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Abstract
The use of sequential time integration schemes becomes more and more the bottleneck within large-scale computa-
tions due to a stagnation of processor’s clock speeds. In this study, we combine the parallel-in-time Multigrid Reduction 
in Time method with a p-multigrid method to obtain a scalable solver specifically designed for Isogeometric Analysis. 
Numerical results obtained for two- and three-dimensional benchmark problems show the overall scalability of the 
proposed method on modern computer architectures and a significant improvement in terms of CPU timings compared 
to the use of standard spatial solvers.
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Article Highlights

• The use of a p-multigrid method significantly reduces 
the CPU timings for higher values of the spline degree.

• The Multigrid Reduction in Time method shows both 
strong and weak scalability up to 2048 cores.

• Iteration numbers are independent of the number of 
time steps, mesh width and spline degree.
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1 Introduction

Since its introduction in [1], Isogeometric Analysis (IgA) 
has become more and more a viable alternative to the 
Finite Element Method (FEM). Within IgA, the same build-
ing blocks (i.e., B-splines and NURBS) as in Computer 
Aided Design (CAD) are adopted, which closes the gap 
between CAD and FEM. In particular, the use of high-
order splines results in a highly accurate represention of 
(curved) geometries and has shown to be advantageous in 
many applications, like structural mechanics [2], solid and 

fluid dynamics [3] and shape optimization [4]. Finally, the 
accuracy per degree of freedom (DOF) compared to FEM 
is significantly higher with IgA [5].

For time-dependent partial differential equations (PDEs), 
IgA is typically combined with a traditional time integra-
tion scheme within the method of lines. Here, the spatial 
variables are discretized by adopting IgA, after which the 
resulting system of ordinary differential equations (ODEs) is 
integrated in time. However, as with all traditional time inte-
gration schemes, the latter part becomes more and more 
the bottleneck in numerical simulations. When the spatial 
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resolution is increased to improve accuracy, a smaller time 
step size has to be chosen to ensure stability of the overall 
method. As clock speeds are no longer increasing, but the 
core count goes up, the parallelizability of the entire calcula-
tion process becomes more and more important to obtain 
an overall efficient method. As traditional time integration 
schemes are sequential by nature, new parallel-in-time 
methods are needed to resolve this problem.

The Multigrid Reduction in Time (MGRIT) method [6] is 
a parallel-in-time algorithm based on multigrid reduction 
(MGR) techniques [7]. In contrast to space-time methods, 
in which time is considered as an extra spatial dimension, 
sequential time stepping is still necessary within MGRIT. 
Space-time methods have been combined in the literature 
with IgA [8]. Although very successful, a drawback of such 
methods is the fact that they are more intrusive on existing 
codes, while MGRIT just requires a routine to integrate the 
fully discrete problem from one time instance to the next. 
Over the years, MGRIT has been studied in detail (see [9]) 
and applied to a variety of problems, including those aris-
ing in optimization [10] and power networks [11].

Recently, the authors applied MGRIT in the context of 
IgA for the first time in the literature [12]. Here, MGRIT 
showed convergence for a variety of two-dimensional 
benchmark problems independent of the mesh width h, 
the spline degree p of the B-spline basis functions and the 
number of time steps Nt . However, as a standard (diago-
nally preconditioned) Conjugate Gradient method was 
adopted for the spatial solves within MGRIT, a significant 
dependency of the CPU timings on the spline degree was 
visible. Furthermore, the parallel performance of MGRIT 
was investigated for a very limited number of cores.

In this paper, we extend the research direction set 
out in [12] by combining MGRIT with a state-of-the-art 
p-multigrid method [13] to solve the linear systems aris-
ing within MGRIT. CPU timings show that the use of such 
a solver significantly improves the overall performance of 
MGRIT, in particular for higher values of p. Furthermore, 
the parallel performance of the resulting MGRIT method 
(i.e., strong and weak scalability) is investigated on modern 
computer architectures, showing significant (and close to 
ideal) speed-ups up to 2048 cores.

This paper is structured as follows: In Sect. 2, a two-
dimensional model problem and its spatial and temporal 
discretization are considered. The MGRIT algorithm is then 
described in Sect. 3. In Sect. 4, the adopted p-multigrid 
method and its components are presented in more detail. In 
Sect. 5, numerical results obtained for the considered model 
problem are analyzed for different values of the mesh width, 
spline degree and the number of time steps and compared 
to those obtained in [12]. Furthermore, weak and strong scal-
ing studies of MGRIT when adopting a p-multigrid method 
are performed. Finally, conclusions are drawn in Sect. 7.

