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POSITION-DEPENDENT SMOOTHNESS-INCREASING
ACCURACY-CONSERVING (SIAC) FILTERING FOR IMPROVING

DISCONTINUOUS GALERKIN SOLUTIONS∗
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Abstract. Position-dependent smoothness-increasing accuracy-conserving (SIAC) filtering is
a promising technique not only in improving the order of the numerical solution obtained by a
discontinuous Galerkin (DG) method but also in increasing the smoothness of the field and improving
the magnitude of the errors. This was initially established as an accuracy enhancement technique
by Cockburn et al. for linear hyperbolic equations to handle smooth solutions [Math. Comp., 72
(2003), pp. 577–606]. By implementing this technique, the quality of the solution can be improved
from order k + 1 to order 2k + 1 in the L2-norm. Ryan and Shu used these ideas to extend this
technique to be able to handle postprocessing near boundaries as well as discontinuities [Methods
Appl. Anal., 10 (2003), pp. 295–307]. However, this presented difficulties as the resulting error had a
stair-stepping effect and the errors themselves were not improved over those of the DG solution unless
the mesh was suitably refined. In this paper, we discuss an improved filter for enhancing DG solutions
that easily switches between one-sided postprocessing to handle boundaries or discontinuities and
symmetric postprocessing for smooth regions. We numerically demonstrate that the magnitude of
the errors using the modified postprocessor is roughly the same as that of the errors for the symmetric
postprocessor itself, regardless of the boundary conditions.
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1. Introduction. Smoothness-increasing accuracy-conserving (SIAC) filtering
is a technique that has had initial successful applications in the areas of visualization
and aeroacoustics [16, 20]. However, a limitation of this technique becomes evident
when it is applied near a discontinuity or domain boundary, due to the symmetric
nature of the filter, which is discussed in more detail below. This paper addresses this
issue and redefines the previous postprocessor as a position-dependent SIAC filter
which consists of a convex combination of different kernel types.

The typical application of SIAC filtering is to improve the order of the numerical
solution obtained by a discontinuous Galerkin (DG) method. This is accomplished
by using information that is already contained in the numerical solution to increase
the smoothness of the DG field and improve the magnitude of the errors.

The foundations for this postprocessor were established by Bramble and Schatz
[2]. They showed that the accuracy of Ritz–Galerkin discretizations can be doubled
by convolving the solution against a certain symmetric kernel function, only once, at
the final time. Thomée [21] provided alternative proofs for the results in [2] by using
Fourier transforms. Furthermore, he constructed modified versions of the symmetric
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kernel to extract derivative approximations.
Cockburn et al. [6] used the ideas of Bramble and Schatz and those of Mock

and Lax [14] to demonstrate that the symmetric postprocessor is also suitable for
DG schemes. They proved that, for a certain class of linear hyperbolic equations with
sufficiently smooth solutions, the postprocessor enhances the accuracy from order k+1
to order 2k + 1 in the L2-norm, where k is the polynomial degree of the original DG
approximation. This postprocessor relies on a symmetric convolution kernel consisting
of 2k + 1 B-splines of order k + 1.

A disadvantage of this symmetric kernel is that it cannot be applied near bound-
aries and shocks as it requires an equal amount of information from both sides of the
point that is being postprocessed. To address this issue, Ryan and Shu [15] extended
the ideas in [6] to obtain a one-sided postprocessor that can be applied near bound-
aries as well as discontinuities in the exact solution. This was achieved by modifying
the symmetric kernel such that the support is located on one side of the origin. Al-
though this made it possible to apply the postprocessor near boundaries and shocks,
the results obtained were not satisfactory: the errors had a stair-stepping–type struc-
ture, and the errors themselves were not improved over those of the unfiltered solution
unless the mesh was sufficiently fine (cf. Figure 10).

In this paper, we discuss an improved filter for enhancing DG solutions that eas-
ily switches between one-sided postprocessing to handle boundaries or discontinuities
and symmetric postprocessing for smooth regions. This is the position-dependent
nature of our filtering kernel that relies on different kernels for different domain re-
gions. The improvements to the one-sided kernel are accomplished by combining
previous concepts used in one-sided postprocessing for DG solutions with those from
spectral methods and finite difference methods [3, 11, 18] to improve the one-sided
filter. We obtain the improved one-sided kernel by redefining the basis of our kernel
nodes so that it depends upon a smooth shift function, λ(x̄), as well as using more
kernel nodes (B-splines). We can then recast the definition of the postprocessor as a
position-dependent SIAC filter using a convex combination of filter types. We numer-
ically demonstrate that this modified position-dependent SIAC filter has boundary
errors that are roughly the same as the errors for the symmetric postprocessor itself,
regardless of boundary conditions.

We present this paper as follows: In section 2, we briefly review the basic tools
used to generate a DG solution as well as the uniform mesh symmetric SIAC filters.
In section 3, we introduce improvements to the one-sided SIAC filter and define how
to combine this new filter with the symmetric filter. We present our numerical results
in section 4, which verifies the improved nature of our position-dependent SIAC filter.
We conclude with a discussion of our results in section 5.

2. Background.

2.1. A summary of discontinuous Galerkin methods. The discontinuous
Galerkin method (DG) is numerically a well-established tool that is obtaining greater
prominence in computational fluid dynamics applications. It can be thought of as a
combination of a finite volume and finite element method. We present a basic outline
below. The reader is asked to consult [4, 5, 7, 8, 9, 10] for further details about the
DG method.

For the purposes of this paper, consider a simple linear hyperbolic equation,

ut + f(u)x = 0, x ∈ Ω, t ≤ T,(1)

u(x, 0) = u0(x), x ∈ Ω,
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where f(u) = a u. It is well known that if the discretization of the mesh is defined as

Ij = (xj − �xj

2 , xj +
�xj

2 ), j = 1, . . . , N, and the basis functions, φ�j(x), � = 0, . . . , k,
are piecewise polynomials of degree less than or equal to k, the approximation space
is then given by

(2) Vh = {φ(�)j (x) ∈ P
k|Ij , j = 1, . . . , N}.

Using this, the DG formulation is then

(3)

∫
Ij

(uh)tvdx =

∫
Ij

f(uh)vxdx− f̂j+ 1
2
v−
j+ 1

2

+ f̂j− 1
2
v+
j− 1

2

for all v ∈ Vh, with the DG approximation on element Ij being given by

(4) uh(x, t) =

k∑
�=0

u
(�)
j (t)φ

(�)
j (x), j = 1, . . . , N.

Choosing an upwind monotone flux for f̂ , a system of differential equations is
then obtained. This system is then integrated in time using a third-order strong-
stability-preserving (SSP) Runge–Kutta scheme such as those in [12, 13, 19].

After the DG solution is obtained at the desired final time, we can then apply a
smoothness-increasing accuracy-conserving (SIAC) filter. By postprocessing the solu-
tion we can obtain higher-order accuracy, provided that the initial condition uh(x, 0)
is the L2-projection of u0(x) onto the test space Vh. The latter is required by the
theoretical error estimates in [6]. However, it should be noted that this preprocessing
is required computationally only for the convergence of the filtered solution and not
for the convergence of the original DG approximation.

In addition to enhancing the accuracy, the postprocessor also introduces smooth-
ness into the DG field. Note that continuity is only weakly enforced through the
numerical fluxes. By convolving the numerical approximation against our kernel con-
sisting of B-splines of order � that have C�−2-continuity, we are introducing levels
of smoothness into the field. As a consequence, it allows for better visualization of
streamlines or isosurfaces from a DG field. In light of this we seek to improve upon
the DG solution by implementing a position-dependent SIAC filter.

