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Abstract—In this paper, we study four equivalent mathematical
formulations of the Optimal Power Flow (OPF) problem and
their impacts on the performance of solution methods. We show
how four mathematical formulations of the OPF problem can
be obtained by rewriting equality constraints given as the power
flow problem into four equivalent mathematical equations using
power balance or current balance equations in polar or Cartesian
coordinates while keeping the same physical formulation. All
four mathematical formulations are implemented in Matpower.
In order to identify the formulation that results in the best
convergence characteristics for the solution method, we apply
MIPS, KNITRO, and FMINCON on various test cases using three
different initial conditions. We compare all four formulations in
terms of impact factors on the solution method such a number
of nonzero elements in the Jacobian and Hessian matrices, a
number of iterations and computational time on each iteration.
The numerical results show that the performance of the OPF
solution method is not only dependent upon the choice of the
solution method itself, but also upon the exact mathematical
formulation used to specify the OPF problem.

I. INTRODUCTION

The OPF problem provides the optimal operational state of
the electrical power system while satisfying system constraints
and control limits. Many sub-classes of the OPF problem
have been developed over the years using various objective
functions, control variables and system constraints such as
economic dispatch, security constrained OPF (SCOPF), unit
commitment, loss minimization and probabilistic OPF (POPF)
[1]–[3]. These OPF problems are physical formulations that
are derived from the physical properties of actual power sys-
tems. In general, the Power Flow (PF) problem is used as the
main equality constraints for the OPF problem. Moreover, the
PF problem is given in complex numbers and can be rewritten
into four equivalent mathematical equations given in real
numbers and variables using power balance or current balance
equations in polar or Cartesian coordinates [4], [5]. Therefore,
we obtain four mathematical formulations of the OPF problem
for a single physical formulation. These four formulations are
equivalent since we just rewrite the mathematical equations
for the equality constraints while keeping the same physical
formulation. Due to the different mathematical equations,
however, each formulation can result in different numerical
and analytical properties for the OPF solution method.

In practice, researchers develop a new method or do the
simulation based on only one (at most two) mathematical
formulation of the OPF problem and compare the result with

another method using the other formulation. The formulation
having power balance equations in polar coordinates (known
as Polar power-voltage) is mostly used in the literature. It
is questionable how an OPF solution method performs if we
change the chosen formulation to the other three mathematical
formulations. When the OPF solver using one formulation
does not converge, can the same method using another for-
mulation converge? Which mathematical formulation results
in the smallest computational time for each iteration of the
solution method? Which formulation is more robust to the
change of initial conditions? As far as we know no complete
comparison exists between these four mathematical formula-
tions of the OPF problem.

In [6], [7], three formulations (Polar Power-Voltage (PSV),
Rectangular Power-Voltage (RSV) and Rectangular Current-
Voltage (RIV)) are used to compare optimization software
packages such as SNOPT, IPOPT, and KNITRO. Both papers
suggest numerous strategies for choosing the initial condition.
Both PSV and RIV formulations show the best performance
in terms of CPU time in [7] whereas the formulation using
rectangular coordinates is preferred in [6]. Furthermore, for-
mulations PSV and RSV in [6], [7] have the same nonlinear
power balance equations in different coordinates used as
equality constraints for the OPF problem. However, the RIV
formulation used in both papers has the linear current balance
equations where the injected complex current at buses is
specified and not computed from specified complex power as
given in [8], [9]. Thus, the RIV formulation is not equivalent
to PSV and RSV formulations. Additionally, the formulation
Polar Current-Voltage (PIV) is not considered in both papers.
Therefore, the comparison in [6], [7] is not complete due to
missing and inequivalent formulations.

In this paper, we study all four equivalent mathematical
formulations of the OPF problem and try to understand which
formulation results in the best performance for OPF solution
methods. We consider the OPF problem with minimization of
active power generation costs as a cost function, power flow
equations as equality constraints and squared apparent power
limits as inequality constraints. All four mathematical formula-
tions of the OPF problem are implemented in Matpower which
is a Matlab package for solving power flow and optimal power
flow problems. Originally, Matpower had only one formulation
using the power balance equations in polar coordinates for
the OPF computation. The other three formulations will be
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included in the next version of Matpower and two technical
notes [10], [11] are written for the theoretical explanation. We
use optimization solvers such as Matpower’s Interior Point
Method (MIPS) [12], KNITRO, and Matlab’s FMINCON for
the comparison of all four formulations. We test all three
solvers on various test cases taken from Matpower and IEEE
PES Power Grid Library. Three different initial conditions are
used in the numerical experiments.

