrix is not formed. Therefore, the approximate inverse, Ŝ−1, is replaced
by a simple spectrally equivalent matrix. Various cheap approximations of S−1 have been published
recently. For an overview of preconditioners, we refer to [1, 2, 5, 23]. Some of those that are used
in combination with the block triangular preconditioner (11) are discussed below.

3.1. Pressure convection diffusion (PCD)

A popular approximation to the Schur complement, known as PCD, is given by Kay et al. [3] and
Silvester et al. [24]. The approximation is based on a discrete convection diffusion operator. The
operator on the velocity space is defined as

L=−�∇2+wh ·∇ (13)

where wh is the approximation to the discrete velocity computed in the most recent Picard iteration.
Suppose that the commutator of the convection diffusion operator on the velocity space, multiplied
by the gradient operator on the velocity space, and the gradient operator acting on the convection
diffusion operator in the pressure space are small. Hence

ε=(−�∇2+wh ·∇)∇−∇(−�∇2+wh ·∇)p (14)

is small. Then the discrete commutator in terms of finite element matrices given as

εh =(Q−1F)(Q−1BT)−(Q−1BT)(Q−1
p Fp) (15)

is also small. Fp is a discrete convection–diffusion operator on pressure space. Q denotes the
velocity mass matrix and Qp the pressure mass matrix. The multiplication by Q−1 and Q−1

p

transforms quantities from integrated values to nodal values. Pre-multiplication of (15) by BF−1Q,
post-multiplication by F−1

p Qp, and assuming that the commutator is small lead to the Schur
approximation:

BF−1BT≈ BQ−1BTF−1
p Qp (16)

The expensive part BQ−1BT in (16) is replaced by its spectrally equivalent matrix Ap known as
the pressure Laplacian matrix; hence

S=−BF−1BT≈−ApF
−1
p Qp (17)

The preconditioner is known as the PCD preconditioner. This preconditioner is also effective
for stabilized finite elements. The preconditioner has nice convergence properties especially for
enclosed flows if the equations are linearized by the Picard method. The preconditioner requires
the action of a Poisson solve, a mass matrix solve, and a matrix–vector product with Fp. Moreover,
boundary conditions should also be taken into account while constructing Ap and Fp.

3.2. Least-squares commutator (LSC)

Another promising approach for the approximation of the Schur complement is described by
Elman et al. [25] and is known as an LSC preconditioner. Instead of deriving the relation for
the Schur complement, an approximation is made to the matrix operator, Fp, in (16), that makes
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the commutator (15) small. This can be achieved by solving a least-squares problem. For the j th
column of matrix Fp, the least-squares problem is of the form:

min‖[Q−1FQ−1BT] j −Q−1BTQ−1
p [Fp] j‖Q (18)

where ‖.‖Q is the
√
x
¯
TQx

¯
norm. The normal equations associated with this problem are

Q−1
p BQ−1BTQ−1

p [Fp] j =[Q−1
p BQ−1FQ−1BT] j

which leads to the following definition of Fp:

Fp=Qp(BQ
−1BT)−1(BQ−1FQ−1BT)

Substituting this expression into (16) gives an approximation of the Schur complement matrix:

BF−1BT≈(BQ−1BT)(BQ−1FQ−1BT)−1(BQ−1BT) (19)

Usually, the inverse of the velocity mass matrix Q−1 is dense. In such a case, the velocity mass
matrix is replaced by the diagonal matrix Q̂ (the main diagonal of Q). The preconditioner can
be used only for stable elements. It does not require any extra operator as (17) used in PCD. Its
convergence is in some cases better than that of PCD. LSC is more expensive than PCD because it
requires two Poisson solves. The convergence of LSC is independent of the mesh size and mildly
dependent on the Reynolds number. For more details on PCD and LSC, refer to [5].
3.3. Augmented Lagrangian (AL) approach

An effective preconditioner based on the AL approach is recently published by Benzi and Olshanskii
[4]. This technique suggests to approximate the inverse Schur complement by