2.2. SIAC filters. The symmetric postprocessor for the DG method was in-
troduced by Cockburn et al. [6] to handle periodic linear hyperbolic equations. The
general theoretical foundations of this technique were established by Bramble and
Schatz [2] and Mock and Lax [14]. The main idea is to convolve the piecewise poly-
nomial DG approximation with a kernel function that is a linear combination of
B-splines. It has been shown both theoretically and numerically that this strategy
can improve the convergence rate from O(hk+1) to O(h2k+1). Furthermore, the post-
processed approximation is rendered k − 1 times continuously differentiable. Here,
we provide a brief summary of the symmetric postprocessor that provides such an
improvement. Further details on the postprocessor and the implementation can be
found in [6, 16, 20, 22].

A DG approximation, uh, of polynomial degree k can be postprocessed at the
evaluation point x̄ by convolving it against a kernel function,

u∗h(x̄) =
1

H

∫
K

(
x̄− x

H

)
uh(x) dx,(5)
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Fig. 1. A symmetric kernel that is uniquely determined by the kernel nodes {−1, 0, 1} (indicated
by the circles), scaled by the mesh size H = h, and the central B-spline of order � = 2.

where the scaling H > 0 is chosen dependent upon the maximum diameter h of the
mesh elements. For a uniform mesh implementation, this scaling is given by H = h.
The symmetric kernel K is a linear combination of r + 1 central B-splines, ψ(�), of
order � of the form

(6) K(x) =

r∑
γ=0

cγψ
(�)

(
x− xγ

) ∀x ∈ R.

In practical applications, r is typically chosen to be r = 2k with � = k+1. In (6), the
kernel nodes x0, . . . , xr are defined to be evenly distributed about the origin, that is,

(7) xγ = − r
2
+ γ ∀γ = 0, . . . , r.

The kernel nodes x0, . . . , xr will be modified later (cf. (10), (11), and (12)) to obtain
other types of kernel functions. The kernel coefficients c0, . . . , cr are defined as the
unique solution to the linear system

(8)

r∑
γ=0

cγ

∫
R

ψ(�)(x)(x + xγ)
q dx =

{
1 for q = 0,

0 ∀ q = 1, . . . , r.

Finally, the central B-splines, ψ(�), can be constructed by convolving the characteristic
function on the interval [−1/2, 1/2] with itself �− 1 times, by a recursion relation, or
by using divided differences [17, 22]. Figure 1 displays an illustration of the symmetric
form of the SIAC filter based on r + 1 = 3 kernel nodes and B-splines of order � = 2.
This is the filter that is usually applied to piecewise linear DG solutions (k = 1).

For general polynomial degrees k, this SIAC filter which uses r = 2k and � = k+1
has two main advantages. First, it improves the convergence rate from O(hk+1) to
O(h2k+1). Second, it carries the smoothness of the B-spline ψ(k+1) ∈ Ck−1 over to the
approximation. In other words, after postprocessing, the discontinuous approximation
has become k − 1 times continuously differentiable.

A drawback of the symmetric postprocessor is that it cannot be applied near a
boundary or a shock. This is because it requires the evaluation of the DG approxi-
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mation in the support of x �→ K
(
x̄−x
H

)
to be

(9)

[
x̄−H

r + �

2
, x̄+H

r + �

2

]
,

where x̄ is the evaluation point under consideration (cf. (5) and Figure 1(b)). Notice
that the kernel takes a symmetric amount of information around the point that is being
postprocessed, as noted in [15]. As a consequence, the symmetric postprocessor cannot
always be applied, depending on the location of the evaluation point x̄ in the domain.
For instance, near the boundary the postprocessor should not require unavailable
information outside the spatial domain. Similarly, the postprocessor should not take
information that requires crossing a shock, since the theoretical error estimates rely
on the smoothness of the exact solution.

For this reason, a different type of kernel with a more suitable support is required
near boundaries and shocks. In the next section we discuss just such a position-
dependent SIAC filter. It takes the basic ideas from those of [15] and improves upon
them to create a filter that obtains the same error magnitude at the boundary of the
domain as it does in the interior.

3. Position-dependent SIAC filtering. To filter near boundaries and shocks,
a one-sided postprocessor was proposed by Ryan and Shu in [15] which satisfies (5),
(6), and (8). The difference between the one-sided and the symmetric postprocessors
is the choice of the kernel nodes, which then leads to different kernel coefficients.
While the symmetric kernel uses kernel nodes that are distributed evenly around the
origin as in (7), the one-sided kernel is based on kernel nodes such that the support
of the kernel is located entirely on one side of the origin. For example, choosing the
kernel nodes

(10) xγ =

⌈
�

2

⌉
+ γ ∀γ = 0, . . . , r = 2k

yields the so-called right-sided kernel, whose kernel support is located on the right
side of the origin. The resulting postprocessor can be applied to the left of a boundary
or a shock (cf. Figure 2, noting the difference between the support of K(x) and the
support of K( x̄−x

H )). Similarly, choosing the kernel nodes to be

(11) xγ = −r −
⌈
�

2

⌉
+ γ ∀γ = 0, . . . , r = 2k

results in the left-sided kernel, which is suitable for application on the right side of a
boundary or a shock.

Ryan and Shu observed that the one-sided postprocessor renders the discontin-
uous approximation k − 1 times differentiable and that the convergence rate can be
improved from O(hk+1) to O(h2k+1), similarly to the symmetric case. Unfortunately,
an improvement of the convergence rate does not necessarily imply an improvement
of the error. Indeed, it was also observed that the one-sided postprocessor tends to
worsen the errors for coarse meshes (cf. Figures 7(c) and 10(b)). The symmetric post-
processor does not suffer from this drawback and is much more accurate. For this
reason, the symmetric kernel was applied in the domain interior whenever possible.
Only near boundaries and shocks, where the symmetric kernel cannot be applied,
was the one-sided kernel used. This type of switching between different kernels made



POSITION-DEPENDENT SIAC FILTERING 807

x−3 x−2 x−1

↑
evaluation point x

mesh

Right−Sided Kernel

Fig. 2. Application of the right-sided kernel, K
(
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H

)
, that is uniquely determined by the

kernel nodes {1, 2, 3} (indicated by the circles) and the central B-spline of order � = 2.

it possible to postprocess the entire domain while preserving the accurate nature of
the symmetric postprocessor whenever feasible. Details of this switching will be ex-
plained in the next section. However, near the boundaries and shocks, the errors
were generally worse than the DG solution. Additionally, the switching of the kernels
introduced a second problem: the errors showed a stair-stepping nature, indicating
that unwanted discontinuities were reintroduced in the postprocessed solution (cf.
Figures 7(c) and 10(b)). We seek to improve these two drawbacks in the existing one-
sided postprocessor and to cast the kernel in the context of a position-dependent SIAC
filter. This will be done in two steps. First, the location of the kernel nodes x0, . . . , xr
is redefined to be position-dependent (section 3.1). By doing this in a smooth manner
we remove the stair-stepping errors. Next, the number of kernel nodes (or B-splines),
r + 1, are also chosen to be position-dependent (section 3.2). This creates the possi-
bility of using extra kernel nodes in a local neighborhood of boundaries and shocks,
which benefits the accuracy, as noted in [3, 11]. These ideas are then combined in a
convex combination of filter types to create our position-dependent SIAC filter.

3.1. Location and scaling of the kernel nodes. To define the new position-
dependent SIAC filter, we begin by redefining the kernel nodes and discussing the
scaling of the kernel support. We maintain the postprocessor such that it continues
to satisfy (5), (6), and (8). However, the kernel nodes are now given by the generalized
form,

(12) xγ = − r
2
+ γ + λ(x̄) ∀γ = 0, . . . , r.

Note that the kernel nodes depend on the evaluation point x̄ through a shift function
λ. By redefining the kernel nodes, this leads to a modified kernel support (cf. (9)),
which means that the values of the kernel coefficients in (6) using (8) also change.
The main subject of this section is the choice of shift function for the kernel nodes as
well as control of the kernel support by the choice of λ and H .

