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a b s t r a c t

A general framework is given for applying the Newton–Raphson method to solve
power flow problems, using power and current-mismatch functions in polar, Cartesian
coordinates and complex form. These two mismatch functions and three coordinates,
result in six possible ways to apply the Newton–Raphson method for the solution of
power flow problems. We present a theoretical framework to analyze these variants for
load (PQ) buses and generator (PV) buses. Furthermore, we compare newly developed
versions in this paper with existing variants of the Newton power flow method. The
convergence behavior of all methods is investigated by numerical experiments on
transmission and distribution networks. We conclude that variants using the polar
current-mismatch and Cartesian current-mismatch functions that are developed in this
paper, performed the best result for both distribution and transmission networks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A power flow computation that determines the steady state behavior of the network is one of the most important
tools for grid operators. The solution of a power flow computation can be used to assess whether the power system can
function properly for the given generation and consumption. Therefore, power flow computations are performed in power
system operation, control and planning.

The power flow or load flow problem is the problem of computing the voltage magnitude |Vi| and angle δi in each bus of
a power system where the power generation and consumption are specified. Over the years, various power flow solution
techniques [1–15] have been developed on transmission networks. Gauss–Seidel (G–S), Newton power flow (N–R) and Fast
Decoupled Load Flow (FDLF) based algorithms are the most widely used methods for the solution of transmission power
flow problems. In practice, the Newton power flow method is preferred in terms of quadratic convergence and improved
robustness [16]. Furthermore, many new methods [17–28] have been developed for distribution power flow problems and
generally they are divided into two main categories such as modification of conventional power flow solution methods (G–
S, N–R, FDLF) and Backward–Forward Sweep (BFS)-based algorithms. Several reviews on distribution power flow solution
methods can be found in [29–32].

In this paper, we focus on the Newton based power flow methods for balanced transmission and distribution networks.
Depending on problem formulations (power or current mismatch) and coordinates (polar, Cartesian and complex form),
the Newton–Raphson method can be applied in six different ways as a solution method for power flow problems. These
six versions of the Newton power flow method are considered as the fundamental Newton power flow methods from
which the further modified versions [8–15] are derived. Table 1 shows the previously published papers considering each
variation of the Newton power flow method.
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Table 1
Known versions of the Newton power flow method.

Mismatch formulation Coordinates

Polar Cartesian Complex form

Power [2] [33] [34]
Current [35] [35,36]

The most widely used version is the Newton power flow method using the power-mismatch and polar coordinates
which is introduced in [2]. In this method, the reactive power mismatch ∆Q and the voltage magnitude correction ∆V
for each generator (PV) bus are eliminated from the Jacobian matrix equations and therefore the order of the equation is
(2N − Ng − 2).

In the version using the power-mismatch and Cartesian (rectangular) coordinates introduced in [33], the reac-
tive power mismatch ∆Q is not eliminated from the Jacobian matrix equations for each PV bus but replaced by a
voltage-magnitude-squared mismatch equation:

∆|V |
2

= (|V |
sp)2 − (V r )2 + (Vm)2. (1)

where |V |
sp is specified voltage magnitudes and V r and Vm are the real and imaginary parts of the complex voltages

respectively. Therefore, the order of the Jacobian matrix equation is (2N − 2) and it is concluded in [33] that the method
is slightly less reliable and less rapid in convergence than the polar version developed in [2].

Although it is mentioned in [2,16] that the complex power flow formulation does not mathematically lead to an analytic
function of the complex voltage because of conjugate terms, the paper [34] investigated the version of the Newton power
flow method using the power-mismatch in complex form. In paper [34], the Jacobian matrix equations are developed in
complex form for each load (PQ) bus whereas two separate equations are created for each PV bus. The correction values of
complex voltage for the PQ and PV buses are computed separately using different tolerances at each iteration. However,
it is preferred to calculate correction values for both PQ and PV buses using common Jacobian matrix equations and the
same tolerance.

The version using the current-mismatch and a mix of Cartesian and polar coordinates is discussed in [35]. In this
method, each PQ bus is represented by two equations that are constructed from the real and imaginary parts of the
complex current-mismatch function. A PV bus is represented by a single active power-mismatch ∆P and the voltage-
magnitude-squared mismatch equation (1). The order of the Jacobian matrix equation is (2N − 2) and it is concluded
in [16] that these versions perform less satisfactorily than the power-mismatch versions.

The version using the current-mismatch and Cartesian coordinates is considered again in [36]. This method introduces
a new dependent variable ∆Q for each PV bus and additional equations relating the corrections in polar and Cartesian
coordinates:

∆|V | =
V r

|V |
∆V r

+
Vm

|V |
∆Vm (2)

∆δ =
V r

|V |
2 ∆Vm

−
Vm

|V |
2 ∆V r . (3)

Using Eqs. (2) and (3), this method makes the Jacobian matrix equation square in order to have a unique solution. In this
method, the real ∆Ir and imaginary ∆Im current-mismatch functions are expressed in terms of the real ∆P and reactive
∆Q power-mismatch functions. Then the reactive power-mismatch ∆Q is considered as a dependent variable for each PV
bus and computed at each Newton iteration. Minor attempts were made to speed up the solution method using a partly
constant approximation of the Jacobian during the iterations, but the results were not encouraging [36].

