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SUMMARY

In this paper, we discuss various techniques for solving the system of linear equations that arise from the
discretization of the incompressible Stokes equations by the finite-element method. The proposed solution
methods, based on a suitable approximation of the Schur-complement matrix, are shown to be very
effective for a variety of problems. In this paper, we discuss three types of iterative methods. Two of these
approaches use the pressure mass matrix as preconditioner (or an approximation) to the Schur complement,
whereas the third uses an approximation based on the ideas of least-squares commutators (LSC). We
observe that the approximation based on the pressure mass matrix gives h-independent convergence, for
both constant and variable viscosity. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are concerned with the solution of the incompressible Stokes problem. The
incompressible Stokes equations, given as

−�∇2u+∇ p= f in �, (1)

∇.u=0 in �, (2)

are used to simulate an incompressible viscous flow. Equation (1) is known as the momentum
equation, and Equation (2) is the continuity or mass conservation equation. In these equations,
� is the viscosity (inversely proportional to the Reynolds number), u is the velocity vector,
and p is the pressure.

In order to have a unique solution, it is necessary to prescribe boundary conditions. Common
types of boundary conditions are prescribed velocities and prescribed stresses, or combinations of
these two.
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ON ITERATIVE METHODS FOR THE INCOMPRESSIBLE STOKES PROBLEM 1181

The finite-element discretization of (1) and (2) with stable finite elements such as Taylor–Hood
or Crouzeix–Raviart gives rise to a linear system of equations of the form:[

F BT

B 0

][
u

p

]
=

[
f

g

]
, (3)

where F corresponds to the viscous term of the PDE, BT to the gradient operator, and B to minus
the divergence operator. We define A to be the complete system matrix, n to be the number of
velocity unknowns, and m to be the number of pressure unknowns with n�m. The system is
symmetric but indefinite.

Discretization of the Stokes equations results in a so-called saddle-point problem. Saddle-point
problems appear not only in fluid dynamics but also in elasticity problems and several other fields.
As such, an iterative method that is developed for one type of saddle-point problem can often be
applied in other areas as well [1]. Many iterative methods have been proposed for these problems,
see for example [2–7]. In recent years, much of this work has focused on the development of
preconditioners for the incompressible Navier–Stokes equations. As Stokes can be seen as a special
case of Navier–Stokes, these preconditioners are also directly applicable to the Stokes problem.
In our case, we concentrate only on the Stokes problem. In contrast to many of the Navier–Stokes
preconditioners, we neither assume that the viscosity, �, is constant, nor that it is smaller than one.

Our main goal is to investigate block preconditioners that are suitable for the Stokes problem,
both for constant and varying viscosity. In general, these block preconditioners are based on
splitting the equations into a velocity and a pressure part that are solved separately. Convergence
of these schemes strongly depends on the approximation of the Schur complement operator, which
arises from the LDU decomposition of the coefficient matrix,

A=LDU=
[
F BT

B 0

]
=

[
I 0

BF−1 I

][
F 0

0 S

][
I F−1BT

0 I

]
, (4)

where S=−BF−1BT is the Schur-complement matrix. Most preconditioners are based on a combi-
nation of this block factorization with a suitable approximation of the Schur-complement matrix.
Possible choices based on combinations of these blocks are:

• D: with S̃=Mp, where Mp is the pressure mass matrix [8]. This block-diagonal preconditioner
and several variants are suggested in [2] for the Stokes problem. The block-diagonal precon-
ditioner is symmetric and positive definite and can be used as a preconditioner for MINRES.

• DU: Block-triangular preconditioner is employed with various approximations of the
Schur complement. This preconditioner is no longer symmetric. For the (Navier–)Stokes
problem, block-triangular preconditioners are used with various approximations of the
Schur-complement matrix [1, 2, 5, 9–11]. In Section 2, we will use this block-triangular
preconditioner with an approximation of the Schur-complement matrix based on the pressure
mass matrix. In this case, we use GCR [12, 13] as the Krylov method to be preconditioned.
With this approach, we observe h-independent convergence of the iterative scheme. Further-
more, in terms of number of iterations, the block-triangular preconditioned Krylov method
shows approximately two times faster convergence than the block-diagonal preconditioner
[14], [2, p. 345]. We will also discuss the least-squares commutator (LSC) approach to
building block-triangular preconditioners, using both the diagonal of the velocity mass matrix
(as discussed in [10]) and the diagonal of the velocity stiffness matrix (as considered for
Q1-P0 elements in [15]). However, in this paper, we only use stable elements that satisfy the
LBB condition.

• LDU: With S=−BD−1BT, where D is the diagonal of the (convection–)diffusion matrix, and
where the F−1 terms inL andU are replaced by D−1. This approach is known as the SIMPLE
preconditioner in [4, 16]. In [17], D is replaced by an incomplete LLT decomposition of F .

• LDU methods: In addition to using the LDU decomposition as a preconditioner, this
factorization can also be used directly as an iterative method to solve the Stokes problem
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1182 M. UR REHMAN ET AL.

in combination with an approximation of the Schur complement [15, 18, 19]. In this case,
preconditioned Krylov methods are employed only on the subsystems. The cost of these
iterative methods is governed by the approximation used for the Schur-complement matrix
and the preconditioner employed for the Schur subsystem. In Section 2.3, we introduce a
Schur method that is also based on the LDU blocks. We handle terms involving the Schur-
complement matrix implicitly and use the pressure mass matrix as a preconditioner to solve
the subsystem corresponding to the Schur complement inexactly.

As mentioned earlier, we consider the solution of the Stokes problem with both constant and
non-constant viscosity. Many of the preconditioners that have been developed to solve the Stokes
problem are intended for the case of a constant-viscosity (Navier–)Stokes problem. When using
the pressure mass matrix as an approximation of the Schur complement, scaling by the inverse of
the viscosity is an important issue. If this scaling is not used, the pressure mass matrix acts more
or less as a poorly scaled identity matrix. In Section 3, we will address this scaling in relation
to the construction of the pressure mass matrix. Moreover, some aspects of convergence with and
without scaling the problem/subproblems are discussed.

