
Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

Research Article

Combining p‑multigrid and Multigrid Reduction in Time methods
to obtain a scalable solver for Isogeometric Analysis

Roel Tielen1 · Matthias Möller1 · Cornelis Vuik1

Received: 25 November 2021 / Accepted: 22 April 2022

© The Author(s) 2022 OPEN

Abstract
The use of sequential time integration schemes becomes more and more the bottleneck within large-scale computa-
tions due to a stagnation of processor’s clock speeds. In this study, we combine the parallel-in-time Multigrid Reduction
in Time method with a p-multigrid method to obtain a scalable solver specifically designed for Isogeometric Analysis.
Numerical results obtained for two- and three-dimensional benchmark problems show the overall scalability of the
proposed method on modern computer architectures and a significant improvement in terms of CPU timings compared
to the use of standard spatial solvers.

Roel Tielen, Matthias Möller, and Cornelis Vuik have contributed equally to this work

 * Roel Tielen, r.p.w.m.tielen@tudelft.nl; Matthias Möller, m.moller@tudelft.nl; Cornelis Vuik, c.vuik@tudelft.nl | 1Delft Institute of Applied
Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.

Article Highlights

• The use of a p-multigrid method significantly reduces
the CPU timings for higher values of the spline degree.

• The Multigrid Reduction in Time method shows both
strong and weak scalability up to 2048 cores.

• Iteration numbers are independent of the number of
time steps, mesh width and spline degree.

Keywords Multigrid Reduction in Time · Isogeometric Analysis · p-multigrid

1 Introduction

Since its introduction in [1], Isogeometric Analysis (IgA)
has become more and more a viable alternative to the
Finite Element Method (FEM). Within IgA, the same build-
ing blocks (i.e., B-splines and NURBS) as in Computer
Aided Design (CAD) are adopted, which closes the gap
between CAD and FEM. In particular, the use of high-
order splines results in a highly accurate represention of
(curved) geometries and has shown to be advantageous in
many applications, like structural mechanics [2], solid and

fluid dynamics [3] and shape optimization [4]. Finally, the
accuracy per degree of freedom (DOF) compared to FEM
is significantly higher with IgA [5].

For time-dependent partial differential equations (PDEs),
IgA is typically combined with a traditional time integra-
tion scheme within the method of lines. Here, the spatial
variables are discretized by adopting IgA, after which the
resulting system of ordinary differential equations (ODEs) is
integrated in time. However, as with all traditional time inte-
gration schemes, the latter part becomes more and more
the bottleneck in numerical simulations. When the spatial

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-022-05043-7&domain=pdf

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

resolution is increased to improve accuracy, a smaller time
step size has to be chosen to ensure stability of the overall
method. As clock speeds are no longer increasing, but the
core count goes up, the parallelizability of the entire calcula-
tion process becomes more and more important to obtain
an overall efficient method. As traditional time integration
schemes are sequential by nature, new parallel-in-time
methods are needed to resolve this problem.

The Multigrid Reduction in Time (MGRIT) method [6] is
a parallel-in-time algorithm based on multigrid reduction
(MGR) techniques [7]. In contrast to space-time methods,
in which time is considered as an extra spatial dimension,
sequential time stepping is still necessary within MGRIT.
Space-time methods have been combined in the literature
with IgA [8]. Although very successful, a drawback of such
methods is the fact that they are more intrusive on existing
codes, while MGRIT just requires a routine to integrate the
fully discrete problem from one time instance to the next.
Over the years, MGRIT has been studied in detail (see [9])
and applied to a variety of problems, including those aris-
ing in optimization [10] and power networks [11].

Recently, the authors applied MGRIT in the context of
IgA for the first time in the literature [12]. Here, MGRIT
showed convergence for a variety of two-dimensional
benchmark problems independent of the mesh width h,
the spline degree p of the B-spline basis functions and the
number of time steps Nt . However, as a standard (diago-
nally preconditioned) Conjugate Gradient method was
adopted for the spatial solves within MGRIT, a significant
dependency of the CPU timings on the spline degree was
visible. Furthermore, the parallel performance of MGRIT
was investigated for a very limited number of cores.

In this paper, we extend the research direction set
out in [12] by combining MGRIT with a state-of-the-art
p-multigrid method [13] to solve the linear systems aris-
ing within MGRIT. CPU timings show that the use of such
a solver significantly improves the overall performance of
MGRIT, in particular for higher values of p. Furthermore,
the parallel performance of the resulting MGRIT method
(i.e., strong and weak scalability) is investigated on modern
computer architectures, showing significant (and close to
ideal) speed-ups up to 2048 cores.

This paper is structured as follows: In Sect. 2, a two-
dimensional model problem and its spatial and temporal
discretization are considered. The MGRIT algorithm is then
described in Sect. 3. In Sect. 4, the adopted p-multigrid
method and its components are presented in more detail. In
Sect. 5, numerical results obtained for the considered model
problem are analyzed for different values of the mesh width,
spline degree and the number of time steps and compared
to those obtained in [12]. Furthermore, weak and strong scal-
ing studies of MGRIT when adopting a p-multigrid method
are performed. Finally, conclusions are drawn in Sect. 7.

2 Model problem and discretization

As a model problem, we consider the transient diffusion
equation:

Here, Ω ⊂ ℝ
d denotes a simply connected, Lipschitz

domain in d dimensions and f ∈ L2(Ω) a source term. The
above equation is complemented by initial conditions and
homogeneous Dirichlet boundary conditions:

First, we discretize Eq. (1) by dividing the time interval [0, T]
in Nt subintervals of size Δt and applying the �-scheme
to the temporal derivative, which leads to the following
equation to be solved at every time step:

for � ∈ Ω and k = 0,… ,Nt . Depending on the choice of � ,
this scheme leads to the backward Euler (� = 1), forward
Euler (� = 0) or second-order accurate Crank–Nicolson
(� = 0.5) method. By rearranging the terms, the discretized
equation can be written as follows:

To obtain the variational formulation, let V = H1
0
(Ω) be the

space of functions in the Sobolev space H1(Ω) that vanish
on the boundary �Ω . Equation (5) is multiplied with a test
function v ∈ V and the result is then integrated over the
domain Ω:

where we write u(�)k+1 = uk+1 throughout the remainder
of this section to improve readability. Applying integration
by parts on the second term on both sides of the equation
results in

where the boundary integral integral vanishes since v = 0
on �Ω . To parameterize the physical domain Ω , a geometry

(1)�tu(�, t) − Δu(�, t) = f (�), � ∈ Ω, t ∈ [0, T].

