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Abstract- Simulation of current interruption is currently 

performed with non-ideal switching devices for large power 

systems. Nevertheless, for small networks, non-ideal switching 

devices can be substituted by arc models. However, this 

substitution has a negative impact on the computation time. 

At the same time, these simulations are useful to design 

switchgear. Although these simulations are for large power 

systems cumbersome with traditional modelling methods, the 

block modelling method can handle arc models for any size of 

networks. The main advantage of applying the block 

modelling method is that the computation of the analytical 

Jacobian matrix is possible and cheap for any number of arc 

models. The computation time is smaller with this approach 

than with the traditional approach. 

 
Keywords: Arc models, transients, circuit breakers.  

I.  INTRODUCTION 

SUALLY current interruption in power systems is 

simulated by non-ideal switching devices, but these 

models are too simple to include thermal re-ignition of 

circuit breakers. Arc models have been developed and they 

can be used instead of non-ideal switching devices. The 

simulation with arc models in power systems for current 

interruption is done under specific conditions, for a small 

power system and with only a single arc model. The scope 

of this paper is to show that the simulation of more arc 

models in large power systems can be performed with the 

help of the block modelling method.  

In literature, several arc models are described[1]. In this 

paper, we consider the two basic arc models, the Cassie 

model[2] and the Mayr model[3]. The third arc model 

studied in this paper is the Habedank model[4] which is a 

combination of Cassie and Mayr model. Arc models are 

non-linear and as a result, the Jacobian matrix of the 

system must be computed. Furthermore, time constants of 

arc models are relatively small and as a consequence, arc 

models affect the stiffness and smaller time steps need to 

be used. 

Arc models are embedded in several computer programs 

each using different modelling methods. The nodal 

analysis method is mostly used for the simulation of large 

power system which includes arc models[6] and requires 
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small time steps. The modified nodal analysis is more 

suitable as in X-trans[7]. Another approach is the cut set 

method in MatLab/SimPowerSystem that has a library with 

arc models[8]. However, these options are rather slow for 

large power systems in particular when more than one arc 

model is used. 

The block modelling method[9], which gives the space 

state representation, can be useful for the simulation of arc 

models in power systems. Firstly, the change of 

conductivity of the arc model is taken instead of using a 

controlled current source like in [7], [8]. Secondly, it is 

possible to compute the analytical Jacobian matrix without 

noticeable effort and a similar approach can be used for 

most of the arc models in literature [1]. 

The paper compares power systems of different size and 

number of arc models. Sample circuits are used with three 

types of arc models.  

The paper is divided into four parts. The first part 

presents the method to include an arc block model in the 

space state representation of the block modelling method. 

The second part describes the process how to compute the 

analytic Jacobian matrix when arc models are used. The 

third part presents the different networks with respect to 

the computation time and in the fourth part, the 

conclusions are given. 

II.  BLOCK MODELLING METHOD WITH ARC MODELS 

A.  Arc models 

Cassie and Mayr developed their equations based on the 

thermal processes taking place inside an electrical arc. 

Cassie model[2] and Mayr model[3] describe the different 

parts of an electrical arc, the steady state voltage and the 

current interruption by gradually changing the conductivity 

of the arc model (𝑔𝑐 for the Cassie model and 𝑔𝑚 for the 

Mayr model). The change of conductivity described by 

Cassie model is performed by the following differential 

equation:  

 𝑑𝑔𝑐

𝑑𝑡
=

𝑔𝑐

𝜏𝑐

(
𝑢𝑎𝑟𝑐

2

𝑈𝑐
2

− 1 ) (1) 

 

while the Mayr equation is described by the following 

equation: 

 𝑑𝑔𝑚

𝑑𝑡
=

𝑔𝑚

𝜏𝑚

(
𝑢𝑎𝑟𝑐𝑖𝑎𝑟𝑐

𝑃𝑚

− 1 ) (2) 

 
where 𝑖𝑎𝑟𝑐 is the current through the arc, 𝑢𝑎𝑟𝑐 voltage 

across the arc and, 𝜏𝑐 and 𝜏𝑚 are the time constant of the 

Cassie and Mayr model. Furthermore, 𝑈𝑐 is the steady state 

U 



voltage and 𝑃𝑚 is the steady state power loss.  

The series connection of the Cassie and Mayr model is 

considered as the Habedank model[4]. As the result, the 

resistivity of the electrical arc in this model is given by  

 
𝑟𝑎𝑟𝑐 =

1

𝑔𝑎𝑟𝑐

=
1

1
𝑔𝑐

+
1

𝑔𝑚

 
(3) 

and 𝑖𝑎𝑟𝑐 is defined as: 

 𝑖𝑎𝑟𝑐 =
𝑢𝑎𝑟𝑐

𝑟𝑎𝑟𝑐

= 𝑔𝑎𝑟𝑐𝑢𝑎𝑟𝑐  (4) 

B.  Mathematical expression 

The block modelling method[9] gives the space state 

representation: 

 �̇� = 𝑓(𝑥, 𝑡) = 𝐴𝑥 + 𝐵𝑒(𝑡) (5) 

By introducing arc models, the previous equation 

becomes non-linear and (5) is redefined as: 

