
Acceleration of Preconditioned Krylov Solvers
for Bubbly Flow Problems

J.M. Tang and C. Vuik

Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft Institute of Applied Mathematics,
Mekelweg 4, 2628 CD Delft, The Netherlands

{j.m.tang,c.vuik}@tudelft.nl

Abstract. We consider the linear system which arises from discretiza-
tion of the pressure Poisson equation with Neumann boundary condi-
tions, coming from bubbly flow problems. In literature, preconditioned
Krylov iterative solvers are proposed, but these show slow convergence
for relatively large and complex problems. We extend these traditional
solvers with the so-called deflation technique, which accelerates the con-
vergence substantially. Several numerical aspects are considered, like the
singularity of the coefficient matrix and the varying density field at
each time step. We demonstrate theoretically that the resulting deflation
method accelerates the convergence of the iterative process. Thereafter,
this is also demonstrated numerically for 3-D bubbly flow applications,
both with respect to the number of iterations and the computational
time.

Keywords: deflation, conjugate gradient method, preconditioning, sym-
metric positive semi-definite matrices, bubbly flow problems.

1 Introduction

Recently, moving boundary problems have received much attention in litera-
ture, due to their applicative relevance in many physical processes. One of the
most popular moving boundary problems is modelling bubbly flows, see e.g. [12].
These bubbly flows can be simulated, by solving the well-known Navier-Stokes
equations for incompressible flow:

⎧
⎨

⎩

∂u

∂t
+ u · ∇u +

1
ρ
∇p =

1
ρ
∇ · μ

(
∇u + ∇uT

)
+ g;

∇ · u = 0,
(1)

where g represents the gravity and surface tension force, and ρ, p, μ are the
density, pressure and viscosity, respectively. Eqs. (1) can be solved using, for
instance, the pressure correction method [7]. The most time-consuming part of
this method is solving the symmetric and positive semi-definite (SPSD) linear
system on each time step, which comes from a second-order finite-difference
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discretization of the Poisson equation with possibly discontinuous coefficients
and Neumann boundary conditions:

{
∇ ·

(
1
ρ∇p

)
= f1, x ∈ Ω,

∂
∂np = f2, x ∈ ∂Ω,

(2)

where x and n denote the spatial coordinates and the unit normal vector to the
boundary ∂Ω, respectively. In the 3-D case, domain Ω is chosen to be a unit
cube. Furthermore, we consider two-phase bubbly flows, so that ρ is piecewise
constant with a relatively high contrast:

ρ =
{

ρ0 = 1, x ∈ Λ0,
ρ1 = 10−3, x ∈ Λ1,

(3)

where Λ0 is water, the main fluid of the flow around the air bubbles, and Λ1 is
the region inside the bubbles.

The resulting linear system which has to be solved is

Ax = b, A ∈ R
n×n, (4)

where the singular coefficient matrix A is SPSD and b ∈ range(A). In practice,
the preconditioned Conjugate Gradient (CG) method [4] is widely used to solve
(4), see also References [1,2,3,5]. In this paper, we will restrict ourselves to the
Incomplete Cholesky (IC) decomposition [8] as preconditioner, and the resulting
method will be denoted as ICCG. In this method,

M−1Ax = M−1b, M is the IC preconditioner,

is solved using CG. ICCG shows good performance for relatively small and easy
problems. For complex bubbly flows or for problems with large jumps in the
density, this method shows slow convergence, due to the presence of small eigen-
values in the spectrum of M−1A, see also [13].

To remedy the bad convergence of ICCG, the deflation technique has been
proposed, originally from Nicolaides [11]. The idea of deflation is to project the
extremely small eigenvalues of M−1A to zero. This leads to a faster convergence
of the iterative process, due to the fact that CG can handle matrices with zero-
eigenvalues [6] and the effective condition number becomes more favorable. The
resulting method is called Deflated ICCG or shortly DICCG, following [17], and
it will be further explained in the next section.