Numerical experiments are performed in Section 4, using Taylor Hood (Q2-Q1) elements, in
which the velocity is defined by a bi-quadratic field and the pressure as bi-linear field on each
element. The preconditioners are tested on problems from three different areas (fluid dynamics,
extrusion, computational geodynamics) with different configurations (isoviscous, varying viscosity,
sharp viscosity contrast). We compare the Schur method and the preconditioners based on the
pressure mass matrix with the LSC preconditioner. The pressure mass matrix approximation shows
nice convergence for quadratic elements. The Schur method seems expensive for the constant-
viscosity problem; however, in problems with high-viscosity contrast, the Schur method and
block-triangular preconditioner with the pressure mass matrix approximation perform equally well.
Section 5 contains our conclusions.

2. SOLUTION TECHNIQUES

In this section, we discuss techniques for efficient solution of the Stokes problem. These techniques
use Krylov subspace methods on both the system and subsystem level with appropriate choices of
preconditioners and approximations of the pressure Schur-complement matrix. The three schemes
we consider are:

1. Block-triangular preconditioner with GCR.
2. LSC block-triangular preconditioner with GCR.
3. The Schur method (a new approach).

The first two approaches are preconditioners that accelerate GCR to solve the Stokes problem.
The third technique is an iterative method that uses Krylov methods on the subsystem level. The
important feature of the third method is the preconditioner used to solve the implicitly constructed
Schur-complement matrix BF−1BT (available in matrix–vector product form) at each step of the
pressure subsystem solve.

2.1. Block-triangular preconditioner

The block-triangular preconditioner based on DU blocks is given in exact form as:

Pt =
[
F BT

0 S

]
. (5)

If exact arithmetic is used, GMRES with this preconditioner converges into two iterations [20].
However, matrix–vector multiplications with S require solving a system with F leading to an
expensive preconditioning operation. Therefore, the Schur-complement matrix is replaced by an
approximation that is spectrally equivalent to the Schur-complement matrix and also cheap to
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ON ITERATIVE METHODS FOR THE INCOMPRESSIBLE STOKES PROBLEM 1183

compute. For the Stokes problem, the pressure mass matrix Mp is known to be a cheap and
spectrally equivalent approximation to the Schur-complement matrix [2]. Therefore, the inexact
form of the preconditioner can be written as

Pt =
[
F BT

0 −Mp

]
. (6)

Solving Pt z=r , where z=
(
z1
z2

)
and r =

(
r1
r2

)
, requires the following steps:

1. First solve Mpz2=r2.
2. Update r1=r1−BTz2.
3. Solve Fz1=r1.

The above steps can be performed with a lower accuracy than the accuracy required for the outer
GCR iterations. In this paper, we use both exact (direct) and inexact solvers for these steps.

If the Stokes problem is scaled with a constant viscosity �, then the pressure mass matrix is
also scaled with a constant viscosity (1/�)Mp. We will discuss scaling in detail in Section 3. The
effectiveness of this approach is justified by the following results from [2, p. 270].
Theorem 2.1
For any flow problem with Dirichlet boundary conditions (prescribed velocities) discretized using
a uniformly stable mixed approximation on a shape regular, quasi-uniform subdivision of R2, the
pressure Schur-complement matrix BF−1BT is spectrally equivalent to the pressure mass matrix
Mp, with

�2� 〈BF−1BTq,q〉
〈Mpq,q〉 �1 for all q∈Rm, q �=0. (7)

The inf–sup constant � is bounded away from zero independently of h, and the condition number
satisfies k(BF−1BT)�C/(c�2), where C and c are the constants given by

ch2� 〈Mpq,q〉
〈q,q〉 �Ch2 for all q∈Rm, q �=0. (8)

Similar bounds also exist for the Neumann boundary condition problem. An extra condition

q �=1 is required in (7) and (8) in case of enclosed flow, because the vector
(
0
1

)
corresponds to a

zero eigenvalue of the Stokes matrix.

Theorem 2.2
If the Stokes problem is preconditioned with a block-triangular preconditioner, then the precondi-
tioned system has eigenvalue �=1 of multiplicity n and the remaining eigenvalues depend on the
approximation to the Schur-complement matrix.

In this paper, we accelerate GCR with a block-triangular preconditioner that uses the pressure
mass matrix approximation for the Schur-complement matrix. For simplicity, we call this approach
PMM.

2.2. LSC preconditioner

The pressure mass matrix is a good approximation of the Schur-complement matrix as long as the
Reynolds number is small. For large Reynolds numbers, the effect of convection term in BF−1BT

becomes important and hence convergence with the pressure mass matrix will become slow. An
approximation that takes into account the effect of convection in the Navier–Stokes is the LSC
preconditioner [10]. The Schur-complement approximation in LSC is based on the commutator
action of a convection–diffusion operator on the velocity space (L), multiplied by the gradient
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operator, and the gradient operator acting on the convection–diffusion operator in the pressure
space (Lp) when

ε=L∇−∇Lp, (9)

is small, where

L=−�∇2+wh.∇, (10)

and wh is the approximation to the discrete velocity, computed in the most recent Picard iteration.
Note that the commutator would be zero if wh is constant and the operators were defined on an
unbounded domain [2].

Discretization and simplification (see the details given in [2]) give rise to an approximation of
the form:

(BF−1BT)−1≈Fp(BM
−1
1 BT)−1, (11)

where

Fp =(BM−1
2 BT)−1(BM−1

2 FM−1
1 BT),

where M1 and M2 are scaling matrices.
So, applying the LSC preconditioner requires two scalar Poisson-type solves and one velocity

solve. With M1=M2= Q̂u , where Q̂u is the diagonal of the velocity mass matrix, the preconditioner
shows nice convergence for solving the isoviscous problem.

In a recent paper [15], a scaling matrix has been constructed that improves the convergence
considerably in the case of large viscosity contrasts. The scaling is based on the maximum row entry
in the velocity matrix, (M1)ii=(M2)ii=max j |Fij|. Based on this scaling, the LSC preconditioner
is used to solve the Stokes problem with sharp viscosity contrasts discretized with Q1-P0 elements.
Because these elements do not satisfy a discrete LBB condition [2], it may be necessary to modify
the discretized equations by adding a stabilization term to the continuity equations. If such a
modification is made, an appropriate adaptation of the approximate Schur complement is also
needed. In this paper, we also use essentially the same scaling, by using the diagonal of the velocity
matrix (M1=M2=diag(F)). For simplicity, we call this approach LSCD .