We begin by noting that choosing λ(x̄) = 0 leads to the symmetric kernel (cf.
(7)). Similarly, for λ(x̄) = − ⌈

r+�
2

⌉
and λ(x̄) =

⌈
r+�
2

⌉
, the left-sided (cf. (11)) and

right-sided (cf. (10)) kernels are obtained. By choosing λ(x̄) between zero and
⌈
r+�
2

⌉
,

the partly right-sided kernels can be obtained. This is illustrated in Figure 3 for
λ(x̄) = 1 and r = 2. Similarly, partly left-sided kernels are also defined. Using this
information, we want to control the location of the kernel nodes depending on the
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Fig. 3. Application of a partly right-sided kernel, K
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H

)
, that is uniquely determined by the

kernel nodes {0, 1, 2} (indicated by the circles) and the central B-spline of order � = 2.

.

evaluation point x̄. This also controls the accuracy and applicability of the kernel.
For example, the symmetric kernel is known to be more accurate than the one-sided
kernel, and this is the kernel that we want to apply in the largest part of the domain
interior as possible. This is equivalent to λ(x̄) being zero. Therefore, it makes sense to
choose λ(x̄) as close to zero as possible when not implementing the symmetric kernel.
We thus say that the kernel is applicable if the support of x �→ K

(
x̄−x
H

)
, which is

given by [
x̄−H

r + �

2
+ λ(x̄), x̄+H

r + �

2
− λ(x̄)

]
,(13)

does not contain a shock or a boundary. Note that the kernel support is the result of
shifting the support of the symmetric kernel in (9) by precisely a distance λ(x̄). This
means that λ affects only the location of the kernel support and not its diameter. For
now, we delay the discussion of the support diameter and discuss a strategy to obtain
a suitable explicit expression for the shift function λ.

To clarify the idea, consider a subinterval [a, b] of our spatial domain that lies
precisely between two subsequent boundaries or shocks. The shift function is obtained
by using the following strategy: for every evaluation point x̄ ∈ [a, b], the value λ(x̄)
is chosen as close to zero as possible, to make the kernel “as symmetric as possible”
and to maximize the accuracy, yet such that the support of x �→ K

(
x̄−x
H

)
lies within

[a, b] to ensure the applicability of the kernel.
We begin the investigation of λ by noting that in the original one-sided postpro-

cessor, the shift function was designed such that the kernel nodes are integers. Under
this assumption, the strategy above leads to a piecewise constant shift function (cf.
Figure 4(a)),

λ(x̄) =

{
min{0,−� r+�

2 �+ 	 x̄−a
H 
} for x̄ ∈ [

a, a+b
2

)
,

max{0, � r+�
2 �+ � x̄−b

H �} for x̄ ∈ [
a+b
2 , b

]
.

Note that this shift function uses the symmetric kernel in the interior of the domain as
often as possible. Near the boundary, where the symmetric kernel cannot be applied,
partly one-sided kernels are used. Furthermore, observe that this shift function is
discontinuous. As a result, the postprocessed solution is generally also discontinuous
precisely at the locations where λ is discontinuous. This reveals the cause of the
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Fig. 4. Choosing the shift function between two subsequent boundaries or shocks (r = 2k,
� = k + 1, k = 2).

aforementioned stair-stepping character of the errors, which is precisely what we seek
to overcome in this section. The discontinuous nature of the shift function is an
immediate consequence of the assumption that the kernel nodes are chosen as integers.

By dropping the assumption that λ ∈ Z, we can now improve upon the shift
function. We use the strategy above, which sets λ as close to zero as possible, but
we also consider noninteger kernel nodes. This leads to the following continuous shift
function (cf. Figure 4):

λ(x̄) =

{
min{0,− r+�

2 + x̄−a
H } for x̄ ∈ [

a, a+b
2

)
,

max{0, r+�
2 + x̄−b

H } for x̄ ∈ [
a+b
2 , b

]
.

(14)

Observe that the new shift function takes values closer to zero than the original one.
This results in partly one-sided kernels that are “more symmetric” and more accurate
than before and kernel coefficients that depend continuously on the evaluation point.
Furthermore, observe that the function is infinitely smooth everywhere, except for
two locations where it is continuous but not differentiable. As a consequence, the
postprocessed solution maintains the same smoothness as the B-splines except in
those two locations where it is only continuous. We note that it is possible to design
a shift function that has the same smoothness as the B-splines throughout the entire
domain, but then λ is no longer chosen as close to zero as possible, which results in
partly one-sided kernels that are “less symmetric” and less accurate.

We now address the second issue with respect to applicability of the kernel, that
is, the diameter of the kernel support, which is controlled by H . Note that, in order
for λ(x̄) defined above to exist, it is necessary to choose the scale H sufficiently small
so that the diameter of the kernel support, which does not depend on λ, is not larger
than the diameter of the subinterval. That is,

H(r + �) ≤ b− a.(15)

It has already been noted that for uniform meshes, H = h. However, depending on
the locations of domain boundaries or discontinuities in the solution, this may not
always be feasible. Testing of the kernel scaling suggests that increasing the kernel
size, H > h, increases the smoothness of the postprocessed solution but the L2-errors
are larger than for that of the DG solution, unless the mesh is sufficiently refined.
This type of scaling is not implemented for our purposes. However, in section 4.5, a
scaling less than the uniform element size is used for the coarser meshes. In such a
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scaling, oscillations in the error of the DG solution reappear for the filtered solution
and the same order of convergence is obtained for both errors. Additionally, the errors
are closer to that of the DG solution, although they are slightly worse. The scaling
of the convolution kernel for filtering between a domain boundary and discontinuity
requires further investigation.

3.2. Number of kernel nodes. The previous section introduced a new SIAC
filter using a position-dependent choice of the location of the kernel nodes. This
eliminated the stair-stepping nature of the errors of the original filter. However, the
(partly) one-sided kernels tend to worsen the errors for coarse meshes. In this section
we further improve the SIAC filter by addressing this issue. This improvement consists
of using a position-dependent choice of the number of kernel nodes (or B-splines).

The current version of the SIAC filter, defined by (5), (6), (8), (12), and (14),
can be applied for any number of kernel nodes, r + 1. Previously, it was standard
to use r + 1 = 2k + 1 kernel nodes. We now drop this convention and consider
implementing general integer values of r. The motivation for this is that increasing
the number of kernel nodes can lead to higher accuracy. This was noted in [3, 11]
and is illustrated in sections 4.1 and 4.2. For purposes of clarification, we emphasize
that we refer to using a greater number of B-splines as using a greater number of
kernel nodes. Moreover, extra kernel nodes increase the kernel support (cf. (13)).
This inevitably increases the computational costs. For example, consider using small
matrix-vector multiplications for the filtered solution where the postprocessing matrix
is precomputed. The postprocessing matrix size is (r+1)× (k+1) and contains inner
products of B-splines with polynomial basis functions. This is multiplied by a vector
of length (k+1) that contains the DG modes for a mesh element in the kernel support.
Therefore, to postprocess one evaluation point in a one-dimensional uniform mesh,
(r + �+ 1) small matrix vector multiplications are required, with a summation of all
elements in the resulting vectors. We stress that the postprocessor is applied only
once, at the final time of the simulation.

To keep the extra computational costs at a minimum, extra kernel nodes should
be used only where necessary, i.e., where the (partly) one-sided kernels are applied.
The symmetric kernel, which is applied in the largest part of the domain interior, is
sufficiently accurate for the standard number of kernel nodes, i.e., r + 1 = 2k + 1,
where k is the polynomial degree of the DG approximation, uh. We emphasise that
we use extra kernel nodes only near a boundary or a shock.