Ŝ−1=−(�Q̂−1
p +�W−1) (20)

where Q̂p denotes the approximate pressure mass matrix, � is the viscosity, and �>0 is a parameter.
Usually, W is also replaced by Q̂p. For constant pressure approximation, Qp is a diagonal matrix.
For a linear pressure approximation, Qp is replaced by the spectrally equivalent diagonal matrix.
For a diagonal matrix Q̂p, the calculation of the inverse approximate Schur complement is very
cheap. For this preconditioner, the original system given in (10) is replaced by[

F+�BTW−1B BT

B 0

][
u

p

]
=

[
f

0

]
(21)

Since Bu=0 we can add the term �BTW−1Bu to the first row in (10) without any change on the
right-hand side. Results given in [4] reveal that the convergence of an iterative method with this
preconditioner is independent of the mesh size and Reynolds number and seems to be more robust
than the other two schemes discussed above. The method is efficient if it is used as a preconditioner
in the solution of the Navier–Stokes problem, linearized by Picard’s iteration for both constant
and linear pressure approximations. But this preconditioner requires an efficient method to solve
the (1,1) block, since (in our problem) the number of non-zeros increases due to the introduction
of �BTW−1B. This matrix introduces a coupling between components of the velocity vector.
A good choice of � is also important. Usually � is taken to be one.
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In all the preconditioners discussed above, the S−1 and F−1 block matrices form the most
expensive part of the preconditioner. The subsystems associated with these block matrices have to
be solved efficiently, preferably by an iterative solver, for example, by geometric multigrid (MG)
or algebraic multigrid (AMG). In this paper, we used an MG or a direct solver.

4. A SADDLE POINT ILU-TYPE PRECONDITIONER

The block preconditioners from the prior sections have the disadvantage that straightforward
application of standard finite element codes is not possible. Adaptation of the matrix builder
and solver is necessary since splitting of velocity and pressure unknowns is required. From a
practical point of view, it would be attractive if standard classical iterative solution schemes, such
as preconditioned Krylov solvers, could be applied without any changes. However, in the case of
non-stabilized elements, the zero pressure block in the continuity equation prevents straightforward
application of LU and ILU factorization. If the common ordering of unknowns is used, i.e. placing
first all unknowns of node 1, then those of node 2 and so on, one might obtain a zero pivot,
especially if velocities at some boundaries are prescribed and therefore both factorizations may
fail. Pivoting [26], on the other hand, will result in a large increase in memory usage and as a
consequence computation time. Besides that, it is hard to predict a priori the amount of memory
required, which from an implementation point of view is not very practical. To avoid this problem,
it is better to use a suitable a priori reordering of unknowns. As pointed out by Wille and others
[13–15], pivoting is not necessary when the unknowns are ordered in the sequence, so that all
velocity unknowns come first and then all the pressure unknowns like in the block preconditioners.
The reason being that during (incomplete) factorization the zeros at the main diagonal will vanish,
provided fill-in is allowed based on the connectivity of nodal points rather than actual zeros in
the matrix. Renumbering of nodal points as suggested by Wille and also classical renumbering
techniques as suggested by Cuthill McKee [27] and Sloan [28] may decrease the memory and
computation time for direct solvers. An optimal numbering of unknowns, for a direct solver, usually
improves the convergence of ILU preconditioned Krylov solvers [8, 9], but exceptions to this rule
exist [1].

We propose a new a priori ordering of unknowns, which in combination with a suitable renum-
bering of nodes results in an optimal bandwidth or profile (envelope) of the coefficient matrix in
the case of a direct method. We will demonstrate that the combination of this reordering tech-
nique with ILU preconditioned Krylov solvers results in better solver performance. Experiments
in Section 5 show that, for practical 2D and 3D meshes, this method behaves very well compared
with the block solvers of the previous section. The extra advantage is of course the simplicity of
the implementation.