�̇� = 𝑓(𝑥, 𝑡) = 𝐴𝑥 + 𝐴𝑛𝑜𝑛(𝑥) + 𝐵𝑔(𝑡) + 𝑣(𝑥) 

= (�̂� + �̃�)𝑥 + 𝐴𝑛𝑜𝑛(𝑥) + (�̂� + �̃�)𝑔(𝑡)

+ 𝑣(𝑥) 

(6) 

where 

 𝑝1 ∈ ℕ is the number of inductances; 

 𝑝2 ∈ ℕ is the number of capacitances; 

 𝑝3 ∈ ℕ is the number of non-linear conductivities 

due to arc models; 

 𝑝 ∈ ℕ is the number of differential variables 

(𝑝1 + 𝑝2 + 𝑝3); 

 𝑠 ∈ ℕ is the number of sources; 

 𝑥 ∈ ℝ𝑝 is the state vector; 

 𝑒(𝑡) ∈ ℝ𝑠 is the time dependent input vector; 

 𝐴 ∈ ℝ𝑝×𝑝 is the state matrix; 

 �̂� ∈ ℝ𝑝×𝑝 is the block state matrix; 

 �̃� ∈ ℝ𝑝×𝑝 is the connection state matrix; 

 𝐵 ∈ ℝ𝑝×𝑠 is the input matrix; 

 �̂� ∈ ℝ𝑝×𝑠 is the block input matrix; 

 �̃� ∈ ℝ𝑝×𝑠 is the connection input matrix; 

 𝐴𝑛𝑜𝑛(𝑥) ∈ ℝ𝑝×𝑝 is the non-linear state matrix; 

 𝑣(𝑥) ∈ ℝ𝑝 is the non-linear vector. 

For the block modelling method, it is necessary to 

develop the matrix expression of matrices 𝐴�̂� and 𝐵�̂� and 

the vector source 𝑒𝑖 of each element of the considered 

power system. As a consequence, the matrices �̂�𝑎𝑟𝑐 ∈

ℝ𝑙×𝑙 = 0, �̂�𝑎𝑟𝑐 ∈ ℝ1×𝑙 = 0 and the vector 𝑒𝑎𝑟𝑐 ∈ ℝ1 = 0 

for each arc model of the power system and where 𝑙 

represents the number of differential variables of the 

particular arc model. In fact, from (6), only the matrix  

𝐴𝑛𝑜𝑛 and the vector 𝑣 need to be updated at each time step 

when arc models are present and actives. 

The assumption is that arc models can only be placed 

between two block models or between a terminal of a 

block model and the ground. The delta or star connection 

[9] between block models by the aim of arc models can be 

realized. However, this requires more calculation time and 

is more complex. 

As for the block modelling method[9], mapping 

functions are necessary. In fact, for updating the system of 

equations, three mapping functions (𝐼𝑎𝑟𝑐(𝑛,𝑚), 𝐶𝑎𝑟𝑐(𝑛,𝑚) 

and 𝐴𝑟𝑐(𝑛, 𝑞)) are used. Firstly, let us consider a network 

composed of 𝑁𝐵𝑎𝑟𝑐 arc models, each arc model is 

composed of 𝑁𝐵𝑚𝑎𝑥 differential variables and is 

connected to 𝑁𝐵𝑚 block models. The first mapping 

function (𝐼𝑎𝑟𝑐(𝑛,𝑚)) links the arc model number 𝑛 

(1 ≤ 𝑛 ≤ 𝑁𝐵𝑎𝑟𝑐) and the block number 𝑚 (1 ≤ 𝑚 ≤

𝑁𝐵𝑚)  to the position of the state variable of the link 

capacitance of the block model 𝑚. Although the second 

function (𝐶𝑎𝑟𝑐(𝑛,𝑚)) has the same input as the first 

function, the second function gives the value of the link 

capacitance of the block model 𝑚. The variable 𝑁𝐵𝑚 is all 

the time equal to two according to our assumption. In the 

case of an arc model block placed between a block model 

and the ground, the value  𝐼𝑎𝑟𝑐(𝑛, 2) and 𝐶𝑎𝑟𝑐(𝑛, 2) does 

not exist as well as all values associate to them. The last 

mapping function (𝐴𝑟𝑐(𝑛, 𝑞)) associates the arc model 

number 𝑛 (1 ≤ 𝑛 ≤ 𝑁𝐵𝑎𝑟𝑐) and the differential variable 𝑞 

(1 ≤ 𝑞 ≤ 𝑁𝐵𝑚𝑎𝑥) to its state variable position. Another 

important information is given by the vector 𝛼𝑎𝑟𝑐 ∈

ℕ𝑁𝐵𝑎𝑟𝑐  which contains the information whether the 𝑛𝑡ℎ arc 

model is active (1) or inactive (0). Finally, 𝜏𝑐(𝑛), 𝑈𝑐(𝑛), 

𝜏𝑚(𝑛) and 𝑃𝑚(𝑛) correspond with the 𝑛𝑡ℎ arc model 

parameters of the considered network. 

C.  Formulations 

This paragraph focuses on the formulation of (6) when 

an arc block model is used in a block diagram. For 

example, let us consider the following sample block 

diagram composed of a generator, a load and an arc model 

which is placed between the generator and the load (Fig. 