In the next section, we discuss a distinct solution technique than those discussed here and in
Section 2.1. Usually, preconditioned Krylov methods are used to solve the Stokes problem, where
the subsystems for the preconditioner are solved inaccurately with an iterative method. Therefore,
the overall convergence depends on both the inner and outer iterative schemes. Next, we propose
a method in which Krylov subspace methods are employed only at the subsystem level. We refer
to this approach as the ‘Schur method’.

2.3. The Schur method

The Schur method is based on the block factorization of Problem (3). The Schur-complement
matrix, (BF−1BT), present in the factorization is treated implicitly. In order to apply pressure-
correction type methods, we split the coefficient matrix as follows:[

F BT

B 0

][
u

p

]
=

[
F 0

B −BF−1BT

][
u∗

�p

]
, (12)

where [
u∗

�p

]
=

[
I F−1BT

0 I

][
u

p

]
. (13)

Then the systems of equations can be solved in the following steps.
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Algorithm 1 The Schur method

Initialize u(0), p(0) and maxiter (maximum iterations)
Compute: ru = f −Fu(0)−BT p(0)

rp =g−Bu(0)

For k=0 to maxiter

1. Solve Fu f =ru
2. Solve −BF−1BT p� =rp−Bu f

3. Update u� =u f −ul , where ul is obtained by solving Ful = BT p�

4. Update u(k+1) =u(k)+u�
5. Update p(k+1) = p(k)+ p�
6. Update ru = f −Fu(k+1)−BT p(k+1)

7. Update rp =g−Bu(k+1)

8. If converged Exit

End For

As already mentioned, the Stokes problem is symmetric and indefinite. However, the subsystems
corresponding to the velocity (vector Poisson) and pressure used in the solves in Steps 1–3 are
symmetric and definite. F−1 in Steps 1–3 is computed approximately by solving the velocity
subsystem with an inexact solver. The best option is to use MG preconditioned CG or some
multigrid technique as both of these methods are known to give optimal convergence for Poisson-
type problems.

The pressure subsystem in Step 2 can in principle, be solved efficiently by CG. However, we do
not construct BF−1BT explicitly, but approximately solve (−BF−1BT)p� =rp−Bu f within each
step of CG. As F−1 is computed inexactly, CG can only be applied if the number of iterations used
to do this is kept constant in each step. This is due to the fact that CG requires a constant matrix
and preconditioner. This problem can be overcome by either using a stand-alone solver, such as
multigrid, or a flexible Krylov methods (GCR in our case). The efficiency of the Schur method
requires efficient treatment of Step 2. Because the Schur-complement matrix is not constructed
explicitly, however, we need a special type of preconditioner as we cannot use preconditioners
based on matrix splittings. The pressure mass matrix appears to be an efficient preconditioner for
the Schur subsystem. If we use the same accuracy to solve the system with PMM and to solve
Step 2 of the Schur method, the number of pressure mass matrix preconditioned GCR iterations
in both methods are almost the same. These iterations govern the efficiency of both techniques.
This observation also motivates the use of GCR instead of flexible CG [21].

Based on the Schur method (Algorithm 1), we propose two schemes:

1. Schur method as direct method: By requiring the accuracy of the subsystem solves to be the
same or higher than the outer accuracy, the Schur method can be used as a direct solver.
To solve the Schur pressure system (−BF−1BT)p� =rp−Bu f , we use the pressure mass
matrix Mp as a preconditioner. The system (−BF−1BT)p� =rp−Bu f is solved with the help
of GCR in which preconditioned matrix–vector products within (BF−1BT)p� are obtained
by computing preconditioned residual S(k+1) =Bum , where um is obtained by solving a
subsystem Fum = BTMp

−1r (k) and r (k) is the residual computed in the previous GCR itera-
tion.

2. Schur as an iterative method: When the inner systems are solved with a lower accuracy than
desired of the final solution, outer iterations are required. Again, the pressure mass matrix is
used as a preconditioner for the pressure subsystem.

From the above discussion, it is clear that three subsystems are solved for the velocity unknowns
u f , um , and ul and one subsystem is solved for the pressure unknown p� in each iteration of the
Schur method. The most expensive part of the algorithm is the computation of um as the number
of times Fum =r must be solved is equal to the total number of GCR iterations that are required
to solve the pressure subsystem.
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One of the advantages that can be seen from the above algorithm is that most of the computations
are done at the subsystem level. The system level computations can be reduced by a proper choice
of inner accuracy. For example, if subsystems are solved as accurately as the outer tolerance
requires, only one outer iteration is required. However, more outer iterations are typically required.
This will be further discussed in Section 4, based on some numerical experiments.

2.4. Solving the subsystem

All of the iterative methods discussed here involve solving subsystems for the velocity and pressure.
The most important issue in the pressure subsystem is its approximation as discussed above. Once
it is approximated, it is easy to solve as it gives rise to a scalar problem on the pressure space
that is typically easy to precondition. The velocity system, on the other hand, is large in size and
requires a good preconditioner to get fast convergence.

In this paper, we apply various methods to solve these subsystems. As the velocity subsystem
in the Stokes problem is symmetric and positive definite, we use AMG preconditioned CG
(AMG/CG). The pressure subsystem is solved with AMG/CG when ICCG(0) becomes an expen-
sive option. In case we are only interested in the number of outer iterations and accuracy we use
Matlab in combination with a direct solver.

We use algebraic multigrid-(AMG) preconditioned CG from the library multi-level-(ML) precon-
ditioning package [22]. The choice for multigrid is based on its optimal convergence for Poisson-
type problems. Smooth aggregated multigrid, as is implemented in ML, is known to be particularly
effective for the vector Poisson problems of interest here.

In general, multigrid consists of the following components: smoothing, restriction, pro-
longation, and a coarse-grid solver. The way they are linked to each other is shown in Algorithm 2.

Algorithm 2 Solve Ahuh =bh
where subscript h is used for the fine grid and H for the coarse grid.