We did not find any discussion covering the Newton power flow method using the current-mismatch in complex form.
All variations of the Newton power flow method are developed by different researchers in different ways. This paper

aims to discuss all six versions of the Newton power flow method using a common framework and to introduce new
developments to improve the performance of other versions besides the most used version using the power-mismatch and
polar coordinates [2]. Major improvements were done by us in Cartesian power-mismatch, polar current-mismatch and
Cartesian current-mismatch versions. In versions using Cartesian coordinates, Eqs. (2) and (3) are used for PV buses instead
of the voltage-magnitude-squared mismatch equation (1). In case of versions using the current-mismatch regardless of
the choice of the coordinates, the reactive power Q is considered as a dependent variable for each PV bus. Thus, we
compute the correction ∆Q at each iteration and update Q using the computed corrections. In case of the Cartesian
power-mismatch, the order of the system is decreased to (2N − Ng − 2) whereas [33] uses a system with the order
(2N − 2). The complex current-mismatch and complex power-mismatch versions are developed only for PQ buses.

This paper is structured as follows. In Section 2, a mathematical model of a power system is introduced briefly. Section 3
mathematically describes the power flow problem. The Newton–Raphson method and its all six versions for the solution of
power flow problems are explained in Section 4. The numerical results of all solution techniques on balanced distribution
and transmission networks, are presented in Section 5. Finally, the conclusion is given in Section 6.



B. Sereeter, C. Vuik and C. Witteveen / Journal of Computational and Applied Mathematics 360 (2019) 157–169 159

Table 2
Network bus type.
Bus type Number of buses Known Unknown

Slack node or swing bus 1 |Vi|, δi Pi,Qi
Generator node or PV bus Ng Pi, |Vi| Qi, δi
Load node or PQ bus N − Ng − 1 Pi,Qi |Vi|, δi

2. Power system model

Power systems are modeled as a network of buses and transmission lines whereas a network bus represents a system
component such as a generator, load and transmission substation etc. There are three types of network buses such as a
slack bus, a generator (PV) bus and a load (PQ) bus. Each bus in the power network is fully described by the following
four electrical quantities:

|Vi|: the voltage magnitude
δi: the voltage phase angle
Pi: the active power
Qi: the reactive power

Depending on the type of the bus, two of the four electrical quantities are specified as shown in Table 2:
Here, i is the index of the bus, Ng is the number of generator buses and N is the total number of buses in the network.

For more details on the power system model we refer to [37].

3. Power flow problem

The power flow, or load flow, problem is the problem of computing the voltage magnitude |Vi| and angle δi in each
bus of a power system where the power generation and consumption are given. According to the Kirchhoff’s Current Law
(KCL), the relation between the injected currents and bus voltages, is described by the admittance matrix Y:

I = YV ↔

⎡⎢⎢⎢⎣
I1
I2
·

·

IN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Y11 Y12 · · Y1N
Y21 Y22 · · Y2N
· · · · ·

· · · · ·

YN1 YN2 · · YNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
V1
V2
·

·

VN

⎤⎥⎥⎥⎦ (4)

where Ii is the injected complex current, Vi is the complex voltage at bus i and Yij is the element of the admittance matrix.
From Eq. (4), the injected current at bus i can be written as:

Ii =

N∑
k=1

YikVk. (5)

The mathematical equations for the power flow problem are given by:

Si = ViI∗i (6)

= Vi

N∑
k=1

Y ∗

ikV
∗

k (7)

where Si is the injected complex power at bus i and I∗i is the complex conjugate of the injected current. Mathematically,
the power flow problem comes down to solving a nonlinear system of equations where all variables are given in complex
numbers.

4. Newton power flow solution methods

The Newton based power flow methods use the Newton–Raphson (NR) method that is applied to solve a nonlinear
system of equations F (x⃗) = 0. In NR method, the linearized problem is constructed as the Jacobian matrix equation

− J(x⃗)∆x⃗ = F (x⃗) (8)

where J(x⃗) is the square Jacobian matrix and ∆x⃗ is the correction vector. The Jacobian matrix is obtained by Jik =
∂Fi(x⃗)
∂xk

and is highly sparse in power flow applications [2,16]. The iteration process of the Newton based power flow method is
shown in Algorithm 1.
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Algorithm 1 Newton’s power flow method
1: h := 0
2: given initial iterate x⃗0
3: while not converged do
4: solve the correction −J(x⃗h)∆x⃗h = F (x⃗h)
5: update iterate x⃗h+1

:= x⃗h + ∆x⃗h
6: h := h + 1
7: end while

Table 3
Variable x⃗ in different coordinates.
Coordinates Variable x⃗

Polar (Vi = |Vi|eıδi )
[
δ1, . . . , δN , |V1|, . . . , |VN |

]T
Cartesian (Vi = V r

i + ıVm
i )

[
Vm
1 , . . . , Vm

N , V r
1 , . . . , V r

N

]T
Complex form (Vi)

[
V1, . . . , VN

]T

Traditionally, direct solvers are used to solve the Jacobian matrix equation (8). Convergence of the method is mostly
measured in the residual norm ∥F (x⃗h)∥ or relative residual norm ∥

F (x⃗h)
F (x⃗0)

∥ of the mismatch function F (x⃗h) at each iteration.
The Newton power flow method has a quadratic convergence when iterates are close enough to the solution. The Newton
power flow methods formulate F (x⃗) as power or current mismatch functions and designate the unknown bus voltages
and angles as the problem variables x⃗ using three different coordinates such as polar, Cartesian and complex form. Table 3
displays the problem variables defined in different coordinates.