This paper is structured as follows. The physical and
mathematical formulations of the OPF problem are described
in Section II. Numerical results of MIPS, KNITRO, and
FMINCON using three different starting points on various test
cases are compared for all four mathematical formulations
in Section III. Finally, Section IV describes the conclusions
obtained from the results of this paper.

II. OPF FORMULATIONS

The general OPF problem can be written as follows:

minimize f(x,u)

subject to g(x,u) = 0,

h(x,u) ≤ 0

(1)

where x and u are vectors with the state and control variables
respectively, and f(x,u) is the objective function to be mini-
mized (maximized). The vector functions g(x,u) and h(x,u)
represent equality and inequality constraints respectively.

A. Variables

In general, state variables x include bus voltage magnitude
|Vi|, bus voltage angle δi, branch power flow SLij , generator
active P gi and reactive Qgi power outputs, the real V ri and
imaginary V mi parts of the complex voltage respectively. Con-
trol variables u are generally chosen as active power genera-
tions, voltage magnitudes at generator buses, transformer tap
settings, transformer phase shifters, generator voltage control
settings, load shedding, shunt reactive devices, HVDC stations
and Static Var Controllers [1].

B. Objective function

In this paper, we consider the objective function f(x,u) as:

f(x,u) =

Ng∑
i=1

(
C0
i + C1

i P
g
i + C2

i (P
g
i )

2
)

(2)

where Ng is a number of generators in the network and C0
i ,

C1
i , C2

i are the positive coefficients of the polynomial cost
functions. Moreover, the objective is to minimize the total cost
for the active power generation in the system.

C. Equality constraints

Usually, the power flow equations are used as equality
constraints g(x,u):

Si = Vi

Nb∑
k=1

Y ∗ikV
∗
k ∀i ∈ 1, ..., N (3)

where Nb is a number of buses in the network, Si is the
injected complex power, Vi is the complex voltage at bus iand
Yij is an element of the admittance matrix. Moreover, the
power flow problem (3) can be rewritten into four equivalent
mathematical equations given in real numbers and variables
using the power balance or current balance equations in polar
or Cartesian coordinates [4], [5] as given in sections (II-C1)-
(II-C4).

1) Power balance equations in polar coordinates (PP):

gi(x,u) =

[∑Nb

k=1 |Vi||Vk|
(
Gik cos δik +Bik sin δik

)
− P spi∑Nb

k=1 |Vi||Vk|
(
Gik sin δik −Bik cos δik

)
−Qspi

]
(4)

where Gij and Bij are the conductance and the susceptance
of the transmission line between bus i and j respectively.

2) Power balance equations in Cartesian coordinates (PC):

gi(x,u) =



∑Nb

k=1

(
V ri (GikV

r
k −BikV mk ) + V mi (BikV

r
k +

GikV
m
k )
)
− P spi∑Nb

k=1

(
V mi (GikV

r
k −BikV mk )− V ri (BikV rk +

GikV
m
k )
)
−Qspi


(5)

3) Current balance equations in polar coordinates (CP):

gi(x,u) =


∑Nb

k=1 |Vk|
(
Gik cos δk −Bik sin δk

)
−P

sp
i cos δi+Q

sp
i sin δi

|Vi|∑Nb

k=1 |Vk|
(
Gik sin δk +Bik cos δk

)
−P

sp
i sin δi−Qsp

i cos δi
|Vi|

 (6)

4) Current balance equations in Cartesian coordinates
(CC):

gi(x,u) =

[∑Nb

k=1(GikV
r
k −BikV mk )− P sp

i V r
i +Qsp

i Vm
i

(V r
i )2+(Vm

i )2∑Nb

k=1(GikV
m
k +BikV

r
k )−

P sp
i Vm

i −Qsp
i V r

i

(V r
i )2+(Vm

i )2

]
.

(7)

D. Inequality constraints

The inequality constraints are specified using the maximum
and minimum limits for transmission lines, control, and state
variables.