1. Perform smoothing by using k iterations of an iterative method (Jacobi, Gauss Seidel, etc)
on the problem Ahuh =bh

2. Compute the residual rh =bh−Ahuh
3. Restrict the residual rH = PTrh
4. Solve for the coarse-grid correction, AHeH =rH
5. Prolong and update uh =uh+PeH
6. Perform smoothing by using l iterations of an iterative method (Jacobi, Gauss Seidel, etc)

on the problem Ahuh =bh

All of these components play an important role in achieving optimal convergence. Algorithm 2 is
also known as the two-grid algorithm; Step 4 can be adapted for various type of multigrid cycles
(V,W,F) and choice of coarse levels. In geometric multigrid, restriction, prolongation, and coarse
grids are chosen based on the geometric fine-grid information.

AMG also uses these components; however, the information that travels from finer grid levels
to coarse grids is not only the grid-point locations where the variables are defined. To start the
coarsening process, certain entries from matrix Ah are selected as influential in determining the
solution. For example, if aij �=0 in Ah , we say that point i in the grid is connected to point j
and vice-versa. The i th row of the matrix then consists of only those entries that influence the
unknown ui . The influence of unknown u j to ui is said to be large if a small change in u j gives a
large change in ui [23]. The influence of one unknown on another is decided by the corresponding
coefficient. A coupling between two grid points i and j is strong if

|aij|>�
√
aiiajj,

where � is a predefined coupling parameter [24]. A coarse grid is then defined by aggregating
the nodes in the graph of strong connections using a greedy algorithm [24]. Once the coarse
grid has been chosen, all operators in the coarse-grid correction process, including the restriction
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and interpolation operators, are constructed based on information obtained from the coefficient
matrix. Unlike MG, convergence of AMG does not require a robust smoothing strategy because the
coarse-grid correction process is designed to complement simple smoothers. A piecewise constant

interpolation operator ˆI hH is defined that has positive non-zero entries of unity in positions deter-
mined so that its columns form a partition of unity over the aggregates. This tentative interpolation
operator is then smoothed using Jacobi relaxation, given as

I hH =(I −�D−1
h AF

h ) ˆI hH ,

where � is the relaxation parameter, Dh =diag(AF
h ) and AF

h is the filtered matrix derived from
Ah by adding all weak connections to the diagonal. The remainder of the multigrid components
are formed based on the Galerkin condition [23], with restriction defined as I Hh =(I hH )T and
AH = I Hh Ah I hH . This process is known as smoothed aggregation. AMG based on this interpolation
technique shows nice convergence for problems with discontinuous coefficients and anisotropies
[24, 25].

3. EFFECT OF VARIOUS TYPE OF SCALINGS

The standard pressure mass matrix is defined independently of the viscosity

(Mp)i, j =
∫

�
�i� j d�, (14)

where � j and �i are the standard finite-element basis functions.
Experiments show that solving the variable-viscosity problem using this matrix as a precon-

ditioner gives slow convergence. The Schur-complement matrix, however, contains F−1, which
means that it is proportional to the inverse of the viscosity. So, it makes sense to scale the pressure
mass matrix used as a preconditioner by the inverse of the viscosity. In this section, we discuss
the construction of the pressure mass matrix and scaling with the viscosity. We will consider two
types of variable-viscosity problems: one with a relatively smooth viscosity (extrusion problem)
and the other, a benchmark problem from geodynamics, with large viscosity jumps.

3.1. The pressure mass matrix

In case of constant viscosity, scaling of the pressure mass matrix is trivial. However, in case of
variable viscosity, such scaling must be done carefully. Here, we assume that the viscosity is
available at each point of the grid, and consider two alternatives to incorporate the scaling.

1. Explicit scaling of the pressure mass matrix, which implies pre- and post-multiplication
of Mp by a diagonal matrix Sv : Mpe= S−1

v MpS−1
v , where Sv =diag(

√
�). This guarantees

that the mass matrix remains symmetric. The evaluation of � is done either on grid points
(Taylor–Hood elements) or on elements (Crouzeix–Raviart).

2. Implicitly scaling the pressure mass matrix can be done at the time of formation of the
pressure mass matrix,

(Mpi)i, j =
∫

�
(1/�)�i� j d�. (15)

If the viscosity is defined to be piecewise constant on each element, we have multiple viscosity
values to choose from at each node on the interface of two or more regions if we choose to scale
Mp explicitly. Consider the grid consisting of two elements shown in Figure 1 with viscosity �1 in
element 1 and �2 in element 2. We can see that nodes 3 and 4 of element 1 and nodes 1 and 2 of
element 2 (using local numbering) are common to both elements. So, there are two different values
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Figure 1. A grid with two elements.

of the viscosity that could be used at each node. Before constructing the global mass matrix, we
define

	kij=
∫
ek

�i� j dAk, (16)

where 	kij represents the contribution to (Mpi)i, j from element k where i and j represent node
indices. The global pressure mass matrix from these two elements using implicit scaling is:

Mpi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1
1 	111 �−1

1 	112 �−1
1 	113 �−1

1 	114 0 0

�−1
1 	121 �−1

1 	122 �−1
1 	123 �−1

1 	124 0 0

�−1
1 	131 �−1

1 	132 �−1
1 	133+�−1

2 	211 �−1
1 	134+�−1

2 	212 �−1
2 	213 �−1

2 	214

�−1
1 	141 �−1

1 	142 �−1
1 	143+�−1

2 	221 �−1
1 	144+�−1

2 	222 �−1
2 	223 �−1

2 	224

0 0 �−1
2 	231 �−1

2 	232 �−1
2 	233 �−1

2 	234

0 0 �−1
2 	241 �−1

2 	242 �−1
2 	243 �−1

2 	244

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

In (17), it is evident that for a high-viscosity contrast, the smaller value of � will dominate the
definition of Mpi (due to its inversion) at the nodes that are shared by these two elements, and
large entries will be observed on the diagonal of the matrix.

3.2. Scaling for the variable-viscosity problem

We consider two variable-viscosity problems:

• Extrusion problem with a variable viscosity: The Stokes problem is solved in the two-
dimensional (2D) domain shown on the left of Figure 2. The problem we consider is that of a
round aluminum rod, which is heated and pressed through a die. In this way, a prescribed shape
can be constructed. In this specific example, we consider the simple case of the construction
of a small round rod. The viscosity model used describes the viscosity as function of shear
stress and temperature, which are highest at the die where the aluminum is forced to flow
into a much smaller region. The end rod is cut, which is modeled as a free surface. Boundary
conditions are given by prescribed velocity at the inlet and a stress-free condition at the outlet.
At the container surface (boundary of thick rod), we have a no-slip condition. At the die,
we have friction, which is modeled as a slip condition along the tangential direction and a
no-flow condition in the normal direction. The round boundary of the small rod satisfies free
slip in the tangential direction and no-flow in the normal direction.