(2)u(�, 0) = u
0(�), � ∈ Ω,

(3)u(�, t) = 0, � ∈ �Ω, t ∈ [0, T].

(4)
u(�)k+1 − u(�)k

Δt
= �Δu(�)k+1 + (1 − �)Δu(�)k + f (�),

(5)
u(�)k+1 − Δt�Δu(�)k+1

= u(�)k + Δt(1 − �)Δu(�)k + Δtf (�).

(6)
∫Ω

uk+1v − Δt�Δuk+1vdΩ

= ∫Ω

ukv + Δt(1 − �)Δukv + Δtfv dΩ,

(7)
∫Ω

uk+1v + Δt�∇uk+1 ⋅ ∇v dΩ

= ∫Ω

uk+1v − Δt(1 − �)∇uk ⋅ ∇v + Δtfv dΩ,

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

function � is then defined, describing an invertible map-
ping to connect the parameter domain Ω0 = (0, 1)d with
the physical domain Ω:

Provided that the physical domain Ω is topologically equiv-
alent to the unit square, the geometry can be described
by a single geometry function � . In case of more complex
geometries, a family of functions �(m) (m = 1,… , K) is
defined and we refer to Ω as a multipatch geometry con-
sisting of K patches. For a more detailed description of the
spatial discretization in IgA and multipatch constructions,
the authors refer to chapter 2 of [1].

At each time step, we express u in Eq. (7) by a linear
combination of multivariate B-spline basis functions of
order p. Multivariate B-spline basis functions are defined
as the tensor product of univariate B-spline basis func-
tions �i,p (i = 1,… ,N) which are uniquely defined on the
parameter domain (0, 1) by an underlying knot vector
Ξ = {�1, �2,… , �N+p, �N+p+1} . Here, N denotes the number
of B-spline basis functions and p the spline degree. Based on
this knot vector, the basis functions are defined recursively
by the Cox-de Boor formula [14], starting from the constant
ones:

Higher-order B-spline basis functions of order p > 0 are
then defined recursively:

The resulting B-spline basis functions �i,p are non-zero
on the interval [�i , �i+p+1) and possess the partition of
unity property. Furthermore, the basis functions are Cp−mi

-continuous, where mi denotes the multiplicity of knot
�i . Throughout this paper, we consider a uniform knot

(8)� ∶ Ω0 → Ω, �(�) = (�).

(9)𝜙i,0(𝜉) =

{
1 if 𝜉i ≤ 𝜉 < 𝜉i+1,

0 otherwise.

(10)

�i,p(�) =
� − �i

�i+p − �i

�i,p−1(�)

+
�i+p+1 − �

�i+p+1 − �i+1

�i+1,p−1(�).

vector with knot span size h, where the first and last knot
are repeated p + 1 times. As a consequence, the resulting
B-spline basis functions are Cp−1 continuous and interpo-
latory at both end points. Figure 1 illustrates both linear
(left) and quadratic (right) B-spline basis functions based
on such a knot vector.

As mentioned previously, the tensor product of uni-
variate B-spline basis functions is adopted for the multi-
dimensional case. Denoting the total number of multivari-
ate B-spline basis functions Φi,p by Ndof , the solution u is
thus approximated at each time step as follows:

Here, the spline space Vh,p is defined, using the inverse
of the geometry mapping �−1 as pull-back operator, as
follows:

By setting v = Φj,p , Eq. (7) can be written as follows:

where � and � denote the mass and stiffness matrix,
respectively:

3 Multigrid Reduction in Time

A traditional (i.e., sequential) time integration scheme
would solve Eq. (13) for k = 0,… ,Nt to obtain the numer-
ical solution at each time instance. In this paper, how-
ever, we apply the Multigrid Reduction in Time (MGRIT)
method to solve Eq. (13) parallel-in-time. For the ease of

(11)u(�) ≈ uh,p(�) =

Ndof∑
i=1

ui(t)Φi,p(�), uh,p ∈ Vh,p.

(12)Vh,p ∶= span
{
Φi,p◦�

−1
}
i=1,…,Ndof

.

(13)
(� + Δt��)�k+1

= (� − Δt(1 − �)�)�k + Δt� , k = 0,… ,Nt ,

(14)

�i,j = ∫Ω

Φi,pΦj,p dΩ, �i,j = ∫Ω

∇Φi,p ⋅ ∇Φj,p dΩ.

Fig. 1 Linear (left) and
quadratic (right) B-spline basis
functions based on the knot
vectors Ξ1 = {0, 0, 1, 2, 3, 3}
and Ξ2 = {0, 0, 0, 1, 2, 3, 3, 3} ,
respectively

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

notation, we set � = 1 throughout the remainder of this
section. Let Ψ = (� + Δt�)−1 denote the inverse of the
left hand side operator. Then, Eq. (13) can be written as
follows:

where �k+1 = ΨΔt� . Setting �0 equal to the initial condition
u0(�) projected on the spline space Vh,p , the time integra-
tion method can be written as a linear system of equations:

A sequential time integration scheme would correspond
to a block-forward solve of this linear system of equations.
In this paper, however, we adopt MGRIT to iteratively solve
Eq. (17). First, we introduce the two-level MGRIT method,
showing similarities with the well-known parareal algo-
rithm [15]. In fact, it can be shown that both methods are
equivalent, assuming a specific choice of relaxation [16].
Then, the multilevel variant of MGRIT will be presented in
more detail.

3.1 Two‑level MGRIT method

The two-level MGRIT method combines the use of a cheap
coarse-level time integration method with an accurate
more expensive fine-level one which can be performed
in parallel. That is, the linear system of equations given by
Eq. (17) can be solved iteratively by introducing a coarse
temporal mesh with time step size ΔtC = mΔtF . Here, ΔtF
coincides with the Δt from the previous sections and m
denotes the coarsening factor. Figure 2 illustrates both the
fine and coarse temporal discretization.