Because the number of kernel nodes is an integer, simply letting r depend on
the evaluation point x̄ would introduce discontinuities. For this reason, we propose
considering two postprocessed solutions: (u∗h)r1 , which is based on a relatively small
constant number of kernel nodes r1 + 1, and (u∗h)r2 , which is based on a relatively
large constant number of kernel nodes r2 + 1. These two solutions are obtained from
(5), (6), (8), (12), and (14) using r = r1 and r = r2, respectively. Note that both
solutions are based on a combination of symmetric and (partly) one-sided kernels.
The only difference is the number of kernel nodes. We then combine these two kernels
to define the new position-dependent SIAC filter to be a smooth convex combination
of these two solutions:

u∗h(x̄) = θ(x̄)(u∗h)r1(x̄) + (1− θ(x̄))(u∗h)r2(x̄).

In this equation, the coefficient function θ depends on the position of the evaluation
point x̄. It takes values in [0, 1] in the following manner (see Figure 5 for an illustra-
tion). First, choose θ equal to one in the largest part of the interior of the domain,
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Fig. 5. Choosing the coefficient function between two subsequent boundaries or shocks.

where the symmetric kernel already provides enough accuracy for the relatively small
number of kernel nodes r1 + 1. In this paper, we use r1 + 1 = 2k + 1, where k is the
polynomial degree of the DG approximation uh. Additionally, choose θ equal to zero
near a boundary or a shock, where the (partly) one-sided kernels need a relatively
large number of kernel nodes, r2 + 1, to obtain sufficient accuracy. In this paper, we
use r2 + 1 = 4k + 1.

It should be noted that other values of r2 > r1 could be used as well. For example,
we also ran tests for r2 = 3k+1 and r2 = 5k+1. As expected, we found that a larger
number of kernel nodes leads to more accuracy. However, the difference between
using 5k+1 nodes and using 4k+1 nodes was relatively small. For 3k+1 nodes, the
errors were not improved over the unfiltered errors for the coarser meshes. Based on
these experiments, using r2 + 1 = 4k + 1 is a natural choice for enhancing the errors
where necessary, without increasing the kernel support and the computational costs
too much.

Moreover, to preserve the smoothness of the kernel, the coefficient function should
be at least as differentiable as the applied B-splines, i.e., � − 2 times (in this paper,
we apply the usual B-spline order � = k + 1). This requires two smooth transition
regions, where θ(x̄) ∈ (0, 1). In this paper, these regions each consist of two mesh
elements in the “symmetric part” of the domain, i.e., where λ(x̄) = 0, adjacent to the
“one-sided part” of the domain, i.e., where λ(x̄) �= 0. Furthermore, θ is chosen to be
a polynomial of degree 2�+ 1, which is uniquely defined under the given smoothness
conditions. For example, one choice of the coefficient function θ is

θ(x̄) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for x̄ ∈ [a, a1),

p(x̄) for x̄ ∈ [a1, a2],

1 for x̄ ∈ (a2, b2),

q(x̄) for x̄ ∈ [b2, b1],

0 for x̄ ∈ (b1, b],

(16)

where

a1 = a+ 3k+1
2 h, a2 = a+

(
3k+1

2 + 2
)
h,

b1 = b− 3k+1
2 h, b2 = b− (

3k+1
2 + 2

)
h,

and where p is a polynomial of degree 2�+1 = 2k+3.We note that we further require
that p(a1) = 0, p(a2) = 1, and dnp

dxn (a1) =
dnp
dxn (a2) = 0 for all n = 1, . . . , � = k + 1.

A similar definition holds for q. We remark that other choices for θ may also work in
practice.
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We emphasize that it is not necessary to compute both intermediate postprocessed
solutions in the entire domain. This is required only in the four mesh elements that
make up the two transition regions where θ ∈ (0, 1).

4. Numerical validation. This section illustrates the performance of our new
position-dependent SIAC filter compared to the original filter for six different test
cases. We consider the L2-projection of a sine function in section 4.1 and the DG
solution at the final time t = 12.5 of the following four one-dimensional hyperbolic
PDEs: a constant coefficient equation with periodic boundary conditions, a constant
coefficient equation with Dirichlet boundary conditions, a variable coefficient equation,
and a discontinuous coefficient equation in sections 4.2–4.5, and a two-dimensional
system in section 4.6. The examples demonstrate that the convergence rate can be
improved from O(hk+1) to O(h2k+1) throughout the entire domain and that the errors
for the filtered solution can be better than those for the DG solution.

We implement both the old and new postprocessors that are found in section 3 and
compare the results. For all test cases, the DG solution was based on first order upwind
fluxes, monomial basis functions, and a uniform mesh. Furthermore, for the time-
discretization, a third order SSP–RK scheme was applied [12, 13], using a sufficiently
small time step to ensure that the time-stepping errors were not dominating the
spatial errors. The computation of the convolution in (5) was performed exactly using
Gaussian quadrature, as described in [15]. Finally, we note that we made use of the
ARPREC multiprecision package in order reduce round-off errors appropriately [1].

4.1. L2-projection of a sine function. The first test case is the L2-projection
of u(x) = sin(x) onto the space of piecewise polynomials of degree k = 1, 2, 3. This
test case can also be interpreted as a DG approximation at the initial time. It is the
most elementary case that we can test in order to ensure the reliability of our filter.

Table 1 illustrates that the new postprocessor improves the convergence rate
from O(hk+1) to at least O(h2k+1). This is also illustrated in Figure 6 for piecewise
polynomials of degree k = 2. In this figure, we can see that the old and new versions
of the postprocessor have the same convergence rate, which is better than that of the
DG solution. Additionally, we do see that the old implementation of the one-sided
postprocessor is sufficient to improve upon the errors of the DG solution when the
mesh is suitably refined. However, the magnitude of the errors obtained from the new
implementation of the SIAC filter is considerably better for all meshes, both for the
L2- and L∞-norms.

Figure 7 shows the absolute error per evaluation point, which reveals the differ-
ences in the local accuracy of the two postprocessors. In the interior of the domain,
there are no differences, which stems naturally from the fact that both postprocessors
apply a symmetric kernel with 2k + 1 nodes in that region. As a consequence, the
errors are sufficiently smooth and accurate, as expected. The differences between the
two postprocessors occur at the boundary of the domain.

In Figures 7(c) and 7(b) we examine the boundary regions. We see that the old
postprocessor (cf. Figure 7(c)) shows the two main problems that were discussed at
the beginning of section 3. The first is that not all discontinuities have been removed,
which can be seen by observing the stair-stepping nature of the errors. The cause
of these discontinuities is the choice of the kernel nodes, which has been resolved by
introducing a continuous shift function in the definition of the kernel nodes. Indeed,
the discontinuities are no longer introduced by the new postprocessor (cf. Figure 7(b)).
Second, the old postprocessor has worse errors near the boundary for coarse meshes.
This was resolved by changing the number of kernel nodes. By increasing the number
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Table 1

Comparison of the global accuracy of the old and new postprocessors for the L2-projection of
the sine function. The new postprocessor improves the convergence rate from O(hk+1) to O(h2k+1).