• Geodynamic problem having a sharp viscosity contrast: This problem is a benchmark problem
known as the SINKER model in [15]. It models a geodynamic flow on a square region. Inside
the region is a square with a different (but constant) viscosity, resulting in a sharp viscosity
contrast. The configuration is shown in [15] and in Figure 2. Boundary conditions are no
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Figure 2. Two-dimensional domain for the variable-viscosity Stokes problem (left). At right,
a 2D geodynamics test model: LVR represents the low-viscosity region with density 
1=1
and viscosity �1=1, and HVR denotes the high-viscosity region with density 
2=2, and

constant viscosity �2 (1, 103, and 106).

normal flow and no shear stress (at all boundaries). For this boundary condition, pressure can
be determined only up to an arbitrary additive constant.

If we try to solve the SINKER problem with high-viscosity contrast (e.g 106) and use an inexact
solver, e.g ICCG(0), for the subsystem solves, we fail to get convergence due to stagnation of the
inner solvers for high accuracies (10−6). Each time, a suitable tolerance is determined for which
the inner solver shows convergence. We would like to use higher accuracies to solve the subsystems
because, for high-viscosity contrast problems, the number of iterations of the outer Krylov method
depends on the inner accuracies. Another issue with high-viscosity contrast problems is that if we
use convergence criteria based on the L2 norm, some preconditioners e.g. PMM, lead to fewer
iterations. However, an inaccurate solution is obtained with this convergence criteria. In order to
achieve a suitably accurate results, we must ask for much higher accuracy from the Krylov method,
which is not a good practice. For example, if we use direct solver for the high-viscosity contrast
problem PMM requires much less iterations than LSC. However, the results with PMM are less
accurate than those computed by LSCD for the same tolerance. Figure 4 shows the pressure in
the high-viscosity region of the SINKER model for PMM and LSCD . The differences in these
solutions can be easily seen. Note also that at other places the difference is not as visible. It has
been observed that the solution obtained with LSCD mimics that obtained with a direct solver.

Remark 3.1
If we use a preconditioner for the Schur-complement that involves the diagonal of the velocity
matrix D−1, the error in the iterative method using a direct method for the subsystems becomes
small. This has been verified for LSCD , BD−1BT, and SIMPLE.

The above remark is true even if convergence for the velocity and pressure subsystems is
achieved with an iterative method, without scaling.

To overcome issue with convergence of the subsystems and accuracy of the solution, we scale
the original problem. In our case, we use a variant of scaling that has already been used with
SIMPLE preconditioners [26]. Sm is a scaling matrix given by:

Sm =
⎡
⎣

√
diag(F) 0

0
√
diag(BD−1BT)

⎤
⎦ . (18)
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Figure 3. Eigenvalue spectrum of the Stokes problem.

Figure 4. Solution of the variable-viscosity Stokes problem using various solution schemes: the plot shows
the pressure solution in the high-viscosity region at the SINKER problem: (a) PMM and (b) LSCD .

This scaling is applied to the complete system (Ax=b) and to the velocity and pressure
subsystems (within the preconditioner), but is only well-defined when Fii>0 and (BD−1BT)ii>0.
In our case, both conditions are satisfied and, hence, the matrix Sm is well-defined. With this
scaling, convergence criteria are based on the residual in a scaled L2 norm.

In our case, the linear system (for the SINKER model) is scaled before the iterative
methods discussed here are employed. After scaling, the pressure obtained with PMM mimics
the solution obtained with the exact solver. With this scaling, the number of iterations required
for convergence by the preconditioned iterative method may increase. Scaling, however, only
slightly changes the eigenvalue spectrum of the preconditioned system. This has been proven
for the diffusion problem having extreme contrasts (up to 107) in the coefficients using ICCG
[27]. For example, if we consider a preconditioned system, M−1Ax = M−1b, and if both the
preconditioner and the coefficient matrix are scaled with the same matrix, Ds , the scaled
matrices become M̂ = D−1

s M and Â = D−1
s A, and the preconditioned systemmatrix after scaling is

given by:
M̂−1 Â=M−1DsD−1

s A=M−1A. So the spectrum of the preconditioned-scaled system is the
same as the preconditioned-unscaled system.

Figure 3 shows the computed eigenvalue spectrum before and after scaling. The spectrum of the
preconditioned system clearly remains almost unchanged. If we use scaling, so that our system,
Ax=b becomes S−1

m AS−1
m Smx= S−1

m b, the most important change is the termination criterion for
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the iterative method. The relative convergence criteria for both the scaled and unscaled problems
are as follows:

For the unscaled system

‖b−Ax̂‖2�‖b‖2×tol, (19)

where x̂ is an approximate solution and tol is the desired tolerance.
For the scaled system, the convergence criterion will be:

‖S−1
m b−S−1

m AS−1
m ŷ‖2�‖S−1

m b‖2×tol, (20)

where x̂= S−1
m ŷ.

From the discussion above, it is clear that to get convergence (in high-viscosity contrast prob-
lems), scaling subsystems in the preconditioner is required. However, this does not guarantee that
the computed solution will be accurate. For an accurate solution, the complete system also requires
scaling with an appropriate scaling operator (Sm in our case).

3.3. Scaling of the velocity mass matrix

We use AMG/CG to solve the subsystems in the block preconditioners. One of the properties of
the AMG method that we use is that it requires a constant number of unknowns per grid point. If
the boundary conditions for the velocity are such that only a subset of the degrees of freedom is
prescribed, we must define an approximation to the boundary that includes all velocity components.
This is, for example, the case if the normal velocity component is prescribed in combination with
the shear stress. The normal velocity is usually eliminated, leading to only 1(2D) or 2(3D) degrees
of freedom on those points. To overcome this problem, we approximate the given normal velocity
component by a mixed boundary condition of the form cnun+�nt=cnū, where cn a large number
and ū is the prescribed value of the normal velocity and �nt is the tangential component of the
stress tensor.