2  Model problem and discretization

As a model problem, we consider the transient diffusion 
equation:

Here, Ω ⊂ ℝ
d denotes a simply connected, Lipschitz 

domain in d dimensions and f ∈ L2(Ω) a source term. The 
above equation is complemented by initial conditions and 
homogeneous Dirichlet boundary conditions:

First, we discretize Eq. (1) by dividing the time interval [0, T] 
in Nt subintervals of size Δt and applying the �-scheme 
to the temporal derivative, which leads to the following 
equation to be solved at every time step:

for � ∈ Ω and k = 0,… ,Nt . Depending on the choice of � , 
this scheme leads to the backward Euler ( � = 1 ), forward 
Euler ( � = 0 ) or second-order accurate Crank–Nicolson 
( � = 0.5 ) method. By rearranging the terms, the discretized 
equation can be written as follows:

To obtain the variational formulation, let V = H1
0
(Ω) be the 

space of functions in the Sobolev space H1(Ω) that vanish 
on the boundary �Ω . Equation (5) is multiplied with a test 
function v ∈ V and the result is then integrated over the 
domain Ω:

where we write u(�)k+1 = uk+1 throughout the remainder 
of this section to improve readability. Applying integration 
by parts on the second term on both sides of the equation 
results in

where the boundary integral integral vanishes since v = 0 
on �Ω . To parameterize the physical domain Ω , a geometry 

(1)�tu(�, t) − Δu(�, t) = f (�), � ∈ Ω, t ∈ [0, T ].

(2)u(�, 0) = u
0(�), � ∈ Ω,

(3)u(�, t) = 0, � ∈ �Ω, t ∈ [0, T ].

(4)
u(�)k+1 − u(�)k

Δt
= �Δu(�)k+1 + (1 − �)Δu(�)k + f (�),

(5)
u(�)k+1 − Δt�Δu(�)k+1

= u(�)k + Δt(1 − �)Δu(�)k + Δtf (�).

(6)
∫Ω

uk+1v − Δt�Δuk+1vdΩ

= ∫Ω

ukv + Δt(1 − �)Δukv + Δtfv dΩ,

(7)
∫Ω

uk+1v + Δt�∇uk+1 ⋅ ∇v dΩ

= ∫Ω

uk+1v − Δt(1 − �)∇uk ⋅ ∇v + Δtfv dΩ,
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function � is then defined, describing an invertible map-
ping to connect the parameter domain Ω0 = (0, 1)d with 
the physical domain Ω:

Provided that the physical domain Ω is topologically equiv-
alent to the unit square, the geometry can be described 
by a single geometry function � . In case of more complex 
geometries, a family of functions �(m) ( m = 1,… , K  ) is 
defined and we refer to Ω as a multipatch geometry con-
sisting of K patches. For a more detailed description of the 
spatial discretization in IgA and multipatch constructions, 
the authors refer to chapter 2 of [1].

At each time step, we express u in Eq. (7) by a linear 
combination of multivariate B-spline basis functions of 
order p. Multivariate B-spline basis functions are defined 
as the tensor product of univariate B-spline basis func-
tions �i,p (i = 1,… ,N) which are uniquely defined on the 
parameter domain (0,  1) by an underlying knot vector 
Ξ = {�1, �2,… , �N+p, �N+p+1} . Here, N denotes the number 
of B-spline basis functions and p the spline degree. Based on 
this knot vector, the basis functions are defined recursively 
by the Cox-de Boor formula [14], starting from the constant 
ones:

Higher-order B-spline basis functions of order p > 0 are 
then defined recursively:

The resulting B-spline basis functions �i,p are non-zero 
on the interval [�i , �i+p+1) and possess the partition of 
unity property. Furthermore, the basis functions are Cp−mi

-continuous, where mi denotes the multiplicity of knot 
�i . Throughout this paper, we consider a uniform knot 

(8)� ∶ Ω0 → Ω, �(�) = (�).

(9)𝜙i,0(𝜉) =

{
1 if 𝜉i ≤ 𝜉 < 𝜉i+1,

0 otherwise.

(10)

�i,p(�) =
� − �i

�i+p − �i

�i,p−1(�)

+
�i+p+1 − �

�i+p+1 − �i+1

�i+1,p−1(�).

vector with knot span size h, where the first and last knot 
are repeated p + 1 times. As a consequence, the resulting 
B-spline basis functions are Cp−1 continuous and interpo-
latory at both end points. Figure 1 illustrates both linear 
(left) and quadratic (right) B-spline basis functions based 
on such a knot vector.

As mentioned previously, the tensor product of uni-
variate B-spline basis functions is adopted for the multi-
dimensional case. Denoting the total number of multivari-
ate B-spline basis functions Φi,p by Ndof , the solution u is 
thus approximated at each time step as follows:

Here, the spline space Vh,p is defined, using the inverse 
of the geometry mapping �−1 as pull-back operator, as 
follows:

By setting v = Φj,p , Eq. (7) can be written as follows:

where � and � denote the mass and stiffness matrix, 
respectively:

3  Multigrid Reduction in Time

A traditional (i.e., sequential) time integration scheme 
would solve Eq. (13) for k = 0,… ,Nt to obtain the numer-
ical solution at each time instance. In this paper, how-
ever, we apply the Multigrid Reduction in Time (MGRIT) 
method to solve Eq. (13) parallel-in-time. For the ease of 

(11)u(�) ≈ uh,p(�) =

Ndof∑
i=1

ui(t)Φi,p(�), uh,p ∈ Vh,p.