2 DICCG Method

In DICCG, we solve

M−1PAx̃ = M−1Pb, P is the deflation matrix,

using CG, where

P := I − AZE−1ZT , E := ZT AZ, Z ∈ R
n×r, r � n. (5)
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Piecewise-constant deflation vectors are used to approximate the eigenmodes
corresponding to the components which caused the slow convergence of ICCG.
More technically, deflation subspace matrix Z = [z1 z2 · · · zr] consists of defla-
tion vectors zj with

zj(x) =
{

0, x ∈ Ω \ Ω̄j ;
1, x ∈ Ωj ,

where the domain Ω is divided into non-overlapping subdomains Ωj , which are
chosen to be cubes, assuming that the number of grid points in each spatial
direction is the same. Note that, due to the construction of the sparse matrix Z,
matrices AZ and E are sparse as well, so that the extra computations with the
deflation matrix P are relatively cheap.

3 Application of DICCG to Bubbly Flow Problems

The deflation technique works well for invertible systems and when the deflation
vectors are based on the geometry of the problem, see also References [9, 10].
Main questions in this paper are:

– is the deflation method also applicable to linear systems with singular ma-
trices?

– is the deflation method with fixed deflation vectors also applicable to prob-
lems, where the position and radius of the bubbles change in every time
step?

The second question will be dealt in the next section, where numerical experi-
ments will be presented to show the success of the method for time-dependent
bubbly flow problems.

First, we show that DICCG can be used for singular matrices. Due to the
construction of matrix Z and the singularity of A, the coarse matrix E := ZT AZ
is also singular. In this case, E−1 does not exist. We propose several new variants
of deflation matrices P :

(i) invertibility of A is forced resulting in a deflation matrix P1, i.e., we adapt
the last element of A such that the new matrix, denoted as Ã, is invertible;

(ii) a column of Z is deleted resulting in a deflation matrix P2, i.e., instead of Z
we take [z1 z2 · · · zr−1] as the deflation subspace matrix;

(iii) systems with a singular E are solved iteratively resulting in a deflation matrix
P3, i.e., matrix E−1, as given in Eq. (5), is considered to be a pseudo-inverse.

As a result, Variant (i) and (ii) give a non-singular matrix E and, in addition,
the real inverse of E is not required anymore in Variant (iii). Subsequently, we
can prove that the three DICCG variants are identical in exact arithmetic, see
Theorem 1.

Theorem 1. P1Ã = P2A = P3A.

Proof. The proof can be found in [15, 16].
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We observe that the deflated systems of all variants are identical. From this
result, it is easy to show that the preconditioned deflated systems are also the
same. Since the variants are equal, any of them can be chosen in the numerical
experiments. We will apply the first variant for convenience, and the results and
efficiency of this variant will be demonstrated numerically, in the next section.

4 Numerical Experiments

We test the efficiency of the DICCG method for two kind of test problems.

4.1 Test Case 1: Stationary Problem

First, we take a 3-D bubbly flow application with eight air-bubbles in a domain
of water, see Figure 1 for the geometry. We apply finite differences on a uniform
Cartesian grid with n = 1003, resulting in a very large but sparse linear system
Ax = b with SPSD matrix A.
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Fig. 1. An example of a bubbly flow problem: eight air-bubbles in a unit domain filled
with water

Then, the results of ICCG and DICCG can be found in Table 1, where φ
denotes the final relative exact residual and DICCG−r denotes DICCG with r
deflation vectors. Moreover, we terminate the iterative process, when the relative
update residuals are smaller than the stopping tolerance ε = 10−8.

From Table 1, one observes that the larger the number of deflation vectors,
the less iterations DICCG requires. With respect to the CPU time, there is an
optimum, namely for r = 103. Hence, in the optimal case, DICCG is more than
five times faster compared to the original ICCG method, while the accuracy of
both methods are comparable!

Similar results also hold for other related test cases. Results of ICCG and
DICCG for the problem with 27 bubbles can be found in Table 2. In addition, it
appears that the benefit of the deflation method is larger when we increase the
number of grid points, n, in the test cases, see also [16].
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Table 1. Convergence results of ICCG and DICCG−r solving Ax = b with n = 1003,
for the test problem as given in Figure 1

Method # Iterations CPU Time (s) φ (×10−9)
ICCG 291 43.0 1.1
DICCG−23 160 29.1 1.1
DICCG−53 72 14.2 1.2
DICCG−103 36 8.2 0.7
DICCG−203 22 27.2 0.9