4.1. Power-mismatch formulation:

The power flow problem (7) is formulated as the power-mismatch function F (x⃗) as follows:

Fi(x⃗) = ∆Si(x⃗) = Sspi − Si(x⃗)

= Sspi − Vi

N∑
k=1

Y ∗

ikV
∗

k ∀i ∈ 1...N (9)

where Sspi = P sp
i + ıQ sp

i is the specified complex power injection at bus i. In general, specified active power P sp
i and reactive

power Q sp
i injections at bus i are given by following equations:

P sp
i = PG

i − PL
i (10)

Q sp
i = Q G

i − Q L
i (11)

where PG
i and Q G

i are specified active and reactive power generation whereas PL
i and Q L

i are specified active and reactive
power loads respectively. In this paper, PL

i and Q L
i are modeled as constant power loads.

The complex power-mismatch function (9) is separated into real equations and variables using polar and Cartesian
coordinates. Table 4 shows power-mismatch functions in different coordinates. An application of the first order Taylor
approximation to the power-mismatch functions results in a linear system of Eqs. (8) that is solved at each Newton
iteration. Table 5 presents all equations computing the elements of the Jacobian matrix in different coordinates which are
the partial derivatives of the power-mismatch function.

4.1.1. Polar power-mismatch version (NR-p-pol [2])
The Jacobian matrix equation (8) derived from the power-mismatch function in polar coordinates is given in the

partitioned form for convenience of presentation:

−

[
J11 J12

J21 J22

][
∆δ

∆|V |

]
=

[
∆P
∆Q

]
(12)

where all sub-matrices are computed as J11 =
∂∆P
∂δ

, J12 =
∂∆P
∂|V |

, J21 =
∂∆Q
∂δ

and J22 =
∂∆Q
∂|V |

. The Jacobian matrix equation
(12) has to be modified for all PV buses since the voltage magnitude |Vj| is specified instead of the reactive power Qj at
each PV bus j. Therefore, Q sp

j cannot be computed and ∆Qj cannot be formulated for each PV bus j. All partial derivatives
of it with respect to voltage magnitude |Vi| and angle δi cannot be taken. Similarly, ∆|Vj| does need to be computed for
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Table 4
Power-mismatch function in different coordinates.
Coordinates Power-mismatch function: Fi(x⃗) = ∆Si(x⃗)

Polar ∆Pi(x⃗) = P sp
i −

∑N
k=1 |Vi||Vk|(Gik cos δik + Bik sin δik)

∆Qi(x⃗) = Q sp
i −

∑N
k=1 |Vi||Vk|(Gik sin δik − Bik cos δik)

Cartesian ∆Pi(x⃗) = P sp
i −

∑N
k=1

(
V r
i (GikV r

k − BikVm
k ) + Vm

i (BikV r
k + GikVm

k )
)

∆Qi(x⃗) = Q sp
i −

∑N
k=1

(
Vm
i (GikV r

k − BikVm
k ) − V r

i (BikV r
k + GikVm

k )
)

Complex form ∆Si(x⃗) = Sspi − Vi
∑N

k=1 Y
∗

ikV
∗

k

Table 5
The partial derivatives of the power-mismatch function in different coordinates.

Coordinates Jik =
∂Fi(x⃗)
∂xk

Polar

i ̸= k

∂∆Pi(x⃗)
∂|Vk |

= −|Vi|(Gik cos δik + Bik sin δik)

∂∆Qi(x⃗)
∂|Vk |

= −|Vi|(Gik sin δik − Bik cos δik)

∂∆Pi(x⃗)
∂δk

= −|Vi||Vk|(Gik sin δik − Bik cos δik)

∂∆Qi(x⃗)
∂δk

= −|Vi||Vk|(−Gik cos δik − Bik sin δik)

i = k

∂∆Pi(x⃗)
∂|Vi |

= −

(
2|Vi|Gii +

∑
i̸=k |Vk|(Gik cos δik + Bik sin δik)

)
∂∆Qi(x⃗)

∂|Vi |
= −

(
−2|Vi|Bii +

∑
i̸=k |Vk|(Gik sin δik − Bik cos δik)

)
∂∆Pi(x⃗)

∂δi
= −

∑
i̸=k |Vi||Vk|(−Gik sin δik + Bik cos δik)

∂∆Qi(x⃗)
∂δi

= −
∑

i̸=k |Vi||Vk|(Gik cos δik + Bik sin δik)

Cartesian

i ̸= k

∂∆Pi(x⃗)
∂V r

k
= −

(
V r
i Gik + Vm

i Bik

)
∂∆Qi(x⃗)

∂V r
k

= −

(
Vm
i Gik − V r

i Bik

)
∂∆Pi(x⃗)
∂Vm

k
= −

(
Vm
i Gik − V r

i Bik

)
∂∆Qi(x⃗)

∂Vm
k

= V r
i Gik + Vm

i Bik

i = k

∂∆Pi(x⃗)
∂V r

i
= −

(
V r
i Gii + Vm

i Bii +
∑N

k=1(GikV r
k − BikVm

k )
)