(12)Vh,p ∶= span
{
Φi,p◦�

−1
}
i=1,…,Ndof

.

(13)
(� + Δt��)�k+1

= (� − Δt(1 − �)�)�k + Δt� , k = 0,… ,Nt ,

(14)

�i,j = ∫Ω

Φi,pΦj,p dΩ, �i,j = ∫Ω

∇Φi,p ⋅ ∇Φj,p dΩ.

Fig. 1  Linear (left) and 
quadratic (right) B-spline basis 
functions based on the knot 
vectors Ξ1 = {0, 0, 1, 2, 3, 3} 
and Ξ2 = {0, 0, 0, 1, 2, 3, 3, 3} , 
respectively
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notation, we set � = 1 throughout the remainder of this 
section. Let Ψ = (� + Δt�)−1 denote the inverse of the 
left hand side operator. Then, Eq. (13) can be written as 
follows:

where �k+1 = ΨΔt� . Setting �0 equal to the initial condition 
u0(�) projected on the spline space Vh,p , the time integra-
tion method can be written as a linear system of equations:

A sequential time integration scheme would correspond 
to a block-forward solve of this linear system of equations. 
In this paper, however, we adopt MGRIT to iteratively solve 
Eq. (17). First, we introduce the two-level MGRIT method, 
showing similarities with the well-known parareal algo-
rithm [15]. In fact, it can be shown that both methods are 
equivalent, assuming a specific choice of relaxation [16]. 
Then, the multilevel variant of MGRIT will be presented in 
more detail.

3.1  Two‑level MGRIT method

The two-level MGRIT method combines the use of a cheap 
coarse-level time integration method with an accurate 
more expensive fine-level one which can be performed 
in parallel. That is, the linear system of equations given by 
Eq. (17) can be solved iteratively by introducing a coarse 
temporal mesh with time step size ΔtC = mΔtF . Here, ΔtF 
coincides with the Δt from the previous sections and m 
denotes the coarsening factor. Figure 2 illustrates both the 
fine and coarse temporal discretization.

The time instances T0, T1,… , TNt∕m
 are referred to as 

coarse points (or C-points), while the remaining points 
are called fine points (or F-points). The description of 
MGRIT is based on this division of the time instances in 
both coarse and fine points. By applying a numbering 

(15)�k+1 =Ψ
(
��k + Δt�

)
, k = 0,… ,Nt ,

(16)=Ψ��k + �k+1, k = 0,… ,Nt ,

(17)�� =

⎡⎢⎢⎢⎣

I

−Ψ� I

⋱ ⋱

− Ψ� I

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�0

�1

⋮

�Nt

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

�0

�1

⋮

�Nt

⎤⎥⎥⎥⎦
= �.

strategy that first numbers the F-points and then the 
C-points, we can write Eq. (17) as follows:

where the matrix � can be decomposed as follows:

where �C and �F are identity matrices. The ‘ideal’ restriction 
and prolongation operator are then defined as follows:

Within MGRIT, the ‘ideal’ prolongation operator P is typi-
cally adopted, while the ‘ideal’ restriction operator is 
replaced by R̃ =

[
� �C

]
 . The matrix �FF is given by:

Note that each solve with �Ψ corresponds to a single time 
step within a coarse interval, which is a completely inde-
pendent process for each coarse interval and can therefore 
be performed in parallel. The Schur complement matrix � 
in Eq. (19) is given by:

Instead of solving for � directly, MGRIT solves for a modi-
fied matrix �̃ by replacing the operator (Ψ�)m ≈ Φ� , 
which corresponds to applying a single time step of a 
coarse time integrator. As a true multigrid method, the 
building blocks of the MGRIT method consist of relaxa-
tion (= fine time stepping) and a coarse grid correction (= 
coarse time stepping). Relaxation involves solving a linear 
system of the form

(18)

[
�FF �FC

�CF �CC

] [
�F
�C

]
=

[
�F
�C

]
,

(19)

[
�FF �FC

�CF �CC

]
=

[
�F �

�CF�
−1
FF

�C

] [
�FF �

� �

] [
�F �−1

FF
�FC

� �C

]
,

(20)R =
[
�CF�

−1
FF

�C
]
, P =

[
−�−1

FF
�FC

�C

]
.

(21)�FF =

⎡⎢⎢⎣

�Ψ

⋱

�Ψ

⎤
⎥⎥⎦
, �Ψ =

⎡⎢⎢⎢⎣

I

−Ψ� I

⋱ ⋱

− Ψ� I

⎤⎥⎥⎥⎦
.