Such an approximation works well except when the velocity mass matrix is used within the
preconditioner, as in the Schur-complement approximation of the LSC preconditioner. In that case,
the inverse of the diagonal of the velocity mass matrix is used as a scaling matrix. The combination
of this preconditioner with the approximate boundary condition leads to a lack of convergence
in the outer Krylov method. To overcome this difficulty, we update the velocity mass matrix by
multiplying the entries corresponding to the boundary elements with the approximate boundary
conditions by a factor of cn . After this change LSC converges as quickly as it does in the case of
full Dirichlet boundary conditions.

In our experiments, we observe no significant change in the number of outer/inner iterations
required using either the approximate or exact boundary conditions (see Figure 5).

4. NUMERICAL EXPERIMENTS

Numerical experiments are performed for both constant- and variable-viscosity problems. The
constant-viscosity problem is the 2D driven cavity problem. It simulates flow in a square cavity with
enclosed boundary conditions and a lid moving from left to right, giving the boundary condition:

ux =1 at y=1;−1�x�1.

The variable-viscosity problems are the extrusion and SINKER problems discussed above.
In the tables that follow, we use the notation Schur(eps) to denote that all velocity and pressure

subsystems are solved with an accuracy of 10−eps. The term ‘iter.’ gives the number of outer
iterations required in the Schur method and preconditioned GCR, whereas ‘inner’ refers to the
number of inner iterations needed to solve the Schur complement system in the Schur method. PMM
stands for the block-triangular preconditioner that uses the pressure mass matrix as a preconditioner
for the pressure part. The Stokes problem is solved up to relative accuracy of 10−6. The iteration
is stopped if the current iterate satisfies the inequality ‖rk‖2/‖b‖2�tol, where rk is the residual
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Figure 5. Convergence of LSC-preconditioned GCR, where the subsystems are solved with ICCG(0).

Table I. The Stokes driven cavity flow problem with Q2-Q1 discretization with AMG/CG for the velocity
subsystem solves and ICCG(0) for the Schur subsystem solves. Solution accuracy is 10−6.

Grids

32×32 64×64 128×128 256×256
Preconditioner iter.(time in seconds)

PMM 11(1.4) 10(5.6) 9(23.6) 9(97)
LSC 10(1.38) 13(8.3) 17(54) 22(319)
LSCD 22(3.2) 37(25) 80(275) 180(2880)
Schur(1) 6(3) 5(10.2) 5(46) 6(221)
Schur(6) 1(2) 1(10.6) 1(53) 1(251)

at the kth step of the Krylov subspace method, b is the right-hand side, and tol is the desired
tolerance value.

4.1. Isoviscous problem

In this section, we consider the solution of the driven cavity Stokes problem with a constant
viscosity. For PMM, LSC, and LSCD , we use an accuracy of 10−2 for the velocity subsystem and
10−1 for the pressure subsystem. We start with two-level AMG for a 32×32 element problem
and increment the number of levels when the grid size is doubled in each direction. In Table I,
we report the number of outer iterations and CPU time required for the solution. The table shows
that the PMM and the Schur method both scale well as the problem size increases. Scaling of
PMM has also been observed for problems with up to 108 degree of freedom [28]. Moreover,
the CPU time consumed by each of these two approaches is less than that needed for LSC-type
preconditioners. One iteration of the Schur method, however, is more expensive than the other
preconditioned Krylov methods. In Figure 6, the number of iterations required for the pressure
and velocity subsystems is plotted. The increase in the number of AMG/CG iterations required as
the grid size (and, so, the number of levels) increases to solve the velocity subsystem is smaller
for PMM and the Schur method than it is for the other methods. Figure 7 shows the number of
AMG/CG iterations required per outer iteration for the velocity subsystem, for a number of block
preconditioners. We see a small increase as the grid size increases, but this is not significant on
the finer grids.
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Figure 6. Solution of the constant-viscosity Stokes problem with accuracy 10−6: at left, the total
number of iterations required for the velocity subsystem. At right, the total number of iterations

required for the pressure subsystem.
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Figure 7. Number of AMG/CG iterations required to solve the velocity subsystem at each
iteration of the iterative method.

If we use the Schur method as a direct method (Schur(6)), we require only one pressure step.
However, as the pressure matrix requires inversion of the velocity matrix, we use an ICCG(0)
for the global (outer GCR) iteration and AMG/CG to solve the velocity subsystems with high
accuracy. The iterative approach with the Schur method (Schur(1)) requires more outer iterations,
but the total number of velocity iterations is smaller than for the direct method, due to the lower
accuracy. So, for finer grids, Schur(1) is slightly less time-consuming than Schur(6).

From Table I, we conclude that, of the methods compared, PMM shows the best convergence
behavior for the Stokes driven cavity problem.

4.2. Extrusion problem with a variable viscosity

The next problem that we consider is the extrusion problem, which has a smooth variable viscosity.
For this problem, we make a comparison between the Schur method and the various preconditioners.
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Table II. The variable-viscosity Stokes problem with Q2-Q1 discretization(SEPRAN) with AMG/CG for
the velocity subsystem and ICCG(0) (PMM, Schur method) or AMG/CG (LSC, LSCD) for the Schur

subsystem. Solution accuracy is 10−6.

Grid ↓ Levels/unknowns-coarsest PMM LSC LSCD Schur
tol −→ 10−3 10−3 10−6 10−6

iter.(time in seconds)

66k 3
394 19(51) 11(35) 74(357) 1(104)

195k 4
152 18(183) 13(188) 129(2650) 1(370)

390k 5
300 18(429) 14(480) >1000 1(869)

595k 5
408 19(743) 15(871) >1000 1(1478)

843k 6
112 19(1229) 15(1406) >1000 1(2686)
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Figure 8. Solution of the variable-viscosity Stokes problem with accuracy 10−6: at left, the total
number of iterations required for the velocity subsystem. At right, the total number of iterations

required for the pressure subsystem.

