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This work is concerned with the assessment of the various discretizations used to obtain the numerical solutions
of the bivariate aggregation population balance equation. It was illustrated in the literature that the accuracy and
the efficiency of the numerical approximations is majorly controlled by the directionality and orientation of the
grid selected for the domain discretization [4,6,35]. Therefore, to analyze the effect of directionality on the soution
of a 2D aggregation population balance equation, four different types of discretizations have been considered and
treated with a mass conserving finite volume scheme [40]. All discretizations are generated using the notion of
the ‘Voronoi Partitioning’ and ‘Delaunay Triangulation’. To examine the accuracy and efficiency of the finite vol-
ume schemewith various grids, the numerical results are comparedwith the exact results for several analytically
tractable kernels. The comparison demonstrates that the finite volume scheme using X-type grid with logarith-
mic scale in the radial direction estimate different ordermoments aswell as number density functionwith higher
precision and efficiency as compared to the other discretizations.

© 2018 Published by Elsevier B.V.
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1. Introduction

Population balances is a classical approach to describe the changes
that take place in the various particulate systems. Major applications
of particulate processes are in the area of pharmaceutical where sprayed
fluidized bed granulator [15], twin-screw wet granulator [19] etc. are
used to prepare granules. In these processes, the properties of the parti-
cles such as size, shape, porosity etc. vary due to aggregation, breakage,
growth and nucleation mechanisms. In the pharmaceutical industry,
multiple particle properties are required to describe the quality of
the granules [16]. So, in this work, the problem related to the 2D
pure aggregation population balance equation is solved. Aggregation
(or agglomeration) is a complex formation mechanism in which larger
sized particles are formed due to the merging of two or more smaller
size particles. During this mechanism, the total number of particles de-
creases graduallywith timebut the totalmass of the system remains the
same.

Mathematically, the aggregationmechanism is expressed in terms of
a non-linear integro-partial differential equation [14,30] which is used
to track the change in number of particles in the system. During this
gh).
mechanism, the number of particles (or number density) can vary to
several order of magnitude and can acquire a sharp peak. Therefore, to
track the true behavior of number density, an accurate and efficient
numerical scheme is required. In literature, many authors developed
various numerical schemes including finite difference methods [34], fi-
nite element methods [1,3,18], monte carlo method [27–29], method of
moments [42,43], least-square spectral method [9], finite volume
schemes [12,17,20,33,37,40], direct quadrature method of moments
[2,8,10,26,32] or sectional methods like the fixed pivot technique
(FPT) [22,25,41] and cell average technique (CAT) [5,21,23,24,38].

Among all these existing techniques, sectional methods are known
for their ability to predict the number distribution as well as various
order moments accurately. The major disadvantage of the sectional
methods is that their mathematical formulations are very complex,
making the computations very expensive whereas the finite volume
schemes are well known for their simple mathematical formulations.
But the finite volume schemes were not able to predict the higher
order moments with significant accuracy [12,33]. However, two finite
volume schemes were recently developed by Singh et al. [35] and
Kaur et al. [17]whichnot only predict thenumber distribution accurate-
ly but also higher order moments with some certain accuracy. Still, the
accuracy of the higher order moments can be improved by choosing
an appropriate discretization as shown by sectional methods when im-
plemented on various grids [4,7,31,35]. This significantly shows that the
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orientation and directionality of the grid plays significant role in
predicting the various results accurately. However, the applications of
the finite volume scheme are only limited to rectangular and triangular
grids [36]. The triangular grid is generated by the slicing rectangular grid
along the diagonal as shown in Fig. 1. Therefore, in this work, the effect
of the directionality and orientation of the grids (discretizations) on the
solution of a 2D PBE is analzed by treating four different discretizations
with a mass conserving finite volume scheme.

The paper is ordered as follows: Section2 provides themathematical
model required to describe the 2D aggregation mechanism. Next sec-
tion is used to express the idea of the generation of four different
types of triangular grids and the implementation of the finite volume
scheme on these grids. Further, Section4 is devoted to conduct a com-
parison of numerical results computed using different grids with the
exact results for analytically relevant kernels. In final section, conclu-
sions and remarks of this work are made.