(22)

� = �CC − �CF�
−1
FF
�FC =

⎡⎢⎢⎢⎣

I

−(Ψ�)m I

⋱ ⋱

− (Ψ�)m I

⎤⎥⎥⎥⎦
.

(23)�FF�F = �F − �FC�C ,

Fig. 2  Coarse and fine tempo-
ral mesh from 0 to T, based on 
Fig 2.1 of [6]

T0 T1 · · · TNt/m

t0 t1 · · · tm tNt∆tF

∆tC = m∆tF
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where �F and �C denote the solution at all F-points and 
C-points, respectively. Within relaxation, the solution is 
updated at the F-points based on the given values at the 
C-points. This time stepping from a coarse point C to all 
neighbouring fine points is also referred to as F-relaxation 
[6]. On the other hand, time stepping to a C-point from the 
previous F-point is referred to as C-relaxation. It should be 
noted that both types of relaxation are highly parallel and 
can be combined leading to so-called CF- or FCF-relaxa-
tion. Figure 3 illustrates both C- and F-relaxation methods.

The coarse grid correction involves solving the linear 
system of equations

which is a sequential procedure by design, but is much 
cheaper compared to the fine time integration (which can 
be performed in parallel). Here, the vector �C is obtained 
by applying R̃ on �.

3.2  Multilevel MGRIT method

The solution procedure described above can be extented 
to a true multilevel MGRIT method. First, we define a 
hierarchy of L temporal meshes, where the time step size 
for the discretization at level l (l = 0, 1,… L) is given by 
ΔtFm

l . The total number of levels L is related to the coars-
ening factor m and the total number of fine steps ΔtF by 
L = logm(Nt) . Let �(l)�(l) = �(l) denote the linear system of 
equations based on the considered time step size at level 
l. The MGRIT method can then be written as follows: 

1. Apply F-relaxation ( = fine time stepping) on 
�(l)�(l) = �(l) : 

2. Determine the residual at level l and restrict it to level 
l + 1 using the restriction operator R̃ : 

3. Solve Eq. (24) ( = coarse time stepping) to obtain �(l+1) : 

(24)�̃�C = R̃(� − ��),

�
(l)

FF
�
(l)

F
= �

(l)

F
− �

(l)

FC
�
(l)

C
.

�(l+1) = R̃
(
�(l) − �(l)�(l)

)
.

�̃�(l+1) = �(l+1).

4. Prolongate the correction using the ‘ideal’ interpola-
tion operator P and update the solution at level l: 

Recursive application of this scheme until the coarsest 
level is reached, leads to a so-called V-cycle. However, as 
with standard multigrid methods, alternative cycle types 
(i.e., W-cycles, F-cycles) can be defined. At all levels of the 
multigrid hierarchy, the operators are obtained by redis-
cretizing Eq. (1) using a different time step size.

4  p‑multigrid method

Within the MGRIT algorithm, fine time stepping is per-
formed in parallel within each time interval. Assuming a 
backward Euler time integration scheme, the following lin-
ear system of equations is solved within each time interval 
at every iteration:

Throughout this section we will omit the time step index 
k and write the linear system of equations given by Eq. 
(25) as follows:

In a recent paper by the authors [12], this linear system 
of equations was solved within MGRIT by means of a 
(diagonally preconditioned) Conjugate-Gradient method. 
However, as the condition number of the system matrix 
increases exponentially in IgA with the spline degree p, 
the use of standard iterative solvers becomes less efficient 
for higher values of p. As a consequence, alternative solu-
tion techniques have been developed in recent years to 
overcome this dependency [17].

In this paper, we adopt a p-multigrid method [13] spe-
cifically designed for discretizations arising in IgA to solve 
the linear systems within MGRIT. Within the p-multigrid 
method, a low-order correction is obtained (at level p = 1 ) 
to update the solution at the high-order level. Starting 
from the high-order problem, the following steps are per-
formed [13]: 

�(l) ∶= �(l) + P�(l+1).

(25)(� + Δt�)�k+1 = ��k + Δt� , k = 0,… ,Nt .

(26)�h,p�h,p = �h,p.

Fig. 3  Illustration of F-relax-
ation (top) and C-relaxation 
(bottom) C F F F F C F F F F C F F F F C F F F F C

C F F F F C F F F F C F F F F C F F F F C
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1. Apply one presmoothing step to the initial guess �0
h,p

 : 

 where Sh,p is a smoothing operator applied to the 
high-order problem.

2. Determine the residual at level p and project it onto 
the space Vh,1 using the restriction operator I1

p
 : 

3. Solve the residual equation to determine the coarse 
grid error: 

4. Project the error �h,1 onto the space Vh,p using the pro-
longation operator Ip

1
 and update �0

h,p
 : 

5. Apply one postsmoothing step of the form (27) on the 
updated solution to obtain �1

h,p
.