We use AMG/CG to solve the velocity subsystem in all iterative methods. In LSC and LSCD only,
AMG/CG is also employed for solving the pressure subsystems, as for PMM or the Schur method
only a few iterations are required to solve the pressure subsystem with ICCG(0). In PMM and the
Schur method, we use an approximation of the Schur complement matrix that has information about
the variation in viscosity. LSC is different from the other preconditioners because the scaling used
in LSC does not have information about the viscosity variation, as the diagonal of the velocity mass
matrix is used for scaling the subfactors in the Schur complement matrix. In these experiments, we
keep the tolerance required for the velocity and the pressure parts the same. Therefore, in Table II,
only one tolerance is given. PMM and LSC perform best with inner accuracy 10−3, whereas LSCD
and the Schur method converge well with tolerance 10−6. Hence, we present results only for these
accuracies.

PMM and LSC show better performance than the other two iterative methods. In terms of
outer iterations, LSC requires fewer outer iterations than PMM, but one iteration of LSC is more
expensive than one of PMM. Figure 8 reveals that LSC requires more pressure iterations than
PMM due to the two Poisson solves required. The number of AMG/CG iterations taken by PMM
and LSC for solving the velocity subsystem, are, however, comparable. Figure 9(a) shows that
LSC requires more inner iterations for the velocity subsystem per outer iteration than PMM. PMM
scales well with the problem size, requires fewer inner iterations for the velocity and pressure
subsystems and, so, it is a better choice than LSC. The Schur method seems to be two times more
expensive than PMM, because it uses an inner accuracy two times greater than PMM.
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Figure 9. Performance of the algorithms for the extrusion problem: (a) number of AMG/CG iterations
required to solve the velocity subsystem at each iteration of the iterative method and (b) number of outer

iterations required for the solution of the Stokes problem with the Schur method.

Figure 9(b) shows convergence patterns for different subsystem accuracies in the Schur method.
The horizontal line shows the tolerance for termination. The expected number of iterations for
Schur(6), Schur(3), and Schur(2) are 1, 2 and 3, respectively. However, Figure 9(b) shows that for
lower inner accuracies, the number of iterations is greater than expected. The main reason is that
sometimes the accuracy of solutions of the subsystems does do not guarantee the satisfaction of
the outer convergence criteria. In fact, in some cases, the number of outer iterations required for
Schur(6) was greater than 1. The main reason for this is that the accuracy of the update u� =u f −ul
computed in Step 3 of Algorithm 1 does not sufficiently reduce the overall error of the solution to
the outer system, and the termination criterion is not satisfied. The same can be the case for Steps
5 and 6 in the Schur method. In those cases, we have increased the accuracy of the inner solver a
little bit (multiplied by 10−1), which makes the Schur method more expensive.

In the isoviscous problem, the Schur method is used either as a direct method or an iterative
method. In terms of CPU time, both schemes perform well because the convergence of the
subsystem solvers has a very small dependence on the inner accuracies. However, in the case
of varying viscosity problems, especially those with high-viscosity contrast, the subsystems are
required to be solved accurately. Therefore, in this case, a direct approach of the Schur method
performs more efficiently than the iterative approach.

4.3. Geodynamic problem with a sharp viscosity contrast

The SINKER problem (Figure 10(a)) that we consider in this section has already been discussed
in Section 3.1. Here, we consider a forcing term f =(0,−
g), where g=9.8m/s2. Figure 10
shows the three viscosity configurations that were used to check the convergence and accuracy of
the iterative methods. The corresponding problems are referred to as (a), (b), (c). As LSC either
diverges or converges very slowly for the high-viscosity contrasts considered here, we do not report
any results for this method. The problem and subproblems are scaled as described in Section 3.2,
before applying the iterative methods. The velocity solution for all preconditioners is accurate.
Therefore, we only remark on the accuracy of the pressure solution. This is done by comparing
with the ‘exact solution’, computed by a direct method.

Table III shows the number of iterations and the norm of the error in pressure for configuration
(a). In the first experiments, �1 is kept fixed at one and �2 is increased; thereafter, �2 is kept equal
to one and �1 is increased. We see that the number of iterations for PMM and Schur is almost
the same for both the 30×30 and 60×60 grids, which suggest h-independent convergence. LSCD
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Figure 10. Geodynamic problem configurations where the dark region consists of viscosity �2 and
density 
2 and white region has viscosity �1 and density 
1.

Table III. Iterative solution of the Stokes problem with configuration (a), accuracy=10−6.

PMM LSCD Schur

� iter. ‖pexact− pPMM‖2 iter. ‖pexact− pLSCD‖2 iter. (inner) ‖pexact− pSchur‖2
30×30

�1=1, �2=106 12 9×10−4 26 7×10−6 2(18) 2×10−8

�1=1, �2=103 12 2×10−5 26 3×10−6 2(20) 2×10−10

�1=1, �2=101 11 5×10−6 24 1×10−6 2(16) 2×10−10

�1=1, �2=1 11 4×10−7 25 2×10−6 2(5) 5×10−11

�1=101, �2=1 15 1×10−6 27 2×10−6 1(14) 2×10−6

�1=103, �2=1 18 4×10−6 26 3×10−6 1(18) 2×10−6

�1=106, �2=1 15 4×10−4 23 1×10−4 1(16) 2×10−5

60×60
�1=1, �2=106 13 8×10−3 40 6×10−5 2(19) 5×10−8

�1=1, �2=103 13 3×10−5 40 5×10−6 2(20) 3×10−9

�1=1, �2=101 13 1×10−6 41 3×10−6 2(18) 4×10−10

�1=1, �2=1 3 6×10−6 36 3×10−6 2(5) 9×10−10

�1=101, �2=1 16 2×10−6 41 4×10−6 1(14) 4×10−6

�1=103, �2=1 20 1×10−5 38 7×10−6 1(20) 5×10−6

�1=106, �2=1 17 4×10−4 35 1×10−4 1(18) 3×10−5

shows a clear increase with the increase of grid points. For constant �2, the difference in accuracy
between all methods is small.

However, in the problem where �1 is constant (SINKER), the accuracy obtained with PMM
is less than the other two iterative methods, even though all subsystems are solved with high
accuracy (10−6 or 10−7). The Schur method gives much more accurate results than the other
two preconditioners, because the first iteration of the Schur method gives an accurate inner solve,
whereas the second iteration makes the solution more accurate than the desired tolerance. From
the table, we see that, with respect to accuracy and efficiency, the Schur method seems a better
option than the other two. The reason is that PMM requires more iterations than Schur to get the
same accuracy, whereas the costs per iteration are comparable. Similar results have been observed
for a 90×90 grid.
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Table IV. Iterative solution of the Stokes problem with configuration (b), accuracy=10−6.