4.1. Ordering scheme for direct solvers

If, for a direct solver, we use the same ordering as in the case of the block preconditioners,
i.e. placing first all velocity unknowns and then all pressure unknowns, we end up with a very
large profile of the matrix. This is true even if we use an optimal node renumbering. The main
advantage of this ordering is that no pivoting is necessary since during factorization the zeros on
the main diagonal in the zero pressure block disappear, see, for example, [14]. In the remaining
part of this paper, we shall refer to this reordering as p-last. Figure 2 shows an example of the
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Figure 1. Levels defined for 4×4 Q2–Q1 grid.

non-zero structure of the matrix for the p-last ordering, applied to a 4×4 rectangular grid of
Q2–Q1 elements, where a lexicographic numbering of nodes is used.
A much smaller profile will be achieved, if we order the unknowns in the sequence of the nodal

points. However, especially in the case of Dirichlet boundary conditions for the velocity, this may
lead to zero pivots. Hence, if we try to avoid pivoting during elimination, this ordering cannot be
applied. In order to obtain a reordering that has almost the same favorable profile as the node-wise
ordering but does not lead to zero pivots, we need to define the concept of levels, which originates
from the classical Cuthill McKee renumbering scheme.

Let us first define the notion of levels for Cuthill McKee. Suppose that we have created levels
1 to i−1. Then level i is defined as the set of nodes that are connected directly to level i−1 and
are not in one of the prior levels. Nodes are connected if they belong to the same element.

The first level may be defined as a point or even a line in R2 or a surface in R3. This definition
also applies in the case of structured grids. For example, in the 4×4 structured grid of Figure 1
with Q2–Q1 elements, the first level might consist of the nodes 1–9. Level 2 consists of the nodes
10–29 and so on. It is clear that nodes in level i are connected only to nodes in levels i−1 and
i+1.

In case of a different renumbering scheme like Sloan [28] or the one proposed by Wille et al.
[14], we define levels in the following way.

Suppose that levels 1 to i−1 have been constructed. Let node k be the node with highest node
number that is directly connected to nodes in level i−1. Then level i consists of node k and all
nodes with node number less than k but not belonging to one of the levels 1 to i−1.
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Figure 2. Effect of Sloan renumbering of grid points and p-last per level reordering of unknowns on the
profile and bandwidth of the matrix.

The first level is defined as node 1.
Once the levels have been defined, we reorder the unknowns in the following way. First, we

take all the velocities of level 1, then all pressures of level 1. Next, we do the same for level 2
and repeat this process for all levels. Hence, instead of a global block ordering, we apply a block
ordering per level. Such an approach has two advantages.

First, the profile is hardly enlarged compared with the optimal ordering, since the local bandwidth
is defined by the largest distance in node numbers.

Second, due to the local block reordering, zero pivots become non-zero during factorization,
and no a posteriori pivoting is required. In the remainder we shall refer to this ordering technique
as p-last per level.

One has to be careful at the start of this process. If, for example, the velocities in node 1 are
prescribed, we start with a pressure unknown that gives rise to a zero pivot. Therefore, we always
combine levels 1 and 2 into a new level. If the number of free velocity unknowns in this new
level is less than the number of pressure unknowns, we also add the next level to level 1 and if
necessary this process is repeated. In practice, a combination of 2 or 3 levels is sufficient. Note that
the starting level has always a small contribution to the global profile. Figures 2 and 3 show the
effect of the p-last per level renumbering, combined with Sloan and Cuthill McKee renumbering,
respectively. The grid used consists of 8×8 Q2–Q1 elements. The gain in memory is clear even
for this small example.

Hence, our reordering technique p-last per level in combination with a suitable node renumbering
strategy produces a nearly optimal profile and avoids the need for a pivoting in the case of direct
solvers. It has been applied to many practical problems without ever producing small pivots. Since
optimal reordering of unknowns for direct methods is usually also suitable for ILU preconditioners,
we consider this method in the next subsection.
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Figure 3. Effect of Cuthill McKee renumbering of grid points and p-last per level reordering of unknowns
on the profile and bandwidth of the matrix.

4.2. Application to ILU preconditioning

The block preconditioners of Section 5 all require adaptation of standard finite element software
packages. ILU-preconditioned Krylov subspace solvers, on the other hand, can be applied without
any change at all. Since an optimal ordering of unknowns for a direct solver usually improves
the behavior of an ILU preconditioner, we investigate p-last per level ordering as well as p-last
ordering in combination with ILU.