Table 2. Convergence results of ICCG and DICCG−r solving Ax = b with n = 1003,
for the test case with 27 bubbles

Method # Iterations CPU Time (sec) φ (×10−9)
ICCG 310 46.0 1.3
DICCG−23 275 50.4 1.3
DICCG−53 97 19.0 1.2
DICCG−103 60 13.0 1.2
DICCG−203 31 29.3 1.2

Finally, for the test case with 27 bubbles, the plots of the residuals during the
iterative process of both ICCG and DICCG can be found in Figure 2. Notice
that the behavior of the residuals of ICCG are somewhat irregularm due to the
presence of the bubbles. For DICCG, we conclude that the larger r, the more
linear the residual plot is, so the faster the convergence of the iterative process.
Apparently, the eigenvectors associated to the small eigenvalues of M−1A have
been well-approximated by the deflation vectors, if r is sufficiently large.

4.2 Test Case 2: Time-Dependent Problem

Next, we present some results from the 3-D simulation of a rising air bubble
in water, in order to show that the deflation method is also applicable to real-
life problems with varying density fields. We adopt the mass-conserving level-
set method [13] for the simulations, but it could be replaced by any operator-
splitting method, in general. At each time step, a pressure Poisson equation has
to be solved, which is the most time-consuming part of the whole simulation.
Therefore, during this section we only concentrate on this part at each time step.
We investigate whether DICCG is efficient for all those time steps.

We consider a test problem with a rising air bubble in water without surface
tension. The exact material constants and other relevant information can be
found in [13, Sect. 8.3.2]. The starting position of the bubble in the domain and
the evolution of the movement during the 250 time steps are given in Figure 3.

In [13], the Poisson solver is based on ICCG. Here, we will compare this
method to DICCG with r = 103 deflation vectors, in the case of n = 1003. The
results are presented in Figure 4.
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Fig. 2. Residual plots of ICCG and DICCG−r, for the test problem with 27 bubbles
and various number of deflation vectors r

(a) t = 0. (b) t = 50. (c) t = 100.

(d) t = 150. (e) t = 200. (f) t = 250.

Fig. 3. Evolution of the rising bubble in water without surface tension in the first 250
time steps

From Subfigure 4(a), we notice that the number of iterations is strongly re-
duced by the deflation method. DICCG requires approximately 60 iterations,
while ICCG converges between 200 and 300 iterations at most time steps. More-
over, we observe the erratic behavior of ICCG, whereas DICCG seems to be less
sensitive to the geometries during the evolution of the simulation. Also with re-
spect of the CPU time, DICCG shows very good performance, see Subfigure 4(b).
At most time steps, ICCG requires 25–45 seconds to converge, whereas DICCG
only needs around 11–14 seconds. Moreover, in Figure 4(c), one can find the gain
factors, considering both the ratios of the iterations and the CPU time between
ICCG and DICCG. From this figure, it can be seen that DICCG needs approx-
imately 4–8 times less iterations, depending on the time step. More important,
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(a) Number of iterations versus time
step.

0 50 100 150 200 250
0

10

20

30

40

50

Time Step

C
P

U
 T

im
e 

(s
ec

)

ICCG
DICCG−103

(b) CPU time versus time step.
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and DICCG.

Fig. 4. Results of ICCG and DICCG with r = 103, for the simulation with a rising air
bubble in water

DICCG converges approximately 2–4 times faster to the solution compared to
ICCG, at all time steps.

In general, we see that, compared to ICCG, DICCG decreases significantly
the number of iterations and the computational time as well, which are required
for solving the pressure Poisson equation with discontinuous coefficients, in ap-
plications of 3-D bubbly flows.

5 Conclusions

A deflation technique has been proposed to accelerate the convergence of stan-
dard preconditioned Krylov methods, for solving bubbly flow problems. In lit-
erature, this deflation method has already been proven to be efficient,for linear
systems with invertible coefficient matrix and not-varying density fields in time.
However, in our bubbly flow applications, we deal with linear systems with a
singular matrix and varying density fields. In this paper, we have shown, both
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theoretically and numerically, that the deflation method with fixed subdomain
deflation vectors can also be applied to this kind of problems. The method ap-
peared to be robust and very efficient in various numerical experiments, with
respect to both the number of iterations and the computational time.
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