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 6.510e-03 - 5.953e-03 - 1.601e-02 - 2.213e-02 - 4.876e-04 - 1.258e-03 -
40 1.629e-03 2.00 1.500e-03 1.99 1.714e-03 3.22 3.111e-03 2.83 1.899e-05 4.68 5.352e-05 4.56
80 4.074e-04 2.00 3.759e-04 2.00 1.584e-04 3.43 4.000e-04 2.96 9.024e-07 4.40 1.792e-06 4.90
160 1.019e-04 2.00 9.402e-05 2.00 1.416e-05 3.48 5.035e-05 2.99 5.330e-08 4.08 5.694e-08 4.98

polynomial degree k = 2

20 1.729e-04 - 1.279e-04 - 3.949e-03 - 6.681e-03 - 4.186e-06 - 3.144e-06 -
40 2.163e-05 3.00 1.613e-05 2.99 2.111e-04 4.23 3.921e-04 4.09 8.687e-08 5.59 6.710e-08 5.55
80 2.704e-06 3.00 2.021e-06 3.00 5.474e-06 5.27 1.387e-05 4.82 1.384e-09 5.97 7.872e-10 6.41
160 3.381e-07 3.00 2.528e-07 3.00 1.256e-07 5.45 4.464e-07 4.96 2.173e-11 5.99 1.231e-11 6.00

polynomial degree k = 3

20 3.423e-06 - 2.146e-06 - 1.059e-04 - 2.263e-04 - 3.747e-07 - 9.841e-07 -
40 2.141e-07 4.00 1.354e-07 3.99 4.712e-06 4.49 8.963e-06 4.66 6.304e-10 9.22 3.885e-10 11.31
80 1.338e-08 4.00 8.486e-09 4.00 3.412e-08 7.11 8.718e-08 6.68 2.673e-12 7.88 1.526e-12 7.99
160 8.363e-10 4.00 5.307e-10 4.00 2.004e-10 7.41 7.163e-10 6.93 1.056e-14 7.98 5.970e-15 8.00
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Fig. 6. Comparison of the global accuracy of the old and new postprocessors for the L2-
projection of the sine function for k = 2. An illustration of Table 1 for showing the improved
convergence rate and error magnitude for the new one-sided postprocessor.

of kernel nodes, we are able to improve on the errors over that of the DG solution
(cf. section 3.2). Indeed, the new postprocessor obtains higher accuracy near the
boundary. This is due to the fact that the latter uses 4k + 1 kernel nodes instead of
2k + 1 in that region.

The effect of using extra kernel nodes is isolated in Table 2 and Figures 8 and 9.
These results were obtained by applying the fully one-sided kernel in the entire domain
using 2k + 1 kernel nodes for the old postprocessor and 4k + 1 kernel nodes for the
new version of the SIAC filter. In other words, the only difference between the two
postprocessors is the number of kernel nodes. For this specific illustration, a periodic
extension of uh was used. It is clear from the figures that the extra kernel nodes lead
to a better convergence rate and better accuracy of O(h4k+1). The same phenomenon
occurs at the boundary using the new postprocessor (cf. Figure 7(b)), which explains
the improvement of the errors in that region.

It should be noted that the accuracy of O(h4k+1) cannot be expected in general.
Instead, the theory in [6] predicts an error that is O(h4k+1)+O(h2k+2). We speculate
that the meshes considered in this test case are sufficiently coarse so that the first
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Fig. 7. Comparison of the local accuracy of the old and new postprocessors for the L2-projection
of the sine function for k = 2. The new filter improves both the smoothness and the accuracy in the
entire domain, including the boundary.

Table 2

Comparison of the global accuracy of the fully one-sided kernel using 2k + 1 kernel nodes for
the old one-sided postprocessor and 4k + 1 kernel nodes for the new one-sided postprocessor. The
results are for the L2-projection of the sine function and clearly demonstrate that the use of extra
kernel nodes for the new one-sided postprocessor leads to higher accuracy.

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 6.510e-03 - 5.953e-03 - 4.500e-02 - 2.538e-02 - 3.717e-03 - 2.105e-03 -
40 1.629e-03 2.00 1.500e-03 1.99 5.700e-03 2.98 3.215e-03 2.98 1.185e-04 4.97 6.711e-05 4.97
80 4.074e-04 2.00 3.759e-04 2.00 7.148e-04 3.00 4.033e-04 3.00 3.722e-06 4.99 2.110e-06 4.99
160 1.019e-04 2.00 9.402e-05 2.00 8.942e-05 3.00 5.045e-05 3.00 1.166e-07 5.00 6.625e-08 4.99

polynomial degree k = 2

20 1.729e-04 - 1.279e-04 - 1.026e-02 - 5.790e-03 - 9.516e-05 - 5.368e-05 -
40 2.163e-05 3.00 1.613e-05 2.99 3.286e-04 4.97 1.854e-04 4.96 1.929e-07 8.95 1.088e-07 8.95
80 2.704e-06 3.00 2.021e-06 3.00 1.033e-05 4.99 5.828e-06 4.99 3.815e-10 8.98 2.163e-10 8.97
160 3.381e-07 3.00 2.528e-07 3.00 3.233e-07 5.00 1.824e-07 5.00 7.607e-13 8.97 4.421e-13 8.93

polynomial degree k = 3

20 3.423e-06 - 2.146e-06 - 2.584e-03 - 1.458e-03 - 2.818e-06 - 1.590e-06 -
40 2.141e-07 4.00 1.354e-07 3.99 2.090e-05 6.95 1.179e-05 6.95 3.622e-10 12.93 2.044e-10 12.93
80 1.338e-08 4.00 8.486e-09 4.00 1.647e-07 6.99 9.294e-08 6.99 4.468e-14 12.98 2.526e-14 12.98
160 8.363e-10 4.00 5.307e-10 4.00 1.290e-09 7.00 7.277e-10 7.00 5.507e-18 12.99 3.209e-18 12.94

error dominates the second. For finer meshes, it is likely that the second error will
start to dominate, so that the error then becomes O(h2k+2). A similar effect will be
encountered in the next section.

4.2. Constant coefficients and periodic boundary conditions. We now
consider a one-dimensional linear hyperbolic equation with constant coefficients and
periodic boundary conditions,

ut + ux = 0,

u(x, 0) = sin(x)

for all x ∈ [0, 2π] and t ≥ 0. As a consequence, the exact solution is the periodic
translation of the sine function,

u(x, t) = sin(x− t).
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Fig. 8. Comparison of the local accuracy of the fully one-sided kernel using 2k+1 kernel nodes
for the old one-sided postprocessor and 4k+1 kernel nodes for the new one-sided postprocessor. The
results are for the L2-projection of the sine function and clearly demonstrate that the use of extra
kernel nodes for the new one-sided postprocessor leads to increased smoothness and higher accuracy.
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Fig. 9. Comparison of the global accuracy of the fully one-sided kernel using both the old and
new postprocessors for the L2-projection of the sine function for k = 2. An illustration of Table 2
for showing the improved convergence rate and error magnitude for the new one-sided postprocessor.

For t = 0, this test case is equivalent to the one discussed in the previous section.
Here, we consider the final time t = 12.5. This test case is more challenging than the
previous one because uh now contains information of the physics of the PDE and the
numerics of the DG method.

Comparing the plots in Figure 10, we can see that the behavior of the two post-
processors is similar to what was observed for the L2-projection in section 4.1. That
is, we are able to obtain better errors than both the DG solution and the old one-
sided postprocessor. In fact, the magnitude of the errors is improved throughout the
entire domain when the new position-dependent postprocessor is applied to the DG
approximation. Furthermore, the convergence rate is improved from O(hk+1) to at
least O(h2k+1) (cf. Table 3 and Figure 11).

We again isolate the effect of using extra kernel nodes for this example in Table 4
and Figures 12 and 13 by applying the fully one-sided kernel throughout the entire
domain. Here, a difference from the previous case is observed. The lines corresponding
to the new position-dependent SIAC filter in the convergence rate plot (cf. Figure 13)
are no longer straight, demonstrating that the convergence rate is no longer constant.
In other words, as before, the new postprocessor shows a higher convergence rate
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Fig. 10. Comparison of the local accuracy of the old and new postprocessors for the DG solution
to a one-dimensional linear hyperbolic equation with constant coefficients and periodic boundary
conditions for k = 2. The new filter improves both the smoothness and the accuracy in the entire
domain, including the boundary.

Table 3

Comparison of the global accuracy of the old and new postprocessors for the DG solution to a
one-dimensional linear hyperbolic equation with constant coefficients and periodic boundary condi-
tions. The new postprocessor improves the convergence rate from O(hk+1) to O(h2k+1).