The time instances T0, T1,… , TNt∕m
 are referred to as

coarse points (or C-points), while the remaining points
are called fine points (or F-points). The description of
MGRIT is based on this division of the time instances in
both coarse and fine points. By applying a numbering

(15)�k+1 =Ψ
(
��k + Δt�

)
, k = 0,… ,Nt ,

(16)=Ψ��k + �k+1, k = 0,… ,Nt ,

(17)�� =

⎡⎢⎢⎢⎣

I

−Ψ� I

⋱ ⋱

− Ψ� I

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�0

�1

⋮

�Nt

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

�0

�1

⋮

�Nt

⎤⎥⎥⎥⎦
= �.

strategy that first numbers the F-points and then the
C-points, we can write Eq. (17) as follows:

where the matrix � can be decomposed as follows:

where �C and �F are identity matrices. The ‘ideal’ restriction
and prolongation operator are then defined as follows:

Within MGRIT, the ‘ideal’ prolongation operator P is typi-
cally adopted, while the ‘ideal’ restriction operator is
replaced by R̃ =

[
� �C

]
 . The matrix �FF is given by:

Note that each solve with �Ψ corresponds to a single time
step within a coarse interval, which is a completely inde-
pendent process for each coarse interval and can therefore
be performed in parallel. The Schur complement matrix �
in Eq. (19) is given by:

Instead of solving for � directly, MGRIT solves for a modi-
fied matrix �̃ by replacing the operator (Ψ�)m ≈ Φ� ,
which corresponds to applying a single time step of a
coarse time integrator. As a true multigrid method, the
building blocks of the MGRIT method consist of relaxa-
tion (= fine time stepping) and a coarse grid correction (=
coarse time stepping). Relaxation involves solving a linear
system of the form

(18)

[
�FF �FC

�CF �CC

] [
�F
�C

]
=

[
�F
�C

]
,

(19)

[
�FF �FC

�CF �CC

]
=

[
�F �

�CF�
−1
FF

�C

] [
�FF �

� �

] [
�F �−1

FF
�FC

� �C

]
,

(20)R =
[
�CF�

−1
FF

�C
]
, P =

[
−�−1

FF
�FC

�C

]
.

(21)�FF =

⎡⎢⎢⎣

�Ψ

⋱

�Ψ

⎤
⎥⎥⎦
, �Ψ =

⎡⎢⎢⎢⎣

I

−Ψ� I

⋱ ⋱

− Ψ� I

⎤⎥⎥⎥⎦
.

(22)

� = �CC − �CF�
−1
FF
�FC =

⎡⎢⎢⎢⎣

I

−(Ψ�)m I

⋱ ⋱

− (Ψ�)m I

⎤⎥⎥⎥⎦
.

(23)�FF�F = �F − �FC�C ,

Fig. 2 Coarse and fine tempo-
ral mesh from 0 to T, based on
Fig 2.1 of [6]

T0 T1 · · · TNt/m

t0 t1 · · · tm tNt∆tF

∆tC = m∆tF

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

where �F and �C denote the solution at all F-points and
C-points, respectively. Within relaxation, the solution is
updated at the F-points based on the given values at the
C-points. This time stepping from a coarse point C to all
neighbouring fine points is also referred to as F-relaxation
[6]. On the other hand, time stepping to a C-point from the
previous F-point is referred to as C-relaxation. It should be
noted that both types of relaxation are highly parallel and
can be combined leading to so-called CF- or FCF-relaxa-
tion. Figure 3 illustrates both C- and F-relaxation methods.

The coarse grid correction involves solving the linear
system of equations

which is a sequential procedure by design, but is much
cheaper compared to the fine time integration (which can
be performed in parallel). Here, the vector �C is obtained
by applying R̃ on �.

3.2 Multilevel MGRIT method

The solution procedure described above can be extented
to a true multilevel MGRIT method. First, we define a
hierarchy of L temporal meshes, where the time step size
for the discretization at level l (l = 0, 1,… L) is given by
ΔtFm

l . The total number of levels L is related to the coars-
ening factor m and the total number of fine steps ΔtF by
L = logm(Nt) . Let �(l)�(l) = �(l) denote the linear system of
equations based on the considered time step size at level
l. The MGRIT method can then be written as follows:

1. Apply F-relaxation (= fine time stepping) on
�(l)�(l) = �(l) :

2. Determine the residual at level l and restrict it to level
l + 1 using the restriction operator R̃ :

3. Solve Eq. (24) (= coarse time stepping) to obtain �(l+1) :

(24)�̃�C = R̃(� − ��),

�
(l)

FF
�
(l)

F
= �

(l)

F
− �

(l)

FC
�
(l)

C
.

�(l+1) = R̃
(
�(l) − �(l)�(l)

)
.

�̃�(l+1) = �(l+1).

4. Prolongate the correction using the ‘ideal’ interpola-
tion operator P and update the solution at level l:

Recursive application of this scheme until the coarsest
level is reached, leads to a so-called V-cycle. However, as
with standard multigrid methods, alternative cycle types
(i.e., W-cycles, F-cycles) can be defined. At all levels of the
multigrid hierarchy, the operators are obtained by redis-
cretizing Eq. (1) using a different time step size.

4 p‑multigrid method

Within the MGRIT algorithm, fine time stepping is per-
formed in parallel within each time interval. Assuming a
backward Euler time integration scheme, the following lin-
ear system of equations is solved within each time interval
at every iteration:

Throughout this section we will omit the time step index
k and write the linear system of equations given by Eq.
(25) as follows:

In a recent paper by the authors [12], this linear system
of equations was solved within MGRIT by means of a
(diagonally preconditioned) Conjugate-Gradient method.
However, as the condition number of the system matrix
increases exponentially in IgA with the spline degree p,
the use of standard iterative solvers becomes less efficient
for higher values of p. As a consequence, alternative solu-
tion techniques have been developed in recent years to
overcome this dependency [17].

In this paper, we adopt a p-multigrid method [13] spe-
cifically designed for discretizations arising in IgA to solve
the linear systems within MGRIT. Within the p-multigrid
method, a low-order correction is obtained (at level p = 1)
to update the solution at the high-order level. Starting
from the high-order problem, the following steps are per-
formed [13]:

�(l) ∶= �(l) + P�(l+1).

(25)(� + Δt�)�k+1 = ��k + Δt� , k = 0,… ,Nt .

(26)�h,p�h,p = �h,p.

Fig. 3 Illustration of F-relax-
ation (top) and C-relaxation
(bottom) C F F F F C F F F F C F F F F C F F F F C

C F F F F C F F F F C F F F F C F F F F C

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

1. Apply one presmoothing step to the initial guess �0
h,p

 :

 where Sh,p is a smoothing operator applied to the
high-order problem.