1). 

 
Fig. 1 Simple block diagram with an arc block 

The block generator model[9] has as parameters 𝑅1, 𝑅𝑐, 

𝐿1, 𝐶1 and 𝑒(𝑡). The block load model[9] has as 

parameters 𝑅2, 𝐿2, 𝐶2 and 𝑅𝑑 which is in parallel with 𝐶2. 

The resistance 𝑅𝑑 is added for damping the voltage 𝑣𝑐2
. 

The arc model is active only when 𝛼𝑎𝑟𝑐(1) = 1. The arc 

model used in a first time is the Cassie model and it has as 

parameters 𝑡𝑐 and 𝑈𝑎𝑟𝑐. The space state representation of 

Figure (1) is non-linear and can be expressed as: 

�̇� =

[
 
 
 
 
 
 
 
 
 −

𝑅1

𝐿1

−
1

𝐿1

0 0 0

1

𝐶1

−
1

𝑅𝑐𝐶1

0 0 0

0 0 −
1

𝑅𝑑𝐶2

−
1

𝐶2

0

0 0 −
1

𝐿2

−
𝑅2

𝐿2

0

0 0 0 0 0]
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𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐 ]
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+

[
 
 
 
 
 
1

𝐿
0
0
0
0]
 
 
 
 
 

𝑒(𝑡) +

[
 
 
 
 
 
 
0 0 0 0 0

0 −
𝑔𝑐

𝐶1

𝑔𝑐

𝐶1

0 0

0
𝑔𝑐

𝐶1

−
𝑔𝑐

𝐶1

0 0

0 0 0 0 0
0 0 0 0 0]
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𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐 ]
 
 
 
 

 

 

+

[
 
 
 
 
 

0
0
0
0

𝛼𝑎𝑟𝑐

𝑔𝐶

𝜏𝑐

(
(𝑣𝑎𝑟𝑐)

2

𝑈𝑐
2

− 1 )
]
 
 
 
 
 

 (7) 

while the Cassie model is replaced by the Mayr model with 

its arc parameters 𝜏𝑚 and  𝑃𝑚, the new system of equations 

becomes: 

�̇� =

[
 
 
 
 
 
 
 
 
 −

𝑅1

𝐿1

−
1

𝐿1

0 0 0

1

𝐶1

−
1

𝑅𝑐𝐶1

0 0 0

0 0 −
1

𝑅𝑑𝐶2

−
1

𝐶2

0

0 0 −
1

𝐿2

−
𝑅2

𝐿2

0

0 0 0 0 0]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐 ]
 
 
 
 

 

+

[
 
 
 
 
 
1

𝐿
0
0
0
0]
 
 
 
 
 

𝑒(𝑡) +

[
 
 
 
 
 
 
0 0 0 0 0

0 −
𝑔𝑚

𝐶1

𝑔𝑚

𝐶1

0 0

0
𝑔𝑚

𝐶2

−
𝑔𝑚

𝐶2

0 0

0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 
 

[
 
 
 
 
𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐 ]
 
 
 
 

 

 

+

[
 
 
 
 
 

0
0
0
0

𝛼𝑎𝑟𝑐

𝑔𝑚

𝜏𝑚

(
𝑢𝑎𝑟𝑐

2

𝑃𝑚𝑔𝑚

− 1 )
]
 
 
 
 
 

 (8) 

Finally, the Mayr model is substituted by the Habedank 

model. The parameters of the Habedank model are 𝑡𝑐, 

𝑈𝑎𝑟𝑐, 𝜏𝑚 and  𝑃𝑚. The system of equations becomes: 

�̇� =

[
 
 
 
 
 
 
 
 
 
 −

𝑅1

𝐿1

−
1

𝐿1

0 0 0 0

1

𝐶1

−
1

𝑅𝑐𝐶1

0 0 0 0

0 0 −
1

𝑅𝑑𝐶2

−
1

𝐶2

0 0

0 0 −
1

𝐿2

−
𝑅2

𝐿2

0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐

𝑔𝑚]
 
 
 
 
 

 

+

[
 
 
 
 
 
 
1

𝐿
0
0
0
0
0]
 
 
 
 
 
 

𝑒(𝑡) +

[
 
 
 
 
 
 
 
0 0 0 0 0 0

0 −
𝑔𝑎𝑟𝑐

𝐶1

𝑔𝑎𝑟𝑐
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0 0 0

0
𝑔𝑎𝑟𝑐

𝐶2

−
𝑔𝑎𝑟𝑐
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0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]
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𝑖𝐿1

𝑣𝐶1

𝑣𝐶2

𝑖𝐿2

𝑔𝑐
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+

[
 
 
 
 
 
 
 
 

0
0
0
0

𝛼𝑎𝑟𝑐

𝜏𝑐

(
(𝑔𝑎𝑟𝑐𝑣𝑎𝑟𝑐)

2

𝑈𝑐
2𝑔𝑐

− 𝑔𝑐  )

𝛼𝑎𝑟𝑐

𝜏𝑚

(
(𝑔𝑎𝑟𝑐𝑣𝑎𝑟𝑐)

2

𝑃𝑚

− 𝑔𝑚 )
]
 
 
 
 
 
 
 
 

 (9) 

where 𝑔𝑎𝑟𝑐 =
𝑔𝑐𝑔𝑚

𝑔𝑐+𝑔𝑚
 

In this example, matrices �̃� and �̃� do not exist due to 

block models used and to the block diagram on Fig. 1. 