2. Mathematical model

This section is used to describe the mathematical model required to
track the changes takes place in the number density function (n(x,y, t)
as various size particles are formed in the system due to the aggregation
process. Therefore, a 2D pure agglomeration population balance equa-
tion (PBE) in a well-mixed system can be written as follows:

∂n x; y; tð Þ
∂t

¼
1
2

Z x

0

Z y

0
K x−x0; y−y0; x0; y0; tð Þn x−x0; y−y0; tð Þn x0; y0; tð Þdx0dy0

⏟
formation of particles properties x;yð Þ due to the aggregation of particles properties x0 ;y0ð Þ and x−x0;y−y0ð Þ

−
Z ∞

0

Z ∞

0
K x; y; x0; y0; tð Þn x; y; tð Þn x0; y0; tð Þ dx0dy0

⏟
loss of particles properties x;yð Þ due to the collision of particles properties x0;y0ð Þ

; ð1Þ

with initial data

n x; y;0ð Þ ¼ n0 x; yð Þ; x; y ∈�0;∞½:

Here the aggregation kernel K(x,y,x′,y′, t) interpret the successive
collision of the two smaller size particles to build a larger size particle.
Mathematical structure of the aggregation kernel is K(x,y,x′,y′, t) =
K0(t)K∗(x,y,x′,y′, t) where the prefactor K0(t) describes the efficiency

of the collision. Moreover, the aggregation kernel is non-negative and
symmetric with respect to size variables. For the simplicity, the size de-
pendent (or time independent) kernels are considered for this study,
i.e., K0(t)= 1. Themost common examples of time independent kernels
Fig. 1. Different orientatio
areK∗(x,y,x′,y′, t)=1, x+ y+ x′+ y′, xyx′y′. The schematic demonstra-
tion of the aggregation process is given in Fig. 2.

Since the PBE (1) is chosen to be solvedwith numerical method, but
due to the presence of infinity in the second integral, it is very difficult to
solve numerically. Hence, for the implementation of the numerical
scheme, the domain must be restricted to

λ≔ x; yð Þ : 0 b x b xmax;0 b y b ymaxf g:

Therefore, the eq. (1) takes the following form

∂n x; y; tð Þ
∂t

¼ 1
2

Z x

0

Z y

0
K x−x0; y−y0; x0; y0; tð Þn x−x0; y−y0; tð Þn x0; y0; tð Þdx0d

−
Z xmax

0

Z ymax

0
K x; y; x0; y0; tð Þn x; y; tð Þn x0; y0; tð Þ dx0dy0

with initial condition changes to

n x; y;0ð Þ ¼ n0 x; yð Þ; x ∈�0; xmax ; y ∈½ �0; ymax½:

Further to understand the complete behavior of the system, other
than number density function some integral properties namely mo-
ments of the distribution are also required [15,39]. The ijth moment of
the number density function n(x,y, t) is defined by

μ ij tð Þ ¼
Z ∞

0

Z ∞

0
xiy jn x; y; tð Þ dxdy ð3Þ

Here, the zeroth order moment (μ00) represents the total number of
particles in the system. Whereas μ10 and μ01 expresses the total mass of
the particles along the x and y axes, respectively. Moreover, the summa-
tion of μ10 and μ01 describes the totalmass of the particles in the system.

3. Numerical discretizations

In this section, the mathematical formulation of the finite volume
scheme on a non-uniform regular triangular grid for solving 2D aggre-
gation PBE (2) is presented. Before providing the expressions of the nu-
merical scheme, we first provide the brief description of the generation
of four type of non-uniform regular triangular grids. The MATLAB com-
mands voronoi and delaunayTriangulation are used to create the
voronoi region and triangulation, respectively for all discretizations.
ns of triangular grid.

Image of Fig. 1
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Fig. 2. Schematic illustration of two dimensional agglomeration.
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3.1. Types of domain discretizations

For generating the different grids, it is essential to fix the lower and
upper bounds of the discretization domain along the horizontal axis (x-
axis) and vertical axis (y-axis) as x1/2 = y1/2 = 0 and ]0, xmax] and ]0,
ymax], respectively with xmax, ymax b ∞. Further, let us denote i and j as
the two indiceswhich is associatedwith Rth cell along x and y directions,
respectively where R={P1,P2,⋯,PI} for I number of cells. The lower and
upper boundaries of the Pth cell are denoted by (xi−1/2,yj−1/2) and (xi+1/

2,yj+1/2), respectively, for i=1, 2,…, I1 and j=1, 2,…, I2. Here, the sca-
lar values I1, I2 are the number of divisions of the domain in x and y di-
rections, respectively. Therefore the total number of cells obtained are I
= I1 × I2. Corresponding to these boundaries, the ‘representative’ of the
Fig. 3. Various types of do
cell can be obtained as follows:

xi ¼
xi−1=2 þ xiþ1=2

2
; yj ¼

yj−1=2 þ yjþ1=2

2
;

and the length of the P th cell alongm and n directions is defined as

Δxi ¼ xiþ1=2−xi−1=2;

Δyj ¼ yjþ1=2−yj−1=2:

respectively.
main discretizations.