2. Determine the residual at level p and project it onto
the space Vh,1 using the restriction operator I1

p
 :

3. Solve the residual equation to determine the coarse
grid error:

4. Project the error �h,1 onto the space Vh,p using the pro-
longation operator Ip

1
 and update �0

h,p
 :

5. Apply one postsmoothing step of the form (27) on the
updated solution to obtain �1

h,p
.

To approximately solve the residual equation given by Eq.
(29) a single W-cycle of a standard h-multigrid method
[18], using canonical prolongation and weighted restric-
tion, is applied. As the level p = 1 corresponds to a low-
order Lagrange discretization, an h-multigrid method
(using Gauss–Seidel as a smoother) is known to be both
efficient and cheap [19]. The resulting p-multigrid adopted
throughout this paper is shown in Fig. 4.

Note that, we directly restrict the residual at the high-
order level to level p = 1 . This aggressive p-coarsening
strategy has shown to significantly improve the compu-
tational efficiency of the resulting p-multigrid method [20],
while maintaining its excellent convergence behavior.

Prolongation and restriction operators based on an L2
projection are adopted to transfer vectors from the high-
order level to the low-order level (and vice versa). These

(27)�0
h,p

= �0
h,p

+ Sh,p

(
�h,p − �h,p�

0
h,p

)
,

(28)�h,1 = I
1
p

(
�h,p − �h,p�

0
h,p

)
.

(29)�h,1�h,1 = �h,1.

(30)�0
h,p

∶= �0
h,p

+ I
p

1

(
�h,1

)
.

transfer operators have been used extensively in the lit-
erature [21–23] and are given by:

Here, the mass matrix �p and transfer matrix �p

1
 are

defined as follows:

To prevent the explicit solution of a linear system of equa-
tions for each projection step, the consistent mass matrix
in both transfer operators is replaced by its lumped coun-
terpart by applying row-sum lumping. Note that, row-sum
lumping can be applied within the variational formulation,
due to the partition of unity and non-negativity of the
B-spline basis functions.

Various choices can be made with respect to the
smoother at the high-order level. The use of Gauss–Sei-
del or (damped) Jacobi as a smoother at level p leads to
convergence rates of the resulting multigrid method that
depend significantly on the spline degree p [24]. Alterna-
tive smoothers have been developed in recent years to
overcome this shortcoming [25]. In particular, the use of
ILUT factorizations [26] (i.e., as a preconditioner within
a preconditioned Richardson iteration) has shown to be
very effective in the context of IgA [24] and will there-
fore be adopted throughout the remainder of this paper.
An efficient implementation of ILUT is available in the
Eigen library [27]. Once the factorization �h,p ≈ �h,p�h,p
is obtained, a single smoothing step is applied as follows:

(31)I
p

1
(�1) = (�p)

−1�
p

1
�1, I

1
p
(�p) = (�1)

−1�1
p
�p.

(32)
(�p)(i,j) ∶= ∫Ω

Φi,pΦj,p dΩ,

(�
p

1
)(i,j) ∶= ∫Ω

Φi,pΦj,1 dΩ,

(33)�
(n)

h,p
=(�h,p�h,p)

−1(�h,p − �h,p�
(n)

h,p
),

(34)=�−1
h,p
�−1
h,p
(�h,p − �h,p�

(n)

h,p
),

Fig. 4 Illustration of the
p-multigrid method [13]. At
p = 1 , Gauss–Seidel is adopted
as a smoother (filled circle),
whereas at the high-order level
ILUT is applied (filled triangle).
At the coarsest level, a direct
solver is applied to solve
the residual equation (filled
square)

p = 3 h = 2−5

p = 2 h = 2−5

p = 1 h = 2−5

p = 1 h = 2−4

p = 1 h = 2−3

}
p-multigrid

}
h-multigrid

{

{

IgA

P1 FEM

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

The ILUT factorization is determined completely by a drop-
ping tolerance � and fill factor f. Based on previous stud-
ies by the authors, we choose � = 10−12 and f = 1 , which
implies we only drop a few (very) small values during the
factorization and �h,p�h,p has a similar number of nonzero
elements as �h,p.

5 Numerical results

To assess the quality of MGRIT when applied in combina-
tion with a p-multigrid method within Isogeometric Analy-
sis, we consider the time-dependent heat equation in two
dimensions given by Eq. (1). Figure 5 shows the resulting
solution u at different time instances for Ω = [0, 1]2 . Here,
an inhomogeneous Neumann boundary condition is
applied at the left boundary. Furthermore, the right-hand
side is chosen equal to one and the initial condition is
equal to zero.

Based on a spatial discretization with B-spline basis
functions of order p and a mesh width h, MGRIT is applied
to iteratively solve the resulting equation. Both the num-
ber of iterations and CPU timings needed to reach con-
vergence will be investigated using both a (diagonally
preconditioned) Conjugate Gradient method and the
described p-multigrid method. Furthermore, we will
investigate the parallel performance of MGRIT on mod-
ern computer architectures. The open-source C++ library
G+Smo [28] is used to discretize the model problem in

(35)�
(n+1)

h,p
=�

(n)

h,p
+ �

(n)

h,p
, space using IgA, while, for the MGRIT algorithm, the paral-

lel-in-time code XBraid, developed at Lawrence Livermore
National Lab, is adopted [29]. The MGRIT method is said to
have reached convergence if the relative residual (in the
L2 norm) at the end of an iteration is smaller or equal to
10−10 , unless stated otherwise.

As a starting point, we briefly summarize the results
obtained in a previous paper of the authors (see [12]).
There, numerical results were obtained for the same model
problem using different hierarchies (i.e., a V-cycle, F-cycle
and two-level method), time integration schemes (i.e.,
backward Euler, forward Euler and Crank–Nicolson) and
domains of interest (see Fig. 6).

In general, it was observed that MGRIT converged in a
low number (i.e., 5–10) of iterations, although the num-
ber of iterations was slightly higher when V-cycles were
adopted instead of F-cycles or a two-level method. Fur-
thermore, the number of iterations was independent of
the mesh width h, spline degree of the B-spline basis func-
tions p and the number of time steps Nt for all considered
hierarchies and domains of interest. As expected from
sequential time stepping methods, the use of the implicit
backward Euler within MGRIT lead to the most stable time
integration method. Finally, CPU timings were obtained for
a limited number of processors, showing a strong depend-
ency on the spline degree p when the Conjugate Gradient
method was applied as a spatial solver within MGRIT.