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.410e-02 - 1.015e-02 - 1.894e-02 - 2.207e-02 - 9.596e-03 - 5.439e-03 -
40 2.907e-03 2.28 2.687e-03 1.92 2.105e-03 3.17 3.125e-03 2.82 1.201e-03 3.00 6.780e-04 3.00
80 6.814e-04 2.09 7.570e-04 1.83 2.184e-04 3.27 4.033e-04 2.95 1.497e-04 3.00 8.450e-05 3.00
160 1.674e-04 2.03 1.999e-04 1.92 2.344e-05 3.22 5.096e-05 2.98 1.868e-05 3.00 1.054e-05 3.00

polynomial degree k = 2

20 2.683e-04 - 3.176e-04 - 4.003e-03 - 7.501e-03 - 1.301e-05 - 8.408e-06 -
40 3.352e-05 3.00 3.981e-05 3.00 2.108e-04 4.25 4.068e-04 4.20 3.767e-07 5.11 2.158e-07 5.28
80 4.190e-06 3.00 4.973e-06 3.00 5.464e-06 5.27 1.409e-05 4.85 1.056e-08 5.16 5.972e-09 5.18
160 5.238e-07 3.00 6.221e-07 3.00 1.254e-07 5.45 4.495e-07 4.97 3.090e-10 5.10 1.744e-10 5.10

polynomial degree k = 3

20 5.176e-06 - 4.402e-06 - 1.304e-04 - 3.213e-04 - 3.757e-07 - 1.048e-06 -
40 3.236e-07 4.00 2.760e-07 4.00 4.712e-06 4.79 9.451e-06 5.09 6.634e-10 9.15 4.094e-10 11.32
80 2.023e-08 4.00 1.725e-08 4.00 3.406e-08 7.11 8.913e-08 6.73 2.957e-12 7.81 1.689e-12 7.92
160 1.264e-09 4.00 1.078e-09 4.00 1.999e-10 7.41 7.232e-10 6.95 1.287e-14 7.84 7.277e-15 7.86

than the old postprocessor, but only for the coarser meshes. This change in the
convergence rate can also be observed for the new position-dependent postprocessor
in Table 3 for k = 3. We speculate that this change occurs because the errors in the
negative order norm of the DG solution begin to dominate, and these errors are of
O(h2k+1).

4.3. Constant coefficients and Dirichlet boundary conditions. The pre-
vious section discussed a test case with periodic boundary conditions. Due to the
periodicity, it is not necessary to use a one-sided approach near the boundary. The
more favorable symmetric postprocessor could be applied by using a periodic extension
of the DG solution. However, in most real-life applications, the boundary conditions
are not periodic. For this reason, we revisit the test case of the previous section but
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(b) L∞-errors for k = 1
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(c) L2-errors for k = 2
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(d) L∞-errors for k = 2

Fig. 11. Comparison of the global accuracy of the old and new postprocessors for the DG solu-
tion to a one-dimensional linear hyperbolic equation with constant coefficients and periodic boundary
conditions. An illustration of Table 3 for k = 1, 2 shows the improved convergence rate over the DG
solution and the improved error magnitude compared to that of the old one-sided postprocessor.

now use Dirichlet boundary conditions. That is,

ut + ux = 0,

u(x, 0) = sin(x),

u(0, t) = sin(−t)
for all x ∈ [0, 2π] and t ≥ 0. As a consequence, the exact solution is still a periodic
translation of the sine function,

u(x, t) = sin(x− t).

Similar to the periodic case, we observe that the convergence rate is improved from
O(hk+1) to better than O(h2k+1) (cf. Table 5). Furthermore, the smoothness and the
accuracy are improved in the entire domain, including the boundary (cf. Figure 14).

4.4. Smoothly varying coefficients and periodic boundary conditions.
We now consider the DG solution to a one-dimensional linear hyperbolic equation
with smoothly varying coefficients and periodic boundary conditions,

ut + (a u)x = f,

a(x, t) = 2 + sin(x+ t),

u(x, 0) = sin(x)
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Table 4

Comparison of the global accuracy of the fully one-sided kernel using both 2k + 1 kernel nodes
for the old postprocessor and 4k+1 kernel nodes for the new position-dependent SIAC filter for the
DG solution to a one-dimensional linear hyperbolic equation with constant coefficients and periodic
boundary conditions. As expected, the use of extra kernel nodes for the new filter leads to higher
accuracy.

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.410e-02 - 1.015e-02 - 4.186e-02 - 2.361e-02 - 1.219e-02 - 6.868e-03 -
40 2.907e-03 2.28 2.687e-03 1.92 5.574e-03 2.91 3.144e-03 2.91 1.236e-03 3.30 6.979e-04 3.30
80 6.814e-04 2.09 7.570e-04 1.83 7.149e-04 2.96 4.033e-04 2.96 1.497e-04 3.05 8.446e-05 3.05
160 1.674e-04 2.03 1.999e-04 1.92 9.039e-05 2.98 5.100e-05 2.98 1.864e-05 3.01 1.052e-05 3.01

polynomial degree k = 2

20 2.683e-04 - 3.176e-04 - 1.027e-02 - 5.794e-03 - 1.045e-04 - 5.898e-05 -
40 3.352e-05 3.00 3.981e-05 3.00 3.287e-04 4.97 1.854e-04 4.97 4.490e-07 7.86 2.535e-07 7.86
80 4.190e-06 3.00 4.973e-06 3.00 1.033e-05 4.99 5.829e-06 4.99 9.340e-09 5.59 5.272e-09 5.59
160 5.238e-07 3.00 6.221e-07 3.00 3.233e-07 5.00 1.824e-07 5.00 2.875e-10 5.02 1.623e-10 5.02

polynomial degree k = 3

20 5.176e-06 - 4.402e-06 - 2.584e-03 - 1.457e-03 - 2.821e-06 - 1.591e-06 -
40 3.236e-07 4.00 2.760e-07 4.00 2.090e-05 6.95 1.179e-05 6.95 3.964e-10 12.80 2.236e-10 12.80
80 2.023e-08 4.00 1.725e-08 4.00 1.647e-07 6.99 9.294e-08 6.99 3.161e-13 10.29 1.785e-13 10.29
160 1.264e-09 4.00 1.078e-09 4.00 1.290e-09 7.00 7.277e-10 7.00 2.318e-15 7.09 1.308e-15 7.09
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Fig. 12. Comparison of the local accuracy of the fully one-sided kernel using 2k + 1 kernel
nodes (old) and 4k+1 kernel nodes (new) for the DG solution to a one-dimensional linear hyperbolic
equation with constant coefficients and periodic boundary conditions for k = 2. The pointwise errors
show that the use of extra kernel nodes for the new filter leads to higher accuracy and smoothness
than the previous one-sided filter.

for all x ∈ [0, 2π] and t ≥ 0. The forcing term f(x, t) is chosen such that the exact
solution is the periodic translation of the sine function,

u(x, t) = sin(x− t).

Because the coefficients are no longer constant, this linear test case forms a first
step toward examining the effects of position-dependent SIAC filtering for nonlinear
problems.

Similar to all of the previous test cases, we observe that the convergence rate is
improved from from O(hk+1) to at least O(h2k+1) (cf. Table 6 and Figure 15). In
Figure 15 we can see that the smoothness and the accuracy are improved in the entire
domain, including the boundary.
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Fig. 13. Comparison of the global accuracy of the fully one-sided kernel using 2k + 1 kernel
nodes (old) and 4k+1 kernel nodes (new) for the DG solution to a one-dimensional linear hyperbolic
equation with constant coefficients and periodic boundary conditions. An illustration of Table 4 for
k = 2 shows the effect of using extra kernel nodes.

Table 5

Comparison of the global accuracy of the old and new postprocessors for the DG solution to a
one-dimensional linear hyperbolic equation with constant coefficients and Dirichlet boundary condi-
tions. The new postprocessor improves the convergence rate from O(hk+1) to O(h2k+1).