We define the set S of fill-in positions as the set of unknowns that are directly connected.
This implies that zeros in the pressure block may also be part of the set S, provided there is
a connectivity with velocity unknowns. The ILU decomposition A≈ LD−1U is defined by the
following rules:

li, j = 0 for (i, j) /∈ S

ui, j = 0 for (i, j) /∈ S (22)

(LD−1U )i, j = ai, j for (i, j)∈ S

Experiments in Section 5 show that in a large number of practical cases this method performs very
well and is competitive with the block preconditioners. However, in some cases the Krylov method
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converges slowly, or even diverges, for example, in the case of stretched grids using elements with
a large aspect ratio. In that case we apply extra fill-in referred to as ILUF. Extra fill-in is defined
by adding all neighbor points of the standard ILU node structure to the connectivity set, provided
these nodes do not affect the envelope of the original matrix. In many cases extra fill-in solves the
convergence problem, but at the cost of extra memory and computing time per iteration.

4.2.1. Lumping. Sometimes we apply lumping, that is, if the off-diagonal components of the matrix
have the same sign as the diagonal of the matrix, these components are added to the diagonal of
the matrix and made zero themselves. Of course, this is used to compute only the preconditioner.
In our experience, the preconditioning matrix P� (lumped) improves convergence in some cases,
but it should be used only if one does not achieve convergence with extra fill-in.

4.2.2. Perturbation of the continuity equation. In some cases, convergence can be improved by
perturbing the continuity equation with a factor �p. The discretized form of the perturbed system
of equations is given as [

F BT

B �Qp

][
u

p

]
=

[
f

0

]
(23)

Hence, the incompressibility condition is violated by a small amount that hardly influences the
solution. Note that this is almost the same as applying the penalty function method [18]. The only
difference is that p is not eliminated from the second row in (23). Since, in general, it is hard
to find a suitable value of �, we have decided to use mostly �=0. In some cases, stretched grids
and Q2–P1 discretization, we have perturbed the incompressibility constraints and found good
convergence.

5. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments. We start with an investigation of the
properties of the saddle point ILU preconditioner. Thereafter, we compare this preconditioner with
the block preconditioners as given in Section 3. The Stokes and the Navier–Stokes problems are
solved in the following domains:

1. The Poisseuille channel flow in a square domain (−1,1)2 with a parabolic inflow boundary
condition and a natural outflow condition having the analytic solution: ux =1− y2, uy =0
and p=2�x . In the case of Stokes flow �=1.

2. The L-shaped domain (−1, L)×(−1,1), known as the backward facing step (see Figure 4). A
Poisseuille flow profile is imposed on the inflow (x=−1; 0�y�1) and no slip conditions are
imposed on the side walls. Neumann conditions are applied at the outflow that automatically
sets the mean outflow pressure to zero.

3. For the 3D case, the Navier–Stokes equations are solved in a 3D backward facing step domain
with parabolic inflow velocity profile, no slip condition on the side walls and Neumann
conditions at the outflow.

We have used the finite element package SEPRAN [29] for our results in Section 5.1. The time
reported in this section consists of construction time plus the time taken by an iterative solver.
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Figure 4. Backward facing step or L-shaped domain.

In Section 5.2 for comparison of various preconditioners, Matlab in combination with the IFISS
package is used. For comparison of these preconditioners, we estimate the number of flops (floating
point operations) used by the preconditioned method to approximate the solution. In the block
triangular preconditioners that use MG as the inner solver, matrix–vector products and MG cycles
consume the largest part of the flops. In the MG process, the number of flops consumed depends
on the type of cycle involved. We use 1 V (1,1) cycle in the preconditioning step and take as
a slight underestimate that it is computationally just as expensive as one matrix vector product.
The justification being that it involves one pre-smoothing, one post-smoothing, and one coarse
grid correction. In all the experiments, the method is stopped when the iterative solver reaches the
desired tolerance (‖rk‖2/‖r0‖2<accuracy).