Image of Fig. 2
Image of Fig. 3


Table 1
Parameters listed for simulation using size-independent
kernel.

Parameters Value

xmin, ymin 10−4

xmax, ymax 20
Initial time 0
Final time 35
Iagg 0.97
x10, y10 1
N0 1
Number of cells 15 × 15
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3.1.1. Type-1 discretization
Draw 16 lines with exponentially increasing distance between the

lines along both horizontal and vertical axes. The points at which both
axes cut each other are known as grid points (lower & upper bound-
aries) of cells. The points on both axes are uniformly drawn on a loga-
rithmic scale. Therefore, a larger number of grid points are obtained
near the origin of the grid and decreases as we move towards the end
of the grid. Further adopting these grid points, Voronoi partitioning
and Delaunay triangulation is completed. We name this grid as Type-1
discretization and its representation can be seen in Fig. 3(a).
3.1.2. Type-2 discretization
This discretization is generated using two types of lines: (a) radial r-

lines and (b) perpendicular t-lines are considered. The r-lines are those
Fig. 4. Different order moments and number density using
lines which pass through the origin and equally partition the domain
space. In our case, we have considered 16 radial lines with the angle be-
tween any two consecutive lines is 90/23 = 3.910. The t-lines are the
lines of slope −1. We have considered 16 t-lines for discretization.
The grid points are formed when r-lines and t-lines are intersecting.
The total number of pivots obtained is 15 × 15 = 225. Every pivot is
representing some Voronoi region. Similar to the previous
discretization, using these pivots, Delaunay triangulation is performed
to form triangular elements. We call this discretization as Type-2 or X-
type discretization. It can be noticed from the Fig. 3(b) that pivots are
heavily located near the origin whereas the pivot's density reduces as
we move far from the origin.
3.1.3. Type-3 Discretization
This grid is generating by modifying the previous grid (see

Section3.1.2). In contrast to the previous grid, the r-lines and t-lines
are drawn on a logarithmic scale along both axes (see Fig. 3(c)). More-
over, the angles between two consecutive t-lines are considered in a
way that these angles increases exponentially towards the center of
the plane. This implies that the angle between lines lies near axes is
smaller as compared to the angles between lines lies in the center of
the grid. Whereas, the r-lines are drawn with exponentially increasing
distance between the lines. In this case, 16 r-lines and 16 t-lines are con-
sidered which obtained in total 225 grid points and the points at which
both lines cut each other are called pivots which are associated to some
Voronoi region. Using these pivots, the triangular elements are formed.
Analogous to previous grids, the more grid points are densely packed
size-independent kernel with Type-1 discretization.

Image of Fig. 4


Fig. 5. Different order moments and number density using size-independent kernel with Type-2 discretization.
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near the origin of the domain and lesser at the end of the domain. We
call this grid as Type-3 discretization.
3.1.4. Type-4 Discretization
This grid was first proposed by Nandanwar and Kumar [31]

which consist of circular arcs (c-arcs) and radial lines (r-lines).
The idea of this grid is to overcome the shortcomings due to the
random orientation of triangles. To generate this grid, the radial
lines are drawn in a way that the angles between any two adjacent
lines remain same whereas the circular arcs are drawn in a logarith-
mic scale. The circular arcs are densely packed near the origin and
it exponentially increases as we move far from the origin. The inter-
section points of these r-lines and c-arcs are considered to be the
grid points. Similar to the previous cases, the formation of cells
and triangles is completed. We call this grid as Type-4 discretization
and can be seen in 3(b). In this work, we have considered 16 r-
lines and 16 c-arcs, producing 225 pivots.