∂∆Qi(x⃗)
∂V r

i
= −

(
Vm
i Gii − V r

i Bii +
∑N

k=1(BikV r
k + GikVm

k )
)

∂∆Pi(x⃗)
∂Vm

i
= −

(
Vm
i Giu − V r

i Bii +
∑N

k=1(BikV r
k + GikVm

k )
)

∂∆Qi(x⃗)
∂Vm

i
= V r

i Gii + Vm
i Bii −

∑N
k=1(GikV r

k − BikVm
k )

Complex form i ̸= k ∂∆Si(x⃗)
∂Vk

= −ViY ∗

ik

i = k ∂∆Si(x⃗)
∂Vi

= −

(
ViY ∗

ii + I∗
)

PV bus j since |Vj| is now known. Therefore, we eliminate all the ∂∆Pi
∂|Vj|

, ∂∆Qi
∂|Vj|

, ∂∆Qj
∂δi

and ∂∆Qj
∂|Vi|

from the Jacobian matrix J(x⃗),
∆|Vj| from the correction vector ∆x⃗ and ∆Qj from the power mismatch vector F (x⃗) for each PV bus j. The order of the
resulting Jacobian matrix equation is (2N − Ng − 2).

4.1.2. Cartesian power-mismatch version (NR-p-car)
The Jacobian matrix equation (8) is defined using the power-mismatch function in Cartesian coordinates as:

−

[
J11 J12

J21 J22

][
∆Vm

∆V r

]
=

[
∆P
∆Q

]
(13)

where all sub-matrices are given as J11 =
∂∆P
∂Vm , J12 =

∂∆P
∂V r , J21 =

∂∆Q
∂Vm and J22 =

∂∆Q
∂V r . The Jacobian matrix equation (13)

has to be modified for all PV buses for the same reason as we saw in 4.1.1. In this version, the reactive power-mismatch
∆Qj cannot be formulated for each PV bus j and therefore all partial derivatives ∂∆Qj

∂Vm
k

and ∂∆Qj
∂V r

k
cannot be taken.

In paper [33], the reactive power mismatch ∆Q is replaced by a voltage-magnitude-squared mismatch equation (1)
for all PV buses and therefore all partial derivatives ∂∆Qj

∂Vm
k

and ∂∆Qj
∂V r

k
are also replaced by ∂∆|Vj|2

∂Vm
k

and ∂∆|Vj|2

∂V r
k

respectively.
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Moreover, the order of the Jacobian matrix equation remains (2N − 2) and it is concluded in [33] that the method is
slightly less reliable and less rapid in convergence than the polar power-mismatch version 4.1.1.

In this paper, we develop a new approach that improves the performance of this version. In our approach, the
reactive power-mismatch ∆Qj is removed from the power-mismatch vector F (x⃗) for all PV buses and therefore all partial
derivatives ∂∆Qj

∂Vm
k

and ∂∆Qj
∂V r

k
are also eliminated from the Jacobian matrix J(x⃗). As a result of the elimination, the Jacobian

matrix becomes a rectangular matrix. In order to make the Jacobian matrix square, we use Eq. (2) with ∆|Vj| = 0 since
|Vj| is now specified for each PV bus j. This gives us the relation between the corrections ∆V r

j and ∆Vm
j as:

∆V r
j = −

Vm
j

V r
j

∆Vm
j . (14)

Using Eq. (14), the column of the Jacobian matrix with respect to the derivatives ∂∆Pi
∂V r

j
and ∂∆Qi

∂V r
j

is added to the column

with respect to the derivatives ∂∆Pi
∂Vm

j
and ∂∆Qi

∂Vm
j

as follows:

∂∆Pi
∂Vm

j
∆Vm

j =

(∂∆Pi
∂Vm

j
−

Vm
j

V r
j

∂∆Pi
∂V r

j

)
∆Vm

j (15)

∂∆Qi

∂Vm
j

∆Vm
j =

(∂∆Qi

∂Vm
j

−
Vm
j

V r
j

∂∆Qi

∂V r
j

)
∆Vm

j . (16)

Now the correction ∆V r
j can be eliminated from the correction vector ∆x⃗ for each PV bus j and therefore the order of the

Jacobian matrix equation (13) is (2N − Ng − 2).

4.1.3. Complex power-mismatch version (NR-p-com)
The Jacobian matrix equation (8) is computed using the power-mismatch function in complex form as:

−
[

J
] [

∆V
]

=
[

∆S
]

(17)

where the Jacobian matrix J =
∂∆S
∂V is obtained by taking the first order partial derivatives of the complex power-mismatch

functions with respect to the complex voltage V . The Jacobian matrix equation (17) holds for all PQ buses but not for all
PV buses because the complex power mismatch ∆S cannot be formulated for all PV buses. Therefore, this version can be
applied to solve the power flow problem on networks with only a slack bus and PQ buses.