5.1. Properties of the saddle point ILU solver (SILU)

We have tested and compared the SILU preconditioner for the Stokes and Navier–Stokes problems
in the domains mentioned above. In Table I Sloan renumbering for grid points is used to solve
the Stokes problem in the 2D square domain for the Q2–Q1 discretization. For small problems, a
direct method gives the solution faster than iterative methods coupled with the SILU preconditioner.
However, memory requirements for the direct method are large compared with the iterative solution
methods [30], and beyond a certain number of grid points the time required to solve the Stokes
equations by a direct method increases considerably. The Krylov solvers converge faster for p-
last per level than the p-last reordering of the unknowns. The time taken by the convergence of
Bi-CGSTAB and GMRESR is less than GMRES(20). Also Bi-CGSTAB uses less matrix vector
products than GMRES(20). The same convergence behavior has been found for the Q2–P1
discretization.

With the p-last per level reordering, the effect of renumbering the mesh by the Sloan or the
Cuthill McKee algorithm is shown in Table II. The Sloan renumbering gives faster convergence than
the Cuthill McKee renumbering for both Q2–Q1 and Q2–P1 discretizations. The difference in the
number of iterations for both renumbering schemes is more pronounced in Q2–P1 discretization.
The Sloan renumbering produces a much better profile than the Cuthill McKee renumbering.
With a better profile, an incomplete LU decomposition gives a better approximation of the exact
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Table I. Solution of the Stokes problem with the Q2–Q1 discretization in the square
domain with an accuracy of 10−6.

16×16 32×32 64×64

Solver Renumber Iterations Time(s) Iterations Time(s) Iterations Time(s)

Direct p-last — 0.61 — 20.34 — 1378
p-last per level — 0.13 — 2.28 — 37

GMRES(20) p-last 95 0.16 354 1.72 1800 44.0
p-last per level 50 0.12 207 1.14 792 20.0

GMRESR p-last 14 0.14 26 0.85 68 11.26
p-last per level 12 0.12 21 0.72 43 7.27

Bi-CGSTAB p-last 36 0.11 90 0.92 255 11.98
p-last per level 25 0.09 59 0.66 135 6.74

Table II. Effect of mesh renumbering on convergence of Bi-CGSTAB for various discretizations in the
backward facing step Stokes problem with p-last per level and accuracy=10−6.

Q2–Q1 Q2–P1

Grid Sloan iterations Cuthill-McKee iterations Sloan iterations Cuthill-McKee iterations

8×24 9 15 29 97
16×48 22 32 40 288
32×96 59 65 73 1300

LU decomposition and increases the convergence of the preconditioned Krylov subspace method.
However, if the problem is highly non-symmetric and far from being diagonally dominant, the
norm of residual R= A− L̂Û is not a good estimate for the quality of the preconditioner. The
Frobenius norm of the term R(L̂Û )−1= I −A(L̂Û )−1 gives better insight into the quality of the
preconditioner. Even if R is small in norm, it may happen that the preconditioned matrix deviates
largely from identity due to very large entries in (L̂Û )−1[9].

In the case of the Navier–Stokes problem, the number of accumulated inner iterations increases
with the increase in the Reynolds number and the number of grid points as shown in Figure 5.
The linear equations in the inner iteration are solved with an accuracy of 10−2. Figure 5 shows the
accumulated number of inner iterations for solving the linear problems linearized by Picard and
Newton. The SILU-preconditioned Krylov subspace methods with Sloan renumbering and p-last
per level reordering were applied. There are two reasons for the increase in the accumulated inner
iterations when the SILU preconditioner is employed:

With the increase in the Reynolds number, the number of outer iterations increases; however,
the number of average inner iterations remains the same. Therefore, the convergence of the
SILU preconditioner is hardly influenced by an increase in the Reynolds number.
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Figure 5. Effect of grid increase (left) and Reynolds number (right) on the inner iterations
(accumulated) for the Navier–Stokes backward facing step problem with an 25 accuracy of 10−2

using the p-last per level reordering.

With the increase in the number of grid points, the number of inner iterations increases that
gives rise to increase in the accumulated inner iterations. Change in the number of grid points
has less effect on the outer iterations.

In most cases, it appears that the Newton method gives faster convergence results than the
Picard method. However, for a high Reynolds number—due to a bad initial estimate—Newton’s
method diverges; hence, it is good practice to use only Picard iterations after the Stokes equations
for high Reynolds number or a few Picard iterations followed by Newton iterations. Although
the Picard method converges in more outer iterations, the average inner iteration required by the
Picard method is less than those required by the Newton’s method. Note that we did not use an
upwind technique in our experiments. We expect that convergence will be better in combination
with SUPG.