1) Branch flow limits: We consider inequality constraints
h(x,u) as squared branch flow limits for the apparent power:

hij(x,u) =

[
|Sfij(x,u)|2
|Stij(x,u)|2

]
≤
[
(Smax
ij )2

(Smax
ij )2

]
(8)

where Sfij(x,u) and Stij(x,u) are the apparent power of
branch flow from side and to side respectively, Smax

ij is the
maximum branch flow limits between bus i and j. We denote
a number of transmission lines in the network by Nl.
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2) Variable limits: The following variable limits are con-
sidered in this paper:

|Vi|min ≤ |Vi| ≤ |Vi|max, (9)

(P gi )
min ≤ P gi ≤ (P gi )

max, (10)

(Qgi )
min ≤ Qgi ≤ (Qgi )

max, (11)

|Vi|min ≤
√

(V ri )
2 + (V mi )2 ≤ |Vi|max. (12)

E. Four equivalent formulations of the OPF problem

Combining (2) and (8) with one of (4)-(7) depending on the
choice of the formulation and coordinates, we can obtain four
equivalent mathematical formulations for a single physical
formulation of the OPF problem (1). Table I shows the
summary of all four formulations for the number of variables,
equality and inequality constraints.

TABLE I: Summary of all four formulations

OPF formulations
PP CP PC CC

Coordinates Polar Cartesian

Variables |V |, δ, P g , Qg V r, Vm, P g , Qg

2Nb + 2Ng 2Nb + 2Ng

Nonlinear
equality

constraints

Power
balance
in Polar

(4)
2Nb

Current
balance
in Polar

(6)
2Nb

Power
balance

in Cartesian
(5)
2Nb

Current
balance

in Cartesian
(7)
2Nb

Nonlinear
inequality
constraints

Branch apparent power flow (8)
2Nl

Variable limits (12)
Nb

III. NUMERICAL RESULTS

In this section, we present the result of numerical experi-
ments of all four mathematical formulations in order to verify
the formulation resulting in the best performance for the OPF
solution method. We implement all four mathematical formu-
lations in Matpower and apply three optimization software
packages such as MIPS, KNITRO, and FMINCON. In the
numerical experiments, we use test cases from Matpower and
IEEE PES Power Grid Library (PGLib) that are given in Table
II. The following impact factors on the solution method are
considered for the comparison:

- number of nonzero elements (NNZ) in the Jacobian and
Hessian matrices

- number of iterations for the solution method
- computational time for each iteration of the solution

method.
Both feasibility and optimality tolerances are set to 10−6 and
the number of iterations is limited by 450. The constant power
load model is considered for all loads. The performance of
the non-convex optimization problems such as OPF problems
strongly depends on the choice of starting points. Therefore,
we use three different initial conditions for all solution meth-
ods as given in Table III. All experiments are performed on an
Intel computer i5-4690 3.5 GHz CPU with four cores and 64
Gb memory, running a Debian 64-bit Linux 8.7 distribution.

TABLE II: Description of considered test cases

Systems Buses Generators Branches Abbr
Matpower-case89 89 12 21 c89
PGLib-case118 118 54 186 c118

Matpower-case300 300 69 411 c300
PGLib-case588 588 167 686 c588

PGLib-case2383 2383 327 2896 c2383
Matpower-case2736 2736 420 3504 c2736
Matpower-case3120 3120 505 3693 c3120

TABLE III: Three options for the initial condition

Options Descriptions
IC-1 Interior point estimation (midpoint of their bounds)
IC-2 Use the current state in given test case
IC-3 Solve the power flow problem and use the resulting state

A. Number of nonzero elements

Table IV shows the number of nonzero elements in the
Jacobian and Hessian matrices that are recomputed at each
iteration of MIPS. The best result is highlighted in bold. For
the Jacobian matrix, there is no big difference between all
four mathematical formulations. However, both formulations
using the current balance equations (CP and CC) result in
less nonzero entries for the Hessian matrix compared to PP
and PC formulations. Especially, the CC formulation gives the
smallest number of nonzero elements for the Hessian matrix on
all test cases. Therefore, the CC formulation is the best choice
for computing the Jacobian and Hessian matrices with respect
to memory requirements. The IPM algorithm assembles the

TABLE IV: Number of nonzero elements in the Jacobian and
Hessian matrices after one iteration of MIPS