In this section, we investigate the effect of using a
p-multigrid method for the spatial solves compared to the
use of a Conjugate Gradient method. Furthermore, we pre-
sent numerical results when considering a three dimen-
sional geometry (i.e., the unit cube). Finally, we investigate

Fig. 5 Solution to the model
problem at different times T
using an inhomogeneous Neu-
mann boundary condition at
the left boundary using quad-
ratic B-spline basis functions

Fig. 6 Spatial domains Ω con-
sidered in [12]

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

the weak and strong scaling of MGRIT on modern architec-
tures when applied in the context of IgA. As this research
focuses on the spatial solver and scalability, we will restrict
ourselves to the backward Euler method and the use of
V-cycles within MGRIT.

5.1 Iteration numbers

As a first step, we compare the number of MGRIT itera-
tions to reach convergence when a p-multigrid method
or a (diagonally preconditioned) Conjugate Gradient
method is adopted while keeping all other parameters
the same. Table 1 shows the results when the mesh
width is kept constant (h = 2−6) for the unit square
and a quarter annulus when adopting V-cycles with a

p-multigrid (top) and CG method (bottom), respectively.
For both benchmarks and all configurations, the number
of iterations needed with MGRIT to reach convergence is
independent of the number of time steps Nt and spline
degree p. Furthermore, the number of MGRIT iterations
is identical when adopting a p-multigrid method com-
pared to the use of a Conjugate Gradient method.

Table 2 shows the results for different values of the
mesh width h when the number of time steps is kept
constant (Nt = 100) for both benchmarks when adopting
V-cycles. The number of MGRIT iterations is independent
of the mesh width h and spline degree p. Furthermore, the
number of MGRIT iterations is identical when adopting a
p-multigrid method compared to the use of a Conjugate
Gradient method.

Table 1 Number of MGRIT
iterations for solving Eq. (1) on
the unit square and a quarter
annulus when adopting
V-cycles for a varying number
of time steps

Here, p-multigrid (top) and the CG method (bottom) are adopted for the spatial solves and backward
Euler for the time integration

Unit square Quarter annulus

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11
Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 2 Number of MGRIT
iterations for solving Eq. (1) on
the unit square and a quarter
annulus when adopting
V-cycles for varying mesh
widths

Here, p-multigrid (top) and the CG method (bottom) are adopted for the spatial solves and backward
Euler for the time integration

Unit square Quarter annulus

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−6 9 9 9 9 9 9 9 9

h = 2−7 9 9 9 9 9 9 9 9

h = 2−8 10 10 10 10 9 9 9 9

h = 2−9 10 10 10 10 10 10 10 10

h = 2−6 9 9 9 9 9 9 9 9

h = 2−7 9 9 9 9 9 9 9 9

h = 2−8 10 10 10 10 9 9 9 9

h = 2−9 10 10 10 10 10 10 10 10

Table 3 Number of MGRIT
iterations for solving Eq. (1) on
the unit cube when adopting
V-cycles for a varying number
of time steps

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 11 h = 2−3 9 9 9 10

Nt = 500 11 11 11 11 h = 2−4 9 9 9 10

Nt = 1000 11 11 11 11 h = 2−5 10 10 10 10

Nt = 2000 11 11 11 11 h = 2−6 10 10 10 10

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

Results when adopting the p-multigrid method have
been obtained for a three-dimensional benchmark prob-
lem as well. Table 3 shows the number of MGRIT iterations
for different values of Nt , p and h when the unit cube is
considered as geometry. In general, the number of itera-
tions needed to reach convergence is independent of
the number of time steps, spline degree and mesh width.
Furthermore, the number of iterations are comparable to
the ones obtained for the two-dimensional benchmark
problems.

Finally, we investigate the influence of the time inte-
gration scheme on the number of MGRIT iterations.
Table 4 shows the number of MGRIT iterations needed
to reach convergence for the forward Euler (� = 0) and
Crank–Nicolson (� = 0.5) method. Results can be com-
pared to the ones obtained with the backward Euler
method (see Table 2). For many configurations, MGRIT
using forward Euler does not convergence (which is
related to the CFL condition), while the Crank–Nicolson
method converges for all configurations. A small depend-
ency on h and p is, however, visible. Based on these results,
the backward Euler method will be adopted throughout
the remainder of this paper. For a more detailed analy-
sis regarding different time integration schemes within
MGRIT, the authors refer to [12].

Although the number of MGRIT iterations is identical
for all configurations when adopting a p-multigrid or Con-
jugate Gradient method for solving the linear systems of
equations, it is expected that CPU timings will differ signifi-
cantly. Therefore, focus will lie on CPU timings throughout
the remainder of this section.

5.2 CPU timings

CPU timings have been obtained when a p-multigrid
method or Conjugate Gradient method is adopted for
the spatial solves within MGRIT. As in the previous sec-
tion, we adopt V-cycles, a mesh width of h = 2−6 and the
unit square as our domain of interest. Note that the cor-
responding iteration numbers can be found in Table 1. The
computations are performed on three compute nodes
each consisting of an Intel(R) i7-10700 (@ 2.90GHz) Comet-
lake processor with 8 hardware cores (hyperthreading

turned on) and 128GB DDR4 main memory organized in 4
modules of 32GB each.

Figure 7 shows the CPU time needed to reach conver-
gence for a varying number of cores, a different number
of time steps and different values of p. When the Conju-
gate Gradient method is adopted for the spatial solves,
doubling the number of time steps leads to an increase
of the CPU time by a factor of two. Furthermore, it can be
observed that the CPU timings significantly increase for
higher values of p which is related to the spatial solves
required at every time step. As standard iterative solvers
(like the Conjugate Gradient method) have a detoriating
performance for increasing values of p, more iterations
are required to reach convergence for each spatial solve,
resulting in higher computational costs of the MGRIT
method. When focussing on the number of cores, it can
be seen that doubling the number of cores significantly
reduces the CPU time needed to reach convergence. More
precisely, a reduction of 45–50% can be observed when
doubling the number of cores to 6, implying the MGRIT
algorithm is highly parallelizable.

As with the use of the Conjugate Gradient method, dou-
bling the number of time steps leads to an increase of the
CPU time by a factor of two when a p-multigrid method is
adopted. For p = 2 , the use of a p-multigrid method leads
to higher CPU timings compared to the use of the Con-
jugate Gradient method for all values of Nt . However, the
dependency of the CPU timings on the spline degree is
significantly mitigated, which leads to a serious decrease
of the CPU timings compared to the use of the Conjugate
Gradient method when higher values of p are considered.
For example, for Nt = 2000 and p = 5 a speed-up of more
than a factor of 10 is achieved.