The Stokes and the Navier–Stokes equations are also solved for a 3D backward facing step.
Results with Q2–Q1 elements for the Stokes problem are shown in Table III. The Cuthill McKee
numbering shows faster convergence than the Sloan renumbering with both p-last and p-last per
level reordering schemes. A Stokes problem is also solved with a direct solver in an 8×8×8 grid
with p-last per level ordering. It gives the solution in 20 s with the Sloan renumbering and 52 s
with the Cuthill McKee renumbering. This approach consumes a large amount of memory. For the
Q2–P1 elements, the Sloan renumbering gives faster convergence than the Cuthill McKee for both
reordering methods. Results given in Table IV suggest that the Krylov subspace method converges
in the same number of iterations with both orderings for the Cuthill McKee renumbering. Table
V shows the results obtained from the solution of the Navier–Stokes problem. This reveals that
the preconditioned Krylov methods have the same convergence behavior for various Reynolds
numbers and grid sizes as we have observed in the Stokes problem.

The effect of grid stretching is shown in Table VI. We increased the number of elements in
only one direction, so that the aspect ratio of the elements increases. Furthermore, some fill-in
and lumping is introduced in the SILU preconditioner for a stretched grid. This improves the
convergence of the iterative method. However, the CPU time and memory usage increase. Hence, it
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Table III. Solution of the 3D Stokes backward facing step problem using Q2–Q1 elements
with Bi-CGSTAB and accuracy=10−4.

Sloan Cuthill McKee

p-last p-last per level p-last p-last per level

Grid Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)

8×8×12 41 5 39 4.88 37 3.76 27 3.26
16×16×24 137 82 138 122 125 83 66 46
24×24×36 341 693 325 725 265 566 123 275

Table IV. Solution of the 3D Stokes backward facing step problem using Q2–P1 elements
with Bi-CGSTAB and accuracy=10−4.

Sloan Cuthill McKee

p-last p-last per level p-last p-last per level

Grid Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)

8×8×12 53 3.72 48 3.45 64 4.20 64 4.16
16×16×24 138 114 107 92 278 214 231 181
24×24×36 295 591 255 512 425 833 426 836

Table V. Accumulated inner iterations for the 3D Navier–Stokes backward facing step problem
with p-last per level reordering.

Picard method Q2–Q1 Q2–P1

Grid Sloan Cuthill McKee Sloan Cuthill McKee

Reynolds number=75, Bi-CGSTAB, accuracy=10−2

8×8×12 147 76 253 350
16×16×24 575 222 598 934
24×24×36 8634 533 1994 2441

Reynolds number=100
8×8×12 150 85 318 376
16×16×24 694 249 690 1432
24×24×36 — 576 1636 2668

suggests that fill-in and lumping should be used only when the ILU-preconditioned iterative method
is diverging. We see a sharp dive (minimum) in the number of iterations for the 64×24 grid. For
this behavior, we do not yet have an explanation. This has been observed for cells with an 8:3
ratio in the backward facing step. For both reordering schemes, the number of iterations increases
with the increase in stretching, but there is a clear difference between Sloan and Cuthill McKee
renumbering. Cuthill McKee sometimes diverges, while Sloan in combination with p-last per level
always converges. The convergence is also improved in some cases where the incompressibility
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Table VI. Solution of the Stokes problem in a stretched backward facing step with Bi-CGSTAB.