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.100e-02 - 1.286e-02 - 1.633e-02 - 2.335e-02 - 3.365e-03 - 2.406e-03 -
40 2.685e-03 2.03 3.286e-03 1.97 1.757e-03 3.22 3.230e-03 2.85 4.138e-04 3.02 2.995e-04 3.01
80 6.669e-04 2.01 8.317e-04 1.98 1.659e-04 3.40 4.128e-04 2.97 5.133e-05 3.01 3.717e-05 3.01
160 1.664e-04 2.00 2.092e-04 1.99 1.547e-05 3.42 5.190e-05 2.99 6.391e-06 3.01 4.627e-06 3.01

polynomial degree k = 2

20 2.681e-04 - 3.171e-04 - 4.003e-03 - 7.500e-03 - 6.984e-06 - 5.229e-06 -
40 3.352e-05 3.00 3.978e-05 2.99 2.108e-04 4.25 4.068e-04 4.20 1.837e-07 5.25 1.238e-07 5.40
80 4.190e-06 3.00 4.972e-06 3.00 5.464e-06 5.27 1.409e-05 4.85 4.627e-09 5.31 3.163e-09 5.29
160 5.238e-07 3.00 6.20e-07 3.00 1.254e-07 5.45 4.494e-07 4.97 1.279e-10 5.18 8.832e-11 5.16

polynomial degree k = 3

20 5.176e-06 - 4.405e-06 - 1.304e-04 - 3.213e-04 - 3.751e-07 - 1.047e-06 -
40 3.236e-07 4.00 2.761e-07 4.00 4.712e-06 4.79 9.451e-06 5.09 6.387e-10 9.20 3.965e-10 11.37
80 2.023e-08 4.00 1.725e-08 4.00 3.406e-08 7.11 8.913e-08 6.73 2.747e-12 7.86 1.589e-12 7.96
160 1.264e-09 4.00 1.078e-09 4.00 1.999e-10 7.41 7.232e-10 6.95 1.118e-14 7.94 6.479e-15 7.94

4.5. Discontinuous variable coefficients and periodic boundary condi-
tions. For all of the previous test cases, the exact solution was infinitely smooth.
In section 3, we emphasized that our position-dependent SIAC filter can be applied
near a shock, similar to the application near a boundary. To test this numerically, we
consider a one-dimensional linear hyperbolic equation with discontinuous coefficients
and periodic boundary conditions,

ut + (a u)x = 0,

a(x) =

{
1
2 , x ∈ [− 1

2 ,
1
2 ],

1 else,

u(0, t) =

{
−2 cos(4πx), x ∈ [− 1

2 ,
1
2 ],

cos(2πx) else
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Fig. 14. Comparison of the local accuracy of the new position-dependent postprocessor for the
DG solution to a one-dimensional linear hyperbolic equation with constant coefficients and Dirichlet
boundary conditions for k = 2. The plots demonstrate that new SIAC filter improves both the
smoothness and the accuracy in the entire domain, including the boundary.

Table 6

Comparison of the global accuracy of the old and new postprocessors for the DG solution to a
one-dimensional linear hyperbolic equation with smooth variable coefficients and periodic boundary
conditions.

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.091e-02 - 1.462e-02 - 1.634e-02 - 2.466e-02 - 2.745e-03 - 2.947e-03 -
40 2.678e-03 2.03 3.526e-03 2.05 1.749e-03 3.22 3.380e-03 2.87 3.483e-04 2.98 2.766e-04 3.41
80 6.663e-04 2.01 8.616e-04 2.03 1.642e-04 3.41 4.306e-04 2.97 4.384e-05 2.99 2.985e-05 3.21
160 1.664e-04 2.00 2.130e-04 2.02 1.517e-05 3.44 5.398e-05 3.00 5.497e-06 3.00 3.626e-06 3.04

polynomial degree k = 2

20 2.684e-04 - 3.312e-04 - 4.004e-03 - 7.504e-03 - 4.576e-06 - 4.668e-06 -
40 3.354e-05 3.00 4.066e-05 3.03 2.108e-04 4.25 4.068e-04 4.21 1.011e-07 5.50 1.176e-07 5.31
80 4.191e-06 3.00 5.027e-06 3.02 5.464e-06 5.27 1.409e-05 4.85 2.767e-09 5.19 2.147e-09 5.78
160 5.238e-07 3.00 6.255e-07 3.01 1.254e-07 5.45 4.494e-07 4.97 1.237e-10 4.48 9.124e-11 4.56

polynomial degree k = 3

20 5.171e-06 - 4.411e-06 - 1.305e-04 - 3.213e-04 - 1.106e-05 - 3.912e-05 -
40 3.235e-07 4.00 2.763e-07 4.00 4.712e-06 4.79 9.451e-06 5.09 6.627e-10 14.03 1.119e-09 15.09
80 2.023e-08 4.00 1.725e-08 4.00 3.406e-08 7.11 8.913e-08 6.73 2.650e-12 7.97 1.532e-12 9.51
160 1.264e-09 4.00 1.079e-09 4.00 1.999e-10 7.41 7.232e-10 6.95 1.060e-14 7.97 7.131e-15 7.75

for all x ∈ [−1, 1] and t ≥ 0. The exact solution is given by

u(x, t) =

{
−2 cos

(
4π(x− 1

2 t)
)
, x ∈ [− 1

2 ,
1
2 ],

cos
(
2π(x− t)

)
else,

which has two stationary shocks [15].
The results for this test case are displayed in Table 7 and Figures 16 and 17. As

is evident from Table 7 and Figures 16 and 17, the accuracy of the new postprocessor
is better than that of the DG solution as long as the mesh is sufficiently fine. For
the coarser meshes, some errors have a rather uncommon value. This is because, for
those meshes, the kernel scale H is chosen smaller than the mesh diameter h, as a
consequence of the requirement in (15). This is one of the drawbacks of the new
postprocessor: the kernel support is twice as large due to the extra kernel nodes (cf.
(13)). This causes difficulties for the new postprocessor when the distance between
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Fig. 15. Comparison of the local accuracy of the new postprocessor for the DG solution to a
one-dimensional linear hyperbolic equation with smooth variable coefficients and periodic boundary
conditions for k = 2. The new filter improves both the smoothness and the accuracy in the entire
domain, including the boundary.

Table 7

Comparison of the global accuracy of the old and new postprocessors for the DG solution to
a one-dimensional linear hyperbolic equation with discontinuous coefficients and periodic boundary
conditions. There is a clear improvement in both the order of accuracy and the magnitude of the
errors.

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.207e+00 - 1.558e+00 - 1.153e+00 - 1.544e+00 - 1.204e+00 - 1.624e+00 -
40 2.716e-01 2.15 3.771e-01 2.05 2.539e-01 2.18 3.491e-01 2.14 2.744e-01 2.13 4.330e-01 1.91
80 3.827e-02 2.83 5.744e-02 2.71 3.635e-02 2.80 4.879e-02 2.84 3.750e-02 2.87 5.024e-02 3.11
160 5.201e-03 2.88 8.619e-03 2.74 4.705e-03 2.95 6.187e-03 2.98 4.753e-03 2.98 6.170e-03 3.03

polynomial degree k = 2

20 3.645e-02 - 5.143e-02 - 6.808e+00 - 1.623e+01 - 5.709e-01 - 2.944e+00 -
40 2.052e-03 4.15 4.841e-03 3.41 1.672e-01 5.35 6.778e-01 4.58 1.249e-03 8.84 1.825e-03 10.66
80 2.173e-04 3.24 6.272e-04 2.95 6.027e-03 4.79 2.795e-02 4.60 4.164e-05 4.91 1.398e-04 3.71
160 2.682e-05 3.02 7.936e-05 2.98 8.414e-05 6.16 5.793e-04 5.59 1.178e-06 5.14 1.693e-06 6.37

polynomial degree k = 3

20 1.085e-03 - 2.451e-03 - 3.579e+00 - 1.247e+01 - 2.270e-01 - 6.612e-01 -
40 6.602e-05 4.04 1.369e-04 4.16 1.865e-02 7.58 9.948e-02 6.97 2.640e-03 6.43 1.847e-02 5.16
80 4.132e-06 4.00 8.741e-06 3.97 6.502e-04 4.84 2.915e-03 5.09 5.205e-06 8.99 6.981e-05 8.05
160 2.584e-07 4.00 5.510e-07 3.99 2.623e-06 7.95 1.772e-05 7.36 4.669e-09 10.12 8.703e-08 9.65

two subsequent boundaries/shocks is smaller than the support of the kernel, which is
scaled by H . This can lead to an inconvenient restriction on the kernel scale, which
becomes more restrictive as the number of elements between the two subsequent
boundaries/shocks becomes smaller.