To approximately solve the residual equation given by Eq. 
(29) a single W-cycle of a standard h-multigrid method 
[18], using canonical prolongation and weighted restric-
tion, is applied. As the level p = 1 corresponds to a low-
order Lagrange discretization, an h-multigrid method 
(using Gauss–Seidel as a smoother) is known to be both 
efficient and cheap [19]. The resulting p-multigrid adopted 
throughout this paper is shown in Fig. 4.

Note that, we directly restrict the residual at the high-
order level to level p = 1 . This aggressive p-coarsening 
strategy has shown to significantly improve the compu-
tational efficiency of the resulting p-multigrid method [20], 
while maintaining its excellent convergence behavior.

Prolongation and restriction operators based on an L2 
projection are adopted to transfer vectors from the high-
order level to the low-order level (and vice versa). These 

(27)�0
h,p

= �0
h,p

+ Sh,p

(
�h,p − �h,p�

0
h,p

)
,

(28)�h,1 = I
1
p

(
�h,p − �h,p�

0
h,p

)
.

(29)�h,1�h,1 = �h,1.

(30)�0
h,p

∶= �0
h,p

+ I
p

1

(
�h,1

)
.

transfer operators have been used extensively in the lit-
erature [21–23] and are given by:

Here, the mass matrix �p and transfer matrix �p

1
 are 

defined as follows:

To prevent the explicit solution of a linear system of equa-
tions for each projection step, the consistent mass matrix 
in both transfer operators is replaced by its lumped coun-
terpart by applying row-sum lumping. Note that, row-sum 
lumping can be applied within the variational formulation, 
due to the partition of unity and non-negativity of the 
B-spline basis functions.

Various choices can be made with respect to the 
smoother at the high-order level. The use of Gauss–Sei-
del or (damped) Jacobi as a smoother at level p leads to 
convergence rates of the resulting multigrid method that 
depend significantly on the spline degree p [24]. Alterna-
tive smoothers have been developed in recent years to 
overcome this shortcoming [25]. In particular, the use of 
ILUT factorizations [26] (i.e., as a preconditioner within 
a preconditioned Richardson iteration) has shown to be 
very effective in the context of IgA [24] and will there-
fore be adopted throughout the remainder of this paper. 
An efficient implementation of ILUT is available in the 
Eigen library [27]. Once the factorization �h,p ≈ �h,p�h,p 
is obtained, a single smoothing step is applied as follows:

(31)I
p

1
(�1) = (�p)

−1�
p

1
�1, I

1
p
(�p) = (�1)

−1�1
p
�p.

(32)
(�p)(i,j) ∶= ∫Ω

Φi,pΦj,p dΩ,

(�
p

1
)(i,j) ∶= ∫Ω

Φi,pΦj,1 dΩ,

(33)�
(n)

h,p
=(�h,p�h,p)

−1(�h,p − �h,p�
(n)

h,p
),

(34)=�−1
h,p
�−1
h,p
(�h,p − �h,p�

(n)

h,p
),

Fig. 4  Illustration of the 
p-multigrid method [13]. At 
p = 1 , Gauss–Seidel is adopted 
as a smoother (filled circle), 
whereas at the high-order level 
ILUT is applied (filled triangle). 
At the coarsest level, a direct 
solver is applied to solve 
the residual equation (filled 
square)

p = 3 h = 2−5

p = 2 h = 2−5

p = 1 h = 2−5

p = 1 h = 2−4

p = 1 h = 2−3

}
p-multigrid

}
h-multigrid

{

{

IgA

P1 FEM
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The ILUT factorization is determined completely by a drop-
ping tolerance � and fill factor f. Based on previous stud-
ies by the authors, we choose � = 10−12 and f = 1 , which 
implies we only drop a few (very) small values during the 
factorization and �h,p�h,p has a similar number of nonzero 
elements as �h,p.

5  Numerical results

To assess the quality of MGRIT when applied in combina-
tion with a p-multigrid method within Isogeometric Analy-
sis, we consider the time-dependent heat equation in two 
dimensions given by Eq. (1). Figure 5 shows the resulting 
solution u at different time instances for Ω = [0, 1]2 . Here, 
an inhomogeneous Neumann boundary condition is 
applied at the left boundary. Furthermore, the right-hand 
side is chosen equal to one and the initial condition is 
equal to zero.

Based on a spatial discretization with B-spline basis 
functions of order p and a mesh width h, MGRIT is applied 
to iteratively solve the resulting equation. Both the num-
ber of iterations and CPU timings needed to reach con-
vergence will be investigated using both a (diagonally 
preconditioned) Conjugate Gradient method and the 
described p-multigrid method. Furthermore, we will 
investigate the parallel performance of MGRIT on mod-
ern computer architectures. The open-source C++ library 
G+Smo [28] is used to discretize the model problem in 

(35)�
(n+1)

h,p
=�

(n)

h,p
+ �

(n)

h,p
, space using IgA, while, for the MGRIT algorithm, the paral-

lel-in-time code XBraid, developed at Lawrence Livermore 
National Lab, is adopted [29]. The MGRIT method is said to 
have reached convergence if the relative residual (in the 
L2 norm) at the end of an iteration is smaller or equal to 
10−10 , unless stated otherwise.