Again, increasing the number of cores from 3 to 6,
reduces the CPU time needed to reach convergence by
45–50%. These results show that MGRIT combined with
a p-multigrid method leads to an overall more efficient
method. Therefore, a larger computer cluster will be con-
sidered in the next section to further investigate the scal-
ability of MGRIT (i.e., weak and strong scalability) when
combined with a p-multigrid method within IgA.

Table 4 Number of MGRIT
iterations for solving Eq. (1)
on the unit square using
forward Euler (� = 0) and
Crank–Nicolson (� = 0.5) when
adopting V-cycles

Forward Euler Crank–Nicolson

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−3 13 13 13 14 11 11 11 12

h = 2−4 13 13 ∗ ∗ 11 11 11 11

h = 2−5 ∗ ∗ ∗ ∗ 11 11 13 23

h = 2−6 ∗ ∗ ∗ ∗ 13 28 52 88

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

6 Scalability

In the previous sections, we applied MGRIT adopting a
relatively low number of cores. Here, it was shown that
the use of a p-multigrid method significantly reduces the
dependency of the CPU timings on the spline degree. In
this section, we investigate the scalability of MGRIT (com-
bined with a p-multigrid method) on a modern architec-
ture. More precisely, we will investigate both strong and
weak scalability on the Lisa system, one of the nationally
used clusters of the Netherlands1.

6.1 Strong scalability

First, we fix the total problem size and increase the num-
ber of cores (i.e., strong scalability). That is, we consider
the same benchmark problem as in the previous sections,

100

101

102

103

104

2
2

3
8

7
7

1
4
4

5
7

1
1
1

2
3
3

4
6
7

1
8
6

3
6
7

7
7
5

1
,5

7
7

5
5
3

1
,1

0
6 2
,3

9
6 4
,9

1
5

C
P
U

T
im

e
(s
)

3 cores (CG method)

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

100

101

102

103

104

1
1

2
0

4
0

7
6

3
0

5
9

1
2
3

2
5
0

9
5

1
9
3

4
2
1

8
5
5

2
9
2

5
9
0

1
,3

1
2 2
,7

4
3

C
P
U

T
im

e
(s
)

6 cores (CG method)

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

100

101

102

103

104

4
8

8
7

1
4
8 2

6
3

4
8

8
5

1
5
4 2
6
2

6
1

1
0
5 1
8
3 3
1
8

7
4

1
3
0 2

2
9 3
8
5

C
P
U

T
im

e
(s
)

3 cores (p-multigrid)

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

100

101

102

103

104

2
6

4
8

8
2

1
4
6

2
7

4
8

8
6

1
4
6

3
5

6
2

1
0
9 1
9
0

4
5

7
9

1
4
2 2
3
9

C
P
U

T
im

e
(s
)

6 cores (p-multigrid)

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

Fig. 7 CPU timings for MGRIT using V-cycles and backward Euler
on the unit square for a fixed problem size (h = 2−6) adopting a dif-
ferent number of processors. Here the Conjugate Gradient method

(top) and a p-multigrid method (bottom) are used for all spatial
solves within MGRIT

100

101

102

103

104

9
9
1

1
,0

7
7

1
,3

8
9

1
,8

6
4

5
9
8

6
6
3 8
5
1 1
,0

8
5

3
9
8

4
4
1

5
4
5

6
8
1

2
1
4

2
4
1

2
9
0 3
7
3

1
1
4

1
2
9

1
5
7 2
0
1

6
1 7
0 8
3 1
0
6

4
1
5

4
6
0

5
6
2

6
9
6

C
P
U

ti
m
es

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

sequential

p = 2 p = 3 p = 4 p = 5

Fig. 8 Strong scalability study for MGRIT using V-cycles and back-
ward Euler on the unit square. Here p-multigrid is used for all spa-
tial solves within MGRIT1 https:// useri nfo. surfs ara. nl/ syste ms/ lisa.

https://userinfo.surfsara.nl/systems/lisa

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

but with a mesh width of h = 2−6 and a number of time
steps Nt of 10.000. As before, backward Euler is applied for
the time integration and V-cycles are adopted as MGRIT
hierarchy. Figure 8 shows the CPU timings needed to reach
convergence for a varying number of Intel Xeon Gold 6130
(@ 2.10GHz) processors, where each processor consists
of 16 cores. For all values of p, increasing the number of
cores leads to significant speed-ups which illustrates the
parallizability of the MGRIT method up to 2048 cores. To
compare the results with a sequential time integration
method, results with a backward Euler method have been
added as well. Here, the CPU timings are independent of
the number of processors and shown in the most right
column for each value of p (‘sequential’). Clearly, MGRIT
outperforms the sequential algorithm when the number
of cores is larger or equal to 128. This behavior has been
observed in the literature as well in case of a finite differ-
ence discretization for a similar model problem, see [6].

Figure 9 shows the obtained speed-ups as a function
of the number of cores for different values of p based on
the results presented in Fig. 8. As a comparison, the ideal
speed-up has been added, assuming a perfect parallizabil-
ity of the MGRIT method. Note that, for all values of p, the
observed speed-up slightly increases when the number
of cores is higher than 256. Furthermore, the obtained
speed-ups remain high, even when the number of cores
is further increased to 2048, and is independent of the
spline degree p.

Strong scalability has been investigated for the three-
dimensional benchmark problem as well. Figure 10 shows
the strong scalability for MGRIT on the unit cube. In gen-
eral, the obtained results are comparable to the ones
obtained in two dimensions, showing significant speed-
ups when increasing the number of cores for all values
of p. Results obtained with a sequential time integration
method have been added as well, showing comparable

results to MGRIT when adopting 512 cores. It should be
noted that, compared to the two-dimensional benchmark
problem, the CPU timings grow significantly faster for
increasing values of p. This is well-known in Isogeometric
Analysis [30] and is related to the relatively high number
of nonzero entries in three dimensions when considering
higher values of p. The use of the (preconditioned) Con-
jugate Gradient method would even lead to a significant
higher growth in CPU timings, as the number of itera-
tions needed to reach convergence for every spatial solve
increases excessively in three dimensions when adopting
a standard solver.

Figure 11 shows the obtained speed-ups for different
values of p based on the results presented in Fig. 10. The
obtained speed-ups are similar to the ones obtained for
the two-dimensional problem but vary slightly more for
different values of p. In general, the observed speed-ups
remain high, even when the number of cores is increased
to 2048.