NNZ Test cases
c118 c300 c588 c2383 c2736 c3120

Jacobian

PP 2048 4611 7897 33320 37808 42677
PC 2046 4612 7959 33406 37826 42681
CP 2152 4749 8143 34058 38365 43271
CC 2118 4492 7947 33212 38316 43223

Hessian

PP 1904 4472 7750 32584 37044 41936
PC 1670 3874 6594 27856 31578 35714
CP 894 1687 2922 11596 12435 14063
CC 864 1492 2352 9940 10428 11660

object function, equality, and inequality constraints into the
reduced and linearized Karush-Kuhn-Tucker (KKT) conditions
and solves it at each iteration of the solution process. For
each variant, derivatives of equality and inequality constraints
constructing KKT conditions require different mathematical
equations and numerical calculations for the computation.
Thus, we obtain four reduced and linearized KKT conditions
having different properties for each mathematical formulation.
Therefore, we can expect the different convergence character-
istics for the solution method. Table V shows the condition
number of the reduced and linearized KKT conditions for
the test case c3120. We cannot prioritize the formulation
over others as all formulations result in very high condition
numbers due to the ill-conditioned nature of the problem.

B. Number of iterations
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TABLE V: Condition number of the reduced and linearized
KKT conditions after one iteration of MIPS on test case c3120

ICs Formulations
PP PC CP CC

IC-1 8.95 ∗ 1012 5.01 ∗ 1013 9.81 ∗ 1013 9.68 ∗ 1013
IC-2 1.57 ∗ 1013 1.21 ∗ 1014 1.92 ∗ 1014 1.99 ∗ 1014
IC-3 1.43 ∗ 1013 1.39 ∗ 1014 1.43 ∗ 1013 1.49 ∗ 1014

1) MIPS: In Table VI, we provide the number of iterations
of MIPS using three different starting points on various test
cases. From the table, we see that PP and CP formulations
result in a faster convergence for MIPS compared to PC and
CC formulations for most of the test cases. Between PP and
CP formulations, MIPS using the CP formulation is slightly
better. Regarding the initial conditions, IC-1 shows the robust
performance for MIPS on all test cases. Both initial conditions
IC-2 and IC-3 bring a Non-Convergence (NC) for two test
cases (c89 and c2383). MIPS using the PP formulation diverge
for both IC-2 and IC-3 on these two cases whereas CC and
CP formulations deliver just one NC on those test cases. The
PC formulation is the slowest variant but results in the robust
convergence properties for MIPS on all scenarios. However,
MIPS with the PC formulation is the slowest variant in terms
of iterations. When a variant of MIPS using polar coordinates
cannot converge to the optimal solution for some problems,
another variant using Cartesian coordinates can be a good
replacement.

TABLE VI: Number of iterations of MIPS using three initial
conditions on various test cases

ICs Test cases
c89 c118 c300 c588 c2383 c2736 c3120

IC-1

PP 25 20 19 41 33 29 43
PC 18 21 34 37 37 35 45
CP 19 19 18 35 33 29 43
CC 19 20 23 37 35 34 47

IC-2

PP NC 20 18 41 33 28 108
PC 26 21 31 37 37 34 54
CP 30 19 18 35 33 27 45
CC NC 20 22 37 35 35 50

IC-3

PP 14 22 16 59 NC 27 33
PC 15 24 38 38 43 32 36
CP 14 22 17 68 NC 26 33
CC 15 25 34 39 42 32 36

2) KNITRO: Table VII show the number of iterations of
KNITRO using three different starting points. According to the
table, KNITRO with the PP formulation is the fastest variant
overall in terms of iterations. However, as we have seen in
the previous section, the PP formulation also provides the bad
performance for KNITRO using IC-2 on test cases c89 and
c2636. Moreover, the other three variants of KNITRO perform
better than KNITRO using PP on those test cases. Regarding
the initial conditions, all four variants of KNITRO converge to
the optimal solution for all three initial conditions. Moreover,
KNITRO using IC-1 converges faster than KNITRO using IC-
2 and IC-3 in terms of iterations.