Nevertheless, for k = 2 and k = 3, the magnitude of the errors is much smaller
for the new postprocessor than for the old one. For k = 1, this is not the case: the
errors are slightly worse. To understand this, we compare Figure 11 and Figure 17.
For the linear smooth periodic test case, the improvement over the old postprocessor
is stronger for k = 2 (cf., e.g., Figure 11(c)) than for k = 1 (cf., e.g., Figure 11(a)).
We speculate that this is due to the fact that more extra kernel nodes are used for
k = 2 than for k = 1. A similar, yet stronger, effect is observed for the discontinuous
case in Figure 17: the differences between the old and new postprocessors are quite
small for k = 1 (cf., e.g., Figure 17(a)). Improvement of this issue is left for future
research.
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Fig. 16. Comparison of the local accuracy of the new postprocessor and the DG solution for
a one-dimensional linear hyperbolic equation with discontinuous coefficients and periodic boundary
conditions for k = 2. The improved smoothness throughout the domain is evident for a sufficiently
fine mesh.
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(b) L∞-errors for k = 1
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(c) L2-errors for k = 2
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(d) L∞-errors for k = 2

Fig. 17. Comparison of the global accuracy of the old and new postprocessors for the DG
solution to a one-dimensional linear hyperbolic equation with discontinuous coefficients and periodic
boundary conditions. In this plot, we illustrate the convergence rate of the errors given in Table 7 for
k = 1, 2. We can see that a sufficiently fine mesh is required for improved errors and an improved
convergence rate.
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4.6. Two-dimensional system. In the previous sections, we considered only
one-dimensional problems. However, higher-dimensional fields can also be filtered by
applying the one-dimensional kernel in a tensor-product manner (cf., e.g., [16, p. 827]).
In this section, we apply such a strategy to a two-dimensional system with periodic
boundary conditions:[

u
v

]
t

+

[−1 0
0 1

] [
u
v

]
x

+

[
0 −1
−1 0

] [
u
v

]
y

=

[
0
0

]

for all x ∈ [−1, 1] and t ≥ 0. The initial condition is given by

u(x, y, 0) =
1

2
√
2
(sin(x+ y)− cos(x+ y)),

v(x, y, 0) =
1

2
√
2

(
(
√
2− 1) sin(x+ y) + (1 +

√
2) cos(x+ y)

)
.

The results for this test case are displayed in Table 8. Similar to the linear
one-dimensional problems, we observe that the convergence rate is improved from
O(hk+1) to at least O(h2k+1). For k = 1, the magnitude of the errors in the L∞-
norm is slightly worse for the new postprocessor than for the unfiltered case but

Table 8

Comparison of the global accuracy of the old and new postprocessors for the DG solution to
a two-dimensional system. There is a clear improvement in both the order of accuracy and the
magnitude of the errors.

u-component
Before After After

postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.218e-01 - 3.939e-02 - 1.155e-01 - 2.770e-02 - 2.726e-02 - 2.726e-02 -
40 1.772e-02 2.78 7.119e-03 2.47 1.549e-02 2.90 4.578e-03 2.60 3.482e-03 2.97 3.482e-03 2.97
80 2.945e-03 2.59 1.382e-03 2.36 1.960e-03 2.98 6.331e-04 2.85 4.389e-04 2.99 4.389e-04 2.99

polynomial degree k = 2

20 1.579e-03 - 1.244e-03 - 1.959e-02 - 1.768e-02 - 1.035e-04 - 1.035e-04 -
40 1.946e-04 3.02 1.618e-04 2.94 4.288e-04 5.51 6.003e-04 4.88 2.293e-06 5.50 2.293e-06 5.50
80 2.436e-05 3.00 2.045e-05 2.98 9.463e-06 5.50 1.763e-05 5.09 7.031e-08 5.03 7.031e-08 5.03

polynomial degree k = 3

20 7.868e-05 - 5.576e-05 - 1.997e-03 - 1.790e-03 - 1.927e-06 - 1.927e-06 -
40 4.982e-06 3.98 3.297e-06 4.08 1.099e-05 7.51 1.545e-05 6.86 1.688e-09 10.16 1.688e-09 10.16
80 3.109e-07 4.00 1.971e-07 4.06 6.066e-08 7.50 1.168e-07 7.05 1.158e-11 7.19 1.158e-11 7.19

v-component

Before After After
postprocessing postprocessing (old) postprocessing (new)

mesh L2-error order L∞-error order L2-error order L∞-error order L2-error order L∞-error order

polynomial degree k = 1

20 1.427e-01 - 3.893e-02 - 1.358e-01 - 3.645e-02 - 3.211e-02 - 3.211e-02 -
40 2.036e-02 2.81 6.132e-03 2.67 1.807e-02 2.91 5.421e-03 2.75 4.065e-03 2.98 4.065e-03 2.98
80 3.312e-03 2.62 1.631e-03 1.91 2.275e-03 2.99 7.226e-04 2.91 5.093e-04 3.00 5.093e-04 3.00

polynomial degree k = 2

20 2.218e-03 - 2.453e-03 - 2.161e-02 - 1.434e-02 - 1.184e-04 - 1.184e-04 -
40 2.719e-04 3.03 3.075e-04 3.00 4.895e-04 5.46 6.639e-04 4.43 2.629e-06 5.49 2.629e-06 5.49
80 3.388e-05 3.00 3.839e-05 3.00 1.090e-05 5.49 2.177e-05 4.93 8.086e-08 5.02 8.086e-08 5.02

polynomial degree k = 3

20 1.144e-04 - 1.259e-04 - 2.210e-03 - 1.405e-03 - 1.860e-06 - 1.860e-06 -
40 7.494e-06 3.93 8.209e-06 3.94 1.251e-05 7.46 1.604e-05 6.45 2.036e-09 9.84 2.036e-09 9.84
80 4.754e-07 3.98 5.226e-07 3.97 6.984e-08 7.48 1.398e-07 6.84 1.371e-11 7.21 1.371e-11 7.21
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still improved over the results obtained for the old postprocessor. In all other cases,
the position-dependent postprocessor improves the DG errors. In other words, the
results for this two-dimensional problem are similar to those for the previous (linear)
one-dimensional cases.

5. Summary discussion. Position-dependent smoothness-increasing accuracy-
conserving (SIAC) filtering is a promising tool that has been recast to allow for post-
processing near a boundary or solution discontinuity. This is done through a combi-
nation of a shift function, λ, using more kernel nodes (or B-splines), and writing this
in the context of a convex combination of filter types. This convex combination of
filters allows for easy transitioning from one-sided postprocessing that uses an extra
2k kernel nodes to handle domain boundaries and discontinuities in the solution to
symmetric postprocessing for handling smooth interior solutions. The use of extra
kernel nodes at the boundary increases the accuracy of the postprocessor to that of
the symmetric postprocessor. This was verified by numerical results that demon-
strate that the magnitude of the errors using the modified postprocessor is roughly
the same as the errors for the symmetric postprocessor itself, regardless of boundary
conditions.
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