D.  Block modelling method algorithm 

Let us use the example of Fig. 1 to complete the 

algorithm. Firstly, let us apply the block modelling method 

definition [8] for computing matrices 𝐴 and 𝐵. 

 

𝐴 = �̂� = [

�̂�𝐺 0 0

0 �̂�𝐿 0

0 0 �̂�𝑎𝑟𝑐

] (10) 

 

𝐵 = �̂� = [

�̂�𝐺 0 0

0 �̂�𝐿 0

0 0 �̂�𝑎𝑟𝑐

] (11) 

Now, we can develop the different mapping function of 

Fig. 1 according to the definition stated in part II.  B.   

Figure 1 has one arc block model (𝑁𝐵𝑎𝑟𝑐 = 1) which 

connects the two block models (𝑚 = 2). As consequence, 

we can write 𝐼𝑎𝑟𝑐(1,1) = 2, 𝐼𝑎𝑟𝑐(1,2) = 3, 𝐶𝑎𝑟𝑐(1,1) =

𝐶1, 𝐶𝑎𝑟𝑐(1,2) = 𝐶2. The Cassie model and the Mayr model 

have one differential equation so (𝑞 = 1) so 𝐴𝑟𝑐(1,1) = 5. 

In the case of the Habedank model, 𝑞 = 2 so the 𝐴𝑟𝑐 

mapping function is  𝐴𝑟𝑐(1,1) = 5 and 𝐴𝑟𝑐(1,2) = 6. 

At the start of the simulation, the matrix  𝐴𝑛𝑜𝑛(𝑥) and 

the vector 𝑣 are initialized to zero. Before updated the 

previous matrix and vector, if we consider 𝑁𝐵𝑎𝑟𝑐 models 

(1 ≤ 𝑛 ≤ 𝑁𝐵𝑎𝑟𝑐) in the considered power system, we can 

write the conductivity of each arc model according to their 

type such as: 

 𝑔𝑐(𝑛) = 𝑥(𝐴𝑟𝑐(𝑛, 1)), in the case of the Cassie 

model; 

 𝑔𝑚(𝑛) = 𝑥(𝐴𝑟𝑐(𝑛, 1)), in the case of the Mayr 

model; 

 𝑔ℎ(𝑛) =
𝑔ℎ𝑐(𝑛)𝑔ℎ𝑚(𝑛)

𝑔ℎ𝑐(𝑛)+𝑔ℎ𝑚(𝑛)
 where 𝑔ℎ𝑐(𝑛) =

𝑥(𝐴𝑟𝑐(𝑛, 1)) and 𝑔ℎ𝑚(𝑛) = 𝑥(𝐴𝑟𝑐(𝑛, 2)) in the 

case of the Habedank model. 

Another important parameter to compute, before 

updating the matrix 𝐴𝑛𝑜𝑛 and the vector 𝑣, is the voltage 

across the arc block models and can be written as: 

𝑢𝑎𝑟𝑐(𝑛) = 𝑥(𝐼𝑎𝑟𝑐(𝑛, 1)) − 𝑥(𝐼𝑎𝑟𝑐(𝑛, 2)) (12) 

 In order to update the  matrix 𝐴𝑛𝑜𝑛(𝑥), the following 

expressions are used for any of the previous arc model for 

any number of arc models for 1 ≤ 𝑛 ≤ 𝑁𝐵𝑎𝑟𝑐.  

𝐴𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 1)) = −
𝑔𝑎𝑟𝑐

Carc(1,1)
 (13) 

𝐴𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 2)) =
𝑔𝑎𝑟𝑐

Carc(1,1)
 (14) 



𝐴𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 2)) = −
𝑔𝑎𝑟𝑐

Carc(1,2)
 (15) 

𝐴𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 1)) =
𝑔𝑎𝑟𝑐

Carc(1,2)
 (16) 

where 𝑔𝑎𝑟𝑐 = 𝑔𝑐(𝑛) or 𝑔𝑚(𝑛) or 𝑔ℎ(𝑛) according to 

the type of the 𝑛𝑡ℎ arc model. 

In the case of the Cassie model the element associate to 

it and to the vector 𝑣 is: 

𝑣(𝐼𝑝𝑜𝑠(𝑛, 1)) = 𝛼𝑎𝑟𝑐(𝑛)
𝑔𝑐(𝑛)

𝜏𝑐

(
𝑢𝑎𝑟𝑐(𝑛)2

𝑈𝑐(𝑛)2
− 1 ) (17) 

 

while for the Mayr model 

𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1)) = 

𝛼𝑎𝑟𝑐(𝑛)
𝑔𝑚(𝑛)

𝜏𝑚(𝑛)
(

𝑢𝑎𝑟𝑐(𝑛)2

𝑃𝑚(𝑛)𝑔𝑚(𝑛)
− 1 ) 

(18) 

finally, the expressions if the Habedank model is used are: 

𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1)) = 

𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)
(
(𝑔ℎ(𝑛)𝑢𝑎𝑟𝑐(𝑛))2

𝑈𝑐(𝑛)2𝑔ℎ𝑐(𝑛)
− 𝑔ℎ𝑐(𝑛)) 

(19) 

𝑣 (𝐼𝑝𝑜𝑠(𝑛, 2)) = 

𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)
(
(𝑔ℎ(𝑛)𝑢𝑎𝑟𝑐(𝑛))

2

𝑃𝑚(𝑛)
− 𝑔ℎ𝑚(𝑛) ) 

(20) 

III.  JACOBIAN MATRIX 

The Jacobian matrix 𝐽 is computed as: 

 

𝐽 =

[
 
 
 
 
 
𝜕𝑓1(𝑥, 𝑡)

𝜕𝑥1

⋯
𝜕𝑓1(𝑥, 𝑡)

𝜕𝑥𝑝

⋮ ⋱ ⋮
𝜕𝑓𝑝(𝑥, 𝑡)

𝜕𝑥1

⋯
𝜕𝑓𝑝(𝑥, 𝑡)

𝜕𝑥𝑝 ]
 
 
 
 
 

 (21) 

 

where 𝑓(𝑥, 𝑡) = [

𝑓1(𝑥, 𝑡)
⋮

𝑓𝑝(𝑥, 𝑡)
]. 

There are two ways to compute the Jacobian matrix, 

with the numerical method[10] or with the analytical 

method. In some cases, it is not possible to compute 

analytically the Jacobian matrix and so the numerical 

method is used. However, when it is possible to compute 

the Jacobian matrix analytically, this is usually faster and 

cheaper than the numerical approach. In our case, the 

Jacobian matrix can be found analytically. Furthermore, 

the same information as for upgrading the matrix 𝐴𝑛𝑜𝑛 and 

the vector 𝑣 is used. 

According to our formulation (6) and the Jacobian 

matrix formulation (21), the Jacobian matrix considered is 

defined as: 

𝐽 = 𝐴 +

[
 
 
 
 
 
𝜕 ∑ 𝐴𝑛𝑜𝑛(1, 𝑗)𝑥𝑗

𝑝
𝑗=1

𝜕𝑥1

⋯
𝜕 ∑ 𝐴𝑛𝑜𝑛(1, 𝑗)𝑥𝑗

𝑝
𝑗=1

𝜕𝑥𝑝

⋮ ⋱ ⋮
𝜕 ∑ 𝐴𝑛𝑜𝑛(1, 𝑗)𝑥𝑗

𝑝
𝑗=1

𝜕𝑥1

⋯
𝜕 ∑ 𝐴𝑛𝑜𝑛(1, 𝑗)𝑥𝑗

𝑝
𝑗=1

𝜕𝑥𝑝 ]
 
 
 
 
 

 

+

[
 
 
 
 
 
𝜕𝑣(1)

𝜕𝑥1

⋯
𝜕𝑣(𝑝)

𝜕𝑥𝑝

⋮ ⋱ ⋮
𝜕𝑣(𝑝)

𝜕𝑥1

⋯
𝜕𝑣(𝑝)

𝜕𝑥𝑝 ]
 
 
 
 
 

 

 

= 𝐴 + 𝐽𝑛𝑜𝑛 + 𝐽𝑣 (22) 

The computation of the matrices 𝐽𝑛𝑜𝑛 and 𝐽𝑣 can be 

done by the following process (23)-(46) for 1 ≤  𝑛 ≤

𝑁𝐵𝑎𝑟𝑐 according to the type of 𝑛𝑡ℎ arc model used. The 

first step is to initialize the matrices 𝐽𝑛𝑜𝑛 and 𝐽𝑣 to zero. 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 1)) = −
𝑔𝑎𝑟𝑐

Carc(n, 1)
 (23) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 2)) =
𝑔𝑎𝑟𝑐

Carc(n, 1)
 (24) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 2)) =
𝑔𝑎𝑟𝑐

Carc(n, 2)
 (25) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 1)) = −
𝑔𝑎𝑟𝑐

Carc(n, 2)
 (26) 

where 𝑔𝑎𝑟𝑐 = 𝑔𝑐(𝑛) or 𝑔𝑚(𝑛) or 𝑔ℎ(𝑛) according to 

the type of arc model used. For the Cassie model and Mayr 

model, the two following equations are used for upgrading 

the matrix 𝐽𝑛𝑜𝑛.  

𝐽𝑛𝑜𝑛 (𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 1))

= −𝛼𝑎𝑟𝑐(𝑛)
𝑢𝑎𝑟𝑐(𝑛)

Carc(1,1)
 

(27) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑝𝑜𝑠(𝑛, 1)) = 𝛼𝑎𝑟𝑐(𝑛)
𝑢𝑎𝑟𝑐(𝑛)

Carc(1,2)
 (28) 

while for the Habedank model, the four following 

equations need to be computed and upgraded.  