As a starting point, we briefly summarize the results 
obtained in a previous paper of the authors (see [12]). 
There, numerical results were obtained for the same model 
problem using different hierarchies (i.e., a V-cycle, F-cycle 
and two-level method), time integration schemes (i.e., 
backward Euler, forward Euler and Crank–Nicolson) and 
domains of interest (see Fig. 6).

In general, it was observed that MGRIT converged in a 
low number (i.e., 5–10) of iterations, although the num-
ber of iterations was slightly higher when V-cycles were 
adopted instead of F-cycles or a two-level method. Fur-
thermore, the number of iterations was independent of 
the mesh width h, spline degree of the B-spline basis func-
tions p and the number of time steps Nt for all considered 
hierarchies and domains of interest. As expected from 
sequential time stepping methods, the use of the implicit 
backward Euler within MGRIT lead to the most stable time 
integration method. Finally, CPU timings were obtained for 
a limited number of processors, showing a strong depend-
ency on the spline degree p when the Conjugate Gradient 
method was applied as a spatial solver within MGRIT.

In this section, we investigate the effect of using a 
p-multigrid method for the spatial solves compared to the 
use of a Conjugate Gradient method. Furthermore, we pre-
sent numerical results when considering a three dimen-
sional geometry (i.e., the unit cube). Finally, we investigate 

Fig. 5  Solution to the model 
problem at different times T 
using an inhomogeneous Neu-
mann boundary condition at 
the left boundary using quad-
ratic B-spline basis functions

Fig. 6  Spatial domains Ω con-
sidered in [12]
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the weak and strong scaling of MGRIT on modern architec-
tures when applied in the context of IgA. As this research 
focuses on the spatial solver and scalability, we will restrict 
ourselves to the backward Euler method and the use of 
V-cycles within MGRIT.

5.1  Iteration numbers

As a first step, we compare the number of MGRIT itera-
tions to reach convergence when a p-multigrid method 
or a (diagonally preconditioned) Conjugate Gradient 
method is adopted while keeping all other parameters 
the same. Table  1 shows the results when the mesh 
width is kept constant ( h = 2−6 ) for the unit square 
and a quarter annulus when adopting V-cycles with a 

p-multigrid (top) and CG method (bottom), respectively. 
For both benchmarks and all configurations, the number 
of iterations needed with MGRIT to reach convergence is 
independent of the number of time steps Nt and spline 
degree p. Furthermore, the number of MGRIT iterations 
is identical when adopting a p-multigrid method com-
pared to the use of a Conjugate Gradient method.

Table 2 shows the results for different values of the 
mesh width h when the number of time steps is kept 
constant ( Nt = 100 ) for both benchmarks when adopting 
V-cycles. The number of MGRIT iterations is independent 
of the mesh width h and spline degree p. Furthermore, the 
number of MGRIT iterations is identical when adopting a 
p-multigrid method compared to the use of a Conjugate 
Gradient method.

Table 1  Number of MGRIT 
iterations for solving Eq. (1) on 
the unit square and a quarter 
annulus when adopting 
V-cycles for a varying number 
of time steps

Here, p-multigrid (top) and the CG method (bottom) are adopted for the spatial solves and backward 
Euler for the time integration

Unit square Quarter annulus

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11
Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 2  Number of MGRIT 
iterations for solving Eq. (1) on 
the unit square and a quarter 
annulus when adopting 
V-cycles for varying mesh 
widths

Here, p-multigrid (top) and the CG method (bottom) are adopted for the spatial solves and backward 
Euler for the time integration

Unit square Quarter annulus

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−6 9 9 9 9 9 9 9 9

h = 2−7 9 9 9 9 9 9 9 9

h = 2−8 10 10 10 10 9 9 9 9

h = 2−9 10 10 10 10 10 10 10 10

h = 2−6 9 9 9 9 9 9 9 9

h = 2−7 9 9 9 9 9 9 9 9

h = 2−8 10 10 10 10 9 9 9 9

h = 2−9 10 10 10 10 10 10 10 10

Table 3  Number of MGRIT 
iterations for solving Eq. (1) on 
the unit cube when adopting 
V-cycles for a varying number 
of time steps

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 11 h = 2−3 9 9 9 10

Nt = 500 11 11 11 11 h = 2−4 9 9 9 10

Nt = 1000 11 11 11 11 h = 2−5 10 10 10 10

Nt = 2000 11 11 11 11 h = 2−6 10 10 10 10
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Results when adopting the p-multigrid method have 
been obtained for a three-dimensional benchmark prob-
lem as well. Table 3 shows the number of MGRIT iterations 
for different values of Nt , p and h when the unit cube is 
considered as geometry. In general, the number of itera-
tions needed to reach convergence is independent of 
the number of time steps, spline degree and mesh width. 
Furthermore, the number of iterations are comparable to 
the ones obtained for the two-dimensional benchmark 
problems.