Note: Similar kind of study was also conducted by Singh et al. [35]
with the cell average technique (CAT) to solve the 2D aggregation
PBE. The major drawback is that the distribution of particles to neigh-
boring pivots after the aggregation is required in the cell average tech-
nique Kumar et al. [21]. Therefore, large number of grid points are
required to capture the accurate solutions of various moments and
number distribution functions with these discretizations. In particular,
23 × 25(=575) grid points were used to generate all four
discretizations which makes the simulations computationally very
expensive. However, in our study, we only consider 225 number of
cells because nodistribution of particles is required for the finite volume
scheme.

Now based on the aforementioned notions, let us introduce the
mathematical expression of the finite volume scheme for a non-uniform
regular triangular grid.
3.2. Finite volume scheme

This section is devoted to describe the mathematical formulation of
the finite volume scheme developed by Singh et al. [40] for solving a bi-
variate aggregation PBE on a non-uniform regular triangular grid. Before
describing the numerical scheme, let us presume that Nmp, nq

expresses
the number of particles in the cell having representatives P = (xi,yj)
which can be calculatedmathematically by integrating thenumber den-
sity function (n(x,y, t) over the boundaries of the cell, i.e.,

Nxi ;y j
¼

Z xiþ1=2

xi−1=2

Z y jþ1=2

y j−1=2

n x; y; tð Þdxdy: ð4Þ

Additionally, it is also assumed that the particles presentwithin cells
are concentrated on the representatives of each cell so that Dirac delta
point masses can be used to approximate the number density function,

Image of Fig. 5


Fig. 6. Different order moments and number density using size-independent kernel with Type-3 discretization.
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i.e.,

n x; y; tð Þ ¼
XI1
i¼1

XI2
j¼1

Nxi ;y j
δ x−xið Þδ y−yj

� �
: ð5Þ

Substituting the Eq. (5) in the PBE (2) and integrate over the vari-
ables x and y will give the following expression:

dNxi ;y j

dt
¼ Bxi ;y j

−Dxi ;y j
; ð6Þ

where the terms Bxi, yj
and Dxi, yj

describes the birth and death of the
particles in the ijth cell, respectively and are given by

Bxi ;y j
¼

Xp≥q

p;q
xi−1=2 ≤ xp þ xq

� �
bxiþ1=2

Xr ≥ s

r;s y j−1=2 ≤ yp þ yq
� �

byjþ1=2

1−
1
2
δp;qδr;s

� �
KijklNxp ;yr Nxq ;ys ; ð7Þ

and

Dxi ;y j
¼

XI1
p¼1

XI2
q¼1

KipjqNxi ;y j
Nxp ;yq : ð8Þ
Here Kijkl = Kxi, yj, xk, yl
is used for simplicity. The detailed derivation

of above equations is provided in Kumar et al. [21]. Moreover, it can be
observed that the formulation represented by the Eq. (6) captures the
number preservation property very well, however, it does not conserve
the totalmass of the systemwhich is a necessary condition for any finite
volume scheme (see Appendix A). This can be easily achieved by adding
a weight to the formulation (6) which yields

dNxi ;y j

dt
¼

X
p;q;r;sð Þ∈Ωi; j

1−
1
2
δp;qδr;s

� �
KijklNxp ;yrNxq ;ysΛ

i; j
p;q;r;s

−
XI1
p¼1

XI2
q¼1

KipjqNxi ;y j
Nxp ;yq : ð9Þ

Here the weight is defined by

Λi; j
p;q;r;s ¼

xp þ xq þ yr þ ys
xi þ yj

; p; q; r; sð Þ∈Ωi; j

0; otherwise:

8<
: ð10Þ

Here, Λp, q, r, s
i, j is responsible for the conservation of the mass of the

system.Moreover,Ωi, j is defined as a pair of cells having representative
(xp, yr) and (xq, ys) such that after the aggregation, i.e., (xp + xq + yr +
ys) falls in a cell having representative (xj, yj) andmathematically can be

Image of Fig. 6


Fig. 7. Different order moments and number density using size-independent kernel with Type-4 discretization.

Table 2
Weighted error of number distribution using size-independent kernel with various grids
(15 × 15).

ψ Type-1 Type-2 Type-3 Type-4

ψ00 0.36142 0.18080 0.59055 0.24997
ψ10 0.36142 0.18080 0.59055 0.24997
ψ20 0.36142 0.18080 0.59055 0.24997
ψ11 0.40433 0.13099 0.56943 0.14138
ψ21 0.53061 0.17481 0.63632 0.18252
ψ30 0.36142 0.18080 0.59055 0.24997

Table 3
Weighted error of number distribution using size-independent kernel with various grids
(30 × 30).