PMM LSCD Schur

� iter. ‖pexact− pPMM‖2 iter. ‖pexact− pLSCD‖2 iter.(inner) ‖pexact− pSchur‖2
60×60, �1=1

�2=106 11 2×10−4 40 2×10−4 2(15) 2×10−8

�2=103 11 1×10−5 40 1×10−5 2(18) 9×10−9

�2=101 11 2×10−6 41 5×10−6 2(16) 2×10−10

Table V. Iterative solution of the Stokes problem with configuration (c), accuracy=10−6.

PMM LSCD Schur

inner acc. iter. ‖pexact− pPMM‖2 iter. ‖pexact− pLSCD‖2 iter.(inner) ‖pexact− pSchur‖2
�1=1, �2=106

10−3 9 5×10−4 39 4×10−4 3(10) 5×10−6

10−6 9 7×10−4 35 3×10−4 2(10) 3×10−9

10−8 2 7×10−6 33 2×10−4 1(1) 7×10−6

Direct 2 1×10−8 31 2×10−4 1(1) 9×10−9

�1=1, �2=103

10−3 11 1×10−5 41 2×10−5 3(11) 4×10−7

10−6 9 4×10−5 36 8×10−6 2(10) 3×10−10

10−8 2 8×10−7 34 9×10−6 1(1) 8×10−7

Direct 2 2×10−8 32 9×10−6 1(1) 9×10−9

Table IV gives the results for problem (b). In principle, all methods reach the same accuracy,
but as the Schur method takes two outer iterations due to the fixed inner accuracy of 10−6, its
final accuracy is better.

Results for problem (c) with a 60×60 grid are given in Table V. We consider the convergence
as a function of the inner accuracy for two values of �2 (103 and 106). As we already know, the
number of outer iterations in these methods depends on the choice of the inner accuracy. One
thing that is different from problem (a) is that, in PMM and the Schur method, inner accuracy
also affects the accuracy of the solution of the complete system, whereas in LSCD , the system
accuracy remains the same with these changes in the subsystem accuracy. The reason is that
problem (c) is relatively simple, because the heavy layer is at the bottom and effect of this layer
(buoyancy) is much less than that in problems (a) and (b). This can be seen from the isobars
in Figure 11. The pressure is smooth for problem (c), but it contains wiggles for both problems
(a) and (b). In this case, the preconditioner itself is the best approximation of the problem, so
increasing the inner accuracy has a large effect on the number of outer iterations required and the
outer accuracy achieved. In the Schur method, we see that the accuracy obtained for solves with
subsystem accuracy 10−3 and 10−8 is approximately the same. The three iterations of the Schur
method with inner accuracy 10−3 makes the overall solution have roughly the same accuracy as
one iteration of the Schur method with inner tolerance 10−8. In this type of problem, PMM seems
to be the better option, as we can get an accurate solution by increasing subsystem accuracy.

From all of these experiments, it is clear that, to get more accurate results, the Schur method
is a better option than PMM and LSC. This property can be efficiently utilized in the solution of
problems of type (a). A reason that the Schur method gives more accurate results might be the
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Figure 11. The pressure solution in various configurations: (a) problem (a), �1=1, �2=106; (b) problem
(b), �1=1, �2=106; and (c) problem (c), �1=1, �2=106.

fact that it uses subfactors of the system iteratively in a classical way. If that is the case, we may
also expect better results when using Richardson-type iterative improvement of the form:

xk+1= xk+PMM−1(b−Axk). (21)

We observe that (21) also gives better accuracy than PMM and LSC. As we need more iterations
to apply Richardson, however, our conclusion regarding using the Schur method in problems of
type (a) remains valid.

We know that for high-viscosity contrast problems, the condition number of the matrix increases
with the contrast between the matrix entries. For a 108 contrast, the condition number of the matrix
is expected to be of that same order or higher, even on small meshes. Solving the problem with a
relative termination tolerance of 10−6 results in an error norm of roughly 102 (contrast*tolerance).
Scaling does not change the condition number of the system (it only affects the termination
criterion). So, in order to get the same order of accuracy for the non-scaled problem, we need a
termination criterion that is more severe than the previous 10−6. In this scenario, the use of Schur
method can be a better option than other type of iterative methods.

5. CONCLUSIONS

In this paper, we consider the solution of the incompressible Stokes problem using preconditioned
iterative methods. We solve three different classes of problems with various configurations and
viscosity distributions using PMM, LSC, and the Schur method.

For the isoviscous problem, the PMM and the Schur method show better performance than the
other preconditioners. LSC performs better for small problems. However, its dependence on the
grid size makes it more expensive than the PMM and the Schur method for large problems. We
note that for this type of problem based on a FEM discretization on an unstructured grid, the
combination of PMM using AMG/CG to solve the subsystems leads to a number of inner and
outer iterations that is essentially independent of h.

For the variable-viscosity problem arising from extrusion, the performance of PMM and the
Schur method come close to one another due to the high-accuracy requirements for the subsystem
solves in PMM. For the Schur method used as direct method, the accuracy of the inner subsystems
must be kept equal to the outer accuracy. In general, this strategy works for isoviscous problems.
However, in a variable-viscosity problem, the Schur method often needs a second iteration. This
can be avoided by solving the last velocity subsystem with a higher accuracy. In some cases, all
subsystems should be solved using a higher accuracy than the desired tolerance for the complete
system. For a certain range of problems, LSC performs better than the PMM and the Schur method.
However, due to its h-dependent convergence, its performance becomes equal to or worse than
that of the PMM and the Schur method for large problems.

For a large viscosity contrast, LSC fails to converge. This suggests that for a high-viscosity
contrast problem, the Schur complement matrix must be approximated by an operator that contains
viscosity information for the problem. The complete system is also required to be scaled with
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proper scaling factors. The Schur method is a good choice to use in high-viscosity contrast problems
because it gives a more accurate solution at lesser cost than PMM and LSCD .

The general conclusion is that PMM is the best choice, except in case of a high-viscosity
contrasts, where the Schur method is to be preferred.
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