4.2. Current-mismatch formulation:

The current equation (5) and the power flow problem (6) are used to formulate the current-mismatch function F (x⃗)
as follows:

Fi(x⃗) = ∆Ii(x⃗) = Ispi − Ii(x⃗)

=

(Sspi
Vi

)∗

−

N∑
k=1

YikVk ∀i ∈ 1...N (18)

where Ispi =

(
Sspi
Vi

)∗

is the specified complex current injection at bus i.
The current-mismatch function (18) can be also expressed in terms of the power-mismatch function (9) as follows:

∆Ii =

(∆Si
Vi

)∗

(complex) (19)

=
cos δi∆Pi + sin δi∆Qi

|Vi|
+ ı

sin δi∆Pi − cos δi∆Qi

|Vi|
(polar) (20)

=
V r
i ∆Pi + Vm

i ∆Qi

|Vi|
2 + ı

Vm
i ∆Pi − V r

i ∆Qi

|Vi|
2 (Cartesian). (21)

The complex current-mismatch function (18) is separated into real equations and variables using polar and Cartesian
coordinates. Table 6 shows the current-mismatch functions in different coordinates. An application of a first order Taylor
approximation to the current-mismatch function results in a linear system of Eqs. (8) that is solved in every Newton
iteration. Table 7 gives all equations defining the elements of the Jacobian matrix in different coordinates.

4.2.1. Polar current-mismatch version (NR-c-pol)
The Jacobian matrix equation (8) is derived from the current-mismatch function in polar coordinates as:

−

[
J11 J12

J21 J22

][
∆δ

∆|V |

]
=

[
∆Ir
∆Im

]
(22)
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Table 6
Current-mismatch function in different coordinates.
Coordinates Current-mismatch function: Fi(x⃗) = ∆Ii(x⃗)

Polar ∆Iri (x⃗) =
Pspi cos δi+Q sp

i sin δi
|Vi |

−
∑N

k=1 |Vk|(Gik cos δk − Bik sin δk)

∆Imi (x⃗) =
Pspi sin δi−Q sp

i cos δi
|Vi |

−
∑N

k=1 |Vk|(Gik sin δk + Bik cos δk)

Cartesian ∆Iri (x⃗) =
Pspi V r

i +Q sp
i Vm

i
(V r

i )
2+(Vm

i )2
−

∑N
k=1(GikV r

k − BikVm
k )

∆Imi (x⃗) =
Pspi Vm

i −Q sp
i V r

i
(V r

i )
2+(Vm

i )2
−

∑N
k=1(GikVm

k + BikV r
k )

Complex form ∆Ii(x⃗) =

(
Sspi
Vi

)∗

−
∑N

k=1 YikVk

Table 7
The partial derivatives of the current-mismatch function in different coordinates.

Coordinates Jik =
∂Fi(x⃗)
∂xk

Polar

i ̸= k

∂∆Iri (x⃗)
∂|Vk |

= −(Gik cos δk − Bik sin δk)

∂∆Imi (x⃗)
∂|Vk |

= −(Gik sin δk + Bik cos δk)

∂∆Iri (x⃗)
∂δk

= |Vk|(Gik sin δk + Bik cos δk)

∂∆Imi (x⃗)
∂δk

= −|Vk|(Gik cos δk − Bik sin δk)

i = k

∂∆Iri (x⃗)
∂|Vi |

= −(Gii cos δi − Bii sin δi) −
Pspi cos δi+Q sp

i sin δi

|Vi |2

∂∆Imi (x⃗)
∂|Vi |

= −(Gii sin δi + Bii cos δi) −
Pspi sin δi−Q sp

i cos δi

|Vi |2

∂∆Iri (x⃗)
∂δi

= |Vi|(Gii sin δi + Bii cos δi) −
Pspi sin δi−Q sp

i cos δi
|Vi |

∂∆Imi (x⃗)
∂δi

= −|Vi|(Gii cos δi − Bii sin δi) +
Pspi cos δi+Q sp

i sin δi
|Vi |

Cartesian

i ̸= k

∂∆Iri (x⃗)
∂V r

k
= −Gik

∂∆Imi (x⃗)
∂V r

k
= Bik

∂∆Iri (x⃗)
∂Vm

k
= Bik

∂∆Imi (x⃗)
∂Vm

k
= −Gik

i = k

∂∆Iri (x⃗)
∂V r

i
= −Gii −

Pspi ((V r
i )

2
−(Vm

i )2)+2V r
i V

m
i Q sp

i
|Vi |4

∂∆Imi (x⃗)
∂V r

i
= −Bii +

Q sp
i ((V r

i )
2
−(Vm

i )2)−2V r
i V

m
i Pspi

|Vi |4

∂∆Iri (x⃗)
∂Vm

i
= Bii +

Q sp
i ((V r

i )
2
−(Vm

i )2)−2V r
i V

m
i Pspi

|Vi |4

∂∆Imi (x⃗)
∂Vm

i
= −Gii +

Pspi ((V r
i )

2
−(Vm

i )2)+2V r
i V

m
i Q sp

i
|Vi |4

Complex form i ̸= k ∂∆Ii(x⃗)
∂Vk

= −Yik

i = k ∂∆Ii(x⃗)
∂Vi

= −

(
Sspi
V2
i

+ Yii

)

where all sub-matrices are computed as J11 =
∂∆Ir
∂δ

, J12 =
∂∆Ir
∂|V |

, J21 =
∂∆Im

∂δ
and J22 =

∂∆Im
∂|V |

. Same as the polar power-
mismatch version 4.1.1, ∆|Vj| needs to be computed for each PV bus j since |Vj| is now known. Therefore, we eliminate
all the ∂∆Iri