Grid p-last iterations time (s) p-last per level iterations time (s)

SILUF, SILUF,
Q2–P1 SILU SILUF Lumped Lumped SILU SILUF Lumped Lumped

Sloan renumbering, accuracy=10−4

8×24 36 (0.04) 14 (0.06) 41 (0.04) 17 (0.06) 23 (0.03) 8 (0.02) 27 (0.04) 8 (0.03)
16×24 55 (0.15) 27 (0.2) 71 (0.18) 33 (0.24) 47 (0.12) 16 (0.11) 52 (0.14) 19 (0.12)
32×24 364 (1.78) 138 (1.36) 305 (1.5) 89 (1.13) 159 (0.8) 60 (0.63) 599 (2.91) 55 (0.61)
64×24 — — >3000∗1 237 (5.31)∗2 58 (0.65) 18 (0.45) 217 (2.22) 66 (1.26)
128×24 — — — 780 (34)∗3 293 (6.1)∗4 — 808 (16.34) 224 (7.6)

Cuthill McKee renumbering, accuracy=10−4

8×24 158 (0.16) 14 (0.08) 140 (0.15) 17 (0.1) 148 (0.15) 7 (0.07) 175 (0.17) 9 (0.07)
16×24 281 (0.64) 26 (0.34) 231 (0.51) 36 (0.41) 287 (0.65) 20 (0.25) 258 (0.58) 21 (0.26)
32×24 277 (1.36) 50 (0.96) 520 (2.53) 71 (1.24) 276 (1.31) 45 (0.88) 568 (2.71) 50 (0.96)
64×24 >3000 586 (18.59) — 209 (7)∗5 >3000 14 (0.88) — 51 (2.1)
128×24 — — — 727 (47.34)∗6 — 17 (2) — 120 (9.33)

Table VII. Effect of � on the convergence with cases labeled with ∗ in Table VI.

Case � Iterations time (s) Case � Iterations time (s)

*1 1e−10 229 (2.37 s) *2 1e−10 150 (3.52 s)
*3 1e−09 405 (17.8 s) *4 1e−10 261 (5.46 s)
*5 1e−10 137 (4.73 s) *6 1e−10 313 (21.0 s)

constraint is used, see Table VII. However, it is difficult to find a suitable value of �. In Figure 6, we
see that the reduction in number of iterations with the increase in the incompressibility constraint is
not linear for the Q2–P1 discretization in the Stokes problem. Although the number of iterations
decreases for higher values of �, there is a large increase in the error norm as well. For the
Navier–Stokes problem, the decrease in the number of iterations is not large as shown in Figure
7. With a slight compromise on the error norm, a suitable value of � can be found in the range of
10−10–10−6. We have made the same observation for the Q2–Q1 elements.

5.2. Comparison of the various preconditioners

In this subsection, we consider only the 2D backward facing step problem. For this problem, we
compare the SILU preconditioner (p-last per level with Sloan renumbering) with the preconditioners
as discussed in Section 3. The preconditioners are tested for a stretched grid and varying Reynolds
number. For the results in Table VIII, we have used the MG solver for solving these blocks (except
for AL) for the Navier–Stokes equations linearized by Picard with the Reynolds number ranging
from 100 to 400. In Figures 8 and 9, we have tested the preconditioner for the stretched grids in
which we have used a direct solver for solving the (1,1) and (2,2) blocks of the LSC and AL
preconditioners for the Navier–Stokes equations linearized by Newton’s method. An approximation
of the flops is computed where we assume that the number of iterations is the same for the direct
solver and for the MG solver used for the inner iterations. We report here the number of iterations
taken by an iterative solver in the final step of the non-linear iterations.
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Figure 6. Effect of the incompressibility constraints (�) on the number of iterations (left) and the relative
error norm (right) in the backward facing Stokes problem using Bi-CGSTAB with an accuracy of 10−4,
and Cuthill McKee renumbering with p-last per level reordering for the 16×48 Q2–P1 discretization.
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Figure 7. Effect of the incompressibility constraint (�) on the number of iterations (left) and the relative
error norm (right) in the backward facing Navier–Stokes problem using Bi-CGSTAB with an accuracy of
10−4, and Cuthill McKee renumbering with p-last per level reordering for the 16×48 Q2-P1 discretization

with Re=100 in the last step of the Picard iteration.

In Table VIII, we present our results by comparing the number of iterations and flops used
in a preconditioned iterative solver. In terms of iterations, AL converges faster than all other
preconditioners. However, looking at flops the SILU preconditioner is more efficient than the other
preconditioners except for the grid size 64×192. On average, the number of iterations reduces to
20 for the 64×192 grid if extra fill-in is used in the SILU preconditioner. The number of flops
in this case reduces to 180. SILU convergence is effected by an increase in the number of grid
elements.
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Table VIII. Comparison of the preconditioners using MG solver for (1,1), (2,2) blocks of PCD and LSC
preconditioners and direct solver for AL (flops estimate with MG solver for AL) with Bi-CGSTAB and

accuracy=10−4 using Q2–Q1 element discretization.