ψ Type-1 Type-2 Type-3 Type-4

ψ00 0.21423 0.05896 0.29523 0.13311
ψ10 0.21423 0.05896 0.29523 0.13311
ψ20 0.21423 0.05896 0.29523 0.13311
ψ11 0.28433 0.04267 0.31763 0.06558
ψ21 0.29265 0.06729 0.30897 0.08345
ψ30 0.21423 0.05896 0.29523 0.13311

Table 5
Maximum error in different order moments using size-independent kernel with 30 × 30
cells.

η Type-1 Type-2 Type-3 Type-4

η00 0.08956 0.02625 0.06652 0.04595
η10 2.21 × 10−11 1.19 × 10−15 9.16 × 10−10 4.89 × 10−10

η20 0.09657 0.00219 0.05942 0.01324
η11 0.14378 0.00932 0.13091 0.03957
η21 0.23578 0.01056 0.20524 0.01591
η30 0.29657 0.11978 0.21986 0.16533

Table 4
Maximum error in different order moments using size-independent kernel with 15 × 15
cells.

η Type-1 Type-2 Type-3 Type-4

η00 0.12367 0.08311 0.09421 0.10974
η10 3.39 × 10−07 4.25 × 10−08 1.32 × 10−06 8.66 × 10−06

η20 0.17949 0.00849 0.11415 0.04764
η11 0.24662 0.02071 0.24030 0.05011
η21 0.41981 0.02432 0.38496 0.02721
η30 0.56396 0.26336 0.35669 0.29488
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Table 6
Comparison of computational time taken by FVS using size-indepen-
dent kernel with various grids.

Grid Type Time Taken (in seconds)

Type-1 3.80
Type-2 2.30
Type-3 6.97
Type-4 2.52

Table 7
Parameters listed for simulation using size-dependent
kernel.

Parameters Value

xmin, ymin 10−4

xmax, ymax 120
Initial time 0
Final time 15
Iagg 0.80
x10, y10 1
N0 1
Number of cells 15 × 15

Table 8
Weighted error of number distribution using size-dependent kernel with various grids
with 15 × 15 cells.

ψ Type-1 Type-2 Type-3 Type-4

ψ00 0.11138 0.04420 0.09620 0.06021
ψ10 0.11138 0.04420 0.09620 0.06021
ψ20 0.11138 0.04420 0.09620 0.06021
ψ11 0.43543 0.20251 0.37172 0.27187
ψ21 0.64511 0.33132 0.56131 0.43829
ψ30 0.11138 0.04420 0.09620 0.06021

Table 9
Weighted error of number distribution using size-dependent kernel with various grids
with 30 × 30 cells.

ψ Type-1 Type-2 Type-3 Type-4

ψ00 0.05968 0.02086 0.04010 0.03255
ψ10 0.05968 0.02086 0.04010 0.03255
ψ20 0.05968 0.02086 0.04010 0.03255
ψ11 0.28965 0.00908 0.19852 0.15927
ψ21 0.36597 0.15369 0.30294 0.21951
ψ30 0.05968 0.02086 0.04010 0.03255

Table 10
Maximum error in different order moments using size-dependent kernel with 15 × 15
cells.

η Type-1 Type-2 Type-3 Type-4

η00 0.03057 0.00673 0.01922 0.01591
η10 8.28 × 10−04 9.22 × 10−05 2.70 × 10−03 2.36 × 10−04

η20 0.14176 0.04270 0.13675 0.09811
η11 0.18723 0.05153 0.23695 0.10785
η21 0.46328 0.16747 0.51941 0.30090
η30 0.38329 0.27252 0.30595 0.31492

Table 11
Maximum error in different order moments using size-dependent kernel with 30 × 30
cells.

η Type-1 Type-2 Type-3 Type-4

η00 0.01119 0.00312 0.01032 0.01591
η10 1.71 × 10−09 3.51 × 10−11 9.12 × 10−08 7.45 × 10−08

η20 0.08637 0.02113 0.06589 0.04697
η11 0.10915 0.02915 0.14320 0.05968
η21 0.26587 0.09152 0.27611 0.16550
η30 0.20310 0.14363 0.16225 0.18360

Table 12
Comparison of computational time taken by FVS using size-dependent
kernel with various grids.