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 1))

= −
𝛼𝑎𝑟𝑐(𝑛)𝑢𝑎𝑟𝑐(𝑛)𝑔ℎ(𝑛)2

Carc(1,1)𝑔ℎ𝑐(𝑛)2
 

(29) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 2))

= −
𝛼𝑎𝑟𝑐(𝑛)𝑢𝑎𝑟𝑐(𝑛)𝑔ℎ(𝑛)2

Carc(1,1)𝑔ℎ𝑚(𝑛)2
 

(30) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑝𝑜𝑠(𝑛, 1))

=
𝛼𝑎𝑟𝑐(𝑛)𝑢𝑎𝑟𝑐(𝑛)𝑔ℎ(𝑛)2

Carc(1,2)𝑔ℎ𝑐(𝑛)2
 

(31) 

𝐽𝑛𝑜𝑛(𝐼𝑎𝑟𝑐(𝑛, 2), 𝐼𝑝𝑜𝑠(𝑛, 2))

=
𝛼𝑎𝑟𝑐(𝑛)𝑢𝑎𝑟𝑐𝑔ℎ(𝑛)2

Carc(1,2)𝑔ℎ𝑚(𝑛)2
 

(32) 

The last step of the computation of the Jacobian matrix 

𝐽 is the computation of the Jacobian of the vector 𝑣 called 

matrix 𝐽𝑣. For the Cassie model, the following three 

equations are considered for upgrading  the matrix 𝐽𝑣. 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 1))

= 𝛼𝑎𝑟𝑐(𝑛)
2𝑔𝑐(𝑛)𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)𝑈𝑐(𝑛)2
 

(33) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 2))

= −𝛼𝑎𝑟𝑐(𝑛)
2𝑔𝑐(𝑛)𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)𝑈𝑐
2(𝑛)

 
(34) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 1)) 

                                   =
𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)
(
𝑢𝑎𝑟𝑐

2 (𝑛)

𝑈𝑐(𝑛)2
− 1) 

(35) 

While for Mayr, the following three equations are 

considered. 



𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 1))

= 𝛼𝑎𝑟𝑐(𝑛)
2𝑔𝑚(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)𝑃𝑚(𝑛)
 

(36) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 2))

= −𝛼𝑎𝑟𝑐(𝑛)
2𝑔𝑚(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)𝑃𝑚(𝑛)
 

(37) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 1)) 

                        =
𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)
(
2𝑔𝑚(𝑛)𝑢𝑎𝑟𝑐

2 (𝑛)

𝑃𝑚(𝑛)
− 1) 

(38) 

Finally, for the Habedank model, the following eight 

equations are used. 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 1))

= 𝛼𝑎𝑟𝑐(𝑛)
2𝑔ℎ(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)𝑈𝑐
2(𝑛)𝑔ℎ𝑐(𝑛)

 
(39) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑎𝑟𝑐(𝑛, 2))

= −𝛼𝑎𝑟𝑐(𝑛)
2𝑔ℎ(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)𝑈𝑐(𝑛)2𝑔ℎ𝑚(𝑛)
 

(40) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 1))

=
𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑐(𝑛)
(
𝑢𝑎𝑟𝑐(𝑛)2 𝑔ℎ(𝑛)

𝑈𝑐(𝑛)2𝑔ℎ𝑐(𝑛)2
(1 −

2𝑔ℎ(𝑛)

𝑔ℎ𝑚(𝑛)
) − 1) 

(41) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 1), 𝐼𝑝𝑜𝑠(𝑛, 2))

=
𝛼𝑎𝑟𝑐(𝑛)2𝑢𝑎𝑟𝑐(𝑛)2 𝑔ℎ(𝑛)3

𝜏𝑐(𝑛)𝑈𝑐(𝑛)2𝑔ℎ𝑐(𝑛)𝑔ℎ𝑚(𝑛)2
 

(42) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 1))

= 𝛼𝑎𝑟𝑐(𝑛)
2𝑔ℎ(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)𝑃𝑚(𝑛)
 

(43) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 2), 𝐼𝑎𝑟𝑐(𝑛, 2))

= −𝛼𝑎𝑟𝑐(𝑛)
2𝑔ℎ(𝑛)2𝑢𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)𝑃𝑚(𝑛)
 

 

(44) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 2), 𝐼𝑝𝑜𝑠(𝑛, 1))

=
𝛼𝑎𝑟𝑐(𝑛)2𝑢𝑎𝑟𝑐(𝑛)2 𝑔ℎ(𝑛)3

𝜏𝑚(𝑛)𝑃𝑚(𝑛)𝑔ℎ𝑐(𝑛)2
 

(45) 

𝐽𝑣 (𝐼𝑝𝑜𝑠(𝑛, 2), 𝐼𝑝𝑜𝑠(𝑛, 2))

= −
𝛼𝑎𝑟𝑐(𝑛)

𝜏𝑚(𝑛)
(
2𝑢𝑎𝑟𝑐(𝑛)2 𝑔ℎ(𝑛)3

𝑃𝑚(𝑛)𝑔ℎ𝑚(𝑛)2
− 1) 

(46) 

IV.  TEST CASES 

A.  Simple Circuit 

Let us consider again Fig. 1 modelled with the block 

modelling method implemented in MatLab for the different 

arc models and modelled in MatLab/SimPowerSystem. 

After that, the computation time of both modelling 

methods are compared. In fact, the integration method is 

the same for both modelling methods and this integration 

method is called ode23tb[11] with a relative tolerance of 

𝟏𝟎−𝟒.   