Finally, we investigate the influence of the time inte-
gration scheme on the number of MGRIT iterations. 
Table 4 shows the number of MGRIT iterations needed 
to reach convergence for the forward Euler ( � = 0 ) and 
Crank–Nicolson ( � = 0.5 ) method. Results can be com-
pared to the ones obtained with the backward Euler 
method (see Table 2). For many configurations, MGRIT 
using forward Euler does not convergence (which is 
related to the CFL condition), while the Crank–Nicolson 
method converges for all configurations. A small depend-
ency on h and p is, however, visible. Based on these results, 
the backward Euler method will be adopted throughout 
the remainder of this paper. For a more detailed analy-
sis regarding different time integration schemes within 
MGRIT, the authors refer to [12].

Although the number of MGRIT iterations is identical 
for all configurations when adopting a p-multigrid or Con-
jugate Gradient method for solving the linear systems of 
equations, it is expected that CPU timings will differ signifi-
cantly. Therefore, focus will lie on CPU timings throughout 
the remainder of this section.

5.2  CPU timings

CPU timings have been obtained when a p-multigrid 
method or Conjugate Gradient method is adopted for 
the spatial solves within MGRIT. As in the previous sec-
tion, we adopt V-cycles, a mesh width of h = 2−6 and the 
unit square as our domain of interest. Note that the cor-
responding iteration numbers can be found in Table 1. The 
computations are performed on three compute nodes 
each consisting of an Intel(R) i7-10700 (@ 2.90GHz) Comet-
lake processor with 8 hardware cores (hyperthreading 

turned on) and 128GB DDR4 main memory organized in 4 
modules of 32GB each.

Figure 7 shows the CPU time needed to reach conver-
gence for a varying number of cores, a different number 
of time steps and different values of p. When the Conju-
gate Gradient method is adopted for the spatial solves, 
doubling the number of time steps leads to an increase 
of the CPU time by a factor of two. Furthermore, it can be 
observed that the CPU timings significantly increase for 
higher values of p which is related to the spatial solves 
required at every time step. As standard iterative solvers 
(like the Conjugate Gradient method) have a detoriating 
performance for increasing values of p, more iterations 
are required to reach convergence for each spatial solve, 
resulting in higher computational costs of the MGRIT 
method. When focussing on the number of cores, it can 
be seen that doubling the number of cores significantly 
reduces the CPU time needed to reach convergence. More 
precisely, a reduction of 45–50% can be observed when 
doubling the number of cores to 6, implying the MGRIT 
algorithm is highly parallelizable.

As with the use of the Conjugate Gradient method, dou-
bling the number of time steps leads to an increase of the 
CPU time by a factor of two when a p-multigrid method is 
adopted. For p = 2 , the use of a p-multigrid method leads 
to higher CPU timings compared to the use of the Con-
jugate Gradient method for all values of Nt . However, the 
dependency of the CPU timings on the spline degree is 
significantly mitigated, which leads to a serious decrease 
of the CPU timings compared to the use of the Conjugate 
Gradient method when higher values of p are considered. 
For example, for Nt = 2000 and p = 5 a speed-up of more 
than a factor of 10 is achieved.

Again, increasing the number of cores from 3 to 6, 
reduces the CPU time needed to reach convergence by 
45–50%. These results show that MGRIT combined with 
a p-multigrid method leads to an overall more efficient 
method. Therefore, a larger computer cluster will be con-
sidered in the next section to further investigate the scal-
ability of MGRIT (i.e., weak and strong scalability) when 
combined with a p-multigrid method within IgA.

Table 4  Number of MGRIT 
iterations for solving Eq. (1) 
on the unit square using 
forward Euler ( � = 0 ) and 
Crank–Nicolson ( � = 0.5 ) when 
adopting V-cycles

Forward Euler Crank–Nicolson

p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−3 13 13 13 14 11 11 11 12

h = 2−4 13 13 ∗ ∗ 11 11 11 11

h = 2−5 ∗ ∗ ∗ ∗ 11 11 13 23

h = 2−6 ∗ ∗ ∗ ∗ 13 28 52 88
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6  Scalability

In the previous sections, we applied MGRIT adopting a 
relatively low number of cores. Here, it was shown that 
the use of a p-multigrid method significantly reduces the 
dependency of the CPU timings on the spline degree. In 
this section, we investigate the scalability of MGRIT (com-
bined with a p-multigrid method) on a modern architec-
ture. More precisely, we will investigate both strong and 
weak scalability on the Lisa system, one of the nationally 
used clusters of the Netherlands1.