Grid Type Time Taken (in seconds)

Type-1 6.97
Type-2 5.33
Type-3 5.80
Type-4 5.73
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expressed as

Ωi; j ¼ p; q; r; sð Þ ∈ℕ4 : xi−1=2 ≤ xp þ xq
� �

b xiþ1=2 & yj−1=2 ≤ yp þ yq
� �

b yjþ1=2

n o
:

ð11Þ

Further, integrate the Eq. (9) with respect to time from limits tk to
tk+1, we get the final relation for the finite volume scheme as

Nkþ1
xi ;y j

¼ Nk
xi ;y j

þ Δtkð
X

p;q;r;sð Þ∈Ωi; j

1−
1
2
δp;qδr;s

� �
Kk
ijklN

k
xp ;yr

Nk
xq ;ys

Λi; j
p;q;r;s

−
XI1
p¼1

XI2
q¼1

Kk
ipjqN

k
xi ;y j

Nk
xp ;yq

Þ; ð12Þ

where Δtk = tk+1 − tk for k ∈ {0,1,…,N − 1}. The detailed descrip-
tion of the finite volume scheme and the theoretical proof of the mass
conservation property along with the CFL condition for the positivity
of the solution can be found in Singh et al. [40].

4. Results and discussion

In this part of the paper, the numerical results determined using FVS
with various triangular discretizations are comparedwith the analytical
results for different analytically relevant kernels. Gelbard and Seinfeld
[13] and Fernández-Díaz andGóez-García (2007) have provided the an-
alytical solutions for size-independent and size-dependent kernels, re-
spectively corresponding to the distinct initial conditions. For our
study, the initial condition nðx; y;0Þ ¼ 16N0xy

x210y
2
10

expð− 2x
x10

− 2y
y10
Þ is chosen

for calculating the numerical as well as analytical (or exact) solutions.
The comparison is conducted in terms of various order moments
along with the particle population in each cell, i.e., the number density
functions. Simulations are run using MATLAB on a i5 CPU with
2.40 GHz and 8 GB RAM.

Since the number density function will be 3D surface plot (i.e.,
n(x,y, t) vs x vs y) and to see the difference between analytical and nu-
merical solutions is very difficult in a single plot. Therefore, the concept
of flat representation suggested by Chakraborty and Kumar [4] is used. In
theflat representation, cells are sorted from k=1 to k= I1 × I2 and then
the particle population in each cell is determined mathematically by Nk

= nk1, k2
Δxk1

Δyk2
, is plotted against its index k. To enhance the compar-

ison, the quantitativelyweighted errors exist in the number distribution
are also measured using:

ψi; j tð Þ ¼
PI1

k¼1

PI2
l¼1 j Nexc

k;l tð Þ−Nnum
k;l tð Þ j xiky j

lPI1
k¼1

PI2
l¼1 N

exc
k;l tð Þxiky j

l

: ð13Þ



Fig. 8. Different order moments and number density using size-dependent kernel with Type-1 discretization.
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The symbols exc and num represent the exact and numerical solu-
tions, respectively. Moreover, ψ00 and ψ10 or ψ01 expresses the relative
error in the total number of particles (zeroth order moment) and the
total mass of the system (first order moments), respectively over the
whole domain. Similarly, other combinations of i and j can be computed.
Additionally, the maximum error in various order moments are calcu-
lated using the mathematical expression

ηi; j ¼ max
t

μexc
i; j tð Þ−μnum

i; j tð Þ
μexc
i; j tð Þ

�����
�����: ð14Þ

Here η00 and η10 exhibits themaximumerrors in the zeroth and first
order moments, respectively. These errors are evaluated at the final
time.

Before interpreting the different numerical result, it is necessary to
define degree of aggregation (DOA) Iagg:

Iagg tð Þ ¼ 1−
μ00 tð Þ

μ00 t ¼ 0ð Þ ; t≥0: ð15Þ

which describes the reduction of number of initial primary particles
due to agglomeration process. Initially at t=0, Iagg=0and as the limit t
approaches ∞, Iagg tends to unity with all primary particles forming one
aggregate.
4.1. Size-independent Kernel

Firstly, a size-independent kernel, i.e., K(t,x,y,x′,y′) = K0(t) is cho-
sen to conduct the comparison of numerical and analytical results.
This kernel is also well known as an constant kernel. For simplicity,
the value of K0(t) = 1 which physically reveals that the aggregation be-
tween two particles will always take place when they collide with each
other. Other parameters required to run a simulation for a size-indepen-
dent aggregation kernel are listed in Table 1. The analytical result for the
number density function was derived by Gelbard and Seinfeld [13].