64 128 256 512 1024 2048

1

2

4

8

16

32

64

cores

sp
ee
d-
up

p = 2

p = 3

p = 4

p = 5

Ideal

Fig. 9 Speed-up with MGRIT using V-cycles and backward Euler on
the unit square. Here p-multigrid is used for all spatial solves within
MGRIT

100

101

102

103

104

105

1
,6

5
3 3
,8

3
3 8
,1

9
4

1
4
,9

8
8

1
,0

1
9 2
,1

8
2

4
,3

7
2

8
,3

7
3

6
2
0 1

,3
0
7 2
,9

4
7

4
,8

6
8

3
3
6

7
5
3 1

,4
6
3

2
,6

8
1

1
7
7

4
2
1 7
9
5 1

,6
8
1

9
8

2
3
2

5
5
7 1

,1
2
6

3
2
5

7
4
7 1

,5
9
9

2
,6

0
6

C
P
U

T
im

e
(s
)

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

sequential

p = 2 p = 3 p = 4 p = 5

Fig. 10 Strong scalability study for MGRIT using V-cycles and back-
ward Euler on the unit cube. Here p-multigrid is used for all spatial
solves within MGRIT

64 128 256 512 1024 2048

1

2

4

8

16

32

64

cores

sp
ee
d-
up

p = 2

p = 3

p = 4

p = 5

Ideal

Fig. 11 Speed-up with MGRIT using V-cycles and backward Euler
on the unit cube. Here p-multigrid is used for all spatial solves
within MGRIT

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7

6.2 Weak scalability

As a next step, we consider the unit square as our domain
of interest but keep the problem size per processor fixed
(i.e. weak scalability). In case of 64 cores, the number
of time steps equals 1000 and is adjusted based on the
number of cores. Figure 12 shows the CPU time needed
to reach convergence for a different number of cores and
different values of p. Clearly, the CPU timings remain (more
or less) constant when the number of cores is increased,
showing the weak scalability of the MGRIT method.
Although the CPU timings slightly increase for higher
values of p, the strong p-dependency observed with the
Conjugate Gradient method is clearly mitigated.

7 Conclusions

In this paper, we combined MGRIT with a p-multigrid
method for discretizations arising in Isogeometric Analy-
sis. Numerical results obtained for a variety of benchmark
problems show that the use of a p-multigrid method for
all spatial solves within MGRIT results in convergence
rates independent of the mesh width h, spline degree p
and number of time steps Nt . Furthermore, CPU timings
depend only mildly on the spline degree p in two dimen-
sions. This is in sharp contrast to standard solvers (e.g. a
Conjugate Gradient method), which show a deteriorating
performance (in terms of CPU timings) for higher values
of p already in two dimensions. Furthermore, the obtained
CPU timings when adopting a p-multigrid method are
significantly lower for almost all considered configura-
tions. On modern computer architectures, both strong
and weak scalability of the resulting MGRIT method have
been investigated, showing good scalability up to 2048

cores, illustrating the potential of MGRIT (combined with
a p-multigrid method) for time-dependent simulations in
IgA.

Within this paper, we restrict ourselves to first- and sec-
ond-order accurate time integration schemes. As the use
of high-order B-spline basis functions significantly reduces
the spatial discretization error, the use of alternative (and
in particular higher-order) time integration scheme is
interesting and will be investigated in future work. Fur-
thermore, we will focus on the application of MGRIT to
more challenging benchmark problems, in particular those
where IgA has proven to be a viable alternative to FEM.

Author Contributions All authors contributed to the study concep-
tion and design. All authors read and approved the final manuscript.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Declarations

Conflict of interest On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/

References

 1. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refine-
ment. Comput Methods Appl Mech Eng 194:4135–4195. https://
doi. org/ 10. 1016/j. cma. 2004. 10. 008

 2. Cottrell J, Reali A, Bazilevs Y, Hughes T (2006) Isogeometric analy-
sis of structural vibrations. Comput Methods Appl Mech Eng
195(41–43):5257–5296. https:// doi. org/ 10. 1016/j. cma. 2005. 09.
027

 3. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric
fluid-structure interaction analysis with applications to arterial
blood flow. Comput Mech 38(4–5):310–322. https:// doi. org/ 10.
1007/ s00466- 006- 0084-3

 4. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural
shape optimization. Comput Methods Appl Mech Eng 197(33–
40):2976–2988. https:// doi. org/ 10. 1016/j. cma. 2008. 01. 025

 5. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analy-
sis of discrete approximations in structural dynamics and wave

100

101

102

103

104

1
6
3

1
6
7

2
0
9 2
7
6

1
7
2

1
9
8

2
1
9

2
7
3

2
0
1

1
9
6 2
5
3

3
0
7

1
7
8

1
9
2

2
3
5 3
0
1

1
7
9

1
9
2

2
3
8 3
1
0

1
7
5

1
9
6

2
4
5

3
0
3

C
P
U

ti
m
es

64 cores

128 cores

256 cores

512 cores

1024 cores

2048 cores

p = 2 p = 3 p = 4 p = 5

Fig. 12 Weak scalability study for MGRIT using V-cycles and back-
ward Euler on the unit square. Here p-multigrid is used for all spa-
tial solves within MGRIT

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2005.09.027
https://doi.org/10.1016/j.cma.2005.09.027
https://doi.org/10.1007/s00466-006-0084-3
https://doi.org/10.1007/s00466-006-0084-3
https://doi.org/10.1016/j.cma.2008.01.025

Vol.:(0123456789)

SN Applied Sciences (2022) 4:163 | https://doi.org/10.1007/s42452-022-05043-7 Research Article

propagation: Comparison of p-method finite elements with k
-method NURBS. Comput Methods Appl Mech Eng 197:4104–
4124. https:// doi. org/ 10. 1016/j. cma. 2008. 04. 006

 6. Falgout RD, Friedhoff S, Kolev TV, MacLachlan SP, Schroder JB
(2014) Parallel time integration with multigrid. SIAM J Sci Com-
put 36(6):635–661. https:// doi. org/ 10. 1137/ 13094 4230

 7. Ries M, Trottenberg U, Winter G (1983) A note on MGR meth-
ods. Linear Algebra Appl 49:1–26. https:// doi. org/ 10. 1016/ 0024-
3795(83) 90091-5