The parameters of the different simple block diagram 

according to Equation to  are 𝑅1 = R2 = 0.01Ω,  𝑅𝑐 =
𝑅𝑑 = 1kΩ, 𝐿1 = 𝐿2 = 3.52𝑚𝐻, 𝐶1 = 19.8𝑛𝐹, C2 =
19.8μF, 𝑒(𝑡) = 59196 cos(100𝜋𝑡) 𝑉, 𝑡𝑐 = 12𝜇𝑠, 

𝑈𝑎𝑟𝑐 = 5𝑘𝑉, 𝜏𝑚 = 4𝜇𝑠 and  𝑃𝑚 = 2𝑀𝑊. The arc model is 

active when the time exceeds of 0.012s. 

Table 1 shows that the computation time of the sample 

electrical block diagram of Fig. 1 is the shortest when the 

Jacobian matrix is computed analytically. In fact, it is in 

general cheaper to use an analytical Jacobian instead of a 

numerical Jacobian. Fig. 2 shows the current through the 

Cassie model and the voltage across it. As described in the 

literature, the Cassie model maintains the steady state 

voltage. Fig. 3 shows the current through the Mayr model 

and the voltage across it. As described in the literature, the 

Mayr model is able to interrupt short-circuit current. Fig. 4 

shows the current through the Habedank model and the 

voltage across it. The arc parameters used permit the 

interruption of current. 
Table 1 

Computation time of the block diagram of Fig. 1 in second for different 
modelling methods and arc models 

 Cassie 

model 

Mayr 

model 

Habedank 

model 

MatLab/SimPower 

Numerical Jacobian  

2.61 s 2.53 s 2.96 s 

Block modelling 

Numerical Jacobian  

1.30 s 1.99 s 2.05 s 

Block modelling 

Analytical Jacobian  

1.12 s 1.92 s 1.99 s 

 
Fig. 2 Voltage and Current of the Cassie model 

 
Fig. 3  Voltage and Current of the Mayr model 
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Fig. 4   Voltage and Current of the Habedank model 

B.  Generator fault 

For the Generator fault, we consider the following block 

diagram. 

 
Fig. 5   Sample block diagram 

The block diagram of Fig. 5 simulates the interruption 

of a three phases to ground short-circuit (modelled by three 

arc models according to the symbol ARC 3p of Fig. 5) by 

the three phases generator (symbol G 3p in Fig. 5 which 

consist of three independent generator blocks[8]). Each 

phase of the generator block model has four parameters 

𝑅 = 0.01Ω, 𝑅𝑐 = 1kΩ, 𝐿 = 3.52𝑚𝐻 and 𝐶 = 19.8𝑛𝐹. 

We consider the voltage supplied by the voltage source of 

each phase to be shifted of ±120° between each other: 

𝑒1(𝑡) = 59196 cos(100𝜋𝑡) 𝑉, 

𝑒2(𝑡) = 59196 cos (100𝜋𝑡 −
2𝜋

3
)𝑉 and                   

𝑒3(𝑡) = 59196 cos (100𝜋𝑡 +
2𝜋

3
)𝑉. Arc model 

parameters are the same for the three arc models and they 

are 𝑡𝑐 = 12𝜇𝑠, 𝑈𝑎𝑟𝑐 = 5𝑘𝑉, 𝜏𝑚 = 4𝜇𝑠 and  𝑃𝑚 = 2𝑀𝑊. 

They are active when the simulation time will be larger 

than 0.012s. As in the previous test case, we compare the 

different computation times for different modelling 

methods and arc models. 

From Table 2, we can conclude that the analytical 

Jacobian is more efficient than the numerical Jacobian. 

Moreover, the MatLab/SimPowerSystem modelling 

method is not the best method especially when the number 

of arc models increase. 
Table 2 

Computation time of the block diagram of Fig. 5 in second for different 

modelling methods and arc models 

 Cassie 

model 

Mayr 

model 

Habedank 

model 

MatLab/SimPower 

Numerical Jacobian  

5.71 s 3.35 s 3.84 s 

Block modelling 

Numerical Jacobian  

1.03 s 0.82 s 0.82 s 

Block modelling 

Analytical Jacobian  

0.91 s 0.73 s 0.76 s 

C.  Larger test cases 

In this part, we consider the following parameters for 

each block model type [9] of the block diagram of Fig. 6: 

 Generator: 𝑅 = 0.001Ω, 𝑅𝑐 = 100Ω, 𝐿 =

3.52𝑚𝐻 and 𝐶 = 1.98𝜇𝐹, 

𝑒(𝑡) = {
10𝑡 ∗ 59196 cos(100𝜋𝑡) if 𝑡 < 0.1

59196 cos(100𝜋𝑡) else
 

 Load: 𝑅 = 1Ω, 𝑅𝑑 = 100Ω, 𝐿 = 35.2𝑚𝐻 and 

𝐶 = 1.98𝜇𝐹 

 PI-section: 𝑅 = 10𝜇Ω, 𝑅𝑑 = 100Ω, 𝐿 = 20𝜇𝐻 

and 𝐶1 = 𝐶2 = 20𝜇𝐹; 

 PII-section: 𝑅1 = 𝑅2 = 10𝜇Ω, 𝑅𝑑 = 100Ω, 

𝐿1 = 𝐿2 = 20𝜇𝐻 and 𝐶1 = 𝐶2 = 𝐶3 = 20𝜇𝐹; 

 Arc: 𝑡𝑐 = 12𝜇𝑠, 𝑈𝑎𝑟𝑐 = 5𝑘𝑉, 𝜏𝑚 = 4𝜇𝑠 and  

𝑃𝑚 = 2𝑀𝑊. 