3) FMINCON: Matlab’s optimization solver FMINCON
has various choices for the solution algorithm. In this work,

TABLE VII: Number of iterations of KNITRO using three
initial conditions on various test cases

ICs Test cases
c89 c118 c300 c588 c2383 c2736 c3120

IC-1

PP 14 11 10 21 33 20 27
PC 15 12 11 21 34 22 29
CP 14 16 15 23 32 23 28
CC 13 15 16 21 33 23 30

IC-2

PP 36 11 11 21 33 431 28
PC 18 12 11 21 34 21 29
CP 15 16 16 23 32 25 30
CC 15 15 20 21 33 22 30

IC-3

PP 12 15 13 25 38 20 24
PC 11 16 14 30 32 21 28
CP 12 15 16 26 38 21 23
CC 11 15 18 99 34 21 28

we use the algorithm-4 that applies Interior point with user-
supplied Hessian. In Table VIII, we display the number of
iterations of FMINCON using three different starting points on
various test cases. All four variants of FMINCON performs

TABLE VIII: Number of iterations of FMINCON using three
different initial conditions on various test cases

ICs Test cases
c89 c118 c300 c588 c2383 c2736 c3120

IC-1

PP 36 20 18 63 105 46 90
PC 34 24 20 55 106 45 100
CP 23 31 29 91 96 50 104
CC 28 27 20 70 82 57 114

IC-2

PP 121 20 20 63 105 NC 216
PC NC 24 18 55 106 45 72
CP 61 31 37 91 96 156 NC
CC 54 27 38 70 82 51 110

IC-3

PP 15 24 19 69 343 45 56
PC 15 25 25 142 132 47 57
CP 20 27 28 88 116 43 47
CC 25 27 25 157 109 46 68

differently depending on the choice of the initial condition
and the test case. Overall there is no formulation that is better
than others. The PP formulation shows a bad performance
for FMINCON on many test cases. Furthermore, PC and
CC formulations which are the worst choice for MIPS and
KNITRO, show the best performance for FMINCON on many
test cases.

C. CPU time on each iteration

In Figure 1, the computational time on each iteration of all
three solvers

(
CPU time

Number of iterations

)
is plotted for the comparison

of all four formulations. From the figure, we discover that
CP formulation shows the smallest computational time on
each iteration for all three solvers. Additionally, all three
solvers (MIPS, KNITRO and FMINCON) converge to the
same objective value for all three initial conditions and four
mathematical formulations on each test cases.

IV. CONCLUSION

In this paper, we studied four equivalent mathematical
formulations (PP, PC, CP, and CC) of the OPF problem
and their computational impacts on the performance of the

Authorized licensed use limited to: TU Delft Library. Downloaded on March 25,2022 at 16:58:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Computational time spent on each iteration of all three
solvers for IC-1 on various test cases
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OPF solution methods. In order to identify the mathematical
formulation resulting in the best computational properties for
the OPF solution method, the numerical experiments were
carried out using MIPS, KNITRO and FMINCON on various
test cases of Matpower and IEEE PES Power Grid Library.
All four mathematical formulations were compared in terms
of the impact factors on the solution method such as the num-
ber nonzero elements in the Jacobian and Hessian matrices,
number of iterations and computational time on each iteration.

For MIPS, the CP formulation showed the fastest conver-
gence and the smallest number of nonzero elements in the
Jacobian and Hessian matrices whereas the PP formulation
delivered the best computational properties for KNITRO in
terms of iterations. All four variants of FMINCON performed
differently depending on the choice of the initial condition
and the given test case. Overall there was no formulation
that is better than others for FMINCON. However, PC and
CC formulations which were the worst choice for MIPS and
KNITRO, showed the best performance for FMINCON on
many test cases. In terms of computational time on each
iteration, the CP formulation was the best choice for all three
methods.

The numerical results showed that the performance of
the OPF solution method is not only dependent upon the
choice of the solution method itself, but also upon the exact
mathematical formulation used to specify the OPF problem.
When the OPF solution method using a certain formulation

does not converge, one can obtain the optimal solution by just
applying the other equivalent formulation while keeping the
same algorithm.

Another contribution of this paper is the implementation
of all four mathematical formulations of the OPF problem
in Matpower. Originally, Matpower had only one formula-
tion using the power balance equations in polar coordinates
(PP) for the OPF computation. Therefore, the other three
formulations (PC, CP, and CC) of the OPF problem were
implemented in Matpower and will be included in the next
version. Additionally, two technical notes [10], [11] were
written to specify the first and second order derivatives of the
equality and inequality constraints.

For the subsequent research, all four formulations can be
applied to other OPF problems with different load models,
objective functions and inequality constraints using other
deterministic optimization methods or heuristic optimization
methods.
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