The quantitative comparison of various order moments and number
density functions corresponding to four various discretizations are illus-
trated in Figs. 4, 5, 6 and 7. It can be observed that the zeroth order mo-
ments which denotes the number of particles in each cell predicted
numerically show over prediction from the analytical result. This is pos-
sibly due to the fact that this numerical scheme is only focused on con-
serving the total mass of the system rather than preserving the zeroth
order moment. Moreover, the total mass of the system, i.e., the first
order moments obtained numerically using all discretization are
matching well with the analytical result. In addition, the second order
moments (μ20 & μ11) computed numerically are showing a more accu-
rate solution for Type-2 discretization than the other three
discretizations. Moreover, similar kind of behavior is exhibited by the
third order moments, i.e., the third order moment approximated with
Type-2 discretization shows lesser deviation from the analytical mo-
ment than the other grids.

Image of Fig. 8


Fig. 9. Different order moments and number density using size-dependent kernel with Type-2 discretization.
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Analogous to above qualitative analysis, we have also analyzed the
results related to the number density functions graphically as shown
in Figs. 4(d), 5(d), 6(d) and 7(d) using the notion of flat representation
for four different discretizations. The results reveal that the particle pop-
ulation in each cell (number density function) computed for the Type-2
discretization shows better approximation than the other grids. This
same conclusion can also bemadewhen quantitative weighted section-
al errors (13) in number density functions for four discretization are cal-
culated (see Table 2). It can be observed that the weighted sectional
errors in various order moments obtained using Type-2 discretization
is comparatively lesser than the other discretizations. Furthermore,
the totalmaximumerrors exist in various ordermoments are quantified
using the expression (14) in Table 4 for four distinct discretizations. One
can notice that the maximum errors in different order moments com-
puted using Type-1, Type-3 and Type-4 aremore as compared to the er-
rors calculated using Type-2 grid. Moreover, the same comparison is
also conducted using a refined grid with cell 30 × 30 as shown in
Tables 3 and 5. It can be observed that the quantitative sectional and
maximum errors reduced significantly for each discretizations when
calculated using a refined grid. However, still Type-2 discretiztion per-
forms better than the other discretiztions.

In order to show the efficiency of thefinite volume schemewith var-
ious discretizations, the comparison of various grids is also conducted in
terms of computational time, i.e.,the time taken by the finite volume
scheme to obtain the various numerical results. Table 6 demonstrates
that the computational time taken for computing all numerical results
by Type-2 is lesser than the other discretizations. Hence, from the
above discussion, it can be easily concluded that the finite volume
scheme with the Type-2 discretization computes the different results
more accurately and efficiently than the other three discretizations.

4.2. Size-dependent Kernel

Similar to the previous kernel, the numerical simulations are also
run for obtaining the results corresponding to the size-dependent ker-
nel, i.e., K(x,y,x′,y′, t) = K0(t)(x + y + x′ + y′) where K0(t) = 1. This
is also known as an additive kernel. In contrast to the size-independent
kernel, the larger size particles aggregate at a faster rate for this kernel
due to higher size dependency of the kernel. The analytical result for
the number density function using this complex kernel was derived
by [11]. The parameters required to run the simulation for this kernel
are listed in Table 7.

The numerical results for various order moments along with the
number density function predicted using the finite volume scheme
with four discretizations are demonstrated in Figs. 8, 9, 10 and 11. It
can be observed that the zeroth order moments obtained using Type-
1, Type-3 and Type-4 discretizations show over-prediction from the an-
alytical result whereas the zeroth order moment predicted with Type-2
matches well with the analytical moment. Additionally, the first order
moments for four kinds of discretizations show very good agreement
with the analytical moment, i.e., the mass conservation property holds
for all discretizations. Moreover, the second order moments (mu11 &

Image of Fig. 9


Fig. 10. Different order moments and number density using size-dependent kernel with Type-3 discretization.
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mu20) predicted using Type-2 discretization shows less deviation from
the analytical moment whereas the moments computed using the
other three discretizations show significant deviation (under predic-
tion) from the analytical moment. Likewise, the third order moments
(mu21 & mu30) also show the similar behavior as second order mo-
ments, i.e., the moments predicted by Type-1, Type-3 and Type-4 devi-
ate far from the analytical solutions whereas the third order moments
captured using Type-2 show less deviation from the analytical
moments.