 
Fig. 6   Electrical block diagram network 1 

Each switching device that links block models has an 

internal resistance of 0.1mΩ. All 𝑅𝑑 resistances are in 

parallel with link capacitors of each block model terminal 

of the Load, PI-section and PII-section block models. 

Let us first consider the block model diagram of Fig. 6. 

Moreover, arc models used are Habedank models. In fact, 

the block model diagram is composed of 66 differential 

variables (𝑥 ∈ ℝ66). The scenario of this test case is: 

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

v a
rc

 [
k
V

]

Time [ms]
0 5 10 15 20 25 30 35 40

-40

-20

0

20

40

i a
rc

 [
k
A

]

G     

3p 
    Arc 3P 

varc

1 

G
 

A
rc

 

n
.1

 
  

 P
I 

P
II
 

P
II
 

G
 

P
I 

P
I 

  
P

II
 

P
II
 

P
II
 

P
II
 

L
 

G
 

G
 

  
P

I 
A

rc
 

n
.2

  

L
 

L
 

L
 

L
 

L
 

v
arc2

 

SC 

iarc1 

i
arc2

 



 From t=0s to t<0.345s : All currents and voltages 

of the block model diagram of Figure 6 reach 

their steady state; 

 At t=0.345s: A short circuit appears by closing the 

switching devise SC; 

  From t>0.245s to t<0.5s: The short circuit current 

appears and all currents and voltages want to go 

to the new steady state; 

 At t=0.5s: Both arc models are activated; 

 From t>0.5s to t=1s: Arc models do interrupt or 

do not the short-circuit current according to the 

parameters of the block diagram 

For the block diagram of Fig. 6, we are going to 

compare the modelling method with MatLab and 

integrating the system of differential equations with the 

method called ode23tb with a relative tolerance of 𝟏𝟎−𝟑 

with the numerical and with the analytical Jacobian.  

From Table 3, the computation is four times faster with 

the analytical Jacobian than with the numerical Jacobian. 

From Fig. 7 to 9, we can see the development of the 

scenario with the interruption of current of the both sides 

of the PI-section which contains the short circuit. In Fig. 9, 

we can see that, once arc n.2 interrupts the short-circuit 

current, the voltage and the current of the load reach the 

new steady state because the topology of the power system 

has changed. 
Table 3 

Computation time 

Numerical 

Jacobian  

in MatLab 

Analytical 

Jacobian  in 

MatLab  

90.3s 20.3s 

 

 
Fig. 7   Current and voltage of the arc n.1 

 
Fig. 8   Current and voltage of the arc n.2 

 
Fig. 9   Current and voltage of one load 

When we use a second time the same block diagram and 

numerical integration methods. But, this time we change 

the generator parameter values of 𝐶 and 𝑅𝑐 by               

𝐶 = 1.98𝑛𝐹 and 𝑅𝑐 = 1KΩ. 

Table 4 
Computation time 

Numerical 

Jacobian  

in MatLab 

Analytical 

Jacobian  in 

MatLab  

95.3s 60.3s 

By changing these two values, the speed up is only of 

1.5 times in MatLab. This is due to the fact that arc n.1 

never interrupts the short circuit current supplied by the 

generator as shown on Fig. 10. But, as shown on Fig. 11, 

arc n.2 interrupts the short circuit current. 
 

 
Fig. 10   Current and voltage of the arc n.1 

 
Fig. 11   Current and voltage of the arc n.2 

The difference in speed up time between the cases of 

the block model diagram of Fig. 6 is due to the fact of the 

non-interruption of the short circuit current by the arc n.1.  
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Next, we are going to simulate, under the same 

conditions and scenario as previously, the following block 

diagram (Fig. 13). This time, the block diagram is a three-

phase power system which contains six arc models 

(Habedank models). The short-circuit is only present on 

the phase one. In total, there are 324 differential variables 

(𝑥 ∈ ℝ324).  

The following Table 5 shows the computation time. 
Table 5 

Computation time 

Numerical 

Jacobian  

in MatLab 

Analytical 

Jacobian  in 

MatLab  

>3600s (60min) 211s 

Fig. 12 shows the voltage and current of the arc number 

1 of phase one of the network. We can see that, the short 

circuit is interrupted. Moreover, by this example, we can 

see the added value of computing the Jacobian matrix 

analytically (Table 5).  

 

 
Fig. 12   Current and voltage of the arc n.1 

V.  CONCLUSION 

The study of current interruption is important for 

designing a power system. In general, the studies use non-

ideal switching devices for large power systems. However, 

for a better design of power system components, arc 

models can replace non-ideal switching devices. Arc 

models describe the thermal process of current interruption 

which gives much more information than a non-ideal 

switching device. The block modelling method permits the 

computation of the Jacobian matrix which gives a large 

speed up in terms of computation time especially for large 

power system. 
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Fig. 13   Electrical block diagram network 2 

 