6.1  Strong scalability

First, we fix the total problem size and increase the num-
ber of cores (i.e., strong scalability). That is, we consider 
the same benchmark problem as in the previous sections, 
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but with a mesh width of h = 2−6 and a number of time 
steps Nt of 10.000. As before, backward Euler is applied for 
the time integration and V-cycles are adopted as MGRIT 
hierarchy. Figure 8 shows the CPU timings needed to reach 
convergence for a varying number of Intel Xeon Gold 6130 
(@ 2.10GHz) processors, where each processor consists 
of 16 cores. For all values of p, increasing the number of 
cores leads to significant speed-ups which illustrates the 
parallizability of the MGRIT method up to 2048 cores. To 
compare the results with a sequential time integration 
method, results with a backward Euler method have been 
added as well. Here, the CPU timings are independent of 
the number of processors and shown in the most right 
column for each value of p (‘sequential’). Clearly, MGRIT 
outperforms the sequential algorithm when the number 
of cores is larger or equal to 128. This behavior has been 
observed in the literature as well in case of a finite differ-
ence discretization for a similar model problem, see [6].

Figure 9 shows the obtained speed-ups as a function 
of the number of cores for different values of p based on 
the results presented in Fig. 8. As a comparison, the ideal 
speed-up has been added, assuming a perfect parallizabil-
ity of the MGRIT method. Note that, for all values of p, the 
observed speed-up slightly increases when the number 
of cores is higher than 256. Furthermore, the obtained 
speed-ups remain high, even when the number of cores 
is further increased to 2048, and is independent of the 
spline degree p.

Strong scalability has been investigated for the three-
dimensional benchmark problem as well. Figure 10 shows 
the strong scalability for MGRIT on the unit cube. In gen-
eral, the obtained results are comparable to the ones 
obtained in two dimensions, showing significant speed-
ups when increasing the number of cores for all values 
of p. Results obtained with a sequential time integration 
method have been added as well, showing comparable 

results to MGRIT when adopting 512 cores. It should be 
noted that, compared to the two-dimensional benchmark 
problem, the CPU timings grow significantly faster for 
increasing values of p. This is well-known in Isogeometric 
Analysis [30] and is related to the relatively high number 
of nonzero entries in three dimensions when considering 
higher values of p. The use of the (preconditioned) Con-
jugate Gradient method would even lead to a significant 
higher growth in CPU timings, as the number of itera-
tions needed to reach convergence for every spatial solve 
increases excessively in three dimensions when adopting 
a standard solver.

Figure 11 shows the obtained speed-ups for different 
values of p based on the results presented in Fig. 10. The 
obtained speed-ups are similar to the ones obtained for 
the two-dimensional problem but vary slightly more for 
different values of p. In general, the observed speed-ups 
remain high, even when the number of cores is increased 
to 2048.
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6.2  Weak scalability

As a next step, we consider the unit square as our domain 
of interest but keep the problem size per processor fixed 
(i.e. weak scalability). In case of 64 cores, the number 
of time steps equals 1000 and is adjusted based on the 
number of cores. Figure 12 shows the CPU time needed 
to reach convergence for a different number of cores and 
different values of p. Clearly, the CPU timings remain (more 
or less) constant when the number of cores is increased, 
showing the weak scalability of the MGRIT method. 
Although the CPU timings slightly increase for higher 
values of p, the strong p-dependency observed with the 
Conjugate Gradient method is clearly mitigated.

7  Conclusions

In this paper, we combined MGRIT with a p-multigrid 
method for discretizations arising in Isogeometric Analy-
sis. Numerical results obtained for a variety of benchmark 
problems show that the use of a p-multigrid method for 
all spatial solves within MGRIT results in convergence 
rates independent of the mesh width h, spline degree p 
and number of time steps Nt . Furthermore, CPU timings 
depend only mildly on the spline degree p in two dimen-
sions. This is in sharp contrast to standard solvers (e.g. a 
Conjugate Gradient method), which show a deteriorating 
performance (in terms of CPU timings) for higher values 
of p already in two dimensions. Furthermore, the obtained 
CPU timings when adopting a p-multigrid method are 
significantly lower for almost all considered configura-
tions. On modern computer architectures, both strong 
and weak scalability of the resulting MGRIT method have 
been investigated, showing good scalability up to 2048 

cores, illustrating the potential of MGRIT (combined with 
a p-multigrid method) for time-dependent simulations in 
IgA.

Within this paper, we restrict ourselves to first- and sec-
ond-order accurate time integration schemes. As the use 
of high-order B-spline basis functions significantly reduces 
the spatial discretization error, the use of alternative (and 
in particular higher-order) time integration scheme is 
interesting and will be investigated in future work. Fur-
thermore, we will focus on the application of MGRIT to 
more challenging benchmark problems, in particular those 
where IgA has proven to be a viable alternative to FEM.
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