Analogous to the previous case, for the size-dependent kernel, the
number density function obtained numerically for various
discretizations are compared graphically (see Figs. 8(d), 9(d), 10(d)
and 11(d)). For analyzing the number density functions, the concept
of at representation is used. Fig.s reveal that Type-2 discretization ap-
proximates the number density function with higher precision as com-
pared to the other discretizations. The quantitative weighted sectional
errors in the number density function calculated using the relation
(13) are listed in Table 8 for all discretizations. The results exhibit that
the errors exist in Type-2 are lesser as compared to Type-1, Type-3
and Type-4 discretizations. In addition, themaximumerrors (14) in var-
ious order moments obtained using finite volume scheme with four
discretizations are also demonstrated in Table 10. The results reveal
that themaximumerrors computed at the end of timedomain are lesser
for Type-2 discretization as compared to the other grids. In order to
check the accuracy of the finite volume scheme on a refined grid, the
quantitative comparison of sectional and maximum errors exist in var-
ious order moments is also conducted in Tables 9 and 11. It can be
noticed that these errors reduce to 50% when finite volume scheme is
implemented on a refined grid for each discretiztion. However, the
Type-2 discretization still outperforms the other discretizations in
term of accuracy.

In addition to above, the comparison in terms of computational
sense shows that slightly lesser time is taken by finite volume scheme
with the Type-2 grid than the other three discretizations. Therefore, it
can be concluded that the finite volume scheme with Type-2
discretization approximates the various ordermoments aswell as num-
ber density function with higher accuracy and efficiency as compared
the other grids. This also illustrates that the solution of the 2D aggrega-
tion PBE is highly dependent on the type of discretization chosen to di-
vide the given domain.
5. Conclusions

Thefinite volume schemehas been applied successfully to four types
of non-uniform regular triangular discretizations. Different compari-
sons of the finite volume scheme with four types of discretizations in
terms of maximum as well as sectional weighted errors have been con-
ducted. The qualitative along with the quantitative numerical results
computed using the finite volume scheme admit that the results ap-
proximated for Type-2 discretization are in better agreement with the
analytical results as compared to the results of all other grids. This con-
cludes that the finite volume scheme for solving a 2D aggregation pop-
ulation balance equation is highly dependent on the orientation and
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Fig. 11. Different order moments and number density using size-dependent kernel with Type-4 discretization.
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directionality of discretization considered for partitioning the given
domain.

Appendix A. Appendix

Proposition: The numerical scheme representing by the expression
(6) is not mass conserving.

Proof:Multiply the formulation provided in eq. (6) by (xi + yj) both
side and take sum over all i and j. The left hand side gives the first mo-
ment at time tk+1 and the right hand side can be simplified as

XI1
i¼1

XI2
j¼1

Nkþ1
xi ;y j

xi þ yj

� �
ΔxiΔyj ¼

XI1
i¼1

XI2
j¼1

Nk
xi ;y j

xi þ yj

� �
ΔxiΔyj þ ΔtkT;

where T is given by the following expression:

T ¼
XI1
i¼1

XI2
j¼1

X
p;q;r;sð Þ∈Ωi; j

1−
1
2
δp;qδr;s

� �
Kk
ijklN

k
xp ;yr

Nk
xq ;ys

Λi; j
p;q;r;s−

XI1
p¼1

XI2
q¼1

Kk
ipjqN

k
xi ;y j

Nk
xp ;yq

0
@

1
A

ð16Þ

For proving the mass conservation property, it is required to show
that T = 0 for all times. But, it can be noticed that the two expressions
on the right hand side of the above equations are not same. Hence, the
mass conservation property does not hold for the formulation (6).
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Nomenclature

Symbol: Description
n: Number distribution (density) function
K: Aggregation kernel
K0(t): Aggregation frequency
Np
ana(tk): Analytical (Exact) value of number of particles in the cell p at time tk

Np
num(tk): Numerical value of number of particles in the cell p at time tk

μ:Moments of number density function
I: Total number of cells
Iagg: Degree of aggregation
λ: Restricted domain
x, y: Particle properties in terms of size (volume)
Λ: Weight for the finite volume scheme
ψ: Weighted sectional errors in number density function
η: Maximum errors in moments

Abbreviations

PBE: Population balance equation
FVS: Finite volume scheme
CAT: Cell average technique
DOA: Degree of aggregation
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