 8. Langer U, Moore SE, Neumüller M (2016) Space-time isogeomet-
ric analysis of parabolic evolution problems. Comput Methods
Appl Mech Eng 306:342–363. https:// doi. org/ 10. 1016/j. cma.
2016. 03. 042

 9. Dobrev VA, Kolev T, Petersson NA, Schroder JB (2017) Two-level
convergence theory for multigrid reduction in time (MGRIT).
SIAM J Sci Comput 39(5):501–527. https:// doi. org/ 10. 1137/
16m10 74096

 10. Günther S, Gauger NR, Schroder JB (2018) A non-intrusive
parallel-in-time approach for simultaneous optimization with
unsteady PDEs. Optim Methods Softw 34(6):1306–1321. https://
doi. org/ 10. 1080/ 10556 788. 2018. 15040 50

 11. Lecouvez M, Falgout RD, Woodward CS, Top P (2016) A parallel
multigrid reduction in time method for power systems. In: 2016
IEEE power and energy society general meeting (PESGM), pp
1–5. https:// doi. org/ 10. 1109/ PESGM. 2016. 77415 20

 12. Tielen R, Möller M, Vuik C (2021) Multigrid reduced in time
for isogeometric analysis. In: VI Eccomas Young Investigators
Conference

 13. Tielen R, Möller M, Göddeke D, Vuik C (2020) p-multigrid meth-
ods and their comparison to h-multigrid methods within isogeo-
metric analysis. Comput Methods Appl Mech Eng. https:// doi.
org/ 10. 1016/j. cma. 2020. 113347

 14. De Boor C (1978) A practical guide to splines. Springer, New York
 15. Lions J-L (2001) Résolution d’edp par un schéma en temps para-

réel a parareal in time discretization of pde’s. CRASM 332(7):661–
668. https:// doi. org/ 10. 1016/ S0764- 4442(00) 01793-6

 16. Gander MJ, Vandewalle S (2007) Analysis of the parareal time-
parallel time-integration method. SIAM J Sci Comput 29(2):556–
578. https:// doi. org/ 10. 1137/ 05064 607x

 17. Donatelli M, Garoni C, Manni C, Capizzano S, Speleers H (2017)
Symbol-based multigrid methods for galerkin B-spline isogeo-
metric analysis. SIAM J Numer Anal 55:31–62. https:// doi. org/
10. 1137/ 14098 8590

 18. Hackbush W (1985) Multi-grid methods and applications.
Springer, Berlin. https:// doi. org/ 10. 1007/ 978-3- 662- 02427-0

 19. Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Aca-
demic Press, London

 20. Tielen R, Möller M, Vuik K (2021) A direct projection to low-order
level for p-multigrid methods in isogeometric analysis. In: Ver-
molen F, Vuik C (eds) Numerical mathematics and advanced
applications, ENUMATH 2019 - European Conference. Lecture
notes in computational science and engineering, pp 1001–1009.
Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 55874-1_ 99

 21. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial,
2nd edn. SIAM, Philadelphia. https:// doi. org/ 10. 1137/1. 97808
98719 505

 22. Brenner SC, Scott LR (1994) The mathematical theory of finite
element methods. Springer, New York

 23. Sampath RS, Biros G (2010) A parallel geometric multigrid
method for finite elements on octree meshes. SIAM J Sci Com-
put 32:1361–1392. https:// doi. org/ 10. 1137/ 09074 7774

 24. Tielen R, Möller M, Vuik C (2018) Efficient multigrid based solvers
for isogeometric analysis. In: van Brummelen H, Vuik C, Möller
M, Verhoorsel C, Simeon B, Jüttler B (eds.), Isogeometric analy-
sis and applications 2018. Lecture notes in computational sci-
ence and engineering. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 030- 49836-8

 25. Hofreither C, Takacs S, Zulehner W (2017) A robust multigrid
method for isogeometric analysis in two dimensions using
boundary correction. Comput Methods Appl Mech Eng 316:22–
42. https:// doi. org/ 10. 1016/j. cma. 2016. 04. 003

 26. Saad Y (1994) ILUT: a dual threshold incomplete LU factorization.
Numer Linear Algebra Appl 1:387–402. https:// doi. org/ 10. 1002/
nla. 16800 10405

 27. Guennebaud G et al (2010) Eigen v3. http:// eigen. tuxfa mily. org
 28. Mantzaflaris A et al (2018) G+Smo (Geometry plus Simulation

modules) v0.8.1. http:// github. com/ gismo
 29. XBraid: Parallel multigrid in time. http:// llnl. gov/ casc/ xbraid
 30. Collier N, Dalcin L, Pardo D, Calo V (2013) The costs of continu-

ity: performance of iterative solvers on isogeometric finite ele-
ments. SIAM J Sci Comput 35:767–784. https:// doi. org/ 10. 1137/
12088 1038

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cma.2008.04.006
https://doi.org/10.1137/130944230
https://doi.org/10.1016/0024-3795(83)90091-5
https://doi.org/10.1016/0024-3795(83)90091-5
https://doi.org/10.1016/j.cma.2016.03.042
https://doi.org/10.1016/j.cma.2016.03.042
https://doi.org/10.1137/16m1074096
https://doi.org/10.1137/16m1074096
https://doi.org/10.1080/10556788.2018.1504050
https://doi.org/10.1080/10556788.2018.1504050
https://doi.org/10.1109/PESGM.2016.7741520
https://doi.org/10.1016/j.cma.2020.113347
https://doi.org/10.1016/j.cma.2020.113347
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1137/05064607x
https://doi.org/10.1137/140988590
https://doi.org/10.1137/140988590
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-030-55874-1_99
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/090747774
https://doi.org/10.1007/978-3-030-49836-8
https://doi.org/10.1007/978-3-030-49836-8
https://doi.org/10.1016/j.cma.2016.04.003
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1002/nla.1680010405
http://eigen.tuxfamily.org
http://github.com/gismo
http://llnl.gov/casc/xbraid
https://doi.org/10.1137/120881038
https://doi.org/10.1137/120881038

	Combining p-multigrid and Multigrid Reduction in Time methods to obtain a scalable solver for Isogeometric Analysis
	Abstract
	Article Highlights
	1 Introduction
	2 Model problem and discretization
	3 Multigrid Reduction in Time
	3.1 Two-level MGRIT method
	3.2 Multilevel MGRIT method

	4 p-multigrid method
	5 Numerical results
	5.1 Iteration numbers
	5.2 CPU timings

	6 Scalability
	6.1 Strong scalability
	6.2 Weak scalability

	7 Conclusions
	References