∂|Vj|
and ∂∆Imi

∂|Vj|
from the Jacobian matrix J(x⃗) and ∆|Vj| from the correction vector ∆x⃗ for each PV bus j. As a result

of the elimination, the Jacobian matrix becomes a rectangular matrix.
In paper [35], each PQ bus is represented by the real ∆Ir and imaginary ∆Im current-mismatch functions. A PV bus

is represented by the active power-mismatch ∆P and the voltage-magnitude-squared mismatch equation (1). Thus, the
order of the Jacobian matrix equation is (2N −2) and it is concluded in [16] that these versions perform less satisfactorily
than the power-mismatch versions.
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Table 8
The partial derivatives of the current-mismatch function in polar
coordinates with respect to the reactive power Q .

Jij =
∂Fi
∂xj

i ̸= j
∂∆Iri (x⃗)

∂Qj
= 0

∂∆Imi (x⃗)
∂Qj

= 0

i = j
∂∆Irj (x⃗)

∂Qj
=

sin δj
|Vj |sp

∂∆Irj (x⃗)

∂Qj
= −

cos δj
|Vj |sp

Table 9
The partial derivatives of the current-mismatch function in Cartesian
coordinates with respect to the reactive power Q .

Jij =
∂Fi
∂xj

i ̸= j
∂∆Iri (x⃗)

∂Qj
= 0

∂∆Imi (x⃗)
∂Qj

= 0

i = j
∂∆Irj (x⃗)

∂Qj
=

Vm
j

(V r
j )

2+(Vm
j )2

∂∆Irj (x⃗)

∂Qj
=

−V r
j

(V r
j )

2+(Vm
j )2

In our approach, the reactive power Qj is chosen as a dependent variable as |V | and δ for each PV bus j because we
use the current-mismatch formulation directly. Since Qj is an unknown variable, all first order partial derivatives ∂∆Iri

∂Qj
and

∂∆Imi
∂Qj

have to be computed as given in Table 8:

Now we add the derivatives ∂∆Iri
∂Qj

and ∂∆Imi
∂Qj

into the Jacobian matrix J(x⃗) and the correction ∆Qj into the correction
vector ∆x⃗ for each PV bus j. As a result, the Jacobian matrix becomes a square again. The initial reactive power Q 0

j at each
PV bus j is computed as follows:

Q 0
j =

N∑
k=1

|Vj||Vk|(Gjk sin δjk − Bjk cos δjk). (23)

In each Newton iteration, the correction ∆Qj is computed and the reactive power Qj is updated using the computed
correction.

4.2.2. Cartesian current-mismatch version (NR-c-car)
The Jacobian matrix equation (8) is computed using the current-mismatch function in Cartesian coordinates as:

−

[
J11 J12

J21 J22

][
∆Vm

∆V r

]
=

[
∆Ir
∆Im

]
(24)

where all sub-matrices are given as J11 =
∂∆Ir
∂Vm , J12 =

∂∆Ir
∂V r , J21 =

∂∆Im
∂Vm and J22 =

∂∆Im
∂V r .

In paper [36], the real ∆Ir and imaginary ∆Im current-mismatch functions are expressed in terms of the real ∆P and
reactive ∆Q power-mismatch functions. Then the reactive power-mismatch ∆Q is considered as a dependent variable
for each PV bus and computed at each Newton iteration. Minor attempts were made to speed up the solution method
using a partly constant approximation of the Jacobian during the iterations, but the results were not encouraging [36].

In our approach, the reactive power Qj is chosen as a dependent variable for each PV bus j as polar current-mismatch
version 4.2.1. Since Qj is an unknown variable, all the first order partial derivatives ∂∆Iri

∂Qj
and ∂∆Imi

∂Qj
have to be computed

as shown in Table 9:
Now we add the derivatives ∂∆Iri

∂Qj
and ∂∆Imi

∂Qj
into the Jacobian matrix J(x⃗) and the correction ∆Qj into the correction

vector ∆x⃗ for each PV bus j. After the addition, the Jacobian matrix becomes a rectangular matrix. In order to make the
Jacobian matrix square, we add the column of the Jacobian matrix with respect to the derivatives ∂∆Iri

∂V r
j

and ∂∆Imi
∂V r

j
to the

column with respect to the derivatives ∂∆Iri
∂Vm

j
and ∂∆Imi

∂Vm
j

using (14) as follows:

∂∆Iri
∂Vm

j
∆Vm

j =

(∂∆Iri
∂Vm

j
−

Vm
j

V r
j

∂∆Iri
∂V r

j

)
∆Vm

j (25)
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Table 10
Bus voltage corrections in different coordinates.
Coordinates Type of Bus x⃗h+1

:= x⃗h + ∆x⃗h

Polar PQ and PV
V (h+1)
i = |Vi|

(h+1)eıδ
(h+1)
i

|V |
(h+1)
i = |V |

(h)
i + ∆|Vi|

(h)

δ
(h+1)
i = δ

(h)
i + ∆δ

(h)
i

Cartesian

PQ and PV
V (h+1)
i = (V r

i )
(h+1)

+ ı(Vm
i )(h+1)

(V r
i )

(h+1)
= (V r

i )
(h)