PCD SILU LSC AL(�=1)

Iterations Mflops Iterations Mflops Iterations Mflops Iterations Mflops

Re=100
8×24 40 3.7 9 0.6 24 4 4 1.5
16×48 36 15.3 13 3.9 19 14.9 5 10.7
32×96 39 70.9 21 27.5 13 44.4 4 39
64×192 61 458 55 297 13 185 4 169

Re=200
8×24 77 7 18 1.2 48 8 4 1.5
16×48 75 31.7 14 4.3 36 28.4 4 8.5
32×96 63 114.6 22 28.8 25 85 6 58.8
64×192 89 668 48 259 17 241 5 211

Re=400
16×48 165 69 17 5.2 62 48 4 8.5
32×96 146 264 24 30 38 129 4 39
64×192 114 855 45 242 32 453 4 169
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Figure 8. Comparison of the preconditioners using the Q2–Q1 element discretization in the backward
facing step problem, with a stretched grid and Bi-CGSTAB with accuracy=10−4 for Re=100, (left)

iterations count, (right) Mflops count.

The preconditioners are also tested for stretched grids. The results are shown in Figures 8 and
9. On the basis of the results given in Table VIII, we exclude PCD. In both figures, the number of
iterations taken by SILU is larger than those taken by LSC and AL. However, in flops, SILU is
competing with LSC. AL seems to be more efficient and robust than the other preconditioners.

As we have seen, the number of iterations in the SILU preconditioner increases with an increase
in the number of grid points and increases mildly with the increase in the Reynolds number.
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Therefore, for large problems the AL and LSC preconditioners may be more efficient due to their
convergence independent of the Reynolds number and grid points. On the other hand, regarding
the ease of implementation, requirements, and cost, the usefulness of SILU for a certain range of
problems cannot be ignored.

6. CONCLUSIONS

In this paper, various preconditioners for the discretized Navier–Stokes equations have been
compared. The classical ILU preconditioner is a popular method for the iterative solution of linear
systems. It is well known that a straightforward application of this method can lead to breakdown
or bad convergence due to small pivot elements. In order to prevent this, the grid points are first
renumbered with the classical Cuthill McKee or the Sloan method. Thereafter, we reorder the
unknowns such that on each level the velocity unknowns are ordered before the pressure unknowns.
The resulting method is called the saddle point ILU (SILU) preconditioner. In our experiments we
never observed any breakdown of the SILU decomposition and the convergence is fast for a large
range of problems.

We observed the following properties of the SILU preconditioner:

• in 2D problems, the Sloan renumbering with p-last per level reordering leads to the best
results for the Taylor–Hood and Crouzeix–Raviart elements;

• in 3D problems, Cuthill McKee renumbering gives fast convergence for the Q2–Q1 discretiza-
tion, whereas for the Q2–P1 discretization, the Sloan renumbering gives a better convergence;

• GMRESR and Bi-CGSTAB are faster than GMRES(20);
• for non-linear iterations, it is better to use a few Picard iterations followed by Newton’s
iterations;

• the number of iterations increases with the increase in the number of elements in the grid and
increases mildly with the increase in the Reynolds number.
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We have compared the SILU preconditioner with some saddle point block preconditioners. The
results show that the SILU preconditioner is simple to implement and competing with the saddle
point block preconditioners. The efficiency of the block preconditioners depends highly on efficient
solvers for the subproblems. Since these preconditioners are independent of the grid size and
weakly dependent on the Reynolds number, their performance becomes better than the SILU
preconditioner for large grid sizes and large Reynolds numbers.

Finally, increasing the grid stretching has a negative influence on the convergence behavior of
the SILU preconditioner, whereas the block preconditioners depend only weakly on the stretching
of the grid. Hence, the saddle point block preconditioners are attractive for high aspect ratios of
the elements.
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