+ (∆V r
i )

(h)

(Vm
i )(h+1)

= (Vm
i )(h) + (∆Vm

i )(h)

PQ
V (h+1)
i = |Vi|

(h+1)eıδ
(h+1)
i

∆|Vj| =
V r
j

|Vj |
∆V r

j +
Vm
j

|Vj |
∆Vm

j

∆δj =
V r
j

|Vj |2
∆Vm

j −
Vm
j

|Vj |2
∆V r

j

PV ∆δj =
∆Vm

j
V r
j

Complex PQ (NR-p-com) V (h+1)
i = V (h)

i + (∆V (h)
i )∗

PQ (NR-c-com) V (h+1)
i = V (h)

i + ∆V (h)
i

∂∆Imi
∂Vm

j
∆Vm

j =

(∂∆Imi
∂Vm

j
−

Vm
j

V r
j

∂∆Imi
∂V r

j

)
∆Vm

j . (26)

Then the correction ∆V r
j can be eliminated from the correction vector ∆x⃗ for each PV bus j. The initial reactive power Q 0

j
at a PV bus j is computed as follows:

Q 0
j =

N∑
k=1

(
Vm
j (GjkV r

k − BjkVm
k ) − V r

j (BjkV r
k + GjkVm

k )
)
. (27)

In each Newton iteration, the correction ∆Qj is computed and the reactive power Qj is updated using the computed
correction.

4.2.3. Complex current-mismatch version (NR-c-com)
The Jacobian matrix equation (8) is calculated using the current-mismatch function in complex form as:

−
[

J
] [

∆V
]

=
[

∆I
]

(28)

where the Jacobian matrix J =
∂∆S
∂V is obtained by taking the first order partial derivatives of the complex current-

mismatch functions with respect to the complex voltage V . Same as the complex power-mismatch version 4.1.3, this
version is applicable for the power flow problem on networks with only a slack bus and PQ buses.

Bus voltage corrections in different coordinates are given in Table 10:

5. Numerical experiment

The newly developed/improved versions of the Newton power flow method (Cartesian power-mismatch, polar
current-mismatch, Cartesian current-mismatch and complex current-mismatch) discussed in Section 4, are compared to
the existing versions of the Newton power flow method (polar power-mismatch [2], Cartesian power-mismatch [33]
and Cartesian current-mismatch [36]) for the numerical experiments. Two distribution networks (DCase33 [38] and
DCase69 [39]) and four transmission networks taken from Matpower [40] (case1354pegase, case2737sop, case9241pegase
and case13659pegase) are used to test the convergence ability and scalability of all variants of the Newton power flow
solution method. All methods are implemented in Matlab and the constant power load model is used for loads. The
relative convergence tolerance is set to 10−5 and the maximum number of iterations is set to 10. All experiments are
performed on an Intel computer with four cores i5-4690 3.5 GHz CPU and 64Gb memory, running a Debian 64-bit Linux
8.7 distribution.

5.1. Distribution networks

The convergence result of all Newton power solution methods for two distribution network (DCase33 and DCase69)
is shown in Table 11.
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Table 11
Distribution networks: DCase33 and DCase69.

Methods
Test cases

DCase33 DCase69

iter time ||F (x⃗)||∞ iter time ||F (x⃗)||∞
NR-p-pol [2] 3 0.0072 7.4675e−06 4 0.0113 5.5875e−09
NR-p-car 3 0.0063 1.0433e−06 3 0.0068 8.1777e−06
NR-p-car [33] 3 0.0072 1.0897e−06 3 0.0081 8.0940e−06
NR-p-com 6 0.0055 6.4610e−06 7 0.0063 4.0138e−06

NR-c-pol 3 0.0081 1.4291e−09 3 0.0094 8.5226e−09
NR-c-car 3 0.0068 1.3954e−09 3 0.0081 1.9503e−08
NR-c-car [36] 3 0.0111 1.3964e−09 3 0.0124 1.9476e−08
NR-c-com 7 0.0055 5.3792e−06 10 0.0076 2.7697e−06

Table 12
Small transmission networks: TCase1354 and TCase2737.

Methods
Test cases

TCase1354 TCase2737

iter time ∥F (x⃗)∥∞ iter time ∥F (x⃗)∥∞

NR-p-pol [2] 3 0.0284 6.2678e−06 4 0.0640 1.5353e−08
NR-p-car 3 0.0265 1.5795e−06 4 0.0634 2.3500e−06
NR-p-car [33] 3 0.0298 2.2486e−06 5 0.0777 2.8518e−06

NR-c-pol 3 0.0313 8.3005e−10 4 0.0700 6.1735e−07
NR-c-car 3 0.0306 6.1446e−10 4 0.0649 8.6780e−07
NR-c-car [36] 5 0.0507 9.9969e−06 5 0.0838 7.9842e−07

Table 13
Large transmission networks: TCase9241 and TCase13659.

Methods
Test cases

TCase9241 TCase13659

iter time ∥F (x⃗)∥∞ iter time ∥F (x⃗)∥∞

NR-p-pol [2] 6 0.3555 2.1292e−09 5 0.3899 2.2891e−09
NR-p-car 5 0.2908 2.1026e−08 6 0.4689 7.9833e−12
NR-p-car [33] 5 0.3180 2.0742e−06 10 0.8899 1.401e+148

NR-c-pol 3 0.1973 6.4746e−07 4 0.3634 3.4366e−09
NR-c-car 3 0.1993 1.9438e−06 4 0.3619 8.6170e−09
NR-c-car [36] 10 0.6595 0.0023 10 0.9036 1.1482

We observe that variants using complex form (NR-p-com and NR-c-com) need more iterations and have a linear
convergence compared to other variants. Thus, NR-p-com and NR-c-com are the least preferable variants of the Newton
power flow method. Furthermore, remaining versions employing Polar and Cartesian coordinates converge after the same
number of iterations. However, we discover that the residual norm of current-mismatch functions is much smaller than
the residual norm of power-mismatch functions regardless of the choice of the coordinates. Thus, we can conclude that
versions using current-mismatch functions are more suitable for solving distribution power flow problems than versions
using power-mismatch functions. Variants polar current-mismatch (NR-c-pol) and Cartesian current-mismatch (NR-c-car)
developed in this paper perform the best for two distribution networks in terms of both a number of iterations and the
residual norm.

5.2. Transmission networks

Since the complex power-mismatch and complex current-mismatch versions are developed only for PQ buses, these
variants are not applied to transmission power flow problems including PV buses. Tables 12 and 13 show the convergence
result of all solution methods for transmission networks (TCase1354, TCase2737, TCase9241 and TCase13659).

For smaller transmission networks TCase1354 and TCase2737, all versions result in the same behavior except the
Cartesian current-mismatch version developed in [36] which requires extra one iteration.

For the second large transmission network TCase9241, the variant NR-c-car [36] diverges whereas other versions
converge. Furthermore, NR-c-pol and NR-c-car versions developed in this paper converge after only three iterations
whereas other versions (NR-p-pol [2], NR-p-car and NR-p-car [33]) need five to six iterations. For the largest transmission
network TCase13659, both versions NR-p-car [33] and NR-c-car [36] diverge whereas all variants (NR-p-car, NR-c-pol
and NR-c-car) developed in this paper and NR-p-pol [2] find the solution. Additionally, these four converged versions
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Fig. 1. Convergence of all Newton power flow versions on transmission network TCase13659.

have a quadratic convergence as shown in Fig. 1. Moreover, NR-c-pol and NR-c-car variants converge faster than the
most famous variant NR-p-pol [2] in terms of iterations for both large transmission networks. Thus, we can conclude that
polar current-mismatch (NR-c-pol) and Cartesian current-mismatch (NR-c-car) variants developed in this paper are more
preferable for large transmission power flow problems.

6. Conclusion

In this paper, we formulate and analyze the Newton based power flow methods that are used for the power flow
computation on balanced distribution and transmission networks. For the various methods we consider two different
mismatch functions: the current and power balance equations and three different coordinate systems: Cartesian, polar and
complex form. This leads to six different versions of the Newton power flow method. Studying these versions in a common
framework enables us to analyze and compare all variants in a unified way. Furthermore, the existing variants of the
Newton power flow method developed in [2,33,36] are implemented and compared with the newly developed/improved
versions of the Newton power flow method (Cartesian power-mismatch, polar current-mismatch, Cartesian current-
mismatch and complex current-mismatch). In case of the polar and Cartesian current-mismatch versions, the reactive
power Q is chosen as a dependent variable for each PV bus. Thus, we compute the correction ∆Q at each iteration and
update Q using the computed corrections. Eqs. (2) and (3) are used instead of the voltage-magnitude-squared mismatch
equation (1) in versions using Cartesian coordinates. The order of the Jacobian matrix equation is (2N − Ng − 2) for the
versions using the power-mismatch function whereas versions using the current-mismatch function have (2N − 2) linear
equations.

The polar current-mismatch and Cartesian current-mismatch variants of the Newton power flow method that are
developed in this paper deliver the best result for both distribution and transmission networks. Therefore, we encour-
age power system operators to apply these two variants for power flow computations on balanced distribution and
transmission networks.

In addition, the Cartesian current-mismatch version has an advantage in the calculation of the Jacobian matrix because
its off-diagonal elements are constant and equal to the terms of the nodal admittance matrix. Moreover, depending on the
properties of the given network, one version can work better than others. Therefore, it is crucial to study which version
is more suitable for what kind of power networks. In the near future, these newly developed versions will be applied to
three-phase power flow problems on unbalanced distribution networks and will be implemented in Matpower.
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Appendix. Notation

N: number of buses in the network
Ng : number of generator buses
h: iteration counter

Vk = V r
k + ıVm

k : complex voltage at bus k
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|Vk|, δk: voltage magnitude and angle at bus k
x⃗: vector of unknown variables

∆x⃗: correction of unknown variables
Fk(x⃗): complex power or current mismatch function at bus k
J(x⃗): Jacobian matrix of the mismatch function

∆Sk = ∆Pk + ı∆Qk: complex power mismatch at bus k
∆Ik = ∆Irk + ı∆Imk : complex current mismatch at bus k
Sspk = P sp

k + ıQ sp
k : specified complex power at bus k

SGk = PG
k + ıQ G

k : generated complex power at bus k
SLk = PL

k + ıQ L
k : complex power load at bus k

Yik = Gik + ıBik: (i, k) the element of nodal admittance matrix
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